vmscan.c 117.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

15 16
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
17
#include <linux/mm.h>
18
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
19
#include <linux/module.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
26
#include <linux/vmpressure.h>
27
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
39
#include <linux/compaction.h>
L
Linus Torvalds 已提交
40 41
#include <linux/notifier.h>
#include <linux/rwsem.h>
42
#include <linux/delay.h>
43
#include <linux/kthread.h>
44
#include <linux/freezer.h>
45
#include <linux/memcontrol.h>
46
#include <linux/delayacct.h>
47
#include <linux/sysctl.h>
48
#include <linux/oom.h>
49
#include <linux/prefetch.h>
50
#include <linux/printk.h>
51
#include <linux/dax.h>
L
Linus Torvalds 已提交
52 53 54 55 56

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
57
#include <linux/balloon_compaction.h>
L
Linus Torvalds 已提交
58

59 60
#include "internal.h"

61 62 63
#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

L
Linus Torvalds 已提交
64
struct scan_control {
65 66 67
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

68 69 70 71 72
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
73

74 75 76 77 78
	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;
79

80
	/* Writepage batching in laptop mode; RECLAIM_WRITE */
81 82 83 84 85 86 87 88
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

89 90 91 92 93 94 95
	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;
96

97 98 99 100 101
	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

G
Greg Thelen 已提交
102 103 104 105 106 107 108 109 110 111 112 113
	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

114 115 116 117 118
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;
119 120 121 122 123 124 125 126 127 128

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;
L
Linus Torvalds 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
};

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
163 164 165 166 167
/*
 * The total number of pages which are beyond the high watermark within all
 * zones.
 */
unsigned long vm_total_pages;
L
Linus Torvalds 已提交
168 169 170 171

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

172 173 174 175 176 177 178 179 180 181 182 183 184 185
#ifdef CONFIG_MEMCG_KMEM
static DEFINE_IDR(shrinker_idr);
static int shrinker_nr_max;

static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	int id, ret = -ENOMEM;

	down_write(&shrinker_rwsem);
	/* This may call shrinker, so it must use down_read_trylock() */
	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
	if (id < 0)
		goto unlock;

186 187 188 189 190 191
	if (id >= shrinker_nr_max) {
		if (memcg_expand_shrinker_maps(id)) {
			idr_remove(&shrinker_idr, id);
			goto unlock;
		}

192
		shrinker_nr_max = id + 1;
193
	}
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	shrinker->id = id;
	ret = 0;
unlock:
	up_write(&shrinker_rwsem);
	return ret;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
	int id = shrinker->id;

	BUG_ON(id < 0);

	down_write(&shrinker_rwsem);
	idr_remove(&shrinker_idr, id);
	up_write(&shrinker_rwsem);
}
#else /* CONFIG_MEMCG_KMEM */
static int prealloc_memcg_shrinker(struct shrinker *shrinker)
{
	return 0;
}

static void unregister_memcg_shrinker(struct shrinker *shrinker)
{
}
#endif /* CONFIG_MEMCG_KMEM */

A
Andrew Morton 已提交
222
#ifdef CONFIG_MEMCG
223 224
static bool global_reclaim(struct scan_control *sc)
{
225
	return !sc->target_mem_cgroup;
226
}
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

/**
 * sane_reclaim - is the usual dirty throttling mechanism operational?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_page_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool sane_reclaim(struct scan_control *sc)
{
	struct mem_cgroup *memcg = sc->target_mem_cgroup;

	if (!memcg)
		return true;
#ifdef CONFIG_CGROUP_WRITEBACK
248
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
249 250 251 252
		return true;
#endif
	return false;
}
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

static void set_memcg_congestion(pg_data_t *pgdat,
				struct mem_cgroup *memcg,
				bool congested)
{
	struct mem_cgroup_per_node *mn;

	if (!memcg)
		return;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	WRITE_ONCE(mn->congested, congested);
}

static bool memcg_congested(pg_data_t *pgdat,
			struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *mn;

	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
	return READ_ONCE(mn->congested);

}
276
#else
277 278 279 280
static bool global_reclaim(struct scan_control *sc)
{
	return true;
}
281 282 283 284 285

static bool sane_reclaim(struct scan_control *sc)
{
	return true;
}
286 287 288 289 290 291 292 293 294 295 296 297

static inline void set_memcg_congestion(struct pglist_data *pgdat,
				struct mem_cgroup *memcg, bool congested)
{
}

static inline bool memcg_congested(struct pglist_data *pgdat,
			struct mem_cgroup *memcg)
{
	return false;

}
298 299
#endif

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
/*
 * This misses isolated pages which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated pages will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{
	unsigned long nr;

	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);

	return nr;
}

318 319 320 321 322 323 324
/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 */
unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
325
{
326 327 328
	unsigned long lru_size;
	int zid;

329
	if (!mem_cgroup_disabled())
330 331 332
		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
	else
		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
333

334 335 336
	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
		unsigned long size;
337

338 339 340 341 342 343 344 345 346 347 348 349
		if (!managed_zone(zone))
			continue;

		if (!mem_cgroup_disabled())
			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
		else
			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
				       NR_ZONE_LRU_BASE + lru);
		lru_size -= min(size, lru_size);
	}

	return lru_size;
350 351 352

}

L
Linus Torvalds 已提交
353
/*
G
Glauber Costa 已提交
354
 * Add a shrinker callback to be called from the vm.
L
Linus Torvalds 已提交
355
 */
356
int prealloc_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
357
{
G
Glauber Costa 已提交
358 359 360 361 362 363 364 365
	size_t size = sizeof(*shrinker->nr_deferred);

	if (shrinker->flags & SHRINKER_NUMA_AWARE)
		size *= nr_node_ids;

	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
	if (!shrinker->nr_deferred)
		return -ENOMEM;
366 367 368 369 370 371

	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
		if (prealloc_memcg_shrinker(shrinker))
			goto free_deferred;
	}

372
	return 0;
373 374 375 376 377

free_deferred:
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
	return -ENOMEM;
378 379 380 381
}

void free_prealloced_shrinker(struct shrinker *shrinker)
{
382 383 384 385 386 387
	if (!shrinker->nr_deferred)
		return;

	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);

388 389 390
	kfree(shrinker->nr_deferred);
	shrinker->nr_deferred = NULL;
}
G
Glauber Costa 已提交
391

392 393
void register_shrinker_prepared(struct shrinker *shrinker)
{
394 395 396
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
397 398 399 400 401 402 403 404 405
}

int register_shrinker(struct shrinker *shrinker)
{
	int err = prealloc_shrinker(shrinker);

	if (err)
		return err;
	register_shrinker_prepared(shrinker);
G
Glauber Costa 已提交
406
	return 0;
L
Linus Torvalds 已提交
407
}
408
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
409 410 411 412

/*
 * Remove one
 */
413
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
414
{
415 416
	if (!shrinker->nr_deferred)
		return;
417 418
	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
		unregister_memcg_shrinker(shrinker);
L
Linus Torvalds 已提交
419 420 421
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
422
	kfree(shrinker->nr_deferred);
423
	shrinker->nr_deferred = NULL;
L
Linus Torvalds 已提交
424
}
425
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
426 427

#define SHRINK_BATCH 128
G
Glauber Costa 已提交
428

429
static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
430
				    struct shrinker *shrinker, int priority)
G
Glauber Costa 已提交
431 432 433 434
{
	unsigned long freed = 0;
	unsigned long long delta;
	long total_scan;
435
	long freeable;
G
Glauber Costa 已提交
436 437 438 439 440
	long nr;
	long new_nr;
	int nid = shrinkctl->nid;
	long batch_size = shrinker->batch ? shrinker->batch
					  : SHRINK_BATCH;
441
	long scanned = 0, next_deferred;
G
Glauber Costa 已提交
442

443 444
	freeable = shrinker->count_objects(shrinker, shrinkctl);
	if (freeable == 0)
G
Glauber Costa 已提交
445 446 447 448 449 450 451 452 453 454
		return 0;

	/*
	 * copy the current shrinker scan count into a local variable
	 * and zero it so that other concurrent shrinker invocations
	 * don't also do this scanning work.
	 */
	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);

	total_scan = nr;
455 456 457
	delta = freeable >> priority;
	delta *= 4;
	do_div(delta, shrinker->seeks);
G
Glauber Costa 已提交
458 459
	total_scan += delta;
	if (total_scan < 0) {
460
		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
D
Dave Chinner 已提交
461
		       shrinker->scan_objects, total_scan);
462
		total_scan = freeable;
463 464 465
		next_deferred = nr;
	} else
		next_deferred = total_scan;
G
Glauber Costa 已提交
466 467 468 469 470 471 472

	/*
	 * We need to avoid excessive windup on filesystem shrinkers
	 * due to large numbers of GFP_NOFS allocations causing the
	 * shrinkers to return -1 all the time. This results in a large
	 * nr being built up so when a shrink that can do some work
	 * comes along it empties the entire cache due to nr >>>
473
	 * freeable. This is bad for sustaining a working set in
G
Glauber Costa 已提交
474 475 476 477 478
	 * memory.
	 *
	 * Hence only allow the shrinker to scan the entire cache when
	 * a large delta change is calculated directly.
	 */
479 480
	if (delta < freeable / 4)
		total_scan = min(total_scan, freeable / 2);
G
Glauber Costa 已提交
481 482 483 484 485 486

	/*
	 * Avoid risking looping forever due to too large nr value:
	 * never try to free more than twice the estimate number of
	 * freeable entries.
	 */
487 488
	if (total_scan > freeable * 2)
		total_scan = freeable * 2;
G
Glauber Costa 已提交
489 490

	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
491
				   freeable, delta, total_scan, priority);
G
Glauber Costa 已提交
492

493 494 495 496 497 498 499 500 501 502 503
	/*
	 * Normally, we should not scan less than batch_size objects in one
	 * pass to avoid too frequent shrinker calls, but if the slab has less
	 * than batch_size objects in total and we are really tight on memory,
	 * we will try to reclaim all available objects, otherwise we can end
	 * up failing allocations although there are plenty of reclaimable
	 * objects spread over several slabs with usage less than the
	 * batch_size.
	 *
	 * We detect the "tight on memory" situations by looking at the total
	 * number of objects we want to scan (total_scan). If it is greater
504
	 * than the total number of objects on slab (freeable), we must be
505 506 507 508
	 * scanning at high prio and therefore should try to reclaim as much as
	 * possible.
	 */
	while (total_scan >= batch_size ||
509
	       total_scan >= freeable) {
D
Dave Chinner 已提交
510
		unsigned long ret;
511
		unsigned long nr_to_scan = min(batch_size, total_scan);
G
Glauber Costa 已提交
512

513
		shrinkctl->nr_to_scan = nr_to_scan;
514
		shrinkctl->nr_scanned = nr_to_scan;
D
Dave Chinner 已提交
515 516 517 518
		ret = shrinker->scan_objects(shrinker, shrinkctl);
		if (ret == SHRINK_STOP)
			break;
		freed += ret;
G
Glauber Costa 已提交
519

520 521 522
		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
		total_scan -= shrinkctl->nr_scanned;
		scanned += shrinkctl->nr_scanned;
G
Glauber Costa 已提交
523 524 525 526

		cond_resched();
	}

527 528 529 530
	if (next_deferred >= scanned)
		next_deferred -= scanned;
	else
		next_deferred = 0;
G
Glauber Costa 已提交
531 532 533 534 535
	/*
	 * move the unused scan count back into the shrinker in a
	 * manner that handles concurrent updates. If we exhausted the
	 * scan, there is no need to do an update.
	 */
536 537
	if (next_deferred > 0)
		new_nr = atomic_long_add_return(next_deferred,
G
Glauber Costa 已提交
538 539 540 541
						&shrinker->nr_deferred[nid]);
	else
		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);

542
	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
G
Glauber Costa 已提交
543
	return freed;
544 545
}

546
/**
547
 * shrink_slab - shrink slab caches
548 549
 * @gfp_mask: allocation context
 * @nid: node whose slab caches to target
550
 * @memcg: memory cgroup whose slab caches to target
551
 * @priority: the reclaim priority
L
Linus Torvalds 已提交
552
 *
553
 * Call the shrink functions to age shrinkable caches.
L
Linus Torvalds 已提交
554
 *
555 556
 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 * unaware shrinkers will receive a node id of 0 instead.
L
Linus Torvalds 已提交
557
 *
558 559
 * @memcg specifies the memory cgroup to target. If it is not NULL,
 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
560 561
 * objects from the memory cgroup specified. Otherwise, only unaware
 * shrinkers are called.
562
 *
563 564
 * @priority is sc->priority, we take the number of objects and >> by priority
 * in order to get the scan target.
565
 *
566
 * Returns the number of reclaimed slab objects.
L
Linus Torvalds 已提交
567
 */
568 569
static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
				 struct mem_cgroup *memcg,
570
				 int priority)
L
Linus Torvalds 已提交
571 572
{
	struct shrinker *shrinker;
D
Dave Chinner 已提交
573
	unsigned long freed = 0;
L
Linus Torvalds 已提交
574

575
	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
576 577
		return 0;

578
	if (!down_read_trylock(&shrinker_rwsem))
579
		goto out;
L
Linus Torvalds 已提交
580 581

	list_for_each_entry(shrinker, &shrinker_list, list) {
582 583 584
		struct shrink_control sc = {
			.gfp_mask = gfp_mask,
			.nid = nid,
585
			.memcg = memcg,
586
		};
587

588 589 590 591 592 593 594
		/*
		 * If kernel memory accounting is disabled, we ignore
		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
		 * passing NULL for memcg.
		 */
		if (memcg_kmem_enabled() &&
		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
595 596
			continue;

597 598
		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
			sc.nid = 0;
L
Linus Torvalds 已提交
599

600
		freed += do_shrink_slab(&sc, shrinker, priority);
601 602 603 604 605 606 607 608 609
		/*
		 * Bail out if someone want to register a new shrinker to
		 * prevent the regsitration from being stalled for long periods
		 * by parallel ongoing shrinking.
		 */
		if (rwsem_is_contended(&shrinker_rwsem)) {
			freed = freed ? : 1;
			break;
		}
L
Linus Torvalds 已提交
610
	}
611

