g1CollectorPolicy.cpp 89.2 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28
#ifndef __clang_major__
#define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
#endif

29 30 31 32 33 34
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
35
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
36
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
37
#include "gc_implementation/g1/g1Log.hpp"
38 39 40 41 42 43
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "runtime/arguments.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/debug.hpp"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

// Different defaults for different number of GC threads
// They were chosen by running GCOld and SPECjbb on debris with different
//   numbers of GC threads and choosing them based on the results

// all the same
static double rs_length_diff_defaults[] = {
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

static double cost_per_card_ms_defaults[] = {
  0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
};

// all the same
59
static double young_cards_per_entry_ratio_defaults[] = {
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

static double cost_per_entry_ms_defaults[] = {
  0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
};

static double cost_per_byte_ms_defaults[] = {
  0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
};

// these should be pretty consistent
static double constant_other_time_ms_defaults[] = {
  5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
};


static double young_other_cost_per_region_ms_defaults[] = {
  0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
};

static double non_young_other_cost_per_region_ms_defaults[] = {
  1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
};

G1CollectorPolicy::G1CollectorPolicy() :
86
  _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
87
                        ? ParallelGCThreads : 1),
88

89 90 91 92 93 94 95 96 97 98
  _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _stop_world_start(0.0),

  _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _prev_collection_pause_end_ms(0.0),
  _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
99 100
  _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
101
  _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
102
  _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
103 104 105 106 107 108 109 110 111 112
  _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
  _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _non_young_other_cost_per_region_ms_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),

  _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),

J
johnc 已提交
113
  _pause_time_target_ms((double) MaxGCPauseMillis),
114

115
  _gcs_are_young(true),
116 117 118 119 120

  _during_marking(false),
  _in_marking_window(false),
  _in_marking_window_im(false),

121 122
  _recent_prev_end_times_for_all_gcs_sec(
                                new TruncatedSeq(NumPrevPausesForHeuristics)),
123 124 125

  _recent_avg_pause_time_ratio(0.0),

126 127
  _initiate_conc_mark_if_possible(false),
  _during_initial_mark_pause(false),
128 129
  _last_young_gc(false),
  _last_gc_was_young(false),
130

131 132 133 134 135 136
  _eden_used_bytes_before_gc(0),
  _survivor_used_bytes_before_gc(0),
  _heap_used_bytes_before_gc(0),
  _metaspace_used_bytes_before_gc(0),
  _eden_capacity_bytes_before_gc(0),
  _heap_capacity_bytes_before_gc(0),
137

138 139 140 141
  _eden_cset_region_length(0),
  _survivor_cset_region_length(0),
  _old_cset_region_length(0),

142
  _collection_set(NULL),
143 144 145 146 147 148 149 150 151
  _collection_set_bytes_used_before(0),

  // Incremental CSet attributes
  _inc_cset_build_state(Inactive),
  _inc_cset_head(NULL),
  _inc_cset_tail(NULL),
  _inc_cset_bytes_used_before(0),
  _inc_cset_max_finger(NULL),
  _inc_cset_recorded_rs_lengths(0),
152
  _inc_cset_recorded_rs_lengths_diffs(0),
153
  _inc_cset_predicted_elapsed_time_ms(0.0),
154
  _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
155

156 157 158 159 160 161 162
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

  _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
                                                 G1YoungSurvRateNumRegionsSummary)),
  _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
163
                                              G1YoungSurvRateNumRegionsSummary)),
164
  // add here any more surv rate groups
165 166 167
  _recorded_survivor_regions(0),
  _recorded_survivor_head(NULL),
  _recorded_survivor_tail(NULL),
T
tonyp 已提交
168 169
  _survivors_age_table(true),

170
  _gc_overhead_perc(0.0) {
171

172 173 174
  // Set up the region size and associated fields. Given that the
  // policy is created before the heap, we have to set this up here,
  // so it's done as soon as possible.
175 176 177 178 179 180 181 182 183

  // It would have been natural to pass initial_heap_byte_size() and
  // max_heap_byte_size() to setup_heap_region_size() but those have
  // not been set up at this point since they should be aligned with
  // the region size. So, there is a circular dependency here. We base
  // the region size on the heap size, but the heap size should be
  // aligned with the region size. To get around this we use the
  // unaligned values for the heap.
  HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
184
  HeapRegionRemSet::setup_remset_size();
185

186 187 188 189 190 191 192 193 194 195 196 197
  G1ErgoVerbose::initialize();
  if (PrintAdaptiveSizePolicy) {
    // Currently, we only use a single switch for all the heuristics.
    G1ErgoVerbose::set_enabled(true);
    // Given that we don't currently have a verboseness level
    // parameter, we'll hardcode this to high. This can be easily
    // changed in the future.
    G1ErgoVerbose::set_level(ErgoHigh);
  } else {
    G1ErgoVerbose::set_enabled(false);
  }

198
  // Verify PLAB sizes
199
  const size_t region_size = HeapRegion::GrainWords;
200 201
  if (YoungPLABSize > region_size || OldPLABSize > region_size) {
    char buffer[128];
202
    jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
203 204 205 206
                 OldPLABSize > region_size ? "Old" : "Young", region_size);
    vm_exit_during_initialization(buffer);
  }

207 208 209
  _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
  _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;

210
  _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
211

212
  int index = MIN2(_parallel_gc_threads - 1, 7);
213 214 215

  _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
  _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
216 217
  _young_cards_per_entry_ratio_seq->add(
                                  young_cards_per_entry_ratio_defaults[index]);
218 219 220 221 222 223 224 225
  _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
  _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
  _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
  _young_other_cost_per_region_ms_seq->add(
                               young_other_cost_per_region_ms_defaults[index]);
  _non_young_other_cost_per_region_ms_seq->add(
                           non_young_other_cost_per_region_ms_defaults[index]);

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  // Below, we might need to calculate the pause time target based on
  // the pause interval. When we do so we are going to give G1 maximum
  // flexibility and allow it to do pauses when it needs to. So, we'll
  // arrange that the pause interval to be pause time target + 1 to
  // ensure that a) the pause time target is maximized with respect to
  // the pause interval and b) we maintain the invariant that pause
  // time target < pause interval. If the user does not want this
  // maximum flexibility, they will have to set the pause interval
  // explicitly.

  // First make sure that, if either parameter is set, its value is
  // reasonable.
  if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (MaxGCPauseMillis < 1) {
      vm_exit_during_initialization("MaxGCPauseMillis should be "
                                    "greater than 0");
    }
  }
  if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    if (GCPauseIntervalMillis < 1) {
      vm_exit_during_initialization("GCPauseIntervalMillis should be "
                                    "greater than 0");
    }
  }

  // Then, if the pause time target parameter was not set, set it to
  // the default value.
  if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
      // The default pause time target in G1 is 200ms
      FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
    } else {
      // We do not allow the pause interval to be set without the
      // pause time target
      vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
                                    "without setting MaxGCPauseMillis");
    }
  }

  // Then, if the interval parameter was not set, set it according to
  // the pause time target (this will also deal with the case when the
  // pause time target is the default value).
  if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
  }

  // Finally, make sure that the two parameters are consistent.
  if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
    char buffer[256];
    jio_snprintf(buffer, 256,
                 "MaxGCPauseMillis (%u) should be less than "
                 "GCPauseIntervalMillis (%u)",
                 MaxGCPauseMillis, GCPauseIntervalMillis);
    vm_exit_during_initialization(buffer);
  }

J
johnc 已提交
282
  double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
283
  double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
284
  _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
285 286 287 288 289 290 291 292 293

  uintx confidence_perc = G1ConfidencePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (confidence_perc > 100) {
    confidence_perc = 100;
    warning("G1ConfidencePercent is set to a value that is too large, "
            "it's been updated to %u", confidence_perc);
  }
  _sigma = (double) confidence_perc / 100.0;
294 295 296 297 298

  // start conservatively (around 50ms is about right)
  _concurrent_mark_remark_times_ms->add(0.05);
  _concurrent_mark_cleanup_times_ms->add(0.20);
  _tenuring_threshold = MaxTenuringThreshold;
299
  // _max_survivor_regions will be calculated by
300
  // update_young_list_target_length() during initialization.
301
  _max_survivor_regions = 0;
302

T
tonyp 已提交
303 304 305 306 307
  assert(GCTimeRatio > 0,
         "we should have set it to a default value set_g1_gc_flags() "
         "if a user set it to 0");
  _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));

308 309 310 311 312 313 314 315
  uintx reserve_perc = G1ReservePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (reserve_perc > 50) {
    reserve_perc = 50;
    warning("G1ReservePercent is set to a value that is too large, "
            "it's been updated to %u", reserve_perc);
  }
  _reserve_factor = (double) reserve_perc / 100.0;
316
  // This will be set when the heap is expanded
317 318 319
  // for the first time during initialization.
  _reserve_regions = 0;

320
  _collectionSetChooser = new CollectionSetChooser();
321 322
}

323 324
void G1CollectorPolicy::initialize_alignments() {
  _space_alignment = HeapRegion::GrainBytes;
325
  size_t card_table_alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
326
  size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
327 328 329 330 331 332 333 334
  _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
}

void G1CollectorPolicy::initialize_flags() {
  if (G1HeapRegionSize != HeapRegion::GrainBytes) {
    FLAG_SET_ERGO(uintx, G1HeapRegionSize, HeapRegion::GrainBytes);
  }

