g1CollectorPolicy.cpp 87.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
33
#include "gc_implementation/g1/g1Log.hpp"
34 35 36 37 38 39
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "runtime/arguments.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/debug.hpp"
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

// Different defaults for different number of GC threads
// They were chosen by running GCOld and SPECjbb on debris with different
//   numbers of GC threads and choosing them based on the results

// all the same
static double rs_length_diff_defaults[] = {
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

static double cost_per_card_ms_defaults[] = {
  0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
};

// all the same
55
static double young_cards_per_entry_ratio_defaults[] = {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

static double cost_per_entry_ms_defaults[] = {
  0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
};

static double cost_per_byte_ms_defaults[] = {
  0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
};

// these should be pretty consistent
static double constant_other_time_ms_defaults[] = {
  5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
};


static double young_other_cost_per_region_ms_defaults[] = {
  0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
};

static double non_young_other_cost_per_region_ms_defaults[] = {
  1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
};

G1CollectorPolicy::G1CollectorPolicy() :
82
  _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
83
                        ? ParallelGCThreads : 1),
84

85 86 87 88 89 90 91 92 93 94
  _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _stop_world_start(0.0),

  _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _prev_collection_pause_end_ms(0.0),
  _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
95 96
  _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
97
  _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
98
  _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
99 100 101 102 103 104 105 106 107 108
  _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
  _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _non_young_other_cost_per_region_ms_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),

  _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),

J
johnc 已提交
109
  _pause_time_target_ms((double) MaxGCPauseMillis),
110

111
  _gcs_are_young(true),
112 113 114 115 116

  _during_marking(false),
  _in_marking_window(false),
  _in_marking_window_im(false),

117 118
  _recent_prev_end_times_for_all_gcs_sec(
                                new TruncatedSeq(NumPrevPausesForHeuristics)),
119 120 121

  _recent_avg_pause_time_ratio(0.0),

122 123
  _initiate_conc_mark_if_possible(false),
  _during_initial_mark_pause(false),
124 125
  _last_young_gc(false),
  _last_gc_was_young(false),
126

127 128 129 130 131 132
  _eden_used_bytes_before_gc(0),
  _survivor_used_bytes_before_gc(0),
  _heap_used_bytes_before_gc(0),
  _metaspace_used_bytes_before_gc(0),
  _eden_capacity_bytes_before_gc(0),
  _heap_capacity_bytes_before_gc(0),
133

134 135 136 137
  _eden_cset_region_length(0),
  _survivor_cset_region_length(0),
  _old_cset_region_length(0),

138
  _collection_set(NULL),
139 140 141 142 143 144 145 146 147
  _collection_set_bytes_used_before(0),

  // Incremental CSet attributes
  _inc_cset_build_state(Inactive),
  _inc_cset_head(NULL),
  _inc_cset_tail(NULL),
  _inc_cset_bytes_used_before(0),
  _inc_cset_max_finger(NULL),
  _inc_cset_recorded_rs_lengths(0),
148
  _inc_cset_recorded_rs_lengths_diffs(0),
149
  _inc_cset_predicted_elapsed_time_ms(0.0),
150
  _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
151

152 153 154 155 156 157 158
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

  _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
                                                 G1YoungSurvRateNumRegionsSummary)),
  _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
159
                                              G1YoungSurvRateNumRegionsSummary)),
160
  // add here any more surv rate groups
161 162 163
  _recorded_survivor_regions(0),
  _recorded_survivor_head(NULL),
  _recorded_survivor_tail(NULL),
T
tonyp 已提交
164 165
  _survivors_age_table(true),

166
  _gc_overhead_perc(0.0) {
167

168 169 170
  // Set up the region size and associated fields. Given that the
  // policy is created before the heap, we have to set this up here,
  // so it's done as soon as possible.
171 172 173 174 175 176 177 178 179

  // It would have been natural to pass initial_heap_byte_size() and
  // max_heap_byte_size() to setup_heap_region_size() but those have
  // not been set up at this point since they should be aligned with
  // the region size. So, there is a circular dependency here. We base
  // the region size on the heap size, but the heap size should be
  // aligned with the region size. To get around this we use the
  // unaligned values for the heap.
  HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
180
  HeapRegionRemSet::setup_remset_size();
181

182 183 184 185 186 187 188 189 190 191 192 193
  G1ErgoVerbose::initialize();
  if (PrintAdaptiveSizePolicy) {
    // Currently, we only use a single switch for all the heuristics.
    G1ErgoVerbose::set_enabled(true);
    // Given that we don't currently have a verboseness level
    // parameter, we'll hardcode this to high. This can be easily
    // changed in the future.
    G1ErgoVerbose::set_level(ErgoHigh);
  } else {
    G1ErgoVerbose::set_enabled(false);
  }

194
  // Verify PLAB sizes
195
  const size_t region_size = HeapRegion::GrainWords;
196 197
  if (YoungPLABSize > region_size || OldPLABSize > region_size) {
    char buffer[128];
198
    jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
199 200 201 202
                 OldPLABSize > region_size ? "Old" : "Young", region_size);
    vm_exit_during_initialization(buffer);
  }

203 204 205
  _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
  _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;

206
  _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
207

208
  int index = MIN2(_parallel_gc_threads - 1, 7);
209 210 211

  _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
  _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
212 213
  _young_cards_per_entry_ratio_seq->add(
                                  young_cards_per_entry_ratio_defaults[index]);
214 215 216 217 218 219 220 221
  _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
  _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
  _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
  _young_other_cost_per_region_ms_seq->add(
                               young_other_cost_per_region_ms_defaults[index]);
  _non_young_other_cost_per_region_ms_seq->add(
                           non_young_other_cost_per_region_ms_defaults[index]);

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  // Below, we might need to calculate the pause time target based on
  // the pause interval. When we do so we are going to give G1 maximum
  // flexibility and allow it to do pauses when it needs to. So, we'll
  // arrange that the pause interval to be pause time target + 1 to
  // ensure that a) the pause time target is maximized with respect to
  // the pause interval and b) we maintain the invariant that pause
  // time target < pause interval. If the user does not want this
  // maximum flexibility, they will have to set the pause interval
  // explicitly.