L
Linus Torvalds 已提交
612
	up_read(&shrinker_rwsem);
613 614
out:
	cond_resched();
D
Dave Chinner 已提交
615
	return freed;
L
Linus Torvalds 已提交
616 617
}

618 619 620 621 622 623 624 625 626
void drop_slab_node(int nid)
{
	unsigned long freed;

	do {
		struct mem_cgroup *memcg = NULL;

		freed = 0;
		do {
627
			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
628 629 630 631 632 633 634 635 636 637 638 639
		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
	} while (freed > 10);
}

void drop_slab(void)
{
	int nid;

	for_each_online_node(nid)
		drop_slab_node(nid);
}

L
Linus Torvalds 已提交
640 641
static inline int is_page_cache_freeable(struct page *page)
{
642 643 644 645 646
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
647 648 649
	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
		HPAGE_PMD_NR : 1;
	return page_count(page) - page_has_private(page) == 1 + radix_pins;
L
Linus Torvalds 已提交
650 651
}

652
static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
L
Linus Torvalds 已提交
653
{
654
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
655
		return 1;
656
	if (!inode_write_congested(inode))
L
Linus Torvalds 已提交
657
		return 1;
658
	if (inode_to_bdi(inode) == current->backing_dev_info)
L
Linus Torvalds 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
J
Jens Axboe 已提交
678
	lock_page(page);
679 680
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
681 682 683
	unlock_page(page);
}

684 685 686 687 688 689 690 691 692 693 694 695
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
696
/*
A
Andrew Morton 已提交
697 698
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
699
 */
700
static pageout_t pageout(struct page *page, struct address_space *mapping,
701
			 struct scan_control *sc)
L
Linus Torvalds 已提交
702 703 704 705 706 707 708 709
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
710
	 * If this process is currently in __generic_file_write_iter() against
L
Linus Torvalds 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
726
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
727 728
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
729
				pr_info("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
730 731 732 733 734 735 736
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
737
	if (!may_write_to_inode(mapping->host, sc))
L
Linus Torvalds 已提交
738 739 740 741 742 743 744
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
745 746
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
747 748 749 750 751 752 753
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
754
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
755 756 757
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
758

L
Linus Torvalds 已提交
759 760 761 762
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
763
		trace_mm_vmscan_writepage(page);
764
		inc_node_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
765 766 767 768 769 770
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

771
/*
N
Nick Piggin 已提交
772 773
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
774
 */
775 776
static int __remove_mapping(struct address_space *mapping, struct page *page,
			    bool reclaimed)
777
{
778
	unsigned long flags;
779
	int refcount;
780

781 782
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
783

M
Matthew Wilcox 已提交
784
	xa_lock_irqsave(&mapping->i_pages, flags);
785
	/*
N
Nick Piggin 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
805
	 * load is not satisfied before that of page->_refcount.
N
Nick Piggin 已提交
806 807
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
M
Matthew Wilcox 已提交
808
	 * and thus under the i_pages lock, then this ordering is not required.
809
	 */
810 811 812 813 814
	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
		refcount = 1 + HPAGE_PMD_NR;
	else
		refcount = 2;
	if (!page_ref_freeze(page, refcount))
815
		goto cannot_free;
N
Nick Piggin 已提交
816 817
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
818
		page_ref_unfreeze(page, refcount);
819
		goto cannot_free;
N
Nick Piggin 已提交
820
	}
821 822 823

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
824
		mem_cgroup_swapout(page, swap);
825
		__delete_from_swap_cache(page);
M
Matthew Wilcox 已提交
826
		xa_unlock_irqrestore(&mapping->i_pages, flags);
827
		put_swap_page(page, swap);
N
Nick Piggin 已提交
828
	} else {
829
		void (*freepage)(struct page *);
830
		void *shadow = NULL;
831 832

		freepage = mapping->a_ops->freepage;
833 834 835 836 837 838 839 840 841
		/*
		 * Remember a shadow entry for reclaimed file cache in
		 * order to detect refaults, thus thrashing, later on.
		 *
		 * But don't store shadows in an address space that is
		 * already exiting.  This is not just an optizimation,
		 * inode reclaim needs to empty out the radix tree or
		 * the nodes are lost.  Don't plant shadows behind its
		 * back.
842 843 844 845 846
		 *
		 * We also don't store shadows for DAX mappings because the
		 * only page cache pages found in these are zero pages
		 * covering holes, and because we don't want to mix DAX
		 * exceptional entries and shadow exceptional entries in the
M
Matthew Wilcox 已提交
847
		 * same address_space.
848 849
		 */
		if (reclaimed && page_is_file_cache(page) &&
850
		    !mapping_exiting(mapping) && !dax_mapping(mapping))
851
			shadow = workingset_eviction(mapping, page);
J
Johannes Weiner 已提交
852
		__delete_from_page_cache(page, shadow);
M
Matthew Wilcox 已提交
853
		xa_unlock_irqrestore(&mapping->i_pages, flags);
854 855 856

		if (freepage != NULL)
			freepage(page);
857 858 859 860 861
	}

	return 1;

cannot_free:
M
Matthew Wilcox 已提交
862
	xa_unlock_irqrestore(&mapping->i_pages, flags);
863 864 865
	return 0;
}

N
Nick Piggin 已提交
866 867 868 869 870 871 872 873
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
874
	if (__remove_mapping(mapping, page, false)) {
N
Nick Piggin 已提交
875 876 877 878 879
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
880
		page_ref_unfreeze(page, 1);
N
Nick Piggin 已提交
881 882 883 884 885
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
886 887 888 889 890 891 892 893 894 895 896
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
897
	lru_cache_add(page);
L
Lee Schermerhorn 已提交
898 899 900
	put_page(page);		/* drop ref from isolate */
}

901 902 903
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
904
	PAGEREF_KEEP,
905 906 907 908 909 910
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
911
	int referenced_ptes, referenced_page;
912 913
	unsigned long vm_flags;

914 915
	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
					  &vm_flags);
916
	referenced_page = TestClearPageReferenced(page);
917 918 919 920 921 922 923 924

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

925
	if (referenced_ptes) {
926
		if (PageSwapBacked(page))
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

944
		if (referenced_page || referenced_ptes > 1)
945 946
			return PAGEREF_ACTIVATE;

947 948 949 950 951 952
		/*
		 * Activate file-backed executable pages after first usage.
		 */
		if (vm_flags & VM_EXEC)
			return PAGEREF_ACTIVATE;

953 954
		return PAGEREF_KEEP;
	}
955 956

	/* Reclaim if clean, defer dirty pages to writeback */
957
	if (referenced_page && !PageSwapBacked(page))
958 959 960
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
961 962
}

963 964 965 966
/* Check if a page is dirty or under writeback */
static void page_check_dirty_writeback(struct page *page,
				       bool *dirty, bool *writeback)
{
967 968
	struct address_space *mapping;

969 970 971 972
	/*
	 * Anonymous pages are not handled by flushers and must be written
	 * from reclaim context. Do not stall reclaim based on them
	 */
S
Shaohua Li 已提交
973 974
	if (!page_is_file_cache(page) ||
	    (PageAnon(page) && !PageSwapBacked(page))) {
975 976 977 978 979 980 981 982
		*dirty = false;
		*writeback = false;
		return;
	}

	/* By default assume that the page flags are accurate */
	*dirty = PageDirty(page);
	*writeback = PageWriteback(page);
983 984 985 986 987 988 989 990

	/* Verify dirty/writeback state if the filesystem supports it */
	if (!page_has_private(page))
		return;

	mapping = page_mapping(page);
	if (mapping && mapping->a_ops->is_dirty_writeback)
		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
991 992
}

L
Linus Torvalds 已提交
993
/*
A
Andrew Morton 已提交
994
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
995
 */
A
Andrew Morton 已提交
996
static unsigned long shrink_page_list(struct list_head *page_list,
M
Mel Gorman 已提交
997
				      struct pglist_data *pgdat,
998
				      struct scan_control *sc,
999
				      enum ttu_flags ttu_flags,
1000
				      struct reclaim_stat *stat,
1001
				      bool force_reclaim)
L
Linus Torvalds 已提交
1002 1003
{
	LIST_HEAD(ret_pages);
1004
	LIST_HEAD(free_pages);
L
Linus Torvalds 已提交
1005
	int pgactivate = 0;
1006 1007 1008 1009 1010 1011
	unsigned nr_unqueued_dirty = 0;
	unsigned nr_dirty = 0;
	unsigned nr_congested = 0;
	unsigned nr_reclaimed = 0;
	unsigned nr_writeback = 0;
	unsigned nr_immediate = 0;
1012 1013
	unsigned nr_ref_keep = 0;
	unsigned nr_unmap_fail = 0;
L
Linus Torvalds 已提交
1014 1015 1016 1017 1018 1019 1020

	cond_resched();

	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
1021
		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1022
		bool dirty, writeback;
L
Linus Torvalds 已提交
1023 1024 1025 1026 1027 1028

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
1029
		if (!trylock_page(page))
L
Linus Torvalds 已提交
1030 1031
			goto keep;

1032
		VM_BUG_ON_PAGE(PageActive(page), page);
L
Linus Torvalds 已提交
1033 1034

		sc->nr_scanned++;
1035

1036
		if (unlikely(!page_evictable(page)))
M
Minchan Kim 已提交
1037
			goto activate_locked;
L
Lee Schermerhorn 已提交
1038

1039
		if (!sc->may_unmap && page_mapped(page))
1040 1041
			goto keep_locked;

L
Linus Torvalds 已提交
1042
		/* Double the slab pressure for mapped and swapcache pages */
S
Shaohua Li 已提交
1043 1044
		if ((page_mapped(page) || PageSwapCache(page)) &&
		    !(PageAnon(page) && !PageSwapBacked(page)))
L
Linus Torvalds 已提交
1045 1046
			sc->nr_scanned++;

1047 1048 1049
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

1050
		/*
1051
		 * The number of dirty pages determines if a node is marked
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		 * reclaim_congested which affects wait_iff_congested. kswapd
		 * will stall and start writing pages if the tail of the LRU
		 * is all dirty unqueued pages.
		 */
		page_check_dirty_writeback(page, &dirty, &writeback);
		if (dirty || writeback)
			nr_dirty++;

		if (dirty && !writeback)
			nr_unqueued_dirty++;

1063 1064 1065 1066 1067 1068
		/*
		 * Treat this page as congested if the underlying BDI is or if
		 * pages are cycling through the LRU so quickly that the
		 * pages marked for immediate reclaim are making it to the
		 * end of the LRU a second time.
		 */
1069
		mapping = page_mapping(page);
1070
		if (((dirty || writeback) && mapping &&
1071
		     inode_write_congested(mapping->host)) ||
1072
		    (writeback && PageReclaim(page)))
1073 1074
			nr_congested++;

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		/*
		 * If a page at the tail of the LRU is under writeback, there
		 * are three cases to consider.
		 *
		 * 1) If reclaim is encountering an excessive number of pages
		 *    under writeback and this page is both under writeback and
		 *    PageReclaim then it indicates that pages are being queued
		 *    for IO but are being recycled through the LRU before the
		 *    IO can complete. Waiting on the page itself risks an
		 *    indefinite stall if it is impossible to writeback the
		 *    page due to IO error or disconnected storage so instead
1086 1087
		 *    note that the LRU is being scanned too quickly and the
		 *    caller can stall after page list has been processed.
1088
		 *
1089
		 * 2) Global or new memcg reclaim encounters a page that is
1090 1091 1092
		 *    not marked for immediate reclaim, or the caller does not
		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
		 *    not to fs). In this case mark the page for immediate
1093
		 *    reclaim and continue scanning.
1094
		 *
1095 1096
		 *    Require may_enter_fs because we would wait on fs, which
		 *    may not have submitted IO yet. And the loop driver might
1097 1098 1099 1100 1101
		 *    enter reclaim, and deadlock if it waits on a page for
		 *    which it is needed to do the write (loop masks off
		 *    __GFP_IO|__GFP_FS for this reason); but more thought
		 *    would probably show more reasons.
		 *
1102
		 * 3) Legacy memcg encounters a page that is already marked
1103 1104 1105 1106
		 *    PageReclaim. memcg does not have any dirty pages
		 *    throttling so we could easily OOM just because too many
		 *    pages are in writeback and there is nothing else to
		 *    reclaim. Wait for the writeback to complete.
1107 1108 1109 1110 1111 1112 1113 1114 1115
		 *
		 * In cases 1) and 2) we activate the pages to get them out of
		 * the way while we continue scanning for clean pages on the
		 * inactive list and refilling from the active list. The
		 * observation here is that waiting for disk writes is more
		 * expensive than potentially causing reloads down the line.
		 * Since they're marked for immediate reclaim, they won't put
		 * memory pressure on the cache working set any longer than it
		 * takes to write them to disk.
1116
		 */
1117
		if (PageWriteback(page)) {
1118 1119 1120
			/* Case 1 above */
			if (current_is_kswapd() &&
			    PageReclaim(page) &&
M
Mel Gorman 已提交
1121
			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1122
				nr_immediate++;
1123
				goto activate_locked;
1124 1125

			/* Case 2 above */
1126
			} else if (sane_reclaim(sc) ||
1127
			    !PageReclaim(page) || !may_enter_fs) {
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
				/*
				 * This is slightly racy - end_page_writeback()
				 * might have just cleared PageReclaim, then
				 * setting PageReclaim here end up interpreted
				 * as PageReadahead - but that does not matter
				 * enough to care.  What we do want is for this
				 * page to have PageReclaim set next time memcg
				 * reclaim reaches the tests above, so it will
				 * then wait_on_page_writeback() to avoid OOM;
				 * and it's also appropriate in global reclaim.
				 */
				SetPageReclaim(page);
1140
				nr_writeback++;
1141
				goto activate_locked;
1142 1143 1144

			/* Case 3 above */
			} else {
1145
				unlock_page(page);
1146
				wait_on_page_writeback(page);
1147 1148 1149
				/* then go back and try same page again */
				list_add_tail(&page->lru, page_list);
				continue;
1150
			}
1151
		}
L
Linus Torvalds 已提交
1152