335 336 337
  if (SurvivorRatio < 1) {
    vm_exit_during_initialization("Invalid survivor ratio specified");
  }
338
  CollectorPolicy::initialize_flags();
339
  _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
340 341
}

342 343 344 345 346 347 348
void G1CollectorPolicy::post_heap_initialize() {
  uintx max_regions = G1CollectedHeap::heap()->max_regions();
  size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
  if (max_young_size != MaxNewSize) {
    FLAG_SET_ERGO(uintx, MaxNewSize, max_young_size);
  }
}
349

350 351
G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
        _min_desired_young_length(0), _max_desired_young_length(0) {
352 353 354 355 356 357 358 359
  if (FLAG_IS_CMDLINE(NewRatio)) {
    if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
      warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
    } else {
      _sizer_kind = SizerNewRatio;
      _adaptive_size = false;
      return;
    }
360
  }
361

362 363 364 365 366 367 368
  if (NewSize > MaxNewSize) {
    if (FLAG_IS_CMDLINE(MaxNewSize)) {
      warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
              "A new max generation size of " SIZE_FORMAT "k will be used.",
              NewSize/K, MaxNewSize/K, NewSize/K);
    }
    MaxNewSize = NewSize;
369 370
  }

371
  if (FLAG_IS_CMDLINE(NewSize)) {
372 373
    _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
                                     1U);
374
    if (FLAG_IS_CMDLINE(MaxNewSize)) {
375 376 377
      _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
378 379 380 381 382 383
      _sizer_kind = SizerMaxAndNewSize;
      _adaptive_size = _min_desired_young_length == _max_desired_young_length;
    } else {
      _sizer_kind = SizerNewSizeOnly;
    }
  } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
384 385 386
    _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
387
    _sizer_kind = SizerMaxNewSizeOnly;
388
  }
389 390
}

391
uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
392
  uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
393
  return MAX2(1U, default_value);
394 395
}

396
uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
397
  uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
398
  return MAX2(1U, default_value);
399 400
}

401 402
void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
  assert(number_of_heap_regions > 0, "Heap must be initialized");
403 404 405

  switch (_sizer_kind) {
    case SizerDefaults:
406 407
      *min_young_length = calculate_default_min_length(number_of_heap_regions);
      *max_young_length = calculate_default_max_length(number_of_heap_regions);
408 409
      break;
    case SizerNewSizeOnly:
410 411
      *max_young_length = calculate_default_max_length(number_of_heap_regions);
      *max_young_length = MAX2(*min_young_length, *max_young_length);
412 413
      break;
    case SizerMaxNewSizeOnly:
414 415
      *min_young_length = calculate_default_min_length(number_of_heap_regions);
      *min_young_length = MIN2(*min_young_length, *max_young_length);
416 417 418 419 420
      break;
    case SizerMaxAndNewSize:
      // Do nothing. Values set on the command line, don't update them at runtime.
      break;
    case SizerNewRatio:
421 422
      *min_young_length = number_of_heap_regions / (NewRatio + 1);
      *max_young_length = *min_young_length;
423 424 425
      break;
    default:
      ShouldNotReachHere();
426 427
  }

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
  assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
}

uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
  // We need to pass the desired values because recalculation may not update these
  // values in some cases.
  uint temp = _min_desired_young_length;
  uint result = _max_desired_young_length;
  recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
  return result;
}

void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
  recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
          &_max_desired_young_length);
443 444
}

445 446 447 448 449 450
void G1CollectorPolicy::init() {
  // Set aside an initial future to_space.
  _g1 = G1CollectedHeap::heap();

  assert(Heap_lock->owned_by_self(), "Locking discipline.");

451 452
  initialize_gc_policy_counters();

453
  if (adaptive_young_list_length()) {
454
    _young_list_fixed_length = 0;
455
  } else {
456
    _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
457
  }
458
  _free_regions_at_end_of_collection = _g1->num_free_regions();
459
  update_young_list_target_length();
460 461 462 463

  // We may immediately start allocating regions and placing them on the
  // collection set list. Initialize the per-collection set info
  start_incremental_cset_building();
464 465
}

466
// Create the jstat counters for the policy.
467
void G1CollectorPolicy::initialize_gc_policy_counters() {
468
  _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
469 470
}

471
bool G1CollectorPolicy::predict_will_fit(uint young_length,
472
                                         double base_time_ms,
473
                                         uint base_free_regions,
474 475 476 477 478
                                         double target_pause_time_ms) {
  if (young_length >= base_free_regions) {
    // end condition 1: not enough space for the young regions
    return false;
  }
479

480
  double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
481 482 483 484 485 486 487 488 489
  size_t bytes_to_copy =
               (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
  double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
  double young_other_time_ms = predict_young_other_time_ms(young_length);
  double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
  if (pause_time_ms > target_pause_time_ms) {
    // end condition 2: prediction is over the target pause time
    return false;
  }
490

491
  size_t free_bytes =
492
                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
493 494 495
  if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
    // end condition 3: out-of-space (conservatively!)
    return false;
496
  }
497 498 499 500 501

  // success!
  return true;
}

502
void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
503 504
  // re-calculate the necessary reserve
  double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
505 506
  // We use ceiling so that if reserve_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
507
  _reserve_regions = (uint) ceil(reserve_regions_d);
508

509
  _young_gen_sizer->heap_size_changed(new_number_of_regions);
510 511
}

512 513 514
uint G1CollectorPolicy::calculate_young_list_desired_min_length(
                                                       uint base_min_length) {
  uint desired_min_length = 0;
515
  if (adaptive_young_list_length()) {
516 517 518 519
    if (_alloc_rate_ms_seq->num() > 3) {
      double now_sec = os::elapsedTime();
      double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
      double alloc_rate_ms = predict_alloc_rate_ms();
520
      desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
521 522
    } else {
      // otherwise we don't have enough info to make the prediction
523 524
    }
  }
525 526
  desired_min_length += base_min_length;
  // make sure we don't go below any user-defined minimum bound
527
  return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
528 529
}

530
uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
531 532 533
  // Here, we might want to also take into account any additional
  // constraints (i.e., user-defined minimum bound). Currently, we
  // effectively don't set this bound.
534
  return _young_gen_sizer->max_desired_young_length();
535
}
536

537 538 539 540 541 542
void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
  if (rs_lengths == (size_t) -1) {
    // if it's set to the default value (-1), we should predict it;
    // otherwise, use the given value.
    rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
  }
543

544
  // Calculate the absolute and desired min bounds.
545

546
  // This is how many young regions we already have (currently: the survivors).
547
  uint base_min_length = recorded_survivor_regions();
548 549
  // This is the absolute minimum young length, which ensures that we
  // can allocate one eden region in the worst-case.
550 551
  uint absolute_min_length = base_min_length + 1;
  uint desired_min_length =
552 553 554 555
                     calculate_young_list_desired_min_length(base_min_length);
  if (desired_min_length < absolute_min_length) {
    desired_min_length = absolute_min_length;
  }
556

557
  // Calculate the absolute and desired max bounds.
558

559
  // We will try our best not to "eat" into the reserve.
560
  uint absolute_max_length = 0;
561 562 563
  if (_free_regions_at_end_of_collection > _reserve_regions) {
    absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
  }
564
  uint desired_max_length = calculate_young_list_desired_max_length();
565 566 567
  if (desired_max_length > absolute_max_length) {
    desired_max_length = absolute_max_length;
  }
568

569
  uint young_list_target_length = 0;
570
  if (adaptive_young_list_length()) {
571
    if (gcs_are_young()) {
572 573 574 575 576 577 578 579 580 581 582 583
      young_list_target_length =
                        calculate_young_list_target_length(rs_lengths,
                                                           base_min_length,
                                                           desired_min_length,
                                                           desired_max_length);
      _rs_lengths_prediction = rs_lengths;
    } else {
      // Don't calculate anything and let the code below bound it to
      // the desired_min_length, i.e., do the next GC as soon as
      // possible to maximize how many old regions we can add to it.
    }
  } else {
584 585 586
    // The user asked for a fixed young gen so we'll fix the young gen
    // whether the next GC is young or mixed.
    young_list_target_length = _young_list_fixed_length;
587
  }
588

589 590 591 592 593 594 595 596 597
  // Make sure we don't go over the desired max length, nor under the
  // desired min length. In case they clash, desired_min_length wins
  // which is why that test is second.
  if (young_list_target_length > desired_max_length) {
    young_list_target_length = desired_max_length;
  }
  if (young_list_target_length < desired_min_length) {
    young_list_target_length = desired_min_length;
  }
598

599 600 601 602
  assert(young_list_target_length > recorded_survivor_regions(),
         "we should be able to allocate at least one eden region");
  assert(young_list_target_length >= absolute_min_length, "post-condition");
  _young_list_target_length = young_list_target_length;
603

604 605
  update_max_gc_locker_expansion();
}
606

607
uint
608
G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
609 610 611
                                                     uint base_min_length,
                                                     uint desired_min_length,
                                                     uint desired_max_length) {
612
  assert(adaptive_young_list_length(), "pre-condition");
613
  assert(gcs_are_young(), "only call this for young GCs");
614 615 616 617 618 619 620 621 622 623 624 625