  // First make sure that, if either parameter is set, its value is
  // reasonable.
  if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (MaxGCPauseMillis < 1) {
      vm_exit_during_initialization("MaxGCPauseMillis should be "
                                    "greater than 0");
    }
  }
  if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    if (GCPauseIntervalMillis < 1) {
      vm_exit_during_initialization("GCPauseIntervalMillis should be "
                                    "greater than 0");
    }
  }

  // Then, if the pause time target parameter was not set, set it to
  // the default value.
  if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
      // The default pause time target in G1 is 200ms
      FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
    } else {
      // We do not allow the pause interval to be set without the
      // pause time target
      vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
                                    "without setting MaxGCPauseMillis");
    }
  }

  // Then, if the interval parameter was not set, set it according to
  // the pause time target (this will also deal with the case when the
  // pause time target is the default value).
  if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
  }

  // Finally, make sure that the two parameters are consistent.
  if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
    char buffer[256];
    jio_snprintf(buffer, 256,
                 "MaxGCPauseMillis (%u) should be less than "
                 "GCPauseIntervalMillis (%u)",
                 MaxGCPauseMillis, GCPauseIntervalMillis);
    vm_exit_during_initialization(buffer);
  }

J
johnc 已提交
278
  double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
279
  double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
280
  _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
281 282 283 284 285 286 287 288 289

  uintx confidence_perc = G1ConfidencePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (confidence_perc > 100) {
    confidence_perc = 100;
    warning("G1ConfidencePercent is set to a value that is too large, "
            "it's been updated to %u", confidence_perc);
  }
  _sigma = (double) confidence_perc / 100.0;
290 291 292 293 294

  // start conservatively (around 50ms is about right)
  _concurrent_mark_remark_times_ms->add(0.05);
  _concurrent_mark_cleanup_times_ms->add(0.20);
  _tenuring_threshold = MaxTenuringThreshold;
295
  // _max_survivor_regions will be calculated by
296
  // update_young_list_target_length() during initialization.
297
  _max_survivor_regions = 0;
298

T
tonyp 已提交
299 300 301 302 303
  assert(GCTimeRatio > 0,
         "we should have set it to a default value set_g1_gc_flags() "
         "if a user set it to 0");
  _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));

304 305 306 307 308 309 310 311
  uintx reserve_perc = G1ReservePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (reserve_perc > 50) {
    reserve_perc = 50;
    warning("G1ReservePercent is set to a value that is too large, "
            "it's been updated to %u", reserve_perc);
  }
  _reserve_factor = (double) reserve_perc / 100.0;
312
  // This will be set when the heap is expanded
313 314 315
  // for the first time during initialization.
  _reserve_regions = 0;

316
  initialize_all();
317
  _collectionSetChooser = new CollectionSetChooser();
318
  _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
319 320 321
}

void G1CollectorPolicy::initialize_flags() {
322
  _min_alignment = HeapRegion::GrainBytes;
323
  size_t card_table_alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
324
  size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
325
  _max_alignment = MAX3(card_table_alignment, _min_alignment, page_size);
326 327 328
  if (SurvivorRatio < 1) {
    vm_exit_during_initialization("Invalid survivor ratio specified");
  }
329 330 331
  CollectorPolicy::initialize_flags();
}

332
G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
333 334 335
  assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
  assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
  assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
336

337 338 339 340 341 342 343 344
  if (FLAG_IS_CMDLINE(NewRatio)) {
    if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
      warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
    } else {
      _sizer_kind = SizerNewRatio;
      _adaptive_size = false;
      return;
    }
345
  }
346

347 348 349 350
  if (FLAG_IS_CMDLINE(NewSize) && FLAG_IS_CMDLINE(MaxNewSize) && NewSize > MaxNewSize) {
    vm_exit_during_initialization("Initial young gen size set larger than the maximum young gen size");
  }

351
  if (FLAG_IS_CMDLINE(NewSize)) {
352 353
    _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
                                     1U);
354
    if (FLAG_IS_CMDLINE(MaxNewSize)) {
355 356 357
      _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
358 359 360 361 362 363
      _sizer_kind = SizerMaxAndNewSize;
      _adaptive_size = _min_desired_young_length == _max_desired_young_length;
    } else {
      _sizer_kind = SizerNewSizeOnly;
    }
  } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
364 365 366
    _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
367
    _sizer_kind = SizerMaxNewSizeOnly;
368
  }
369 370
}

371
uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
372
  uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
373
  return MAX2(1U, default_value);
374 375
}

376
uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
377
  uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
378
  return MAX2(1U, default_value);
379 380
}

381
void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
  assert(new_number_of_heap_regions > 0, "Heap must be initialized");

  switch (_sizer_kind) {
    case SizerDefaults:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      break;
    case SizerNewSizeOnly:
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxNewSizeOnly:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxAndNewSize:
      // Do nothing. Values set on the command line, don't update them at runtime.
      break;
    case SizerNewRatio:
      _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
      _max_desired_young_length = _min_desired_young_length;
      break;
    default:
      ShouldNotReachHere();
406 407
  }

408
  assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
409 410
}

411 412 413 414 415 416
void G1CollectorPolicy::init() {
  // Set aside an initial future to_space.
  _g1 = G1CollectedHeap::heap();

  assert(Heap_lock->owned_by_self(), "Locking discipline.");

417 418
  initialize_gc_policy_counters();

419
  if (adaptive_young_list_length()) {
420
    _young_list_fixed_length = 0;
421
  } else {
422
    _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
423
  }
424
  _free_regions_at_end_of_collection = _g1->free_regions();
425
  update_young_list_target_length();
426 427 428 429