1153 1154 1155
		if (!force_reclaim)
			references = page_check_references(page, sc);

1156 1157
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
1158
			goto activate_locked;
1159
		case PAGEREF_KEEP:
1160
			nr_ref_keep++;
1161
			goto keep_locked;
1162 1163 1164 1165
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
1166 1167 1168 1169

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
S
Shaohua Li 已提交
1170
		 * Lazyfree page could be freed directly
L
Linus Torvalds 已提交
1171
		 */
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
		if (PageAnon(page) && PageSwapBacked(page)) {
			if (!PageSwapCache(page)) {
				if (!(sc->gfp_mask & __GFP_IO))
					goto keep_locked;
				if (PageTransHuge(page)) {
					/* cannot split THP, skip it */
					if (!can_split_huge_page(page, NULL))
						goto activate_locked;
					/*
					 * Split pages without a PMD map right
					 * away. Chances are some or all of the
					 * tail pages can be freed without IO.
					 */
					if (!compound_mapcount(page) &&
					    split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
				}
				if (!add_to_swap(page)) {
					if (!PageTransHuge(page))
						goto activate_locked;
					/* Fallback to swap normal pages */
					if (split_huge_page_to_list(page,
								    page_list))
						goto activate_locked;
1197 1198 1199
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
					count_vm_event(THP_SWPOUT_FALLBACK);
#endif
1200 1201 1202
					if (!add_to_swap(page))
						goto activate_locked;
				}
1203

1204
				may_enter_fs = 1;
L
Linus Torvalds 已提交
1205

1206 1207 1208
				/* Adding to swap updated mapping */
				mapping = page_mapping(page);
			}
1209 1210 1211 1212
		} else if (unlikely(PageTransHuge(page))) {
			/* Split file THP */
			if (split_huge_page_to_list(page, page_list))
				goto keep_locked;
1213
		}
L
Linus Torvalds 已提交
1214 1215 1216 1217 1218

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
S
Shaohua Li 已提交
1219
		if (page_mapped(page)) {
1220 1221 1222 1223 1224
			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;

			if (unlikely(PageTransHuge(page)))
				flags |= TTU_SPLIT_HUGE_PMD;
			if (!try_to_unmap(page, flags)) {
1225
				nr_unmap_fail++;
L
Linus Torvalds 已提交
1226 1227 1228 1229 1230
				goto activate_locked;
			}
		}

		if (PageDirty(page)) {
1231
			/*
1232 1233 1234 1235 1236 1237 1238 1239
			 * Only kswapd can writeback filesystem pages
			 * to avoid risk of stack overflow. But avoid
			 * injecting inefficient single-page IO into
			 * flusher writeback as much as possible: only
			 * write pages when we've encountered many
			 * dirty pages, and when we've already scanned
			 * the rest of the LRU for clean pages and see
			 * the same dirty pages again (PageReclaim).
1240
			 */
1241
			if (page_is_file_cache(page) &&
1242 1243
			    (!current_is_kswapd() || !PageReclaim(page) ||
			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1244 1245 1246 1247 1248 1249
				/*
				 * Immediately reclaim when written back.
				 * Similar in principal to deactivate_page()
				 * except we already have the page isolated
				 * and know it's dirty
				 */
1250
				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1251 1252
				SetPageReclaim(page);

1253
				goto activate_locked;
1254 1255
			}

1256
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
1257
				goto keep_locked;
1258
			if (!may_enter_fs)
L
Linus Torvalds 已提交
1259
				goto keep_locked;
1260
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
1261 1262
				goto keep_locked;

1263 1264 1265 1266 1267 1268
			/*
			 * Page is dirty. Flush the TLB if a writable entry
			 * potentially exists to avoid CPU writes after IO
			 * starts and then write it out here.
			 */
			try_to_unmap_flush_dirty();
1269
			switch (pageout(page, mapping, sc)) {
L
Linus Torvalds 已提交
1270 1271 1272 1273 1274
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
1275
				if (PageWriteback(page))
1276
					goto keep;
1277
				if (PageDirty(page))
L
Linus Torvalds 已提交
1278
					goto keep;
1279

L
Linus Torvalds 已提交
1280 1281 1282 1283
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
1284
				if (!trylock_page(page))
L
Linus Torvalds 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
1304
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
1315
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
1316 1317
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
1334 1335
		}

S
Shaohua Li 已提交
1336 1337 1338 1339 1340 1341 1342 1343
		if (PageAnon(page) && !PageSwapBacked(page)) {
			/* follow __remove_mapping for reference */
			if (!page_ref_freeze(page, 1))
				goto keep_locked;
			if (PageDirty(page)) {
				page_ref_unfreeze(page, 1);
				goto keep_locked;
			}
L
Linus Torvalds 已提交
1344

S
Shaohua Li 已提交
1345
			count_vm_event(PGLAZYFREED);
1346
			count_memcg_page_event(page, PGLAZYFREED);
S
Shaohua Li 已提交
1347 1348
		} else if (!mapping || !__remove_mapping(mapping, page, true))
			goto keep_locked;
N
Nick Piggin 已提交
1349 1350 1351 1352 1353 1354 1355
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
1356
		__ClearPageLocked(page);
N
Nick Piggin 已提交
1357
free_it:
1358
		nr_reclaimed++;
1359 1360 1361 1362 1363

		/*
		 * Is there need to periodically free_page_list? It would
		 * appear not as the counts should be low
		 */
1364 1365 1366 1367 1368
		if (unlikely(PageTransHuge(page))) {
			mem_cgroup_uncharge(page);
			(*get_compound_page_dtor(page))(page);
		} else
			list_add(&page->lru, &free_pages);
L
Linus Torvalds 已提交
1369 1370 1371
		continue;

activate_locked:
1372
		/* Not a candidate for swapping, so reclaim swap space. */
M
Minchan Kim 已提交
1373 1374
		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
						PageMlocked(page)))
1375
			try_to_free_swap(page);
1376
		VM_BUG_ON_PAGE(PageActive(page), page);
M
Minchan Kim 已提交
1377 1378 1379
		if (!PageMlocked(page)) {
			SetPageActive(page);
			pgactivate++;
1380
			count_memcg_page_event(page, PGACTIVATE);
M
Minchan Kim 已提交
1381
		}
L
Linus Torvalds 已提交
1382 1383 1384 1385
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
1386
		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
L
Linus Torvalds 已提交
1387
	}
1388

1389
	mem_cgroup_uncharge_list(&free_pages);
1390
	try_to_unmap_flush();
1391
	free_unref_page_list(&free_pages);
1392

L
Linus Torvalds 已提交
1393
	list_splice(&ret_pages, page_list);
1394
	count_vm_events(PGACTIVATE, pgactivate);
1395

1396 1397 1398 1399 1400 1401
	if (stat) {
		stat->nr_dirty = nr_dirty;
		stat->nr_congested = nr_congested;
		stat->nr_unqueued_dirty = nr_unqueued_dirty;
		stat->nr_writeback = nr_writeback;
		stat->nr_immediate = nr_immediate;
1402 1403 1404
		stat->nr_activate = pgactivate;
		stat->nr_ref_keep = nr_ref_keep;
		stat->nr_unmap_fail = nr_unmap_fail;
1405
	}
1406
	return nr_reclaimed;
L
Linus Torvalds 已提交
1407 1408
}

1409 1410 1411 1412 1413 1414 1415 1416
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
					    struct list_head *page_list)
{
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.priority = DEF_PRIORITY,
		.may_unmap = 1,
	};
1417
	unsigned long ret;
1418 1419 1420 1421
	struct page *page, *next;
	LIST_HEAD(clean_pages);

	list_for_each_entry_safe(page, next, page_list, lru) {
1422
		if (page_is_file_cache(page) && !PageDirty(page) &&
1423
		    !__PageMovable(page)) {
1424 1425 1426 1427 1428
			ClearPageActive(page);
			list_move(&page->lru, &clean_pages);
		}
	}

M
Mel Gorman 已提交
1429
	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
S
Shaohua Li 已提交
1430
			TTU_IGNORE_ACCESS, NULL, true);
1431
	list_splice(&clean_pages, page_list);
M
Mel Gorman 已提交
1432
	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1433 1434 1435
	return ret;
}

A
Andy Whitcroft 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
1446
int __isolate_lru_page(struct page *page, isolate_mode_t mode)
A
Andy Whitcroft 已提交
1447 1448 1449 1450 1451 1452 1453
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

M
Minchan Kim 已提交
1454 1455
	/* Compaction should not handle unevictable pages but CMA can do so */
	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
L
Lee Schermerhorn 已提交
1456 1457
		return ret;

A
Andy Whitcroft 已提交
1458
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
1459

1460 1461 1462 1463 1464 1465 1466 1467
	/*
	 * To minimise LRU disruption, the caller can indicate that it only
	 * wants to isolate pages it will be able to operate on without
	 * blocking - clean pages for the most part.
	 *
	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
	 * that it is possible to migrate without blocking
	 */
1468
	if (mode & ISOLATE_ASYNC_MIGRATE) {
1469 1470 1471 1472 1473 1474
		/* All the caller can do on PageWriteback is block */
		if (PageWriteback(page))
			return ret;

		if (PageDirty(page)) {
			struct address_space *mapping;
1475
			bool migrate_dirty;
1476 1477 1478 1479

			/*
			 * Only pages without mappings or that have a
			 * ->migratepage callback are possible to migrate
1480 1481 1482 1483 1484
			 * without blocking. However, we can be racing with
			 * truncation so it's necessary to lock the page
			 * to stabilise the mapping as truncation holds
			 * the page lock until after the page is removed
			 * from the page cache.
1485
			 */
1486 1487 1488
			if (!trylock_page(page))
				return ret;

1489
			mapping = page_mapping(page);
1490
			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1491 1492
			unlock_page(page);
			if (!migrate_dirty)
1493 1494 1495
				return ret;
		}
	}
1496

1497 1498 1499
	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
		return ret;

A
Andy Whitcroft 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

1513 1514 1515 1516 1517 1518

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a santity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1519
			enum lru_list lru, unsigned long *nr_zone_taken)
1520 1521 1522 1523 1524 1525 1526 1527 1528
{
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		if (!nr_zone_taken[zid])
			continue;

		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
#ifdef CONFIG_MEMCG
1529
		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1530
#endif
1531 1532
	}

1533 1534
}

L
Linus Torvalds 已提交
1535
/*
1536
 * zone_lru_lock is heavily contended.  Some of the functions that
L
Linus Torvalds 已提交
1537 1538 1539 1540 1541 1542 1543 1544
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
1545
 * @nr_to_scan:	The number of eligible pages to look through on the list.
1546
 * @lruvec:	The LRU vector to pull pages from.
L
Linus Torvalds 已提交
1547
 * @dst:	The temp list to put pages on to.
H
Hugh Dickins 已提交
1548
 * @nr_scanned:	The number of pages that were scanned.
1549
 * @sc:		The scan_control struct for this reclaim session
A
Andy Whitcroft 已提交
1550
 * @mode:	One of the LRU isolation modes
1551
 * @lru:	LRU list id for isolating
L
Linus Torvalds 已提交
1552 1553 1554
 *
 * returns how many pages were moved onto *@dst.
 */
1555
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1556
		struct lruvec *lruvec, struct list_head *dst,
1557
		unsigned long *nr_scanned, struct scan_control *sc,
1558
		isolate_mode_t mode, enum lru_list lru)
L
Linus Torvalds 已提交
1559
{
H
Hugh Dickins 已提交
1560
	struct list_head *src = &lruvec->lists[lru];
1561
	unsigned long nr_taken = 0;
M
Mel Gorman 已提交
1562
	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1563
	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1564
	unsigned long skipped = 0;
1565
	unsigned long scan, total_scan, nr_pages;
1566
	LIST_HEAD(pages_skipped);
L
Linus Torvalds 已提交
1567

1568 1569 1570 1571
	scan = 0;
	for (total_scan = 0;
	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
	     total_scan++) {
A
Andy Whitcroft 已提交
1572 1573
		struct page *page;

L
Linus Torvalds 已提交
1574 1575 1576
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

1577
		VM_BUG_ON_PAGE(!PageLRU(page), page);
N
Nick Piggin 已提交
1578

1579 1580
		if (page_zonenum(page) > sc->reclaim_idx) {
			list_move(&page->lru, &pages_skipped);
1581
			nr_skipped[page_zonenum(page)]++;
1582 1583 1584
			continue;
		}

1585 1586 1587 1588 1589 1590 1591
		/*
		 * Do not count skipped pages because that makes the function
		 * return with no isolated pages if the LRU mostly contains
		 * ineligible pages.  This causes the VM to not reclaim any
		 * pages, triggering a premature OOM.
		 */
		scan++;
1592
		switch (__isolate_lru_page(page, mode)) {
A
Andy Whitcroft 已提交
1593
		case 0:
M
Mel Gorman 已提交
1594 1595 1596
			nr_pages = hpage_nr_pages(page);
			nr_taken += nr_pages;
			nr_zone_taken[page_zonenum(page)] += nr_pages;
A
Andy Whitcroft 已提交
1597 1598 1599 1600 1601 1602 1603
			list_move(&page->lru, dst);
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
			continue;
1604

A
Andy Whitcroft 已提交
1605 1606 1607
		default:
			BUG();
		}
L
Linus Torvalds 已提交
1608 1609
	}

1610 1611 1612 1613 1614 1615 1616
	/*
	 * Splice any skipped pages to the start of the LRU list. Note that
	 * this disrupts the LRU order when reclaiming for lower zones but
	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
	 * scanning would soon rescan the same pages to skip and put the
	 * system at risk of premature OOM.
	 */
1617 1618 1619
	if (!list_empty(&pages_skipped)) {
		int zid;

1620
		list_splice(&pages_skipped, src);
1621 1622 1623 1624 1625
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			if (!nr_skipped[zid])
				continue;