  // In case some edge-condition makes the desired max length too small...
  if (desired_max_length <= desired_min_length) {
    return desired_min_length;
  }

  // We'll adjust min_young_length and max_young_length not to include
  // the already allocated young regions (i.e., so they reflect the
  // min and max eden regions we'll allocate). The base_min_length
  // will be reflected in the predictions by the
  // survivor_regions_evac_time prediction.
  assert(desired_min_length > base_min_length, "invariant");
626
  uint min_young_length = desired_min_length - base_min_length;
627
  assert(desired_max_length > base_min_length, "invariant");
628
  uint max_young_length = desired_max_length - base_min_length;
629 630 631 632 633 634 635 636 637

  double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
  double survivor_regions_evac_time = predict_survivor_regions_evac_time();
  size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
  size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
  size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
  double base_time_ms =
    predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
    survivor_regions_evac_time;
638 639
  uint available_free_regions = _free_regions_at_end_of_collection;
  uint base_free_regions = 0;
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
  if (available_free_regions > _reserve_regions) {
    base_free_regions = available_free_regions - _reserve_regions;
  }

  // Here, we will make sure that the shortest young length that
  // makes sense fits within the target pause time.

  if (predict_will_fit(min_young_length, base_time_ms,
                       base_free_regions, target_pause_time_ms)) {
    // The shortest young length will fit into the target pause time;
    // we'll now check whether the absolute maximum number of young
    // regions will fit in the target pause time. If not, we'll do
    // a binary search between min_young_length and max_young_length.
    if (predict_will_fit(max_young_length, base_time_ms,
                         base_free_regions, target_pause_time_ms)) {
      // The maximum young length will fit into the target pause time.
      // We are done so set min young length to the maximum length (as
      // the result is assumed to be returned in min_young_length).
      min_young_length = max_young_length;
    } else {
      // The maximum possible number of young regions will not fit within
      // the target pause time so we'll search for the optimal
      // length. The loop invariants are:
      //
      // min_young_length < max_young_length
      // min_young_length is known to fit into the target pause time
      // max_young_length is known not to fit into the target pause time
      //
      // Going into the loop we know the above hold as we've just
      // checked them. Every time around the loop we check whether
      // the middle value between min_young_length and
      // max_young_length fits into the target pause time. If it
      // does, it becomes the new min. If it doesn't, it becomes
      // the new max. This way we maintain the loop invariants.

      assert(min_young_length < max_young_length, "invariant");
676
      uint diff = (max_young_length - min_young_length) / 2;
677
      while (diff > 0) {
678
        uint young_length = min_young_length + diff;
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
        if (predict_will_fit(young_length, base_time_ms,
                             base_free_regions, target_pause_time_ms)) {
          min_young_length = young_length;
        } else {
          max_young_length = young_length;
        }
        assert(min_young_length <  max_young_length, "invariant");
        diff = (max_young_length - min_young_length) / 2;
      }
      // The results is min_young_length which, according to the
      // loop invariants, should fit within the target pause time.

      // These are the post-conditions of the binary search above:
      assert(min_young_length < max_young_length,
             "otherwise we should have discovered that max_young_length "
             "fits into the pause target and not done the binary search");
      assert(predict_will_fit(min_young_length, base_time_ms,
                              base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should "
             "fit into the pause target");
      assert(!predict_will_fit(min_young_length + 1, base_time_ms,
                               base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should be "
             "optimal, so no larger length should fit into the pause target");
    }
  } else {
    // Even the minimum length doesn't fit into the pause time
    // target, return it as the result nevertheless.
  }
  return base_min_length + min_young_length;
709 710
}

711 712 713 714 715
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
  double survivor_regions_evac_time = 0.0;
  for (HeapRegion * r = _recorded_survivor_head;
       r != NULL && r != _recorded_survivor_tail->get_next_young_region();
       r = r->get_next_young_region()) {
716
    survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
717 718 719 720
  }
  return survivor_regions_evac_time;
}

721
void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
722 723
  guarantee( adaptive_young_list_length(), "should not call this otherwise" );

724
  size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
725 726 727
  if (rs_lengths > _rs_lengths_prediction) {
    // add 10% to avoid having to recalculate often
    size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
728
    update_young_list_target_length(rs_lengths_prediction);
729 730 731
  }
}

732 733


734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
                                               bool is_tlab,
                                               bool* gc_overhead_limit_was_exceeded) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}

// This method controls how a collector handles one or more
// of its generations being fully allocated.
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
                                                       bool is_tlab) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}


#ifndef PRODUCT
bool G1CollectorPolicy::verify_young_ages() {
752
  HeapRegion* head = _g1->young_list()->first_region();
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
  return
    verify_young_ages(head, _short_lived_surv_rate_group);
  // also call verify_young_ages on any additional surv rate groups
}

bool
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
                                     SurvRateGroup *surv_rate_group) {
  guarantee( surv_rate_group != NULL, "pre-condition" );

  const char* name = surv_rate_group->name();
  bool ret = true;
  int prev_age = -1;

  for (HeapRegion* curr = head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    SurvRateGroup* group = curr->surv_rate_group();
    if (group == NULL && !curr->is_survivor()) {
      gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
      ret = false;
    }

    if (surv_rate_group == group) {
      int age = curr->age_in_surv_rate_group();

      if (age < 0) {
        gclog_or_tty->print_cr("## %s: encountered negative age", name);
        ret = false;
      }

      if (age <= prev_age) {
        gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
                               "(%d, %d)", name, age, prev_age);
        ret = false;
      }
      prev_age = age;
    }
  }

  return ret;
}
#endif // PRODUCT

void G1CollectorPolicy::record_full_collection_start() {
798
  _full_collection_start_sec = os::elapsedTime();
799
  record_heap_size_info_at_start(true /* full */);
800 801 802 803 804 805 806 807
  // Release the future to-space so that it is available for compaction into.
  _g1->set_full_collection();
}

void G1CollectorPolicy::record_full_collection_end() {
  // Consider this like a collection pause for the purposes of allocation
  // since last pause.
  double end_sec = os::elapsedTime();
808
  double full_gc_time_sec = end_sec - _full_collection_start_sec;
809 810
  double full_gc_time_ms = full_gc_time_sec * 1000.0;

811
  _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
812

813
  update_recent_gc_times(end_sec, full_gc_time_ms);
814 815 816

  _g1->clear_full_collection();

817 818 819 820
  // "Nuke" the heuristics that control the young/mixed GC
  // transitions and make sure we start with young GCs after the Full GC.
  set_gcs_are_young(true);
  _last_young_gc = false;
821 822
  clear_initiate_conc_mark_if_possible();
  clear_during_initial_mark_pause();
823 824 825 826 827 828
  _in_marking_window = false;
  _in_marking_window_im = false;

  _short_lived_surv_rate_group->start_adding_regions();
  // also call this on any additional surv rate groups

829 830
  record_survivor_regions(0, NULL, NULL);

831
  _free_regions_at_end_of_collection = _g1->num_free_regions();
832 833
  // Reset survivors SurvRateGroup.
  _survivor_surv_rate_group->reset();
834
  update_young_list_target_length();
835
  _collectionSetChooser->clear();
836
}
837 838 839 840 841

void G1CollectorPolicy::record_stop_world_start() {
  _stop_world_start = os::elapsedTime();
}

842
void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
843 844 845 846
  // We only need to do this here as the policy will only be applied
  // to the GC we're about to start. so, no point is calculating this
  // every time we calculate / recalculate the target young length.
  update_survivors_policy();
847

848 849 850
  assert(_g1->used() == _g1->recalculate_used(),
         err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
                 _g1->used(), _g1->recalculate_used()));
851 852

  double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
853
  _trace_gen0_time_data.record_start_collection(s_w_t_ms);
854 855
  _stop_world_start = 0.0;

856
  record_heap_size_info_at_start(false /* full */);
857

858
  phase_times()->record_cur_collection_start_sec(start_time_sec);
859 860
  _pending_cards = _g1->pending_card_num();

861
  _collection_set_bytes_used_before = 0;
862
  _bytes_copied_during_gc = 0;
863

864
  _last_gc_was_young = false;
865 866 867

  // do that for any other surv rate groups
  _short_lived_surv_rate_group->stop_adding_regions();
868
  _survivors_age_table.clear();
869

870 871 872
  assert( verify_young_ages(), "region age verification" );
}

873
void G1CollectorPolicy::record_concurrent_mark_init_end(double
874 875
                                                   mark_init_elapsed_time_ms) {
  _during_marking = true;
876 877
  assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
  clear_during_initial_mark_pause();
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
  _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_remark_start() {
  _mark_remark_start_sec = os::elapsedTime();
  _during_marking = false;
}

void G1CollectorPolicy::record_concurrent_mark_remark_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
  _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  _mark_cleanup_start_sec = os::elapsedTime();
}

900
void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
901
  _last_young_gc = true;
902
  _in_marking_window = false;
903 904 905 906 907
}

void G1CollectorPolicy::record_concurrent_pause() {
  if (_stop_world_start > 0.0) {
    double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
908
    _trace_gen0_time_data.record_yield_time(yield_ms);
909 910 911
  }
}