  // We may immediately start allocating regions and placing them on the
  // collection set list. Initialize the per-collection set info
  start_incremental_cset_building();
430 431
}

432
// Create the jstat counters for the policy.
433
void G1CollectorPolicy::initialize_gc_policy_counters() {
434
  _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
435 436
}

437
bool G1CollectorPolicy::predict_will_fit(uint young_length,
438
                                         double base_time_ms,
439
                                         uint base_free_regions,
440 441 442 443 444
                                         double target_pause_time_ms) {
  if (young_length >= base_free_regions) {
    // end condition 1: not enough space for the young regions
    return false;
  }
445

446
  double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
447 448 449 450 451 452 453 454 455
  size_t bytes_to_copy =
               (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
  double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
  double young_other_time_ms = predict_young_other_time_ms(young_length);
  double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
  if (pause_time_ms > target_pause_time_ms) {
    // end condition 2: prediction is over the target pause time
    return false;
  }
456

457
  size_t free_bytes =
458
                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
459 460 461
  if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
    // end condition 3: out-of-space (conservatively!)
    return false;
462
  }
463 464 465 466 467

  // success!
  return true;
}

468
void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
469 470
  // re-calculate the necessary reserve
  double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
471 472
  // We use ceiling so that if reserve_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
473
  _reserve_regions = (uint) ceil(reserve_regions_d);
474

475
  _young_gen_sizer->heap_size_changed(new_number_of_regions);
476 477
}

478 479 480
uint G1CollectorPolicy::calculate_young_list_desired_min_length(
                                                       uint base_min_length) {
  uint desired_min_length = 0;
481
  if (adaptive_young_list_length()) {
482 483 484 485
    if (_alloc_rate_ms_seq->num() > 3) {
      double now_sec = os::elapsedTime();
      double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
      double alloc_rate_ms = predict_alloc_rate_ms();
486
      desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
487 488
    } else {
      // otherwise we don't have enough info to make the prediction
489 490
    }
  }
491 492
  desired_min_length += base_min_length;
  // make sure we don't go below any user-defined minimum bound
493
  return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
494 495
}

496
uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
497 498 499
  // Here, we might want to also take into account any additional
  // constraints (i.e., user-defined minimum bound). Currently, we
  // effectively don't set this bound.
500
  return _young_gen_sizer->max_desired_young_length();
501
}
502

503 504 505 506 507 508
void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
  if (rs_lengths == (size_t) -1) {
    // if it's set to the default value (-1), we should predict it;
    // otherwise, use the given value.
    rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
  }
509

510
  // Calculate the absolute and desired min bounds.
511

512
  // This is how many young regions we already have (currently: the survivors).
513
  uint base_min_length = recorded_survivor_regions();
514 515
  // This is the absolute minimum young length, which ensures that we
  // can allocate one eden region in the worst-case.
516 517
  uint absolute_min_length = base_min_length + 1;
  uint desired_min_length =
518 519 520 521
                     calculate_young_list_desired_min_length(base_min_length);
  if (desired_min_length < absolute_min_length) {
    desired_min_length = absolute_min_length;
  }
522

523
  // Calculate the absolute and desired max bounds.
524

525
  // We will try our best not to "eat" into the reserve.
526
  uint absolute_max_length = 0;
527 528 529
  if (_free_regions_at_end_of_collection > _reserve_regions) {
    absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
  }
530
  uint desired_max_length = calculate_young_list_desired_max_length();
531 532 533
  if (desired_max_length > absolute_max_length) {
    desired_max_length = absolute_max_length;
  }
534

535
  uint young_list_target_length = 0;
536
  if (adaptive_young_list_length()) {
537
    if (gcs_are_young()) {
538 539 540 541 542 543 544 545 546 547 548 549
      young_list_target_length =
                        calculate_young_list_target_length(rs_lengths,
                                                           base_min_length,
                                                           desired_min_length,
                                                           desired_max_length);
      _rs_lengths_prediction = rs_lengths;
    } else {
      // Don't calculate anything and let the code below bound it to
      // the desired_min_length, i.e., do the next GC as soon as
      // possible to maximize how many old regions we can add to it.
    }
  } else {
550 551 552
    // The user asked for a fixed young gen so we'll fix the young gen
    // whether the next GC is young or mixed.
    young_list_target_length = _young_list_fixed_length;
553
  }
554

555 556 557 558 559 560 561 562 563
  // Make sure we don't go over the desired max length, nor under the
  // desired min length. In case they clash, desired_min_length wins
  // which is why that test is second.
  if (young_list_target_length > desired_max_length) {
    young_list_target_length = desired_max_length;
  }
  if (young_list_target_length < desired_min_length) {
    young_list_target_length = desired_min_length;
  }
564

565 566 567 568
  assert(young_list_target_length > recorded_survivor_regions(),
         "we should be able to allocate at least one eden region");
  assert(young_list_target_length >= absolute_min_length, "post-condition");
  _young_list_target_length = young_list_target_length;
569

570 571
  update_max_gc_locker_expansion();
}
572

573
uint
574
G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
575 576 577
                                                     uint base_min_length,
                                                     uint desired_min_length,
                                                     uint desired_max_length) {
578
  assert(adaptive_young_list_length(), "pre-condition");
579
  assert(gcs_are_young(), "only call this for young GCs");
580 581 582 583 584 585 586 587 588 589 590 591

  // In case some edge-condition makes the desired max length too small...
  if (desired_max_length <= desired_min_length) {
    return desired_min_length;
  }