			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1626
			skipped += nr_skipped[zid];
1627 1628
		}
	}
1629
	*nr_scanned = total_scan;
1630
	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1631
				    total_scan, skipped, nr_taken, mode, lru);
1632
	update_lru_sizes(lruvec, lru, nr_zone_taken);
L
Linus Torvalds 已提交
1633 1634 1635
	return nr_taken;
}

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1647 1648 1649
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1650 1651 1652 1653 1654
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
1655
 *
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

1666
	VM_BUG_ON_PAGE(!page_count(page), page);
1667
	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1668

1669 1670
	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);
1671
		struct lruvec *lruvec;
1672

1673
		spin_lock_irq(zone_lru_lock(zone));
M
Mel Gorman 已提交
1674
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1675
		if (PageLRU(page)) {
L
Lee Schermerhorn 已提交
1676
			int lru = page_lru(page);
1677
			get_page(page);
1678
			ClearPageLRU(page);
1679 1680
			del_page_from_lru_list(page, lruvec, lru);
			ret = 0;
1681
		}
1682
		spin_unlock_irq(zone_lru_lock(zone));
1683 1684 1685 1686
	}
	return ret;
}

1687
/*
F
Fengguang Wu 已提交
1688 1689 1690 1691 1692
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get resheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
1693
 */
M
Mel Gorman 已提交
1694
static int too_many_isolated(struct pglist_data *pgdat, int file,
1695 1696 1697 1698 1699 1700 1701
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

1702
	if (!sane_reclaim(sc))
1703 1704 1705
		return 0;

	if (file) {
M
Mel Gorman 已提交
1706 1707
		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1708
	} else {
M
Mel Gorman 已提交
1709 1710
		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1711 1712
	}

1713 1714 1715 1716 1717
	/*
	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
	 * won't get blocked by normal direct-reclaimers, forming a circular
	 * deadlock.
	 */
1718
	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1719 1720
		inactive >>= 3;

1721 1722 1723
	return isolated > inactive;
}

1724
static noinline_for_stack void
H
Hugh Dickins 已提交
1725
putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1726
{
1727
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
M
Mel Gorman 已提交
1728
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1729
	LIST_HEAD(pages_to_free);
1730 1731 1732 1733 1734

	/*
	 * Put back any unfreeable pages.
	 */
	while (!list_empty(page_list)) {
1735
		struct page *page = lru_to_page(page_list);
1736
		int lru;
1737

1738
		VM_BUG_ON_PAGE(PageLRU(page), page);
1739
		list_del(&page->lru);
1740
		if (unlikely(!page_evictable(page))) {
M
Mel Gorman 已提交
1741
			spin_unlock_irq(&pgdat->lru_lock);
1742
			putback_lru_page(page);
M
Mel Gorman 已提交
1743
			spin_lock_irq(&pgdat->lru_lock);
1744 1745
			continue;
		}
1746

M
Mel Gorman 已提交
1747
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1748

1749
		SetPageLRU(page);
1750
		lru = page_lru(page);
1751 1752
		add_page_to_lru_list(page, lruvec, lru);

1753 1754
		if (is_active_lru(lru)) {
			int file = is_file_lru(lru);
1755 1756
			int numpages = hpage_nr_pages(page);
			reclaim_stat->recent_rotated[file] += numpages;
1757
		}
1758 1759 1760
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1761
			del_page_from_lru_list(page, lruvec, lru);
1762 1763

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1764
				spin_unlock_irq(&pgdat->lru_lock);
1765
				mem_cgroup_uncharge(page);
1766
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1767
				spin_lock_irq(&pgdat->lru_lock);
1768 1769
			} else
				list_add(&page->lru, &pages_to_free);
1770 1771 1772
		}
	}

1773 1774 1775 1776
	/*
	 * To save our caller's stack, now use input list for pages to free.
	 */
	list_splice(&pages_to_free, page_list);
1777 1778
}

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
/*
 * If a kernel thread (such as nfsd for loop-back mounts) services
 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
 * In that case we should only throttle if the backing device it is
 * writing to is congested.  In other cases it is safe to throttle.
 */
static int current_may_throttle(void)
{
	return !(current->flags & PF_LESS_THROTTLE) ||
		current->backing_dev_info == NULL ||
		bdi_write_congested(current->backing_dev_info);
}

L
Linus Torvalds 已提交
1792
/*
1793
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
A
Andrew Morton 已提交
1794
 * of reclaimed pages
L
Linus Torvalds 已提交
1795
 */
1796
static noinline_for_stack unsigned long
1797
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1798
		     struct scan_control *sc, enum lru_list lru)
L
Linus Torvalds 已提交
1799 1800
{
	LIST_HEAD(page_list);
1801
	unsigned long nr_scanned;
1802
	unsigned long nr_reclaimed = 0;
1803
	unsigned long nr_taken;
1804
	struct reclaim_stat stat = {};
1805
	isolate_mode_t isolate_mode = 0;
1806
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1807
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1808
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1809
	bool stalled = false;
1810

M
Mel Gorman 已提交
1811
	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1812 1813 1814 1815 1816 1817
		if (stalled)
			return 0;

		/* wait a bit for the reclaimer. */
		msleep(100);
		stalled = true;
1818 1819 1820 1821 1822 1823

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1824
	lru_add_drain();
1825 1826

	if (!sc->may_unmap)
1827
		isolate_mode |= ISOLATE_UNMAPPED;
1828

M
Mel Gorman 已提交
1829
	spin_lock_irq(&pgdat->lru_lock);
1830

1831 1832
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
				     &nr_scanned, sc, isolate_mode, lru);
1833

M
Mel Gorman 已提交
1834
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1835
	reclaim_stat->recent_scanned[file] += nr_taken;
1836

1837 1838
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1839
			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1840 1841 1842 1843
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
				   nr_scanned);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1844
			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1845 1846
		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
				   nr_scanned);
1847
	}
M
Mel Gorman 已提交
1848
	spin_unlock_irq(&pgdat->lru_lock);
1849

1850
	if (nr_taken == 0)
1851
		return 0;
A
Andy Whitcroft 已提交
1852

S
Shaohua Li 已提交
1853
	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1854
				&stat, false);
1855

M
Mel Gorman 已提交
1856
	spin_lock_irq(&pgdat->lru_lock);
1857

1858 1859
	if (current_is_kswapd()) {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1860
			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1861 1862 1863 1864
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
				   nr_reclaimed);
	} else {
		if (global_reclaim(sc))
M
Mel Gorman 已提交
1865
			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1866 1867
		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
				   nr_reclaimed);
Y
Ying Han 已提交
1868
	}
N
Nick Piggin 已提交
1869

1870
	putback_inactive_pages(lruvec, &page_list);
1871

M
Mel Gorman 已提交
1872
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1873

M
Mel Gorman 已提交
1874
	spin_unlock_irq(&pgdat->lru_lock);
1875

1876
	mem_cgroup_uncharge_list(&page_list);
1877
	free_unref_page_list(&page_list);
1878

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	/*
	 * If dirty pages are scanned that are not queued for IO, it
	 * implies that flushers are not doing their job. This can
	 * happen when memory pressure pushes dirty pages to the end of
	 * the LRU before the dirty limits are breached and the dirty
	 * data has expired. It can also happen when the proportion of
	 * dirty pages grows not through writes but through memory
	 * pressure reclaiming all the clean cache. And in some cases,
	 * the flushers simply cannot keep up with the allocation
	 * rate. Nudge the flusher threads in case they are asleep.
	 */
	if (stat.nr_unqueued_dirty == nr_taken)
		wakeup_flusher_threads(WB_REASON_VMSCAN);

1893 1894 1895 1896 1897 1898 1899 1900
	sc->nr.dirty += stat.nr_dirty;
	sc->nr.congested += stat.nr_congested;
	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
	sc->nr.writeback += stat.nr_writeback;
	sc->nr.immediate += stat.nr_immediate;
	sc->nr.taken += nr_taken;
	if (file)
		sc->nr.file_taken += nr_taken;
1901

M
Mel Gorman 已提交
1902
	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1903
			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1904
	return nr_reclaimed;
L
Linus Torvalds 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
1914
 * appropriate to hold zone_lru_lock across the whole operation.  But if
L
Linus Torvalds 已提交
1915
 * the pages are mapped, the processing is slow (page_referenced()) so we
1916
 * should drop zone_lru_lock around each page.  It's impossible to balance
L
Linus Torvalds 已提交
1917 1918 1919 1920
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
1921
 * The downside is that we have to touch page->_refcount against each page.
L
Linus Torvalds 已提交
1922
 * But we had to alter page->flags anyway.
1923 1924
 *
 * Returns the number of pages moved to the given lru.
L
Linus Torvalds 已提交
1925
 */
1926

1927
static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1928
				     struct list_head *list,
1929
				     struct list_head *pages_to_free,
1930 1931
				     enum lru_list lru)
{
M
Mel Gorman 已提交
1932
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1933
	struct page *page;
1934
	int nr_pages;
1935
	int nr_moved = 0;
1936 1937 1938

	while (!list_empty(list)) {
		page = lru_to_page(list);
M
Mel Gorman 已提交
1939
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1940

1941
		VM_BUG_ON_PAGE(PageLRU(page), page);
1942 1943
		SetPageLRU(page);

1944
		nr_pages = hpage_nr_pages(page);
M
Mel Gorman 已提交
1945
		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1946
		list_move(&page->lru, &lruvec->lists[lru]);
1947

1948 1949 1950
		if (put_page_testzero(page)) {
			__ClearPageLRU(page);
			__ClearPageActive(page);
1951
			del_page_from_lru_list(page, lruvec, lru);
1952 1953

			if (unlikely(PageCompound(page))) {
M
Mel Gorman 已提交
1954
				spin_unlock_irq(&pgdat->lru_lock);
1955
				mem_cgroup_uncharge(page);
1956
				(*get_compound_page_dtor(page))(page);
M
Mel Gorman 已提交
1957
				spin_lock_irq(&pgdat->lru_lock);
1958 1959
			} else
				list_add(&page->lru, pages_to_free);
1960 1961
		} else {
			nr_moved += nr_pages;
1962 1963
		}
	}
1964

1965
	if (!is_active_lru(lru)) {
1966
		__count_vm_events(PGDEACTIVATE, nr_moved);
1967 1968 1969
		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
				   nr_moved);
	}
1970 1971

	return nr_moved;
1972
}
1973

H
Hugh Dickins 已提交
1974
static void shrink_active_list(unsigned long nr_to_scan,
1975
			       struct lruvec *lruvec,
1976
			       struct scan_control *sc,
1977
			       enum lru_list lru)
L
Linus Torvalds 已提交
1978
{
1979
	unsigned long nr_taken;
H
Hugh Dickins 已提交
1980
	unsigned long nr_scanned;
1981
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1982
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1983
	LIST_HEAD(l_active);
1984
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1985
	struct page *page;
1986
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1987 1988
	unsigned nr_deactivate, nr_activate;
	unsigned nr_rotated = 0;
1989
	isolate_mode_t isolate_mode = 0;
1990
	int file = is_file_lru(lru);
M
Mel Gorman 已提交
1991
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
L
Linus Torvalds 已提交
1992 1993

	lru_add_drain();
1994 1995

	if (!sc->may_unmap)
1996
		isolate_mode |= ISOLATE_UNMAPPED;
1997

M
Mel Gorman 已提交
1998
	spin_lock_irq(&pgdat->lru_lock);
1999

2000 2001
	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
				     &nr_scanned, sc, isolate_mode, lru);
2002

M
Mel Gorman 已提交
2003
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2004
	reclaim_stat->recent_scanned[file] += nr_taken;
2005

M
Mel Gorman 已提交
2006
	__count_vm_events(PGREFILL, nr_scanned);
2007
	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2008

M
Mel Gorman 已提交
2009
	spin_unlock_irq(&pgdat->lru_lock);
L
Linus Torvalds 已提交
2010 2011 2012 2013 2014

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
2015

2016
		if (unlikely(!page_evictable(page))) {
L
Lee Schermerhorn 已提交
2017 2018 2019 2020
			putback_lru_page(page);
			continue;
		}

2021 2022 2023 2024 2025 2026 2027 2028
		if (unlikely(buffer_heads_over_limit)) {
			if (page_has_private(page) && trylock_page(page)) {
				if (page_has_private(page))
					try_to_release_page(page, 0);
				unlock_page(page);
			}
		}

2029 2030
		if (page_referenced(page, 0, sc->target_mem_cgroup,
				    &vm_flags)) {
2031
			nr_rotated += hpage_nr_pages(page);
2032 2033 2034 2035 2036 2037 2038 2039 2040
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
2041
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2042 2043 2044 2045
				list_add(&page->lru, &l_active);
				continue;
			}
		}
2046

2047
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
2048 2049 2050
		list_add(&page->lru, &l_inactive);
	}

2051
	/*
2052
	 * Move pages back to the lru list.
2053
	 */
M
Mel Gorman 已提交
2054
	spin_lock_irq(&pgdat->lru_lock);
2055
	/*
2056 2057 2058
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
2059
	 * get_scan_count.
2060
	 */
2061
	reclaim_stat->recent_rotated[file] += nr_rotated;
2062

2063 2064
	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
M
Mel Gorman 已提交
2065 2066
	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
	spin_unlock_irq(&pgdat->lru_lock);
2067

2068
	mem_cgroup_uncharge_list(&l_hold);
2069
	free_unref_page_list(&l_hold);
2070 2071
	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
			nr_deactivate, nr_rotated, sc->priority, file);
L
Linus Torvalds 已提交
2072 2073
}

2074 2075 2076
/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
2077
 *
2078 2079 2080
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
2081
 *
2082 2083
 * Both inactive lists should also be large enough that each inactive
 * page has a chance to be referenced again before it is reclaimed.
2084
 *
2085 2086
 * If that fails and refaulting is observed, the inactive list grows.
 *
2087
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2088
 * on this LRU, maintained by the pageout code. An inactive_ratio
2089
 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2090
 *
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
2101
 */
2102
static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2103 2104
				 struct mem_cgroup *memcg,
				 struct scan_control *sc, bool actual_reclaim)
2105
{
2106
	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2107 2108 2109 2110 2111
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
	enum lru_list inactive_lru = file * LRU_FILE;
	unsigned long inactive, active;
	unsigned long inactive_ratio;
	unsigned long refaults;
2112
	unsigned long gb;
2113