912 913
bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
  if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
914 915 916 917 918 919
    return false;
  }

  size_t marking_initiating_used_threshold =
    (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  size_t cur_used_bytes = _g1->non_young_capacity_bytes();
920
  size_t alloc_byte_size = alloc_word_size * HeapWordSize;
921

922
  if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
923
    if (gcs_are_young() && !_last_young_gc) {
924
      ergo_verbose5(ErgoConcCycles,
925 926 927
        "request concurrent cycle initiation",
        ergo_format_reason("occupancy higher than threshold")
        ergo_format_byte("occupancy")
928
        ergo_format_byte("allocation request")
929 930 931
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
932
        alloc_byte_size,
933 934 935 936 937
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
      return true;
    } else {
938
      ergo_verbose5(ErgoConcCycles,
939 940 941
        "do not request concurrent cycle initiation",
        ergo_format_reason("still doing mixed collections")
        ergo_format_byte("occupancy")
942
        ergo_format_byte("allocation request")
943 944 945
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
946
        alloc_byte_size,
947 948 949 950 951 952 953 954 955
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
    }
  }

  return false;
}

956 957 958
// Anything below that is considered to be zero
#define MIN_TIMER_GRANULARITY 0.0000001

S
sla 已提交
959
void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
960
  double end_time_sec = os::elapsedTime();
961 962
  assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
         "otherwise, the subtraction below does not make sense");
963
  size_t rs_size =
964
            _cur_collection_pause_used_regions_at_start - cset_region_length();
965 966 967
  size_t cur_used_bytes = _g1->used();
  assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  bool last_pause_included_initial_mark = false;
968
  bool update_stats = !_g1->evacuation_failed();
969 970 971

#ifndef PRODUCT
  if (G1YoungSurvRateVerbose) {
972
    gclog_or_tty->cr();
973 974 975 976 977
    _short_lived_surv_rate_group->print();
    // do that for any other surv rate groups too
  }
#endif // PRODUCT

978
  last_pause_included_initial_mark = during_initial_mark_pause();
979
  if (last_pause_included_initial_mark) {
980
    record_concurrent_mark_init_end(0.0);
981
  } else if (need_to_start_conc_mark("end of GC")) {
982 983 984 985 986
    // Note: this might have already been set, if during the last
    // pause we decided to start a cycle but at the beginning of
    // this pause we decided to postpone it. That's OK.
    set_initiate_conc_mark_if_possible();
  }
987

988
  _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
989 990
                          end_time_sec, false);

S
sla 已提交
991 992 993
  evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
  evacuation_info.set_bytes_copied(_bytes_copied_during_gc);

994
  if (update_stats) {
995
    _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
996 997
    // this is where we update the allocation rate of the application
    double app_time_ms =
998
      (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
999 1000 1001 1002 1003 1004
    if (app_time_ms < MIN_TIMER_GRANULARITY) {
      // This usually happens due to the timer not having the required
      // granularity. Some Linuxes are the usual culprits.
      // We'll just set it to something (arbitrarily) small.
      app_time_ms = 1.0;
    }
1005 1006 1007 1008 1009 1010 1011 1012
    // We maintain the invariant that all objects allocated by mutator
    // threads will be allocated out of eden regions. So, we can use
    // the eden region number allocated since the previous GC to
    // calculate the application's allocate rate. The only exception
    // to that is humongous objects that are allocated separately. But
    // given that humongous object allocations do not really affect
    // either the pause's duration nor when the next pause will take
    // place we can safely ignore them here.
1013
    uint regions_allocated = eden_cset_region_length();
1014 1015 1016 1017 1018
    double alloc_rate_ms = (double) regions_allocated / app_time_ms;
    _alloc_rate_ms_seq->add(alloc_rate_ms);

    double interval_ms =
      (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1019
    update_recent_gc_times(end_time_sec, pause_time_ms);
1020
    _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    if (recent_avg_pause_time_ratio() < 0.0 ||
        (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
#ifndef PRODUCT
      // Dump info to allow post-facto debugging
      gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
      gclog_or_tty->print_cr("-------------------------------------------");
      gclog_or_tty->print_cr("Recent GC Times (ms):");
      _recent_gc_times_ms->dump();
      gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
      _recent_prev_end_times_for_all_gcs_sec->dump();
      gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
                             _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1033 1034 1035 1036 1037
      // In debug mode, terminate the JVM if the user wants to debug at this point.
      assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
#endif  // !PRODUCT
      // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
      // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1038 1039 1040 1041 1042 1043 1044
      if (_recent_avg_pause_time_ratio < 0.0) {
        _recent_avg_pause_time_ratio = 0.0;
      } else {
        assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
        _recent_avg_pause_time_ratio = 1.0;
      }
    }
1045
  }
1046

1047 1048
  bool new_in_marking_window = _in_marking_window;
  bool new_in_marking_window_im = false;
1049
  if (last_pause_included_initial_mark) {
1050 1051 1052 1053
    new_in_marking_window = true;
    new_in_marking_window_im = true;
  }

1054
  if (_last_young_gc) {
1055 1056 1057
    // This is supposed to to be the "last young GC" before we start
    // doing mixed GCs. Here we decide whether to start mixed GCs or not.

1058
    if (!last_pause_included_initial_mark) {
1059 1060 1061 1062
      if (next_gc_should_be_mixed("start mixed GCs",
                                  "do not start mixed GCs")) {
        set_gcs_are_young(false);
      }
1063
    } else {
1064 1065
      ergo_verbose0(ErgoMixedGCs,
                    "do not start mixed GCs",
1066 1067
                    ergo_format_reason("concurrent cycle is about to start"));
    }
1068
    _last_young_gc = false;
1069
  }
1070

1071
  if (!_last_gc_was_young) {
1072 1073 1074 1075 1076
    // This is a mixed GC. Here we decide whether to continue doing
    // mixed GCs or not.

    if (!next_gc_should_be_mixed("continue mixed GCs",
                                 "do not continue mixed GCs")) {
1077
      set_gcs_are_young(true);
1078
    }
1079
  }
1080 1081 1082 1083

  _short_lived_surv_rate_group->start_adding_regions();
  // do that for any other surv rate groupsx

1084
  if (update_stats) {
1085 1086
    double cost_per_card_ms = 0.0;
    if (_pending_cards > 0) {
1087
      cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1088 1089 1090 1091 1092 1093 1094
      _cost_per_card_ms_seq->add(cost_per_card_ms);
    }

    size_t cards_scanned = _g1->cards_scanned();

    double cost_per_entry_ms = 0.0;
    if (cards_scanned > 10) {
1095
      cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1096
      if (_last_gc_was_young) {
1097
        _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1098 1099 1100
      } else {
        _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
      }
1101 1102 1103 1104 1105
    }

    if (_max_rs_lengths > 0) {
      double cards_per_entry_ratio =
        (double) cards_scanned / (double) _max_rs_lengths;
1106 1107 1108 1109 1110
      if (_last_gc_was_young) {
        _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      } else {
        _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      }
1111 1112
    }

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    // This is defensive. For a while _max_rs_lengths could get
    // smaller than _recorded_rs_lengths which was causing
    // rs_length_diff to get very large and mess up the RSet length
    // predictions. The reason was unsafe concurrent updates to the
    // _inc_cset_recorded_rs_lengths field which the code below guards
    // against (see CR 7118202). This bug has now been fixed (see CR
    // 7119027). However, I'm still worried that
    // _inc_cset_recorded_rs_lengths might still end up somewhat
    // inaccurate. The concurrent refinement thread calculates an
    // RSet's length concurrently with other CR threads updating it
    // which might cause it to calculate the length incorrectly (if,
    // say, it's in mid-coarsening). So I'll leave in the defensive
    // conditional below just in case.
1126 1127 1128 1129 1130
    size_t rs_length_diff = 0;
    if (_max_rs_lengths > _recorded_rs_lengths) {
      rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
    }
    _rs_length_diff_seq->add((double) rs_length_diff);
1131

1132 1133
    size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
    size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1134
    double cost_per_byte_ms = 0.0;
1135

1136
    if (copied_bytes > 0) {
1137
      cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1138
      if (_in_marking_window) {
1139
        _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1140
      } else {
1141
        _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1142
      }
1143 1144 1145
    }

    double all_other_time_ms = pause_time_ms -
1146 1147
      (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
      + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1148 1149

    double young_other_time_ms = 0.0;
1150
    if (young_cset_region_length() > 0) {
1151
      young_other_time_ms =
1152 1153
        phase_times()->young_cset_choice_time_ms() +
        phase_times()->young_free_cset_time_ms();
1154
      _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1155
                                          (double) young_cset_region_length());
1156 1157
    }
    double non_young_other_time_ms = 0.0;
1158
    if (old_cset_region_length() > 0) {
1159
      non_young_other_time_ms =
1160 1161
        phase_times()->non_young_cset_choice_time_ms() +
        phase_times()->non_young_free_cset_time_ms();
1162 1163