  // We'll adjust min_young_length and max_young_length not to include
  // the already allocated young regions (i.e., so they reflect the
  // min and max eden regions we'll allocate). The base_min_length
  // will be reflected in the predictions by the
  // survivor_regions_evac_time prediction.
  assert(desired_min_length > base_min_length, "invariant");
592
  uint min_young_length = desired_min_length - base_min_length;
593
  assert(desired_max_length > base_min_length, "invariant");
594
  uint max_young_length = desired_max_length - base_min_length;
595 596 597 598 599 600 601 602 603

  double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
  double survivor_regions_evac_time = predict_survivor_regions_evac_time();
  size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
  size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
  size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
  double base_time_ms =
    predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
    survivor_regions_evac_time;
604 605
  uint available_free_regions = _free_regions_at_end_of_collection;
  uint base_free_regions = 0;
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
  if (available_free_regions > _reserve_regions) {
    base_free_regions = available_free_regions - _reserve_regions;
  }

  // Here, we will make sure that the shortest young length that
  // makes sense fits within the target pause time.

  if (predict_will_fit(min_young_length, base_time_ms,
                       base_free_regions, target_pause_time_ms)) {
    // The shortest young length will fit into the target pause time;
    // we'll now check whether the absolute maximum number of young
    // regions will fit in the target pause time. If not, we'll do
    // a binary search between min_young_length and max_young_length.
    if (predict_will_fit(max_young_length, base_time_ms,
                         base_free_regions, target_pause_time_ms)) {
      // The maximum young length will fit into the target pause time.
      // We are done so set min young length to the maximum length (as
      // the result is assumed to be returned in min_young_length).
      min_young_length = max_young_length;
    } else {
      // The maximum possible number of young regions will not fit within
      // the target pause time so we'll search for the optimal
      // length. The loop invariants are:
      //
      // min_young_length < max_young_length
      // min_young_length is known to fit into the target pause time
      // max_young_length is known not to fit into the target pause time
      //
      // Going into the loop we know the above hold as we've just
      // checked them. Every time around the loop we check whether
      // the middle value between min_young_length and
      // max_young_length fits into the target pause time. If it
      // does, it becomes the new min. If it doesn't, it becomes
      // the new max. This way we maintain the loop invariants.

      assert(min_young_length < max_young_length, "invariant");
642
      uint diff = (max_young_length - min_young_length) / 2;
643
      while (diff > 0) {
644
        uint young_length = min_young_length + diff;
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        if (predict_will_fit(young_length, base_time_ms,
                             base_free_regions, target_pause_time_ms)) {
          min_young_length = young_length;
        } else {
          max_young_length = young_length;
        }
        assert(min_young_length <  max_young_length, "invariant");
        diff = (max_young_length - min_young_length) / 2;
      }
      // The results is min_young_length which, according to the
      // loop invariants, should fit within the target pause time.

      // These are the post-conditions of the binary search above:
      assert(min_young_length < max_young_length,
             "otherwise we should have discovered that max_young_length "
             "fits into the pause target and not done the binary search");
      assert(predict_will_fit(min_young_length, base_time_ms,
                              base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should "
             "fit into the pause target");
      assert(!predict_will_fit(min_young_length + 1, base_time_ms,
                               base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should be "
             "optimal, so no larger length should fit into the pause target");
    }
  } else {
    // Even the minimum length doesn't fit into the pause time
    // target, return it as the result nevertheless.
  }
  return base_min_length + min_young_length;
675 676
}

677 678 679 680 681
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
  double survivor_regions_evac_time = 0.0;
  for (HeapRegion * r = _recorded_survivor_head;
       r != NULL && r != _recorded_survivor_tail->get_next_young_region();
       r = r->get_next_young_region()) {
682
    survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
683 684 685 686
  }
  return survivor_regions_evac_time;
}

687
void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
688 689
  guarantee( adaptive_young_list_length(), "should not call this otherwise" );

690
  size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
691 692 693
  if (rs_lengths > _rs_lengths_prediction) {
    // add 10% to avoid having to recalculate often
    size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
694
    update_young_list_target_length(rs_lengths_prediction);
695 696 697
  }
}

698 699


700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
                                               bool is_tlab,
                                               bool* gc_overhead_limit_was_exceeded) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}

// This method controls how a collector handles one or more
// of its generations being fully allocated.
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
                                                       bool is_tlab) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}


#ifndef PRODUCT
bool G1CollectorPolicy::verify_young_ages() {
718
  HeapRegion* head = _g1->young_list()->first_region();
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
  return
    verify_young_ages(head, _short_lived_surv_rate_group);
  // also call verify_young_ages on any additional surv rate groups
}

bool
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
                                     SurvRateGroup *surv_rate_group) {
  guarantee( surv_rate_group != NULL, "pre-condition" );

  const char* name = surv_rate_group->name();
  bool ret = true;
  int prev_age = -1;

  for (HeapRegion* curr = head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    SurvRateGroup* group = curr->surv_rate_group();
    if (group == NULL && !curr->is_survivor()) {
      gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
      ret = false;
    }

    if (surv_rate_group == group) {
      int age = curr->age_in_surv_rate_group();

      if (age < 0) {
        gclog_or_tty->print_cr("## %s: encountered negative age", name);
        ret = false;
      }

      if (age <= prev_age) {
        gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
                               "(%d, %d)", name, age, prev_age);
        ret = false;
      }
      prev_age = age;
    }
  }

  return ret;
}
#endif // PRODUCT

void G1CollectorPolicy::record_full_collection_start() {
764
  _full_collection_start_sec = os::elapsedTime();
765
  record_heap_size_info_at_start(true /* full */);
766 767 768 769 770 771 772 773
  // Release the future to-space so that it is available for compaction into.
  _g1->set_full_collection();
}

void G1CollectorPolicy::record_full_collection_end() {
  // Consider this like a collection pause for the purposes of allocation
  // since last pause.
  double end_sec = os::elapsedTime();
774
  double full_gc_time_sec = end_sec - _full_collection_start_sec;
775 776
  double full_gc_time_ms = full_gc_time_sec * 1000.0;

777
  _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
778

779
  update_recent_gc_times(end_sec, full_gc_time_ms);
780 781 782

  _g1->clear_full_collection();