2114 2115 2116 2117 2118 2119
	/*
	 * If we don't have swap space, anonymous page deactivation
	 * is pointless.
	 */
	if (!file && !total_swap_pages)
		return false;
2120

2121 2122
	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2123

2124
	if (memcg)
2125
		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2126
	else
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

	/*
	 * When refaults are being observed, it means a new workingset
	 * is being established. Disable active list protection to get
	 * rid of the stale workingset quickly.
	 */
	if (file && actual_reclaim && lruvec->refaults != refaults) {
		inactive_ratio = 0;
	} else {
		gb = (inactive + active) >> (30 - PAGE_SHIFT);
		if (gb)
			inactive_ratio = int_sqrt(10 * gb);
		else
			inactive_ratio = 1;
	}
2143

2144 2145 2146 2147 2148
	if (actual_reclaim)
		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
			inactive_ratio, file);
2149

2150
	return inactive * inactive_ratio < active;
2151 2152
}

2153
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2154 2155
				 struct lruvec *lruvec, struct mem_cgroup *memcg,
				 struct scan_control *sc)
2156
{
2157
	if (is_active_lru(lru)) {
2158 2159
		if (inactive_list_is_low(lruvec, is_file_lru(lru),
					 memcg, sc, true))
2160
			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2161 2162 2163
		return 0;
	}

2164
	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2165 2166
}

2167 2168 2169 2170 2171 2172 2173
enum scan_balance {
	SCAN_EQUAL,
	SCAN_FRACT,
	SCAN_ANON,
	SCAN_FILE,
};

2174 2175 2176 2177 2178 2179
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
W
Wanpeng Li 已提交
2180 2181
 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2182
 */
2183
static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2184 2185
			   struct scan_control *sc, unsigned long *nr,
			   unsigned long *lru_pages)
2186
{
2187
	int swappiness = mem_cgroup_swappiness(memcg);
2188 2189 2190
	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
	u64 fraction[2];
	u64 denominator = 0;	/* gcc */
M
Mel Gorman 已提交
2191
	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2192
	unsigned long anon_prio, file_prio;
2193
	enum scan_balance scan_balance;
2194
	unsigned long anon, file;
2195
	unsigned long ap, fp;
H
Hugh Dickins 已提交
2196
	enum lru_list lru;
2197 2198

	/* If we have no swap space, do not bother scanning anon pages. */
2199
	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2200
		scan_balance = SCAN_FILE;
2201 2202
		goto out;
	}
2203

2204 2205 2206 2207 2208 2209 2210
	/*
	 * Global reclaim will swap to prevent OOM even with no
	 * swappiness, but memcg users want to use this knob to
	 * disable swapping for individual groups completely when
	 * using the memory controller's swap limit feature would be
	 * too expensive.
	 */
2211
	if (!global_reclaim(sc) && !swappiness) {
2212
		scan_balance = SCAN_FILE;
2213 2214 2215 2216 2217 2218 2219 2220
		goto out;
	}

	/*
	 * Do not apply any pressure balancing cleverness when the
	 * system is close to OOM, scan both anon and file equally
	 * (unless the swappiness setting disagrees with swapping).
	 */
2221
	if (!sc->priority && swappiness) {
2222
		scan_balance = SCAN_EQUAL;
2223 2224 2225
		goto out;
	}

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (global_reclaim(sc)) {
M
Mel Gorman 已提交
2236 2237 2238 2239
		unsigned long pgdatfile;
		unsigned long pgdatfree;
		int z;
		unsigned long total_high_wmark = 0;
2240

M
Mel Gorman 已提交
2241 2242 2243 2244 2245 2246
		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
2247
			if (!managed_zone(zone))
M
Mel Gorman 已提交
2248 2249 2250 2251
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}
2252

M
Mel Gorman 已提交
2253
		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
			/*
			 * Force SCAN_ANON if there are enough inactive
			 * anonymous pages on the LRU in eligible zones.
			 * Otherwise, the small LRU gets thrashed.
			 */
			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
					>> sc->priority) {
				scan_balance = SCAN_ANON;
				goto out;
			}
2265 2266 2267
		}
	}

2268
	/*
2269 2270 2271 2272 2273 2274 2275
	 * If there is enough inactive page cache, i.e. if the size of the
	 * inactive list is greater than that of the active list *and* the
	 * inactive list actually has some pages to scan on this priority, we
	 * do not reclaim anything from the anonymous working set right now.
	 * Without the second condition we could end up never scanning an
	 * lruvec even if it has plenty of old anonymous pages unless the
	 * system is under heavy pressure.
2276
	 */
2277
	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2278
	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2279
		scan_balance = SCAN_FILE;
2280 2281 2282
		goto out;
	}

2283 2284
	scan_balance = SCAN_FRACT;

2285 2286 2287 2288
	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
2289
	anon_prio = swappiness;
H
Hugh Dickins 已提交
2290
	file_prio = 200 - anon_prio;
2291

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
2303

2304 2305 2306 2307
	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2308

M
Mel Gorman 已提交
2309
	spin_lock_irq(&pgdat->lru_lock);
2310 2311 2312
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
2313 2314
	}

2315 2316 2317
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
2318 2319 2320
	}

	/*
2321 2322 2323
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
2324
	 */
2325
	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2326
	ap /= reclaim_stat->recent_rotated[0] + 1;
2327

2328
	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2329
	fp /= reclaim_stat->recent_rotated[1] + 1;
M
Mel Gorman 已提交
2330
	spin_unlock_irq(&pgdat->lru_lock);
2331

2332 2333 2334 2335
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
2336 2337 2338 2339 2340
	*lru_pages = 0;
	for_each_evictable_lru(lru) {
		int file = is_file_lru(lru);
		unsigned long size;
		unsigned long scan;
2341

2342 2343 2344 2345 2346 2347 2348 2349
		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
		scan = size >> sc->priority;
		/*
		 * If the cgroup's already been deleted, make sure to
		 * scrape out the remaining cache.
		 */
		if (!scan && !mem_cgroup_online(memcg))
			scan = min(size, SWAP_CLUSTER_MAX);
2350

2351 2352 2353 2354 2355
		switch (scan_balance) {
		case SCAN_EQUAL:
			/* Scan lists relative to size */
			break;
		case SCAN_FRACT:
2356
			/*
2357 2358
			 * Scan types proportional to swappiness and
			 * their relative recent reclaim efficiency.
2359
			 */
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
			scan = div64_u64(scan * fraction[file],
					 denominator);
			break;
		case SCAN_FILE:
		case SCAN_ANON:
			/* Scan one type exclusively */
			if ((scan_balance == SCAN_FILE) != file) {
				size = 0;
				scan = 0;
			}
			break;
		default:
			/* Look ma, no brain */
			BUG();
2374
		}
2375 2376 2377

		*lru_pages += size;
		nr[lru] = scan;
2378
	}
2379
}
2380

2381
/*
2382
 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2383
 */
2384
static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2385
			      struct scan_control *sc, unsigned long *lru_pages)
2386
{
2387
	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2388
	unsigned long nr[NR_LRU_LISTS];
2389
	unsigned long targets[NR_LRU_LISTS];
2390 2391 2392 2393 2394
	unsigned long nr_to_scan;
	enum lru_list lru;
	unsigned long nr_reclaimed = 0;
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
	struct blk_plug plug;
2395
	bool scan_adjusted;
2396

2397
	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2398

2399 2400 2401
	/* Record the original scan target for proportional adjustments later */
	memcpy(targets, nr, sizeof(nr));

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	/*
	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
	 * event that can occur when there is little memory pressure e.g.
	 * multiple streaming readers/writers. Hence, we do not abort scanning
	 * when the requested number of pages are reclaimed when scanning at
	 * DEF_PRIORITY on the assumption that the fact we are direct
	 * reclaiming implies that kswapd is not keeping up and it is best to
	 * do a batch of work at once. For memcg reclaim one check is made to
	 * abort proportional reclaim if either the file or anon lru has already
	 * dropped to zero at the first pass.
	 */
	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
			 sc->priority == DEF_PRIORITY);

2416 2417 2418
	blk_start_plug(&plug);
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
2419 2420 2421
		unsigned long nr_anon, nr_file, percentage;
		unsigned long nr_scanned;

2422 2423 2424 2425 2426 2427
		for_each_evictable_lru(lru) {
			if (nr[lru]) {
				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
				nr[lru] -= nr_to_scan;

				nr_reclaimed += shrink_list(lru, nr_to_scan,
2428
							    lruvec, memcg, sc);
2429 2430
			}
		}
2431

2432 2433
		cond_resched();

2434 2435 2436 2437 2438
		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
			continue;

		/*
		 * For kswapd and memcg, reclaim at least the number of pages
2439
		 * requested. Ensure that the anon and file LRUs are scanned
2440 2441 2442 2443 2444 2445 2446
		 * proportionally what was requested by get_scan_count(). We
		 * stop reclaiming one LRU and reduce the amount scanning
		 * proportional to the original scan target.
		 */
		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];

2447 2448 2449 2450 2451 2452 2453 2454 2455
		/*
		 * It's just vindictive to attack the larger once the smaller
		 * has gone to zero.  And given the way we stop scanning the
		 * smaller below, this makes sure that we only make one nudge
		 * towards proportionality once we've got nr_to_reclaim.
		 */
		if (!nr_file || !nr_anon)
			break;

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
		if (nr_file > nr_anon) {
			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
						targets[LRU_ACTIVE_ANON] + 1;
			lru = LRU_BASE;
			percentage = nr_anon * 100 / scan_target;
		} else {
			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
						targets[LRU_ACTIVE_FILE] + 1;
			lru = LRU_FILE;
			percentage = nr_file * 100 / scan_target;
		}

		/* Stop scanning the smaller of the LRU */
		nr[lru] = 0;
		nr[lru + LRU_ACTIVE] = 0;

		/*
		 * Recalculate the other LRU scan count based on its original
		 * scan target and the percentage scanning already complete
		 */
		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		lru += LRU_ACTIVE;
		nr_scanned = targets[lru] - nr[lru];
		nr[lru] = targets[lru] * (100 - percentage) / 100;
		nr[lru] -= min(nr[lru], nr_scanned);

		scan_adjusted = true;
2487 2488 2489 2490 2491 2492 2493 2494
	}
	blk_finish_plug(&plug);
	sc->nr_reclaimed += nr_reclaimed;

	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
2495
	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2496 2497 2498 2499
		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
				   sc, LRU_ACTIVE_ANON);
}

M
Mel Gorman 已提交
2500
/* Use reclaim/compaction for costly allocs or under memory pressure */
2501
static bool in_reclaim_compaction(struct scan_control *sc)
M
Mel Gorman 已提交
2502
{
2503
	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
M
Mel Gorman 已提交
2504
			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2505
			 sc->priority < DEF_PRIORITY - 2))
M
Mel Gorman 已提交
2506 2507 2508 2509 2510
		return true;

	return false;
}

2511
/*
M
Mel Gorman 已提交
2512 2513 2514 2515 2516
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_zone() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
2517
 */
2518
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2519 2520 2521 2522 2523 2524
					unsigned long nr_reclaimed,
					unsigned long nr_scanned,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
2525
	int z;
2526 2527

	/* If not in reclaim/compaction mode, stop */
2528
	if (!in_reclaim_compaction(sc))
2529 2530
		return false;

2531
	/* Consider stopping depending on scan and reclaim activity */
2532
	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2533
		/*
2534
		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2535 2536
		 * full LRU list has been scanned and we are still failing
		 * to reclaim pages. This full LRU scan is potentially
2537
		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2538 2539 2540 2541 2542
		 */
		if (!nr_reclaimed && !nr_scanned)
			return false;
	} else {
		/*
2543
		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2544 2545 2546 2547 2548 2549 2550 2551 2552
		 * fail without consequence, stop if we failed to reclaim
		 * any pages from the last SWAP_CLUSTER_MAX number of
		 * pages that were scanned. This will return to the
		 * caller faster at the risk reclaim/compaction and
		 * the resulting allocation attempt fails
		 */
		if (!nr_reclaimed)
			return false;
	}
2553 2554 2555 2556 2557

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
2558
	pages_for_compaction = compact_gap(sc->order);
2559
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2560
	if (get_nr_swap_pages() > 0)
2561
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2562 2563 2564 2565 2566
	if (sc->nr_reclaimed < pages_for_compaction &&
			inactive_lru_pages > pages_for_compaction)
		return true;

	/* If compaction would go ahead or the allocation would succeed, stop */
2567 2568
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
2569
		if (!managed_zone(zone))
2570 2571 2572
			continue;

		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2573
		case COMPACT_SUCCESS:
2574 2575 2576 2577 2578 2579
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
2580
	}
2581
	return true;
2582 2583
}

2584 2585 2586 2587 2588 2589
static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
{
	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
		(memcg && memcg_congested(pgdat, memcg));
}

2590
static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
L
Linus Torvalds 已提交
2591
{
2592
	struct reclaim_state *reclaim_state = current->reclaim_state;
2593
	unsigned long nr_reclaimed, nr_scanned;
2594
	bool reclaimable = false;
L
Linus Torvalds 已提交
2595

2596 2597 2598
	do {
		struct mem_cgroup *root = sc->target_mem_cgroup;
		struct mem_cgroup_reclaim_cookie reclaim = {
2599
			.pgdat = pgdat,
2600 2601
			.priority = sc->priority,
		};
2602
		unsigned long node_lru_pages = 0;
2603
		struct mem_cgroup *memcg;
2604

2605 2606
		memset(&sc->nr, 0, sizeof(sc->nr));

2607 2608
		nr_reclaimed = sc->nr_reclaimed;
		nr_scanned = sc->nr_scanned;
L
Linus Torvalds 已提交
2609

2610 2611
		memcg = mem_cgroup_iter(root, NULL, &reclaim);
		do {
2612
			unsigned long lru_pages;
2613
			unsigned long reclaimed;
2614
			unsigned long scanned;
2615