      _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1164
                                            (double) old_cset_region_length());
1165 1166 1167 1168 1169 1170 1171
    }

    double constant_other_time_ms = all_other_time_ms -
      (young_other_time_ms + non_young_other_time_ms);
    _constant_other_time_ms_seq->add(constant_other_time_ms);

    double survival_ratio = 0.0;
1172
    if (_collection_set_bytes_used_before > 0) {
1173
      survival_ratio = (double) _bytes_copied_during_gc /
1174
                                   (double) _collection_set_bytes_used_before;
1175 1176 1177 1178 1179 1180 1181 1182
    }

    _pending_cards_seq->add((double) _pending_cards);
    _rs_lengths_seq->add((double) _max_rs_lengths);
  }

  _in_marking_window = new_in_marking_window;
  _in_marking_window_im = new_in_marking_window_im;
1183
  _free_regions_at_end_of_collection = _g1->num_free_regions();
1184
  update_young_list_target_length();
1185

1186
  // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1187
  double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1188 1189
  adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
                               phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1190

1191
  _collectionSetChooser->verify();
1192 1193
}

1194
#define EXT_SIZE_FORMAT "%.1f%s"
1195
#define EXT_SIZE_PARAMS(bytes)                                  \
1196
  byte_size_in_proper_unit((double)(bytes)),                    \
1197 1198
  proper_unit_for_byte_size((bytes))

1199
void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1200
  YoungList* young_list = _g1->young_list();
1201 1202 1203 1204
  _eden_used_bytes_before_gc = young_list->eden_used_bytes();
  _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
  _heap_capacity_bytes_before_gc = _g1->capacity();
  _heap_used_bytes_before_gc = _g1->used();
1205
  _cur_collection_pause_used_regions_at_start = _g1->num_used_regions();
1206

1207 1208
  _eden_capacity_bytes_before_gc =
         (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1209

1210
  if (full) {
1211
    _metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();
1212
  }
1213 1214
}

1215
void G1CollectorPolicy::print_heap_transition() {
1216
  _g1->print_size_transition(gclog_or_tty,
1217 1218 1219
                             _heap_used_bytes_before_gc,
                             _g1->used(),
                             _g1->capacity());
1220 1221
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
  YoungList* young_list = _g1->young_list();

  size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
  size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
  size_t heap_used_bytes_after_gc = _g1->used();

  size_t heap_capacity_bytes_after_gc = _g1->capacity();
  size_t eden_capacity_bytes_after_gc =
    (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;

  gclog_or_tty->print(
    "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
    "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
    "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
    EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
    EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
    EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
    EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
    EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
    EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
    EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
    EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
    EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
    EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
    EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));

  if (full) {
    MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
  }

  gclog_or_tty->cr();
1254 1255
}

1256 1257 1258 1259 1260 1261
void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
                                                     double update_rs_processed_buffers,
                                                     double goal_ms) {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();

1262
  if (G1UseAdaptiveConcRefinement) {
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    const int k_gy = 3, k_gr = 6;
    const double inc_k = 1.1, dec_k = 0.9;

    int g = cg1r->green_zone();
    if (update_rs_time > goal_ms) {
      g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
    } else {
      if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
        g = (int)MAX2(g * inc_k, g + 1.0);
      }
    }
    // Change the refinement threads params
    cg1r->set_green_zone(g);
    cg1r->set_yellow_zone(g * k_gy);
    cg1r->set_red_zone(g * k_gr);
    cg1r->reinitialize_threads();

    int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
    int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
                                    cg1r->yellow_zone());
    // Change the barrier params
    dcqs.set_process_completed_threshold(processing_threshold);
    dcqs.set_max_completed_queue(cg1r->red_zone());
  }

  int curr_queue_size = dcqs.completed_buffers_num();
  if (curr_queue_size >= cg1r->yellow_zone()) {
    dcqs.set_completed_queue_padding(curr_queue_size);
  } else {
    dcqs.set_completed_queue_padding(0);
  }
  dcqs.notify_if_necessary();
}

1297 1298 1299 1300 1301 1302 1303 1304 1305
double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
                                                size_t scanned_cards) {
  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(scanned_cards) +
    predict_constant_other_time_ms();
}

1306 1307 1308 1309
double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  size_t rs_length = predict_rs_length_diff();
  size_t card_num;
1310
  if (gcs_are_young()) {
1311
    card_num = predict_young_card_num(rs_length);
1312
  } else {
1313
    card_num = predict_non_young_card_num(rs_length);
1314
  }
1315 1316 1317
  return predict_base_elapsed_time_ms(pending_cards, card_num);
}

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  size_t bytes_to_copy;
  if (hr->is_marked())
    bytes_to_copy = hr->max_live_bytes();
  else {
    assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
    int age = hr->age_in_surv_rate_group();
    double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
    bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  }
  return bytes_to_copy;
1329 1330 1331 1332
}

double
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1333
                                                  bool for_young_gc) {
1334 1335
  size_t rs_length = hr->rem_set()->occupied();
  size_t card_num;
1336 1337 1338 1339

  // Predicting the number of cards is based on which type of GC
  // we're predicting for.
  if (for_young_gc) {
1340
    card_num = predict_young_card_num(rs_length);
1341
  } else {
1342
    card_num = predict_non_young_card_num(rs_length);
1343
  }
1344 1345 1346 1347 1348 1349
  size_t bytes_to_copy = predict_bytes_to_copy(hr);

  double region_elapsed_time_ms =
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy);

1350 1351 1352
  // The prediction of the "other" time for this region is based
  // upon the region type and NOT the GC type.
  if (hr->is_young()) {
1353
    region_elapsed_time_ms += predict_young_other_time_ms(1);
1354
  } else {
1355 1356
    region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  }
1357
  return region_elapsed_time_ms;
1358 1359 1360
}

void
1361 1362
G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
                                            uint survivor_cset_region_length) {
1363 1364 1365
  _eden_cset_region_length     = eden_cset_region_length;
  _survivor_cset_region_length = survivor_cset_region_length;
  _old_cset_region_length      = 0;
1366 1367 1368 1369 1370 1371
}

void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  _recorded_rs_lengths = rs_lengths;
}

1372 1373 1374 1375 1376 1377 1378 1379
void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
                                               double elapsed_ms) {
  _recent_gc_times_ms->add(elapsed_ms);
  _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  _prev_collection_pause_end_ms = end_time_sec * 1000.0;
}

size_t G1CollectorPolicy::expansion_amount() {
1380 1381 1382
  double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  double threshold = _gc_overhead_perc;
  if (recent_gc_overhead > threshold) {
J
johnc 已提交
1383 1384 1385 1386
    // We will double the existing space, or take
    // G1ExpandByPercentOfAvailable % of the available expansion
    // space, whichever is smaller, bounded below by a minimum
    // expansion (unless that's all that's left.)
1387
    const size_t min_expand_bytes = 1*M;
1388
    size_t reserved_bytes = _g1->max_capacity();
1389 1390 1391 1392
    size_t committed_bytes = _g1->capacity();
    size_t uncommitted_bytes = reserved_bytes - committed_bytes;
    size_t expand_bytes;
    size_t expand_bytes_via_pct =
J
johnc 已提交
1393
      uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1394 1395 1396
    expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
    expand_bytes = MAX2(expand_bytes, min_expand_bytes);
    expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

    ergo_verbose5(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("recent GC overhead higher than "
                                     "threshold after GC")
                  ergo_format_perc("recent GC overhead")
                  ergo_format_perc("threshold")
                  ergo_format_byte("uncommitted")
                  ergo_format_byte_perc("calculated expansion amount"),
                  recent_gc_overhead, threshold,
                  uncommitted_bytes,
                  expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);

1410 1411 1412 1413 1414 1415 1416
    return expand_bytes;
  } else {
    return 0;
  }
}

void G1CollectorPolicy::print_tracing_info() const {
1417 1418
  _trace_gen0_time_data.print();
  _trace_gen1_time_data.print();
1419 1420 1421 1422 1423 1424 1425 1426 1427
}

void G1CollectorPolicy::print_yg_surv_rate_info() const {
#ifndef PRODUCT
  _short_lived_surv_rate_group->print_surv_rate_summary();
  // add this call for any other surv rate groups
#endif // PRODUCT
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
bool G1CollectorPolicy::is_young_list_full() {
  uint young_list_length = _g1->young_list()->length();
  uint young_list_target_length = _young_list_target_length;
  return young_list_length >= young_list_target_length;
}

bool G1CollectorPolicy::can_expand_young_list() {
  uint young_list_length = _g1->young_list()->length();
  uint young_list_max_length = _young_list_max_length;
  return young_list_length < young_list_max_length;
}

1440
uint G1CollectorPolicy::max_regions(int purpose) {
1441 1442
  switch (purpose) {
    case GCAllocForSurvived:
1443
      return _max_survivor_regions;
1444
    case GCAllocForTenured:
1445
      return REGIONS_UNLIMITED;
1446
    default:
1447 1448
      ShouldNotReachHere();
      return REGIONS_UNLIMITED;
1449 1450 1451
  };
}