783 784 785 786
  // "Nuke" the heuristics that control the young/mixed GC
  // transitions and make sure we start with young GCs after the Full GC.
  set_gcs_are_young(true);
  _last_young_gc = false;
787 788
  clear_initiate_conc_mark_if_possible();
  clear_during_initial_mark_pause();
789 790 791 792 793 794
  _in_marking_window = false;
  _in_marking_window_im = false;

  _short_lived_surv_rate_group->start_adding_regions();
  // also call this on any additional surv rate groups

795 796
  record_survivor_regions(0, NULL, NULL);

797
  _free_regions_at_end_of_collection = _g1->free_regions();
798 799
  // Reset survivors SurvRateGroup.
  _survivor_surv_rate_group->reset();
800
  update_young_list_target_length();
801
  _collectionSetChooser->clear();
802
}
803 804 805 806 807

void G1CollectorPolicy::record_stop_world_start() {
  _stop_world_start = os::elapsedTime();
}

808
void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
809 810 811 812
  // We only need to do this here as the policy will only be applied
  // to the GC we're about to start. so, no point is calculating this
  // every time we calculate / recalculate the target young length.
  update_survivors_policy();
813

814 815 816
  assert(_g1->used() == _g1->recalculate_used(),
         err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
                 _g1->used(), _g1->recalculate_used()));
817 818

  double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
819
  _trace_gen0_time_data.record_start_collection(s_w_t_ms);
820 821
  _stop_world_start = 0.0;

822
  record_heap_size_info_at_start(false /* full */);
823

824
  phase_times()->record_cur_collection_start_sec(start_time_sec);
825 826
  _pending_cards = _g1->pending_card_num();

827
  _collection_set_bytes_used_before = 0;
828
  _bytes_copied_during_gc = 0;
829

830
  _last_gc_was_young = false;
831 832 833

  // do that for any other surv rate groups
  _short_lived_surv_rate_group->stop_adding_regions();
834
  _survivors_age_table.clear();
835

836 837 838
  assert( verify_young_ages(), "region age verification" );
}

839
void G1CollectorPolicy::record_concurrent_mark_init_end(double
840 841
                                                   mark_init_elapsed_time_ms) {
  _during_marking = true;
842 843
  assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
  clear_during_initial_mark_pause();
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
  _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_remark_start() {
  _mark_remark_start_sec = os::elapsedTime();
  _during_marking = false;
}

void G1CollectorPolicy::record_concurrent_mark_remark_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
  _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  _mark_cleanup_start_sec = os::elapsedTime();
}

866
void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
867
  _last_young_gc = true;
868
  _in_marking_window = false;
869 870 871 872 873
}

void G1CollectorPolicy::record_concurrent_pause() {
  if (_stop_world_start > 0.0) {
    double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
874
    _trace_gen0_time_data.record_yield_time(yield_ms);
875 876 877
  }
}

878 879
bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
  if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
880 881 882 883 884 885
    return false;
  }

  size_t marking_initiating_used_threshold =
    (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  size_t cur_used_bytes = _g1->non_young_capacity_bytes();
886
  size_t alloc_byte_size = alloc_word_size * HeapWordSize;
887

888
  if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
889
    if (gcs_are_young() && !_last_young_gc) {
890
      ergo_verbose5(ErgoConcCycles,
891 892 893
        "request concurrent cycle initiation",
        ergo_format_reason("occupancy higher than threshold")
        ergo_format_byte("occupancy")
894
        ergo_format_byte("allocation request")
895 896 897
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
898
        alloc_byte_size,
899 900 901 902 903
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
      return true;
    } else {
904
      ergo_verbose5(ErgoConcCycles,
905 906 907
        "do not request concurrent cycle initiation",
        ergo_format_reason("still doing mixed collections")
        ergo_format_byte("occupancy")
908
        ergo_format_byte("allocation request")
909 910 911
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
912
        alloc_byte_size,
913 914 915 916 917 918 919 920 921
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
    }
  }

  return false;
}

922 923 924
// Anything below that is considered to be zero
#define MIN_TIMER_GRANULARITY 0.0000001

S
sla 已提交
925
void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
926
  double end_time_sec = os::elapsedTime();
927 928
  assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
         "otherwise, the subtraction below does not make sense");
929
  size_t rs_size =
930
            _cur_collection_pause_used_regions_at_start - cset_region_length();
931 932 933
  size_t cur_used_bytes = _g1->used();
  assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  bool last_pause_included_initial_mark = false;
934
  bool update_stats = !_g1->evacuation_failed();
935 936 937 938 939 940 941 942 943

#ifndef PRODUCT
  if (G1YoungSurvRateVerbose) {
    gclog_or_tty->print_cr("");
    _short_lived_surv_rate_group->print();
    // do that for any other surv rate groups too
  }
#endif // PRODUCT

944
  last_pause_included_initial_mark = during_initial_mark_pause();
945
  if (last_pause_included_initial_mark) {
946
    record_concurrent_mark_init_end(0.0);
947
  } else if (need_to_start_conc_mark("end of GC")) {
948 949 950 951 952
    // Note: this might have already been set, if during the last
    // pause we decided to start a cycle but at the beginning of
    // this pause we decided to postpone it. That's OK.
    set_initiate_conc_mark_if_possible();
  }
953

954
  _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
955 956
                          end_time_sec, false);

S
sla 已提交
957 958 959
  evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
  evacuation_info.set_bytes_copied(_bytes_copied_during_gc);