R
Roman Gushchin 已提交
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
			switch (mem_cgroup_protected(root, memcg)) {
			case MEMCG_PROT_MIN:
				/*
				 * Hard protection.
				 * If there is no reclaimable memory, OOM.
				 */
				continue;
			case MEMCG_PROT_LOW:
				/*
				 * Soft protection.
				 * Respect the protection only as long as
				 * there is an unprotected supply
				 * of reclaimable memory from other cgroups.
				 */
2630 2631
				if (!sc->memcg_low_reclaim) {
					sc->memcg_low_skipped = 1;
2632
					continue;
2633
				}
2634
				memcg_memory_event(memcg, MEMCG_LOW);
R
Roman Gushchin 已提交
2635 2636 2637
				break;
			case MEMCG_PROT_NONE:
				break;
2638 2639
			}

2640
			reclaimed = sc->nr_reclaimed;
2641
			scanned = sc->nr_scanned;
2642 2643
			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
			node_lru_pages += lru_pages;
2644

2645
			if (memcg)
2646
				shrink_slab(sc->gfp_mask, pgdat->node_id,
2647
					    memcg, sc->priority);
2648

2649 2650 2651 2652 2653
			/* Record the group's reclaim efficiency */
			vmpressure(sc->gfp_mask, memcg, false,
				   sc->nr_scanned - scanned,
				   sc->nr_reclaimed - reclaimed);

2654
			/*
2655 2656
			 * Direct reclaim and kswapd have to scan all memory
			 * cgroups to fulfill the overall scan target for the
2657
			 * node.
2658 2659 2660 2661 2662
			 *
			 * Limit reclaim, on the other hand, only cares about
			 * nr_to_reclaim pages to be reclaimed and it will
			 * retry with decreasing priority if one round over the
			 * whole hierarchy is not sufficient.
2663
			 */
2664 2665
			if (!global_reclaim(sc) &&
					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2666 2667 2668
				mem_cgroup_iter_break(root, memcg);
				break;
			}
2669
		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2670

2671
		if (global_reclaim(sc))
2672
			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2673
				    sc->priority);
2674 2675 2676 2677

		if (reclaim_state) {
			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
			reclaim_state->reclaimed_slab = 0;
2678 2679
		}

2680 2681
		/* Record the subtree's reclaim efficiency */
		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2682 2683 2684
			   sc->nr_scanned - nr_scanned,
			   sc->nr_reclaimed - nr_reclaimed);

2685 2686 2687
		if (sc->nr_reclaimed - nr_reclaimed)
			reclaimable = true;

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
		if (current_is_kswapd()) {
			/*
			 * If reclaim is isolating dirty pages under writeback,
			 * it implies that the long-lived page allocation rate
			 * is exceeding the page laundering rate. Either the
			 * global limits are not being effective at throttling
			 * processes due to the page distribution throughout
			 * zones or there is heavy usage of a slow backing
			 * device. The only option is to throttle from reclaim
			 * context which is not ideal as there is no guarantee
			 * the dirtying process is throttled in the same way
			 * balance_dirty_pages() manages.
			 *
			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
			 * count the number of pages under pages flagged for
			 * immediate reclaim and stall if any are encountered
			 * in the nr_immediate check below.
			 */
			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730

			/*
			 * Tag a node as congested if all the dirty pages
			 * scanned were backed by a congested BDI and
			 * wait_iff_congested will stall.
			 */
			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
				set_bit(PGDAT_CONGESTED, &pgdat->flags);

			/* Allow kswapd to start writing pages during reclaim.*/
			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
				set_bit(PGDAT_DIRTY, &pgdat->flags);

			/*
			 * If kswapd scans pages marked marked for immediate
			 * reclaim and under writeback (nr_immediate), it
			 * implies that pages are cycling through the LRU
			 * faster than they are written so also forcibly stall.
			 */
			if (sc->nr.immediate)
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}

2731 2732 2733 2734 2735 2736 2737 2738
		/*
		 * Legacy memcg will stall in page writeback so avoid forcibly
		 * stalling in wait_iff_congested().
		 */
		if (!global_reclaim(sc) && sane_reclaim(sc) &&
		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
			set_memcg_congestion(pgdat, root, true);

2739 2740 2741 2742 2743 2744 2745
		/*
		 * Stall direct reclaim for IO completions if underlying BDIs
		 * and node is congested. Allow kswapd to continue until it
		 * starts encountering unqueued dirty pages or cycling through
		 * the LRU too quickly.
		 */
		if (!sc->hibernation_mode && !current_is_kswapd() &&
2746 2747
		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2748

2749
	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2750
					 sc->nr_scanned - nr_scanned, sc));
2751

2752 2753 2754 2755 2756 2757 2758 2759 2760
	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;

2761
	return reclaimable;
2762 2763
}

2764
/*
2765 2766 2767
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
2768
 */
2769
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2770
{
M
Mel Gorman 已提交
2771
	unsigned long watermark;
2772
	enum compact_result suitable;
2773

2774 2775 2776 2777 2778 2779 2780
	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
	if (suitable == COMPACT_SUCCESS)
		/* Allocation should succeed already. Don't reclaim. */
		return true;
	if (suitable == COMPACT_SKIPPED)
		/* Compaction cannot yet proceed. Do reclaim. */
		return false;
2781

2782
	/*
2783 2784 2785 2786 2787 2788 2789
	 * Compaction is already possible, but it takes time to run and there
	 * are potentially other callers using the pages just freed. So proceed
	 * with reclaim to make a buffer of free pages available to give
	 * compaction a reasonable chance of completing and allocating the page.
	 * Note that we won't actually reclaim the whole buffer in one attempt
	 * as the target watermark in should_continue_reclaim() is lower. But if
	 * we are already above the high+gap watermark, don't reclaim at all.
2790
	 */
2791
	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2792

2793
	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2794 2795
}

L
Linus Torvalds 已提交
2796 2797 2798 2799 2800 2801 2802 2803
/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
M
Michal Hocko 已提交
2804
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
L
Linus Torvalds 已提交
2805
{
2806
	struct zoneref *z;
2807
	struct zone *zone;
2808 2809
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
2810
	gfp_t orig_mask;
2811
	pg_data_t *last_pgdat = NULL;
2812

2813 2814 2815 2816 2817
	/*
	 * If the number of buffer_heads in the machine exceeds the maximum
	 * allowed level, force direct reclaim to scan the highmem zone as
	 * highmem pages could be pinning lowmem pages storing buffer_heads
	 */
2818
	orig_mask = sc->gfp_mask;
2819
	if (buffer_heads_over_limit) {
2820
		sc->gfp_mask |= __GFP_HIGHMEM;
2821
		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2822
	}
2823

2824
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2825
					sc->reclaim_idx, sc->nodemask) {
2826 2827 2828 2829
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
2830
		if (global_reclaim(sc)) {
2831 2832
			if (!cpuset_zone_allowed(zone,
						 GFP_KERNEL | __GFP_HARDWALL))
2833
				continue;
2834

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
			/*
			 * If we already have plenty of memory free for
			 * compaction in this zone, don't free any more.
			 * Even though compaction is invoked for any
			 * non-zero order, only frequent costly order
			 * reclamation is disruptive enough to become a
			 * noticeable problem, like transparent huge
			 * page allocations.
			 */
			if (IS_ENABLED(CONFIG_COMPACTION) &&
			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2846
			    compaction_ready(zone, sc)) {
2847 2848
				sc->compaction_ready = true;
				continue;
2849
			}
2850

2851 2852 2853 2854 2855 2856 2857 2858 2859
			/*
			 * Shrink each node in the zonelist once. If the
			 * zonelist is ordered by zone (not the default) then a
			 * node may be shrunk multiple times but in that case
			 * the user prefers lower zones being preserved.
			 */
			if (zone->zone_pgdat == last_pgdat)
				continue;

2860 2861 2862 2863 2864 2865 2866
			/*
			 * This steals pages from memory cgroups over softlimit
			 * and returns the number of reclaimed pages and
			 * scanned pages. This works for global memory pressure
			 * and balancing, not for a memcg's limit.
			 */
			nr_soft_scanned = 0;
2867
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2868 2869 2870 2871
						sc->order, sc->gfp_mask,
						&nr_soft_scanned);
			sc->nr_reclaimed += nr_soft_reclaimed;
			sc->nr_scanned += nr_soft_scanned;
2872
			/* need some check for avoid more shrink_zone() */
2873
		}
2874

2875 2876 2877 2878
		/* See comment about same check for global reclaim above */
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
2879
		shrink_node(zone->zone_pgdat, sc);
L
Linus Torvalds 已提交
2880
	}
2881

2882 2883 2884 2885 2886
	/*
	 * Restore to original mask to avoid the impact on the caller if we
	 * promoted it to __GFP_HIGHMEM.
	 */
	sc->gfp_mask = orig_mask;
L
Linus Torvalds 已提交
2887
}
2888

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
{
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
	do {
		unsigned long refaults;
		struct lruvec *lruvec;

		if (memcg)
2899
			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2900 2901 2902 2903 2904 2905 2906 2907
		else
			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);

		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		lruvec->refaults = refaults;
	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
}

L
Linus Torvalds 已提交
2908 2909 2910 2911 2912 2913 2914 2915
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
2916 2917 2918 2919
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
2920 2921 2922
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
2923
 */
2924
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2925
					  struct scan_control *sc)
L
Linus Torvalds 已提交
2926
{
2927
	int initial_priority = sc->priority;
2928 2929 2930
	pg_data_t *last_pgdat;
	struct zoneref *z;
	struct zone *zone;
2931
retry:
2932 2933
	delayacct_freepages_start();

2934
	if (global_reclaim(sc))
2935
		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
L
Linus Torvalds 已提交
2936

2937
	do {
2938 2939
		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
				sc->priority);
2940
		sc->nr_scanned = 0;
M
Michal Hocko 已提交
2941
		shrink_zones(zonelist, sc);
2942

2943
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2944 2945 2946 2947
			break;

		if (sc->compaction_ready)
			break;
L
Linus Torvalds 已提交
2948

2949 2950 2951 2952 2953 2954
		/*
		 * If we're getting trouble reclaiming, start doing
		 * writepage even in laptop mode.
		 */
		if (sc->priority < DEF_PRIORITY - 2)
			sc->may_writepage = 1;
2955
	} while (--sc->priority >= 0);
2956

2957 2958 2959 2960 2961 2962 2963
	last_pgdat = NULL;
	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
					sc->nodemask) {
		if (zone->zone_pgdat == last_pgdat)
			continue;
		last_pgdat = zone->zone_pgdat;
		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2964
		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2965 2966
	}

2967 2968
	delayacct_freepages_end();

2969 2970 2971
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

2972
	/* Aborted reclaim to try compaction? don't OOM, then */
2973
	if (sc->compaction_ready)
2974 2975
		return 1;

2976
	/* Untapped cgroup reserves?  Don't OOM, retry. */
2977
	if (sc->memcg_low_skipped) {
2978
		sc->priority = initial_priority;
2979 2980
		sc->memcg_low_reclaim = 1;
		sc->memcg_low_skipped = 0;
2981 2982 2983
		goto retry;
	}

2984
	return 0;
L
Linus Torvalds 已提交
2985 2986
}

2987
static bool allow_direct_reclaim(pg_data_t *pgdat)
2988 2989 2990 2991 2992 2993 2994
{
	struct zone *zone;
	unsigned long pfmemalloc_reserve = 0;
	unsigned long free_pages = 0;
	int i;
	bool wmark_ok;

2995 2996 2997
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

2998 2999
	for (i = 0; i <= ZONE_NORMAL; i++) {
		zone = &pgdat->node_zones[i];
3000 3001 3002 3003
		if (!managed_zone(zone))
			continue;

		if (!zone_reclaimable_pages(zone))
3004 3005
			continue;

3006 3007 3008 3009
		pfmemalloc_reserve += min_wmark_pages(zone);
		free_pages += zone_page_state(zone, NR_FREE_PAGES);
	}

3010 3011 3012 3013
	/* If there are no reserves (unexpected config) then do not throttle */
	if (!pfmemalloc_reserve)
		return true;

3014 3015 3016 3017
	wmark_ok = free_pages > pfmemalloc_reserve / 2;

	/* kswapd must be awake if processes are being throttled */
	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3018
		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
						(enum zone_type)ZONE_NORMAL);
		wake_up_interruptible(&pgdat->kswapd_wait);
	}

	return wmark_ok;
}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
3030 3031 3032 3033
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
3034
 */
3035
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3036 3037
					nodemask_t *nodemask)
{
3038
	struct zoneref *z;
3039
	struct zone *zone;
3040
	pg_data_t *pgdat = NULL;
3041 3042 3043 3044 3045 3046 3047 3048 3049

	/*
	 * Kernel threads should not be throttled as they may be indirectly
	 * responsible for cleaning pages necessary for reclaim to make forward
	 * progress. kjournald for example may enter direct reclaim while
	 * committing a transaction where throttling it could forcing other
	 * processes to block on log_wait_commit().
	 */
	if (current->flags & PF_KTHREAD)
3050 3051 3052 3053 3054 3055 3056 3057
		goto out;

	/*
	 * If a fatal signal is pending, this process should not throttle.
	 * It should return quickly so it can exit and free its memory
	 */
	if (fatal_signal_pending(current))
		goto out;
3058

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	/*
	 * Check if the pfmemalloc reserves are ok by finding the first node
	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
	 * GFP_KERNEL will be required for allocating network buffers when
	 * swapping over the network so ZONE_HIGHMEM is unusable.
	 *
	 * Throttling is based on the first usable node and throttled processes
	 * wait on a queue until kswapd makes progress and wakes them. There
	 * is an affinity then between processes waking up and where reclaim
	 * progress has been made assuming the process wakes on the same node.
	 * More importantly, processes running on remote nodes will not compete
	 * for remote pfmemalloc reserves and processes on different nodes
	 * should make reasonable progress.
	 */
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3074
					gfp_zone(gfp_mask), nodemask) {
3075 3076 3077 3078 3079
		if (zone_idx(zone) > ZONE_NORMAL)
			continue;