1452
void G1CollectorPolicy::update_max_gc_locker_expansion() {
1453
  uint expansion_region_num = 0;
1454 1455 1456 1457 1458
  if (GCLockerEdenExpansionPercent > 0) {
    double perc = (double) GCLockerEdenExpansionPercent / 100.0;
    double expansion_region_num_d = perc * (double) _young_list_target_length;
    // We use ceiling so that if expansion_region_num_d is > 0.0 (but
    // less than 1.0) we'll get 1.
1459
    expansion_region_num = (uint) ceil(expansion_region_num_d);
1460 1461 1462 1463 1464 1465 1466
  } else {
    assert(expansion_region_num == 0, "sanity");
  }
  _young_list_max_length = _young_list_target_length + expansion_region_num;
  assert(_young_list_target_length <= _young_list_max_length, "post-condition");
}

1467
// Calculates survivor space parameters.
1468 1469 1470 1471 1472
void G1CollectorPolicy::update_survivors_policy() {
  double max_survivor_regions_d =
                 (double) _young_list_target_length / (double) SurvivorRatio;
  // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
1473
  _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1474

1475
  _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1476 1477 1478
        HeapRegion::GrainWords * _max_survivor_regions);
}

1479 1480
bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
                                                     GCCause::Cause gc_cause) {
1481 1482
  bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  if (!during_cycle) {
1483 1484 1485 1486 1487
    ergo_verbose1(ErgoConcCycles,
                  "request concurrent cycle initiation",
                  ergo_format_reason("requested by GC cause")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1488 1489 1490
    set_initiate_conc_mark_if_possible();
    return true;
  } else {
1491 1492 1493 1494 1495
    ergo_verbose1(ErgoConcCycles,
                  "do not request concurrent cycle initiation",
                  ergo_format_reason("concurrent cycle already in progress")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1496 1497 1498 1499
    return false;
  }
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
void
G1CollectorPolicy::decide_on_conc_mark_initiation() {
  // We are about to decide on whether this pause will be an
  // initial-mark pause.

  // First, during_initial_mark_pause() should not be already set. We
  // will set it here if we have to. However, it should be cleared by
  // the end of the pause (it's only set for the duration of an
  // initial-mark pause).
  assert(!during_initial_mark_pause(), "pre-condition");

  if (initiate_conc_mark_if_possible()) {
    // We had noticed on a previous pause that the heap occupancy has
    // gone over the initiating threshold and we should start a
    // concurrent marking cycle. So we might initiate one.

    bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
    if (!during_cycle) {
      // The concurrent marking thread is not "during a cycle", i.e.,
      // it has completed the last one. So we can go ahead and
      // initiate a new cycle.

      set_during_initial_mark_pause();
1523 1524 1525 1526 1527
      // We do not allow mixed GCs during marking.
      if (!gcs_are_young()) {
        set_gcs_are_young(true);
        ergo_verbose0(ErgoMixedGCs,
                      "end mixed GCs",
1528 1529
                      ergo_format_reason("concurrent cycle is about to start"));
      }
1530 1531 1532 1533

      // And we can now clear initiate_conc_mark_if_possible() as
      // we've already acted on it.
      clear_initiate_conc_mark_if_possible();
1534 1535 1536 1537

      ergo_verbose0(ErgoConcCycles,
                  "initiate concurrent cycle",
                  ergo_format_reason("concurrent cycle initiation requested"));
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
    } else {
      // The concurrent marking thread is still finishing up the
      // previous cycle. If we start one right now the two cycles
      // overlap. In particular, the concurrent marking thread might
      // be in the process of clearing the next marking bitmap (which
      // we will use for the next cycle if we start one). Starting a
      // cycle now will be bad given that parts of the marking
      // information might get cleared by the marking thread. And we
      // cannot wait for the marking thread to finish the cycle as it
      // periodically yields while clearing the next marking bitmap
      // and, if it's in a yield point, it's waiting for us to
      // finish. So, at this point we will not start a cycle and we'll
      // let the concurrent marking thread complete the last one.
1551 1552 1553
      ergo_verbose0(ErgoConcCycles,
                    "do not initiate concurrent cycle",
                    ergo_format_reason("concurrent cycle already in progress"));
1554 1555 1556 1557
    }
  }
}

1558
class KnownGarbageClosure: public HeapRegionClosure {
1559
  G1CollectedHeap* _g1h;
1560 1561 1562 1563
  CollectionSetChooser* _hrSorted;

public:
  KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1564
    _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1565 1566 1567 1568 1569 1570 1571 1572

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.

    // Do we have any marking information for this region?
    if (r->is_marked()) {
1573 1574 1575
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1576 1577
      if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _hrSorted->add_region(r);
1578 1579 1580 1581 1582 1583 1584
      }
    }
    return false;
  }
};

class ParKnownGarbageHRClosure: public HeapRegionClosure {
1585
  G1CollectedHeap* _g1h;
1586
  CSetChooserParUpdater _cset_updater;
1587 1588 1589

public:
  ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1590
                           uint chunk_size) :
1591 1592
    _g1h(G1CollectedHeap::heap()),
    _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1593 1594 1595 1596

  bool doHeapRegion(HeapRegion* r) {
    // Do we have any marking information for this region?
    if (r->is_marked()) {
1597 1598 1599
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1600 1601
      if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _cset_updater.add_region(r);
1602 1603 1604 1605 1606 1607 1608 1609
      }
    }
    return false;
  }
};

class ParKnownGarbageTask: public AbstractGangTask {
  CollectionSetChooser* _hrSorted;
1610
  uint _chunk_size;
1611 1612
  G1CollectedHeap* _g1;
public:
1613
  ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1614 1615
    AbstractGangTask("ParKnownGarbageTask"),
    _hrSorted(hrSorted), _chunk_size(chunk_size),
1616
    _g1(G1CollectedHeap::heap()) { }
1617

1618
  void work(uint worker_id) {
1619 1620
    ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);

1621
    // Back to zero for the claim value.
1622
    _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1623
                                         _g1->workers()->active_workers(),
1624
                                         HeapRegion::InitialClaimValue);
1625 1626 1627 1628
  }
};

void
1629
G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1630
  _collectionSetChooser->clear();
1631

1632
  uint region_num = _g1->num_regions();
1633
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1634 1635
    const uint OverpartitionFactor = 4;
    uint WorkUnit;
1636 1637 1638 1639 1640
    // The use of MinChunkSize = 8 in the original code
    // causes some assertion failures when the total number of
    // region is less than 8.  The code here tries to fix that.
    // Should the original code also be fixed?
    if (no_of_gc_threads > 0) {
1641 1642 1643
      const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
      WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
                      MinWorkUnit);
1644 1645 1646 1647
    } else {
      assert(no_of_gc_threads > 0,
        "The active gc workers should be greater than 0");
      // In a product build do something reasonable to avoid a crash.
1648
      const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1649
      WorkUnit =
1650
        MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1651 1652
             MinWorkUnit);
    }
1653
    _collectionSetChooser->prepare_for_par_region_addition(_g1->num_regions(),
1654
                                                           WorkUnit);
1655
    ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1656
                                            (int) WorkUnit);
1657
    _g1->workers()->run_task(&parKnownGarbageTask);
1658 1659 1660

    assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
1661 1662 1663 1664
  } else {
    KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
    _g1->heap_region_iterate(&knownGarbagecl);
  }
1665

1666
  _collectionSetChooser->sort_regions();
1667

1668
  double end_sec = os::elapsedTime();
1669 1670 1671 1672 1673
  double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;
  _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1674 1675
}

1676
// Add the heap region at the head of the non-incremental collection set
1677
void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1678
  assert(_inc_cset_build_state == Active, "Precondition");
1679
  assert(hr->is_old(), "the region should be old");
1680 1681

  assert(!hr->in_collection_set(), "should not already be in the CSet");
1682 1683 1684 1685
  hr->set_in_collection_set(true);
  hr->set_next_in_collection_set(_collection_set);
  _collection_set = hr;
  _collection_set_bytes_used_before += hr->used();
1686
  _g1->register_region_with_in_cset_fast_test(hr);
1687 1688 1689
  size_t rs_length = hr->rem_set()->occupied();
  _recorded_rs_lengths += rs_length;
  _old_cset_region_length += 1;
1690 1691
}

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
// Initialize the per-collection-set information
void G1CollectorPolicy::start_incremental_cset_building() {
  assert(_inc_cset_build_state == Inactive, "Precondition");

  _inc_cset_head = NULL;
  _inc_cset_tail = NULL;
  _inc_cset_bytes_used_before = 0;

  _inc_cset_max_finger = 0;
  _inc_cset_recorded_rs_lengths = 0;
1702 1703 1704
  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms = 0.0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1705 1706 1707
  _inc_cset_build_state = Active;
}

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
void G1CollectorPolicy::finalize_incremental_cset_building() {
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");

  // The two "main" fields, _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  // that adds a new region to the CSet. Further updates by the
  // concurrent refinement thread that samples the young RSet lengths
  // are accumulated in the *_diffs fields. Here we add the diffs to
  // the "main" fields.

  if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
    _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  } else {
    // This is defensive. The diff should in theory be always positive
    // as RSets can only grow between GCs. However, given that we
    // sample their size concurrently with other threads updating them
    // it's possible that we might get the wrong size back, which
    // could make the calculations somewhat inaccurate.
    size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
    if (_inc_cset_recorded_rs_lengths >= diffs) {
      _inc_cset_recorded_rs_lengths -= diffs;
    } else {
      _inc_cset_recorded_rs_lengths = 0;
    }
  }
  _inc_cset_predicted_elapsed_time_ms +=
                                     _inc_cset_predicted_elapsed_time_ms_diffs;

  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  // This routine is used when:
  // * adding survivor regions to the incremental cset at the end of an
  //   evacuation pause,
  // * adding the current allocation region to the incremental cset
  //   when it is retired, and
  // * updating existing policy information for a region in the
  //   incremental cset via young list RSet sampling.
  // Therefore this routine may be called at a safepoint by the
  // VM thread, or in-between safepoints by mutator threads (when
  // retiring the current allocation region) or a concurrent
  // refine thread (RSet sampling).