960
  if (update_stats) {
961
    _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
962 963
    // this is where we update the allocation rate of the application
    double app_time_ms =
964
      (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
965 966 967 968 969 970
    if (app_time_ms < MIN_TIMER_GRANULARITY) {
      // This usually happens due to the timer not having the required
      // granularity. Some Linuxes are the usual culprits.
      // We'll just set it to something (arbitrarily) small.
      app_time_ms = 1.0;
    }
971 972 973 974 975 976 977 978
    // We maintain the invariant that all objects allocated by mutator
    // threads will be allocated out of eden regions. So, we can use
    // the eden region number allocated since the previous GC to
    // calculate the application's allocate rate. The only exception
    // to that is humongous objects that are allocated separately. But
    // given that humongous object allocations do not really affect
    // either the pause's duration nor when the next pause will take
    // place we can safely ignore them here.
979
    uint regions_allocated = eden_cset_region_length();
980 981 982 983 984
    double alloc_rate_ms = (double) regions_allocated / app_time_ms;
    _alloc_rate_ms_seq->add(alloc_rate_ms);

    double interval_ms =
      (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
985
    update_recent_gc_times(end_time_sec, pause_time_ms);
986
    _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
987 988 989 990 991 992 993 994 995 996 997 998
    if (recent_avg_pause_time_ratio() < 0.0 ||
        (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
#ifndef PRODUCT
      // Dump info to allow post-facto debugging
      gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
      gclog_or_tty->print_cr("-------------------------------------------");
      gclog_or_tty->print_cr("Recent GC Times (ms):");
      _recent_gc_times_ms->dump();
      gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
      _recent_prev_end_times_for_all_gcs_sec->dump();
      gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
                             _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
999 1000 1001 1002 1003
      // In debug mode, terminate the JVM if the user wants to debug at this point.
      assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
#endif  // !PRODUCT
      // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
      // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1004 1005 1006 1007 1008 1009 1010
      if (_recent_avg_pause_time_ratio < 0.0) {
        _recent_avg_pause_time_ratio = 0.0;
      } else {
        assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
        _recent_avg_pause_time_ratio = 1.0;
      }
    }
1011
  }
1012

1013 1014
  bool new_in_marking_window = _in_marking_window;
  bool new_in_marking_window_im = false;
1015
  if (during_initial_mark_pause()) {
1016 1017 1018 1019
    new_in_marking_window = true;
    new_in_marking_window_im = true;
  }

1020
  if (_last_young_gc) {
1021 1022 1023
    // This is supposed to to be the "last young GC" before we start
    // doing mixed GCs. Here we decide whether to start mixed GCs or not.

1024
    if (!last_pause_included_initial_mark) {
1025 1026 1027 1028
      if (next_gc_should_be_mixed("start mixed GCs",
                                  "do not start mixed GCs")) {
        set_gcs_are_young(false);
      }
1029
    } else {
1030 1031
      ergo_verbose0(ErgoMixedGCs,
                    "do not start mixed GCs",
1032 1033
                    ergo_format_reason("concurrent cycle is about to start"));
    }
1034
    _last_young_gc = false;
1035
  }
1036

1037
  if (!_last_gc_was_young) {
1038 1039 1040 1041 1042
    // This is a mixed GC. Here we decide whether to continue doing
    // mixed GCs or not.

    if (!next_gc_should_be_mixed("continue mixed GCs",
                                 "do not continue mixed GCs")) {
1043
      set_gcs_are_young(true);
1044
    }
1045
  }
1046 1047 1048 1049

  _short_lived_surv_rate_group->start_adding_regions();
  // do that for any other surv rate groupsx

1050
  if (update_stats) {
1051 1052
    double cost_per_card_ms = 0.0;
    if (_pending_cards > 0) {
1053
      cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1054 1055 1056 1057 1058 1059 1060
      _cost_per_card_ms_seq->add(cost_per_card_ms);
    }

    size_t cards_scanned = _g1->cards_scanned();

    double cost_per_entry_ms = 0.0;
    if (cards_scanned > 10) {
1061
      cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1062
      if (_last_gc_was_young) {
1063
        _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1064 1065 1066
      } else {
        _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
      }
1067 1068 1069 1070 1071
    }

    if (_max_rs_lengths > 0) {
      double cards_per_entry_ratio =
        (double) cards_scanned / (double) _max_rs_lengths;
1072 1073 1074 1075 1076
      if (_last_gc_was_young) {
        _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      } else {
        _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      }
1077 1078
    }

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
    // This is defensive. For a while _max_rs_lengths could get
    // smaller than _recorded_rs_lengths which was causing
    // rs_length_diff to get very large and mess up the RSet length
    // predictions. The reason was unsafe concurrent updates to the
    // _inc_cset_recorded_rs_lengths field which the code below guards
    // against (see CR 7118202). This bug has now been fixed (see CR
    // 7119027). However, I'm still worried that
    // _inc_cset_recorded_rs_lengths might still end up somewhat
    // inaccurate. The concurrent refinement thread calculates an
    // RSet's length concurrently with other CR threads updating it
    // which might cause it to calculate the length incorrectly (if,
    // say, it's in mid-coarsening). So I'll leave in the defensive
    // conditional below just in case.
1092 1093 1094 1095 1096
    size_t rs_length_diff = 0;
    if (_max_rs_lengths > _recorded_rs_lengths) {
      rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
    }
    _rs_length_diff_seq->add((double) rs_length_diff);
1097

1098 1099
    size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
    size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1100
    double cost_per_byte_ms = 0.0;
1101

1102
    if (copied_bytes > 0) {
1103
      cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1104
      if (_in_marking_window) {
1105
        _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1106
      } else {
1107
        _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1108
      }
1109 1110 1111
    }

    double all_other_time_ms = pause_time_ms -
1112 1113
      (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
      + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1114 1115

    double young_other_time_ms = 0.0;
1116
    if (young_cset_region_length() > 0) {
1117
      young_other_time_ms =
1118 1119
        phase_times()->young_cset_choice_time_ms() +
        phase_times()->young_free_cset_time_ms();
1120
      _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1121
                                          (double) young_cset_region_length());
1122 1123
    }
    double non_young_other_time_ms = 0.0;
1124
    if (old_cset_region_length() > 0) {
1125
      non_young_other_time_ms =
1126 1127
        phase_times()->non_young_cset_choice_time_ms() +
        phase_times()->non_young_free_cset_time_ms();
1128 1129