		/* Throttle based on the first usable node */
		pgdat = zone->zone_pgdat;
3080
		if (allow_direct_reclaim(pgdat))
3081 3082 3083 3084 3085 3086
			goto out;
		break;
	}

	/* If no zone was usable by the allocation flags then do not throttle */
	if (!pgdat)
3087
		goto out;
3088

3089 3090 3091
	/* Account for the throttling */
	count_vm_event(PGSCAN_DIRECT_THROTTLE);

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
	/*
	 * If the caller cannot enter the filesystem, it's possible that it
	 * is due to the caller holding an FS lock or performing a journal
	 * transaction in the case of a filesystem like ext[3|4]. In this case,
	 * it is not safe to block on pfmemalloc_wait as kswapd could be
	 * blocked waiting on the same lock. Instead, throttle for up to a
	 * second before continuing.
	 */
	if (!(gfp_mask & __GFP_FS)) {
		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3102
			allow_direct_reclaim(pgdat), HZ);
3103 3104

		goto check_pending;
3105 3106 3107 3108
	}

	/* Throttle until kswapd wakes the process */
	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3109
		allow_direct_reclaim(pgdat));
3110 3111 3112 3113 3114 3115 3116

check_pending:
	if (fatal_signal_pending(current))
		return true;

out:
	return false;
3117 3118
}

3119
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3120
				gfp_t gfp_mask, nodemask_t *nodemask)
3121
{
3122
	unsigned long nr_reclaimed;
3123
	struct scan_control sc = {
3124
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3125
		.gfp_mask = current_gfp_context(gfp_mask),
3126
		.reclaim_idx = gfp_zone(gfp_mask),
3127 3128 3129
		.order = order,
		.nodemask = nodemask,
		.priority = DEF_PRIORITY,
3130
		.may_writepage = !laptop_mode,
3131
		.may_unmap = 1,
3132
		.may_swap = 1,
3133 3134
	};

G
Greg Thelen 已提交
3135 3136 3137 3138 3139 3140 3141 3142
	/*
	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
	 * Confirm they are large enough for max values.
	 */
	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);

3143
	/*
3144 3145 3146
	 * Do not enter reclaim if fatal signal was delivered while throttled.
	 * 1 is returned so that the page allocator does not OOM kill at this
	 * point.
3147
	 */
3148
	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3149 3150
		return 1;

3151 3152
	trace_mm_vmscan_direct_reclaim_begin(order,
				sc.may_writepage,
3153
				sc.gfp_mask,
3154
				sc.reclaim_idx);
3155

3156
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3157 3158 3159 3160

	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3161 3162
}

A
Andrew Morton 已提交
3163
#ifdef CONFIG_MEMCG
3164

3165
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3166
						gfp_t gfp_mask, bool noswap,
3167
						pg_data_t *pgdat,
3168
						unsigned long *nr_scanned)
3169 3170
{
	struct scan_control sc = {
3171
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3172
		.target_mem_cgroup = memcg,
3173 3174
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3175
		.reclaim_idx = MAX_NR_ZONES - 1,
3176 3177
		.may_swap = !noswap,
	};
3178
	unsigned long lru_pages;
3179

3180 3181
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3182

3183
	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3184
						      sc.may_writepage,
3185 3186
						      sc.gfp_mask,
						      sc.reclaim_idx);
3187

3188 3189 3190
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
3191
	 * if we don't reclaim here, the shrink_node from balance_pgdat
3192 3193 3194
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
3195
	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3196 3197 3198

	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);

3199
	*nr_scanned = sc.nr_scanned;
3200 3201 3202
	return sc.nr_reclaimed;
}

3203
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3204
					   unsigned long nr_pages,
K
KOSAKI Motohiro 已提交
3205
					   gfp_t gfp_mask,
3206
					   bool may_swap)
3207
{
3208
	struct zonelist *zonelist;
3209
	unsigned long nr_reclaimed;
3210
	int nid;
3211
	unsigned int noreclaim_flag;
3212
	struct scan_control sc = {
3213
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3214
		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3215
				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3216
		.reclaim_idx = MAX_NR_ZONES - 1,
3217 3218 3219 3220
		.target_mem_cgroup = memcg,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
3221
		.may_swap = may_swap,
3222
	};
3223

3224 3225 3226 3227 3228
	/*
	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
	 * take care of from where we get pages. So the node where we start the
	 * scan does not need to be the current node.
	 */
3229
	nid = mem_cgroup_select_victim_node(memcg);
3230

3231
	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3232 3233 3234

	trace_mm_vmscan_memcg_reclaim_begin(0,
					    sc.may_writepage,
3235 3236
					    sc.gfp_mask,
					    sc.reclaim_idx);
3237

3238
	noreclaim_flag = memalloc_noreclaim_save();
3239
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3240
	memalloc_noreclaim_restore(noreclaim_flag);
3241 3242 3243 3244

	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);

	return nr_reclaimed;
3245 3246 3247
}
#endif

3248
static void age_active_anon(struct pglist_data *pgdat,
3249
				struct scan_control *sc)
3250
{
3251
	struct mem_cgroup *memcg;
3252

3253 3254 3255 3256 3257
	if (!total_swap_pages)
		return;

	memcg = mem_cgroup_iter(NULL, NULL, NULL);
	do {
3258
		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3259

3260
		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3261
			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3262
					   sc, LRU_ACTIVE_ANON);
3263 3264 3265

		memcg = mem_cgroup_iter(NULL, memcg, NULL);
	} while (memcg);
3266 3267
}

3268 3269 3270 3271 3272
/*
 * Returns true if there is an eligible zone balanced for the request order
 * and classzone_idx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3273
{
3274 3275 3276
	int i;
	unsigned long mark = -1;
	struct zone *zone;
3277

3278 3279
	for (i = 0; i <= classzone_idx; i++) {
		zone = pgdat->node_zones + i;
3280

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
		if (!managed_zone(zone))
			continue;

		mark = high_wmark_pages(zone);
		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
			return true;
	}

	/*
	 * If a node has no populated zone within classzone_idx, it does not
	 * need balancing by definition. This can happen if a zone-restricted
	 * allocation tries to wake a remote kswapd.
	 */
	if (mark == -1)
		return true;

	return false;
3298 3299
}

3300 3301 3302 3303 3304 3305 3306 3307
/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{
	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
	clear_bit(PGDAT_DIRTY, &pgdat->flags);
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
}

3308 3309 3310 3311 3312 3313
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
3314
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3315
{
3316
	/*
3317
	 * The throttled processes are normally woken up in balance_pgdat() as
3318
	 * soon as allow_direct_reclaim() is true. But there is a potential
3319 3320 3321 3322 3323 3324 3325 3326 3327
	 * race between when kswapd checks the watermarks and a process gets
	 * throttled. There is also a potential race if processes get
	 * throttled, kswapd wakes, a large process exits thereby balancing the
	 * zones, which causes kswapd to exit balance_pgdat() before reaching
	 * the wake up checks. If kswapd is going to sleep, no process should
	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
	 * the wake up is premature, processes will wake kswapd and get
	 * throttled again. The difference from wake ups in balance_pgdat() is
	 * that here we are under prepare_to_wait().
3328
	 */
3329 3330
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
3331

3332 3333 3334 3335
	/* Hopeless node, leave it to direct reclaim */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
		return true;

3336 3337 3338
	if (pgdat_balanced(pgdat, order, classzone_idx)) {
		clear_pgdat_congested(pgdat);
		return true;
3339 3340
	}

3341
	return false;
3342 3343
}

3344
/*
3345 3346
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
3347 3348
 *
 * Returns true if kswapd scanned at least the requested number of pages to
3349 3350
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
3351
 */
3352
static bool kswapd_shrink_node(pg_data_t *pgdat,
3353
			       struct scan_control *sc)
3354
{
3355 3356
	struct zone *zone;
	int z;
3357

3358 3359
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = 0;
3360
	for (z = 0; z <= sc->reclaim_idx; z++) {
3361
		zone = pgdat->node_zones + z;
3362
		if (!managed_zone(zone))
3363
			continue;
3364

3365 3366
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	}
3367 3368

	/*
3369 3370
	 * Historically care was taken to put equal pressure on all zones but
	 * now pressure is applied based on node LRU order.
3371
	 */
3372
	shrink_node(pgdat, sc);
3373

3374
	/*
3375 3376 3377 3378 3379
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * high-order allocations. If twice the allocation size has been
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
3380
	 */
3381
	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3382
		sc->order = 0;
3383

3384
	return sc->nr_scanned >= sc->nr_to_reclaim;
3385 3386
}

L
Linus Torvalds 已提交
3387
/*
3388 3389 3390
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
L
Linus Torvalds 已提交
3391
 *
3392
 * Returns the order kswapd finished reclaiming at.
L
Linus Torvalds 已提交
3393 3394
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3395
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3396 3397 3398
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
L
Linus Torvalds 已提交
3399
 */
3400
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
L
Linus Torvalds 已提交
3401 3402
{
	int i;
3403 3404
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
3405
	struct zone *zone;
3406 3407
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
3408
		.order = order,
3409
		.priority = DEF_PRIORITY,
3410
		.may_writepage = !laptop_mode,
3411
		.may_unmap = 1,
3412
		.may_swap = 1,
3413
	};
3414 3415 3416

	__fs_reclaim_acquire();

3417
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
3418

3419
	do {
3420
		unsigned long nr_reclaimed = sc.nr_reclaimed;
3421
		bool raise_priority = true;
3422
		bool ret;
3423

3424
		sc.reclaim_idx = classzone_idx;
L
Linus Torvalds 已提交
3425

3426
		/*
3427 3428 3429 3430 3431 3432 3433 3434
		 * If the number of buffer_heads exceeds the maximum allowed
		 * then consider reclaiming from all zones. This has a dual
		 * purpose -- on 64-bit systems it is expected that
		 * buffer_heads are stripped during active rotation. On 32-bit
		 * systems, highmem pages can pin lowmem memory and shrinking
		 * buffers can relieve lowmem pressure. Reclaim may still not
		 * go ahead if all eligible zones for the original allocation
		 * request are balanced to avoid excessive reclaim from kswapd.
3435 3436 3437 3438
		 */
		if (buffer_heads_over_limit) {
			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
				zone = pgdat->node_zones + i;
3439
				if (!managed_zone(zone))
3440
					continue;
3441

3442
				sc.reclaim_idx = i;
A
Andrew Morton 已提交
3443
				break;
L
Linus Torvalds 已提交
3444 3445
			}
		}
3446

3447
		/*
3448 3449 3450
		 * Only reclaim if there are no eligible zones. Note that
		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
		 * have adjusted it.
3451
		 */
3452 3453
		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
			goto out;
A
Andrew Morton 已提交
3454

3455 3456 3457 3458 3459 3460
		/*
		 * Do some background aging of the anon list, to give
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
3461
		age_active_anon(pgdat, &sc);
3462

3463 3464 3465 3466
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * even in laptop mode.
		 */
3467
		if (sc.priority < DEF_PRIORITY - 2)
3468 3469
			sc.may_writepage = 1;

3470 3471 3472
		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		nr_soft_scanned = 0;
3473
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3474 3475 3476
						sc.gfp_mask, &nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;

L
Linus Torvalds 已提交
3477
		/*
3478 3479 3480
		 * There should be no need to raise the scanning priority if
		 * enough pages are already being scanned that that high
		 * watermark would be met at 100% efficiency.
L
Linus Torvalds 已提交
3481
		 */
3482
		if (kswapd_shrink_node(pgdat, &sc))
3483
			raise_priority = false;
3484 3485 3486 3487 3488 3489 3490

		/*
		 * If the low watermark is met there is no need for processes
		 * to be throttled on pfmemalloc_wait as they should not be
		 * able to safely make forward progress. Wake them
		 */
		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3491
				allow_direct_reclaim(pgdat))
3492
			wake_up_all(&pgdat->pfmemalloc_wait);
3493

3494
		/* Check if kswapd should be suspending */
3495 3496 3497 3498
		__fs_reclaim_release();
		ret = try_to_freeze();
		__fs_reclaim_acquire();
		if (ret || kthread_should_stop())
3499
			break;
3500

3501
		/*
3502 3503
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
3504
		 */
3505 3506
		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
		if (raise_priority || !nr_reclaimed)
3507
			sc.priority--;
3508
	} while (sc.priority >= 1);
L
Linus Torvalds 已提交
3509

3510 3511 3512
	if (!sc.nr_reclaimed)
		pgdat->kswapd_failures++;

3513
out:
3514
	snapshot_refaults(NULL, pgdat);
3515
	__fs_reclaim_release();
3516
	/*
3517 3518 3519 3520
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
3521
	 */
3522
	return sc.order;
L
Linus Torvalds 已提交
3523 3524
}

3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
/*
 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
 * allocation request woke kswapd for. When kswapd has not woken recently,
 * the value is MAX_NR_ZONES which is not a valid index. This compares a
 * given classzone and returns it or the highest classzone index kswapd
 * was recently woke for.
 */
static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
					   enum zone_type classzone_idx)
{
	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
		return classzone_idx;

	return max(pgdat->kswapd_classzone_idx, classzone_idx);
}

3541 3542
static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int classzone_idx)
3543 3544 3545 3546 3547 3548 3549 3550 3551
{
	long remaining = 0;
	DEFINE_WAIT(wait);

	if (freezing(current) || kthread_should_stop())
		return;

	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);

3552 3553 3554 3555 3556 3557 3558
	/*
	 * Try to sleep for a short interval. Note that kcompactd will only be
	 * woken if it is possible to sleep for a short interval. This is
	 * deliberate on the assumption that if reclaim cannot keep an
	 * eligible zone balanced that it's also unlikely that compaction will
	 * succeed.
	 */
3559
	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
		/*
		 * Compaction records what page blocks it recently failed to
		 * isolate pages from and skips them in the future scanning.
		 * When kswapd is going to sleep, it is reasonable to assume
		 * that pages and compaction may succeed so reset the cache.
		 */
		reset_isolation_suitable(pgdat);