1754
  double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
  size_t used_bytes = hr->used();
  _inc_cset_recorded_rs_lengths += rs_length;
  _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  _inc_cset_bytes_used_before += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_recorded_rs_length(rs_length);
  hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
}

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
                                                     size_t new_rs_length) {
  // Update the CSet information that is dependent on the new RS length
  assert(hr->is_young(), "Precondition");
  assert(!SafepointSynchronize::is_at_safepoint(),
                                               "should not be at a safepoint");

  // We could have updated _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  // that atomically, as this code is executed by a concurrent
  // refinement thread, potentially concurrently with a mutator thread
  // allocating a new region and also updating the same fields. To
  // avoid the atomic operations we accumulate these updates on two
  // separate fields (*_diffs) and we'll just add them to the "main"
  // fields at the start of a GC.

  ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1787 1788

  double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1789
  double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1790 1791
  double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1792

1793 1794
  hr->set_recorded_rs_length(new_rs_length);
  hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1795 1796 1797
}

void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1798 1799
  assert(hr->is_young(), "invariant");
  assert(hr->young_index_in_cset() > -1, "should have already been set");
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
  assert(_inc_cset_build_state == Active, "Precondition");

  // We need to clear and set the cached recorded/cached collection set
  // information in the heap region here (before the region gets added
  // to the collection set). An individual heap region's cached values
  // are calculated, aggregated with the policy collection set info,
  // and cached in the heap region here (initially) and (subsequently)
  // by the Young List sampling code.

  size_t rs_length = hr->rem_set()->occupied();
  add_to_incremental_cset_info(hr, rs_length);

  HeapWord* hr_end = hr->end();
  _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);

  assert(!hr->in_collection_set(), "invariant");
  hr->set_in_collection_set(true);
  assert( hr->next_in_collection_set() == NULL, "invariant");

  _g1->register_region_with_in_cset_fast_test(hr);
}

// Add the region at the RHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  // We should only ever be appending survivors at the end of a pause
1825
  assert(hr->is_survivor(), "Logic");
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Now add the region at the right hand side
  if (_inc_cset_tail == NULL) {
    assert(_inc_cset_head == NULL, "invariant");
    _inc_cset_head = hr;
  } else {
    _inc_cset_tail->set_next_in_collection_set(hr);
  }
  _inc_cset_tail = hr;
}

// Add the region to the LHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  // Survivors should be added to the RHS at the end of a pause
1843
  assert(hr->is_eden(), "Logic");
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Add the region at the left hand side
  hr->set_next_in_collection_set(_inc_cset_head);
  if (_inc_cset_head == NULL) {
    assert(_inc_cset_tail == NULL, "Invariant");
    _inc_cset_tail = hr;
  }
  _inc_cset_head = hr;
}

#ifndef PRODUCT
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");

  st->print_cr("\nCollection_set:");
  HeapRegion* csr = list_head;
  while (csr != NULL) {
    HeapRegion* next = csr->next_in_collection_set();
    assert(csr->in_collection_set(), "bad CS");
1866 1867 1868 1869
    st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                 HR_FORMAT_PARAMS(csr),
                 csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
                 csr->age_in_surv_rate_group_cond());
1870 1871 1872 1873 1874
    csr = next;
  }
}
#endif // !PRODUCT

1875 1876 1877 1878 1879 1880 1881 1882
double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
  // Returns the given amount of reclaimable bytes (that represents
  // the amount of reclaimable space still to be collected) as a
  // percentage of the current heap capacity.
  size_t capacity_bytes = _g1->capacity();
  return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
}

1883 1884 1885
bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
                                                const char* false_action_str) {
  CollectionSetChooser* cset_chooser = _collectionSetChooser;
1886
  if (cset_chooser->is_empty()) {
1887 1888 1889 1890 1891
    ergo_verbose0(ErgoMixedGCs,
                  false_action_str,
                  ergo_format_reason("candidate old regions not available"));
    return false;
  }
1892 1893

  // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1894
  size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1895
  double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1896
  double threshold = (double) G1HeapWastePercent;
1897
  if (reclaimable_perc <= threshold) {
1898 1899
    ergo_verbose4(ErgoMixedGCs,
              false_action_str,
1900
              ergo_format_reason("reclaimable percentage not over threshold")
1901 1902 1903
              ergo_format_region("candidate old regions")
              ergo_format_byte_perc("reclaimable")
              ergo_format_perc("threshold"),
1904
              cset_chooser->remaining_regions(),
1905 1906
              reclaimable_bytes,
              reclaimable_perc, threshold);
1907 1908 1909 1910 1911 1912 1913 1914 1915
    return false;
  }

  ergo_verbose4(ErgoMixedGCs,
                true_action_str,
                ergo_format_reason("candidate old regions available")
                ergo_format_region("candidate old regions")
                ergo_format_byte_perc("reclaimable")
                ergo_format_perc("threshold"),
1916
                cset_chooser->remaining_regions(),
1917 1918
                reclaimable_bytes,
                reclaimable_perc, threshold);
1919 1920 1921
  return true;
}

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
uint G1CollectorPolicy::calc_min_old_cset_length() {
  // The min old CSet region bound is based on the maximum desired
  // number of mixed GCs after a cycle. I.e., even if some old regions
  // look expensive, we should add them to the CSet anyway to make
  // sure we go through the available old regions in no more than the
  // maximum desired number of mixed GCs.
  //
  // The calculation is based on the number of marked regions we added
  // to the CSet chooser in the first place, not how many remain, so
  // that the result is the same during all mixed GCs that follow a cycle.

  const size_t region_num = (size_t) _collectionSetChooser->length();
  const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
  size_t result = region_num / gc_num;
  // emulate ceiling
  if (result * gc_num < region_num) {
    result += 1;
  }
  return (uint) result;
}

uint G1CollectorPolicy::calc_max_old_cset_length() {
  // The max old CSet region bound is based on the threshold expressed
  // as a percentage of the heap size. I.e., it should bound the
  // number of old regions added to the CSet irrespective of how many
  // of them are available.

  G1CollectedHeap* g1h = G1CollectedHeap::heap();
1950
  const size_t region_num = g1h->num_regions();
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
  const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
  size_t result = region_num * perc / 100;
  // emulate ceiling
  if (100 * result < region_num * perc) {
    result += 1;
  }
  return (uint) result;
}


S
sla 已提交
1961
void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1962
  double young_start_time_sec = os::elapsedTime();
1963

1964
  YoungList* young_list = _g1->young_list();
1965
  finalize_incremental_cset_building();
1966

1967 1968 1969 1970
  guarantee(target_pause_time_ms > 0.0,
            err_msg("target_pause_time_ms = %1.6lf should be positive",
                    target_pause_time_ms));
  guarantee(_collection_set == NULL, "Precondition");
1971 1972 1973

  double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  double predicted_pause_time_ms = base_time_ms;
1974
  double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1975

1976
  ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1977
                "start choosing CSet",
1978
                ergo_format_size("_pending_cards")
1979 1980 1981
                ergo_format_ms("predicted base time")
                ergo_format_ms("remaining time")
                ergo_format_ms("target pause time"),
1982
                _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1983

1984
  _last_gc_was_young = gcs_are_young() ? true : false;
1985

1986
  if (_last_gc_was_young) {
1987
    _trace_gen0_time_data.increment_young_collection_count();
1988
  } else {
1989
    _trace_gen0_time_data.increment_mixed_collection_count();
1990
  }
1991

1992 1993 1994
  // The young list is laid with the survivor regions from the previous
  // pause are appended to the RHS of the young list, i.e.
  //   [Newly Young Regions ++ Survivors from last pause].
1995

1996 1997
  uint survivor_region_length = young_list->survivor_length();
  uint eden_region_length = young_list->length() - survivor_region_length;
1998
  init_cset_region_lengths(eden_region_length, survivor_region_length);
1999 2000

  HeapRegion* hr = young_list->first_survivor_region();
2001 2002
  while (hr != NULL) {
    assert(hr->is_survivor(), "badly formed young list");
2003 2004 2005 2006 2007
    // There is a convention that all the young regions in the CSet
    // are tagged as "eden", so we do this for the survivors here. We
    // use the special set_eden_pre_gc() as it doesn't check that the
    // region is free (which is not the case here).
    hr->set_eden_pre_gc();
2008 2009
    hr = hr->get_next_young_region();
  }
2010

2011 2012
  // Clear the fields that point to the survivor list - they are all young now.
  young_list->clear_survivors();
2013

2014 2015
  _collection_set = _inc_cset_head;
  _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2016
  time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
2017
  predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
2018