      _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1130
                                            (double) old_cset_region_length());
1131 1132 1133 1134 1135 1136 1137
    }

    double constant_other_time_ms = all_other_time_ms -
      (young_other_time_ms + non_young_other_time_ms);
    _constant_other_time_ms_seq->add(constant_other_time_ms);

    double survival_ratio = 0.0;
1138
    if (_collection_set_bytes_used_before > 0) {
1139
      survival_ratio = (double) _bytes_copied_during_gc /
1140
                                   (double) _collection_set_bytes_used_before;
1141 1142 1143 1144 1145 1146 1147 1148 1149
    }

    _pending_cards_seq->add((double) _pending_cards);
    _rs_lengths_seq->add((double) _max_rs_lengths);
  }

  _in_marking_window = new_in_marking_window;
  _in_marking_window_im = new_in_marking_window_im;
  _free_regions_at_end_of_collection = _g1->free_regions();
1150
  update_young_list_target_length();
1151

1152
  // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1153
  double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1154 1155
  adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
                               phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1156

1157
  _collectionSetChooser->verify();
1158 1159
}

1160
#define EXT_SIZE_FORMAT "%.1f%s"
1161
#define EXT_SIZE_PARAMS(bytes)                                  \
1162
  byte_size_in_proper_unit((double)(bytes)),                    \
1163 1164
  proper_unit_for_byte_size((bytes))

1165
void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1166
  YoungList* young_list = _g1->young_list();
1167 1168 1169 1170
  _eden_used_bytes_before_gc = young_list->eden_used_bytes();
  _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
  _heap_capacity_bytes_before_gc = _g1->capacity();
  _heap_used_bytes_before_gc = _g1->used();
1171 1172
  _cur_collection_pause_used_regions_at_start = _g1->used_regions();

1173 1174
  _eden_capacity_bytes_before_gc =
         (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1175

1176 1177 1178
  if (full) {
    _metaspace_used_bytes_before_gc = MetaspaceAux::allocated_used_bytes();
  }
1179 1180
}

1181
void G1CollectorPolicy::print_heap_transition() {
1182
  _g1->print_size_transition(gclog_or_tty,
1183 1184 1185
                             _heap_used_bytes_before_gc,
                             _g1->used(),
                             _g1->capacity());
1186 1187
}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
  YoungList* young_list = _g1->young_list();

  size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
  size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
  size_t heap_used_bytes_after_gc = _g1->used();

  size_t heap_capacity_bytes_after_gc = _g1->capacity();
  size_t eden_capacity_bytes_after_gc =
    (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;

  gclog_or_tty->print(
    "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
    "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
    "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
    EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
    EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
    EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
    EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
    EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
    EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
    EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
    EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
    EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
    EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
    EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));

  if (full) {
    MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
  }

  gclog_or_tty->cr();
1220 1221
}

1222 1223 1224 1225 1226 1227
void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
                                                     double update_rs_processed_buffers,
                                                     double goal_ms) {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();

1228
  if (G1UseAdaptiveConcRefinement) {
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    const int k_gy = 3, k_gr = 6;
    const double inc_k = 1.1, dec_k = 0.9;

    int g = cg1r->green_zone();
    if (update_rs_time > goal_ms) {
      g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
    } else {
      if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
        g = (int)MAX2(g * inc_k, g + 1.0);
      }
    }
    // Change the refinement threads params
    cg1r->set_green_zone(g);
    cg1r->set_yellow_zone(g * k_gy);
    cg1r->set_red_zone(g * k_gr);
    cg1r->reinitialize_threads();

    int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
    int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
                                    cg1r->yellow_zone());
    // Change the barrier params
    dcqs.set_process_completed_threshold(processing_threshold);
    dcqs.set_max_completed_queue(cg1r->red_zone());
  }

  int curr_queue_size = dcqs.completed_buffers_num();
  if (curr_queue_size >= cg1r->yellow_zone()) {
    dcqs.set_completed_queue_padding(curr_queue_size);
  } else {
    dcqs.set_completed_queue_padding(0);
  }
  dcqs.notify_if_necessary();
}

1263 1264 1265 1266 1267 1268 1269 1270 1271
double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
                                                size_t scanned_cards) {
  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(scanned_cards) +
    predict_constant_other_time_ms();
}

1272 1273 1274 1275
double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  size_t rs_length = predict_rs_length_diff();
  size_t card_num;
1276
  if (gcs_are_young()) {
1277
    card_num = predict_young_card_num(rs_length);
1278
  } else {
1279
    card_num = predict_non_young_card_num(rs_length);
1280
  }
1281 1282 1283
  return predict_base_elapsed_time_ms(pending_cards, card_num);
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  size_t bytes_to_copy;
  if (hr->is_marked())
    bytes_to_copy = hr->max_live_bytes();
  else {
    assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
    int age = hr->age_in_surv_rate_group();
    double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
    bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  }
  return bytes_to_copy;
1295 1296 1297 1298
}

double
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1299
                                                  bool for_young_gc) {
1300 1301
  size_t rs_length = hr->rem_set()->occupied();
  size_t card_num;
1302 1303 1304 1305

  // Predicting the number of cards is based on which type of GC
  // we're predicting for.
  if (for_young_gc) {
1306
    card_num = predict_young_card_num(rs_length);
1307
  } else {
1308
    card_num = predict_non_young_card_num(rs_length);
1309
  }
1310 1311 1312 1313 1314 1315
  size_t bytes_to_copy = predict_bytes_to_copy(hr);

  double region_elapsed_time_ms =
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy);

1316 1317 1318
  // The prediction of the "other" time for this region is based
  // upon the region type and NOT the GC type.
  if (hr->is_young()) {
1319
    region_elapsed_time_ms += predict_young_other_time_ms(1);
1320
  } else {
1321 1322
    region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  }
1323
  return region_elapsed_time_ms;
1324 1325 1326
}

void
1327 1328
G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
                                            uint survivor_cset_region_length) {
1329 1330 1331
  _eden_cset_region_length     = eden_cset_region_length;
  _survivor_cset_region_length = survivor_cset_region_length;
  _old_cset_region_length      = 0;
1332 1333 1334 1335 1336 1337
}

void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  _recorded_rs_lengths = rs_lengths;
}