		/*
		 * We have freed the memory, now we should compact it to make
		 * allocation of the requested order possible.
		 */
3572
		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3573

3574
		remaining = schedule_timeout(HZ/10);
3575 3576 3577 3578 3579 3580 3581

		/*
		 * If woken prematurely then reset kswapd_classzone_idx and
		 * order. The values will either be from a wakeup request or
		 * the previous request that slept prematurely.
		 */
		if (remaining) {
3582
			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3583 3584 3585
			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
		}

3586 3587 3588 3589 3590 3591 3592 3593
		finish_wait(&pgdat->kswapd_wait, &wait);
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
	}

	/*
	 * After a short sleep, check if it was a premature sleep. If not, then
	 * go fully to sleep until explicitly woken up.
	 */
3594 3595
	if (!remaining &&
	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);

		/*
		 * vmstat counters are not perfectly accurate and the estimated
		 * value for counters such as NR_FREE_PAGES can deviate from the
		 * true value by nr_online_cpus * threshold. To avoid the zone
		 * watermarks being breached while under pressure, we reduce the
		 * per-cpu vmstat threshold while kswapd is awake and restore
		 * them before going back to sleep.
		 */
		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3607 3608 3609 3610

		if (!kthread_should_stop())
			schedule();

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
	} else {
		if (remaining)
			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
		else
			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
	}
	finish_wait(&pgdat->kswapd_wait, &wait);
}

L
Linus Torvalds 已提交
3621 3622
/*
 * The background pageout daemon, started as a kernel thread
3623
 * from the init process.
L
Linus Torvalds 已提交
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
3636 3637
	unsigned int alloc_order, reclaim_order;
	unsigned int classzone_idx = MAX_NR_ZONES - 1;
L
Linus Torvalds 已提交
3638 3639
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
3640

L
Linus Torvalds 已提交
3641 3642 3643
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
3644
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
3645

R
Rusty Russell 已提交
3646
	if (!cpumask_empty(cpumask))
3647
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
3662
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3663
	set_freezable();
L
Linus Torvalds 已提交
3664

3665 3666
	pgdat->kswapd_order = 0;
	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3667
	for ( ; ; ) {
3668
		bool ret;
3669

3670 3671 3672
		alloc_order = reclaim_order = pgdat->kswapd_order;
		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);

3673 3674 3675
kswapd_try_sleep:
		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
					classzone_idx);
3676

3677 3678
		/* Read the new order and classzone_idx */
		alloc_order = reclaim_order = pgdat->kswapd_order;
3679
		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3680
		pgdat->kswapd_order = 0;
3681
		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
L
Linus Torvalds 已提交
3682

3683 3684 3685 3686 3687 3688 3689 3690
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
		if (ret)
			continue;

		/*
		 * Reclaim begins at the requested order but if a high-order
		 * reclaim fails then kswapd falls back to reclaiming for
		 * order-0. If that happens, kswapd will consider sleeping
		 * for the order it finished reclaiming at (reclaim_order)
		 * but kcompactd is woken to compact for the original
		 * request (alloc_order).
		 */
3702 3703
		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
						alloc_order);
3704 3705 3706
		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
		if (reclaim_order < alloc_order)
			goto kswapd_try_sleep;
L
Linus Torvalds 已提交
3707
	}
3708

3709
	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3710
	current->reclaim_state = NULL;
3711

L
Linus Torvalds 已提交
3712 3713 3714 3715
	return 0;
}

/*
3716 3717 3718 3719 3720
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
L
Linus Torvalds 已提交
3721
 */
3722 3723
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type classzone_idx)
L
Linus Torvalds 已提交
3724 3725 3726
{
	pg_data_t *pgdat;

3727
	if (!managed_zone(zone))
L
Linus Torvalds 已提交
3728 3729
		return;

3730
	if (!cpuset_zone_allowed(zone, gfp_flags))
L
Linus Torvalds 已提交
3731
		return;
3732
	pgdat = zone->zone_pgdat;
3733 3734
	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
							   classzone_idx);
3735
	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3736
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
3737
		return;
3738

3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	/* Hopeless node, leave it to direct reclaim if possible */
	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
	    pgdat_balanced(pgdat, order, classzone_idx)) {
		/*
		 * There may be plenty of free memory available, but it's too
		 * fragmented for high-order allocations.  Wake up kcompactd
		 * and rely on compaction_suitable() to determine if it's
		 * needed.  If it fails, it will defer subsequent attempts to
		 * ratelimit its work.
		 */
		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
			wakeup_kcompactd(pgdat, order, classzone_idx);
3751
		return;
3752
	}
3753

3754 3755
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
				      gfp_flags);
3756
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
3757 3758
}

3759
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3760
/*
3761
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3762 3763 3764 3765 3766
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
3767
 */
3768
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
3769
{
3770 3771
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
3772
		.nr_to_reclaim = nr_to_reclaim,
3773
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3774
		.reclaim_idx = MAX_NR_ZONES - 1,
3775
		.priority = DEF_PRIORITY,
3776
		.may_writepage = 1,
3777 3778
		.may_unmap = 1,
		.may_swap = 1,
3779
		.hibernation_mode = 1,
L
Linus Torvalds 已提交
3780
	};
3781
	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3782 3783
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
3784
	unsigned int noreclaim_flag;
L
Linus Torvalds 已提交
3785

3786
	fs_reclaim_acquire(sc.gfp_mask);
3787
	noreclaim_flag = memalloc_noreclaim_save();
3788 3789
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3790

3791
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3792

3793
	p->reclaim_state = NULL;
3794
	memalloc_noreclaim_restore(noreclaim_flag);
3795
	fs_reclaim_release(sc.gfp_mask);
3796

3797
	return nr_reclaimed;
L
Linus Torvalds 已提交
3798
}
3799
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
3800 3801 3802 3803 3804

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
3805
static int kswapd_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
3806
{
3807
	int nid;
L
Linus Torvalds 已提交
3808

3809 3810 3811
	for_each_node_state(nid, N_MEMORY) {
		pg_data_t *pgdat = NODE_DATA(nid);
		const struct cpumask *mask;
3812

3813
		mask = cpumask_of_node(pgdat->node_id);
3814

3815 3816 3817
		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
			/* One of our CPUs online: restore mask */
			set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
3818
	}
3819
	return 0;
L
Linus Torvalds 已提交
3820 3821
}

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
3837
		BUG_ON(system_state < SYSTEM_RUNNING);
3838 3839
		pr_err("Failed to start kswapd on node %d\n", nid);
		ret = PTR_ERR(pgdat->kswapd);
3840
		pgdat->kswapd = NULL;
3841 3842 3843 3844
	}
	return ret;
}

3845
/*
3846
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3847
 * hold mem_hotplug_begin/end().
3848 3849 3850 3851 3852
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

3853
	if (kswapd) {
3854
		kthread_stop(kswapd);
3855 3856
		NODE_DATA(nid)->kswapd = NULL;
	}
3857 3858
}

L
Linus Torvalds 已提交
3859 3860
static int __init kswapd_init(void)
{
3861
	int nid, ret;
3862

L
Linus Torvalds 已提交
3863
	swap_setup();
3864
	for_each_node_state(nid, N_MEMORY)
3865
 		kswapd_run(nid);
3866 3867 3868 3869
	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"mm/vmscan:online", kswapd_cpu_online,
					NULL);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
3870 3871 3872 3873
	return 0;
}

module_init(kswapd_init)
3874 3875 3876

#ifdef CONFIG_NUMA
/*
3877
 * Node reclaim mode
3878
 *
3879
 * If non-zero call node_reclaim when the number of free pages falls below
3880 3881
 * the watermarks.
 */
3882
int node_reclaim_mode __read_mostly;
3883

3884
#define RECLAIM_OFF 0
3885
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3886
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3887
#define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3888

3889
/*
3890
 * Priority for NODE_RECLAIM. This determines the fraction of pages
3891 3892 3893
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
3894
#define NODE_RECLAIM_PRIORITY 4
3895

3896
/*
3897
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3898 3899 3900 3901
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

3902 3903 3904 3905 3906 3907
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

3908
static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3909
{
3910 3911 3912
	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
		node_page_state(pgdat, NR_ACTIVE_FILE);
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3923
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3924
{
3925 3926
	unsigned long nr_pagecache_reclaimable;
	unsigned long delta = 0;
3927 3928

	/*
3929
	 * If RECLAIM_UNMAP is set, then all file pages are considered
3930
	 * potentially reclaimable. Otherwise, we have to worry about
3931
	 * pages like swapcache and node_unmapped_file_pages() provides
3932 3933
	 * a better estimate
	 */
3934 3935
	if (node_reclaim_mode & RECLAIM_UNMAP)
		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3936
	else
3937
		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3938 3939

	/* If we can't clean pages, remove dirty pages from consideration */
3940 3941
	if (!(node_reclaim_mode & RECLAIM_WRITE))
		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3942 3943 3944 3945 3946 3947 3948 3949

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

3950
/*
3951
 * Try to free up some pages from this node through reclaim.
3952
 */
3953
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3954
{
3955
	/* Minimum pages needed in order to stay on node */
3956
	const unsigned long nr_pages = 1 << order;
3957 3958
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
3959
	unsigned int noreclaim_flag;
3960
	struct scan_control sc = {
3961
		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3962
		.gfp_mask = current_gfp_context(gfp_mask),
3963
		.order = order,
3964 3965 3966
		.priority = NODE_RECLAIM_PRIORITY,
		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3967
		.may_swap = 1,
3968
		.reclaim_idx = gfp_zone(gfp_mask),
3969
	};
3970 3971

	cond_resched();
3972
	fs_reclaim_acquire(sc.gfp_mask);
3973
	/*
3974
	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3975
	 * and we also need to be able to write out pages for RECLAIM_WRITE
3976
	 * and RECLAIM_UNMAP.
3977
	 */
3978 3979
	noreclaim_flag = memalloc_noreclaim_save();
	p->flags |= PF_SWAPWRITE;
3980 3981
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
3982

3983
	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3984
		/*
3985
		 * Free memory by calling shrink node with increasing
3986 3987 3988
		 * priorities until we have enough memory freed.
		 */
		do {
3989
			shrink_node(pgdat, &sc);
3990
		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3991
	}
3992

3993
	p->reclaim_state = NULL;
3994 3995
	current->flags &= ~PF_SWAPWRITE;
	memalloc_noreclaim_restore(noreclaim_flag);
3996
	fs_reclaim_release(sc.gfp_mask);
3997
	return sc.nr_reclaimed >= nr_pages;
3998
}
3999

4000
int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4001
{
4002
	int ret;
4003 4004

	/*
4005
	 * Node reclaim reclaims unmapped file backed pages and
4006
	 * slab pages if we are over the defined limits.
4007
	 *
4008 4009
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
4010 4011
	 * thrown out if the node is overallocated. So we do not reclaim
	 * if less than a specified percentage of the node is used by
4012
	 * unmapped file backed pages.
4013
	 */
4014
	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4015
	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4016
		return NODE_RECLAIM_FULL;
4017 4018

	/*
4019
	 * Do not scan if the allocation should not be delayed.
4020
	 */
4021
	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4022
		return NODE_RECLAIM_NOSCAN;
4023 4024

	/*
4025
	 * Only run node reclaim on the local node or on nodes that do not
4026 4027 4028 4029
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
4030 4031
	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
		return NODE_RECLAIM_NOSCAN;
4032

4033 4034
	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
		return NODE_RECLAIM_NOSCAN;
4035

4036 4037
	ret = __node_reclaim(pgdat, gfp_mask, order);
	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4038

4039 4040 4041
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

4042
	return ret;
4043
}
4044
#endif
L
Lee Schermerhorn 已提交
4045 4046 4047 4048 4049 4050

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
4051
 * lists vs unevictable list.
L
Lee Schermerhorn 已提交
4052 4053
 *
 * Reasons page might not be evictable:
4054
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
4055
 * (2) page is part of an mlocked VMA
4056
 *
L
Lee Schermerhorn 已提交
4057
 */
4058
int page_evictable(struct page *page)
L
Lee Schermerhorn 已提交
4059
{
4060 4061 4062 4063 4064 4065 4066
	int ret;

	/* Prevent address_space of inode and swap cache from being freed */
	rcu_read_lock();
	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
	rcu_read_unlock();
	return ret;
L
Lee Schermerhorn 已提交
4067
}
4068

4069
#ifdef CONFIG_SHMEM
4070
/**
4071 4072 4073
 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
 * @pages:	array of pages to check
 * @nr_pages:	number of pages to check
4074
 *
4075
 * Checks pages for evictability and moves them to the appropriate lru list.
4076 4077
 *
 * This function is only used for SysV IPC SHM_UNLOCK.
4078
 */
4079
void check_move_unevictable_pages(struct page **pages, int nr_pages)
4080
{
4081
	struct lruvec *lruvec;
4082
	struct pglist_data *pgdat = NULL;
4083 4084 4085
	int pgscanned = 0;
	int pgrescued = 0;
	int i;
4086

4087 4088
	for (i = 0; i < nr_pages; i++) {
		struct page *page = pages[i];
4089
		struct pglist_data *pagepgdat = page_pgdat(page);
4090

4091
		pgscanned++;
4092 4093 4094 4095 4096
		if (pagepgdat != pgdat) {
			if (pgdat)
				spin_unlock_irq(&pgdat->lru_lock);
			pgdat = pagepgdat;
			spin_lock_irq(&pgdat->lru_lock);
4097
		}
4098
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4099

4100 4101
		if (!PageLRU(page) || !PageUnevictable(page))
			continue;
4102

4103
		if (page_evictable(page)) {
4104 4105
			enum lru_list lru = page_lru_base_type(page);

4106
			VM_BUG_ON_PAGE(PageActive(page), page);
4107
			ClearPageUnevictable(page);
4108 4109
			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
			add_page_to_lru_list(page, lruvec, lru);
4110
			pgrescued++;
4111
		}
4112
	}
4113

4114
	if (pgdat) {
4115 4116
		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4117
		spin_unlock_irq(&pgdat->lru_lock);
4118 4119
	}
}
4120
#endif /* CONFIG_SHMEM */