2019 2020 2021 2022 2023
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "add young regions to CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_ms("predicted young region time"),
2024
                eden_region_length, survivor_region_length,
2025 2026
                _inc_cset_predicted_elapsed_time_ms);

2027 2028 2029
  // The number of recorded young regions is the incremental
  // collection set's current size
  set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2030

2031
  double young_end_time_sec = os::elapsedTime();
2032
  phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
2033

2034 2035
  // Set the start of the non-young choice time.
  double non_young_start_time_sec = young_end_time_sec;
2036

2037
  if (!gcs_are_young()) {
2038
    CollectionSetChooser* cset_chooser = _collectionSetChooser;
2039
    cset_chooser->verify();
2040 2041
    const uint min_old_cset_length = calc_min_old_cset_length();
    const uint max_old_cset_length = calc_max_old_cset_length();
2042

2043
    uint expensive_region_num = 0;
2044
    bool check_time_remaining = adaptive_young_list_length();
2045

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
    HeapRegion* hr = cset_chooser->peek();
    while (hr != NULL) {
      if (old_cset_region_length() >= max_old_cset_length) {
        // Added maximum number of old regions to the CSet.
        ergo_verbose2(ErgoCSetConstruction,
                      "finish adding old regions to CSet",
                      ergo_format_reason("old CSet region num reached max")
                      ergo_format_region("old")
                      ergo_format_region("max"),
                      old_cset_region_length(), max_old_cset_length);
        break;
2057
      }
2058

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

      // Stop adding regions if the remaining reclaimable space is
      // not above G1HeapWastePercent.
      size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
      double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
      double threshold = (double) G1HeapWastePercent;
      if (reclaimable_perc <= threshold) {
        // We've added enough old regions that the amount of uncollected
        // reclaimable space is at or below the waste threshold. Stop
        // adding old regions to the CSet.
        ergo_verbose5(ErgoCSetConstruction,
                      "finish adding old regions to CSet",
                      ergo_format_reason("reclaimable percentage not over threshold")
                      ergo_format_region("old")
                      ergo_format_region("max")
                      ergo_format_byte_perc("reclaimable")
                      ergo_format_perc("threshold"),
                      old_cset_region_length(),
                      max_old_cset_length,
                      reclaimable_bytes,
                      reclaimable_perc, threshold);
        break;
      }

2083
      double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
      if (check_time_remaining) {
        if (predicted_time_ms > time_remaining_ms) {
          // Too expensive for the current CSet.

          if (old_cset_region_length() >= min_old_cset_length) {
            // We have added the minimum number of old regions to the CSet,
            // we are done with this CSet.
            ergo_verbose4(ErgoCSetConstruction,
                          "finish adding old regions to CSet",
                          ergo_format_reason("predicted time is too high")
                          ergo_format_ms("predicted time")
                          ergo_format_ms("remaining time")
                          ergo_format_region("old")
                          ergo_format_region("min"),
                          predicted_time_ms, time_remaining_ms,
                          old_cset_region_length(), min_old_cset_length);
            break;
2101
          }
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117

          // We'll add it anyway given that we haven't reached the
          // minimum number of old regions.
          expensive_region_num += 1;
        }
      } else {
        if (old_cset_region_length() >= min_old_cset_length) {
          // In the non-auto-tuning case, we'll finish adding regions
          // to the CSet if we reach the minimum.
          ergo_verbose2(ErgoCSetConstruction,
                        "finish adding old regions to CSet",
                        ergo_format_reason("old CSet region num reached min")
                        ergo_format_region("old")
                        ergo_format_region("min"),
                        old_cset_region_length(), min_old_cset_length);
          break;
2118 2119
        }
      }
2120 2121

      // We will add this region to the CSet.
2122
      time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
      predicted_pause_time_ms += predicted_time_ms;
      cset_chooser->remove_and_move_to_next(hr);
      _g1->old_set_remove(hr);
      add_old_region_to_cset(hr);

      hr = cset_chooser->peek();
    }
    if (hr == NULL) {
      ergo_verbose0(ErgoCSetConstruction,
                    "finish adding old regions to CSet",
                    ergo_format_reason("candidate old regions not available"));
    }

    if (expensive_region_num > 0) {
      // We print the information once here at the end, predicated on
      // whether we added any apparently expensive regions or not, to
      // avoid generating output per region.
      ergo_verbose4(ErgoCSetConstruction,
                    "added expensive regions to CSet",
                    ergo_format_reason("old CSet region num not reached min")
                    ergo_format_region("old")
                    ergo_format_region("expensive")
                    ergo_format_region("min")
                    ergo_format_ms("remaining time"),
                    old_cset_region_length(),
                    expensive_region_num,
                    min_old_cset_length,
                    time_remaining_ms);
2151 2152
    }

2153
    cset_chooser->verify();
2154 2155
  }

2156 2157
  stop_incremental_cset_building();

2158 2159 2160 2161 2162 2163 2164
  ergo_verbose5(ErgoCSetConstruction,
                "finish choosing CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_region("old")
                ergo_format_ms("predicted pause time")
                ergo_format_ms("target pause time"),
2165 2166
                eden_region_length, survivor_region_length,
                old_cset_region_length(),
2167 2168
                predicted_pause_time_ms, target_pause_time_ms);

2169
  double non_young_end_time_sec = os::elapsedTime();
2170
  phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
S
sla 已提交
2171
  evacuation_info.set_collectionset_regions(cset_region_length());
2172
}
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185

void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  if(TraceGen0Time) {
    _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  }
}

void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  if(TraceGen0Time) {
    _all_yield_times_ms.add(yield_time_ms);
  }
}

2186
void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2187
  if(TraceGen0Time) {
2188 2189
    _total.add(pause_time_ms);
    _other.add(pause_time_ms - phase_times->accounted_time_ms());
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
    _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
    _parallel.add(phase_times->cur_collection_par_time_ms());
    _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
    _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
    _update_rs.add(phase_times->average_last_update_rs_time());
    _scan_rs.add(phase_times->average_last_scan_rs_time());
    _obj_copy.add(phase_times->average_last_obj_copy_time());
    _termination.add(phase_times->average_last_termination_time());

    double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
      phase_times->average_last_satb_filtering_times_ms() +
      phase_times->average_last_update_rs_time() +
      phase_times->average_last_scan_rs_time() +
      phase_times->average_last_obj_copy_time() +
      + phase_times->average_last_termination_time();

    double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2207
    _parallel_other.add(parallel_other_time);
2208
    _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
  }
}

void TraceGen0TimeData::increment_young_collection_count() {
  if(TraceGen0Time) {
    ++_young_pause_num;
  }
}

void TraceGen0TimeData::increment_mixed_collection_count() {
  if(TraceGen0Time) {
    ++_mixed_pause_num;
  }
}

2224
void TraceGen0TimeData::print_summary(const char* str,
2225 2226
                                      const NumberSeq* seq) const {
  double sum = seq->sum();
2227
  gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2228 2229 2230
                str, sum / 1000.0, seq->avg());
}

2231
void TraceGen0TimeData::print_summary_sd(const char* str,
2232
                                         const NumberSeq* seq) const {
2233 2234 2235
  print_summary(str, seq);
  gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
                "(num", seq->num(), seq->sd(), seq->maximum());
2236 2237 2238 2239 2240 2241 2242 2243
}

void TraceGen0TimeData::print() const {
  if (!TraceGen0Time) {
    return;
  }

  gclog_or_tty->print_cr("ALL PAUSES");
2244
  print_summary_sd("   Total", &_total);
2245 2246
  gclog_or_tty->cr();
  gclog_or_tty->cr();
2247 2248
  gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2249
  gclog_or_tty->cr();
2250 2251 2252 2253 2254 2255

  gclog_or_tty->print_cr("EVACUATION PAUSES");

  if (_young_pause_num == 0 && _mixed_pause_num == 0) {
    gclog_or_tty->print_cr("none");
  } else {
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
    print_summary_sd("   Evacuation Pauses", &_total);
    print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
    print_summary("      Parallel Time", &_parallel);
    print_summary("         Ext Root Scanning", &_ext_root_scan);
    print_summary("         SATB Filtering", &_satb_filtering);
    print_summary("         Update RS", &_update_rs);
    print_summary("         Scan RS", &_scan_rs);
    print_summary("         Object Copy", &_obj_copy);
    print_summary("         Termination", &_termination);
    print_summary("         Parallel Other", &_parallel_other);
    print_summary("      Clear CT", &_clear_ct);
    print_summary("      Other", &_other);
2268
  }
2269
  gclog_or_tty->cr();
2270 2271

  gclog_or_tty->print_cr("MISC");
2272 2273
  print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  print_summary_sd("   Yields", &_all_yield_times_ms);
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
}

void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  if (TraceGen1Time) {
    _all_full_gc_times.add(full_gc_time_ms);
  }
}

void TraceGen1TimeData::print() const {
  if (!TraceGen1Time) {
    return;
  }

  if (_all_full_gc_times.num() > 0) {
    gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
      _all_full_gc_times.num(),
      _all_full_gc_times.sum() / 1000.0);
    gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
    gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
      _all_full_gc_times.sd(),
      _all_full_gc_times.maximum());
  }
}