1338 1339 1340 1341 1342 1343 1344 1345
void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
                                               double elapsed_ms) {
  _recent_gc_times_ms->add(elapsed_ms);
  _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  _prev_collection_pause_end_ms = end_time_sec * 1000.0;
}

size_t G1CollectorPolicy::expansion_amount() {
1346 1347 1348
  double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  double threshold = _gc_overhead_perc;
  if (recent_gc_overhead > threshold) {
J
johnc 已提交
1349 1350 1351 1352
    // We will double the existing space, or take
    // G1ExpandByPercentOfAvailable % of the available expansion
    // space, whichever is smaller, bounded below by a minimum
    // expansion (unless that's all that's left.)
1353
    const size_t min_expand_bytes = 1*M;
1354
    size_t reserved_bytes = _g1->max_capacity();
1355 1356 1357 1358
    size_t committed_bytes = _g1->capacity();
    size_t uncommitted_bytes = reserved_bytes - committed_bytes;
    size_t expand_bytes;
    size_t expand_bytes_via_pct =
J
johnc 已提交
1359
      uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1360 1361 1362
    expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
    expand_bytes = MAX2(expand_bytes, min_expand_bytes);
    expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

    ergo_verbose5(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("recent GC overhead higher than "
                                     "threshold after GC")
                  ergo_format_perc("recent GC overhead")
                  ergo_format_perc("threshold")
                  ergo_format_byte("uncommitted")
                  ergo_format_byte_perc("calculated expansion amount"),
                  recent_gc_overhead, threshold,
                  uncommitted_bytes,
                  expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);

1376 1377 1378 1379 1380 1381 1382
    return expand_bytes;
  } else {
    return 0;
  }
}

void G1CollectorPolicy::print_tracing_info() const {
1383 1384
  _trace_gen0_time_data.print();
  _trace_gen1_time_data.print();
1385 1386 1387 1388 1389 1390 1391 1392 1393
}

void G1CollectorPolicy::print_yg_surv_rate_info() const {
#ifndef PRODUCT
  _short_lived_surv_rate_group->print_surv_rate_summary();
  // add this call for any other surv rate groups
#endif // PRODUCT
}

1394
uint G1CollectorPolicy::max_regions(int purpose) {
1395 1396
  switch (purpose) {
    case GCAllocForSurvived:
1397
      return _max_survivor_regions;
1398
    case GCAllocForTenured:
1399
      return REGIONS_UNLIMITED;
1400
    default:
1401 1402
      ShouldNotReachHere();
      return REGIONS_UNLIMITED;
1403 1404 1405
  };
}

1406
void G1CollectorPolicy::update_max_gc_locker_expansion() {
1407
  uint expansion_region_num = 0;
1408 1409 1410 1411 1412
  if (GCLockerEdenExpansionPercent > 0) {
    double perc = (double) GCLockerEdenExpansionPercent / 100.0;
    double expansion_region_num_d = perc * (double) _young_list_target_length;
    // We use ceiling so that if expansion_region_num_d is > 0.0 (but
    // less than 1.0) we'll get 1.
1413
    expansion_region_num = (uint) ceil(expansion_region_num_d);
1414 1415 1416 1417 1418 1419 1420
  } else {
    assert(expansion_region_num == 0, "sanity");
  }
  _young_list_max_length = _young_list_target_length + expansion_region_num;
  assert(_young_list_target_length <= _young_list_max_length, "post-condition");
}

1421
// Calculates survivor space parameters.
1422 1423 1424 1425 1426
void G1CollectorPolicy::update_survivors_policy() {
  double max_survivor_regions_d =
                 (double) _young_list_target_length / (double) SurvivorRatio;
  // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
1427
  _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1428

1429
  _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1430 1431 1432
        HeapRegion::GrainWords * _max_survivor_regions);
}

1433 1434
bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
                                                     GCCause::Cause gc_cause) {
1435 1436
  bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  if (!during_cycle) {
1437 1438 1439 1440 1441
    ergo_verbose1(ErgoConcCycles,
                  "request concurrent cycle initiation",
                  ergo_format_reason("requested by GC cause")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1442 1443 1444
    set_initiate_conc_mark_if_possible();
    return true;
  } else {
1445 1446 1447 1448 1449
    ergo_verbose1(ErgoConcCycles,
                  "do not request concurrent cycle initiation",
                  ergo_format_reason("concurrent cycle already in progress")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1450 1451 1452 1453
    return false;
  }
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
void
G1CollectorPolicy::decide_on_conc_mark_initiation() {
  // We are about to decide on whether this pause will be an
  // initial-mark pause.

  // First, during_initial_mark_pause() should not be already set. We
  // will set it here if we have to. However, it should be cleared by
  // the end of the pause (it's only set for the duration of an
  // initial-mark pause).
  assert(!during_initial_mark_pause(), "pre-condition");

  if (initiate_conc_mark_if_possible()) {
    // We had noticed on a previous pause that the heap occupancy has
    // gone over the initiating threshold and we should start a
    // concurrent marking cycle. So we might initiate one.

    bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
    if (!during_cycle) {
      // The concurrent marking thread is not "during a cycle", i.e.,
      // it has completed the last one. So we can go ahead and
      // initiate a new cycle.

      set_during_initial_mark_pause();
1477 1478 1479 1480 1481
      // We do not allow mixed GCs during marking.
      if (!gcs_are_young()) {
        set_gcs_are_young(true);
        ergo_verbose0(ErgoMixedGCs,
                      "end mixed GCs",
1482 1483
                      ergo_format_reason("concurrent cycle is about to start"));
      }
1484 1485 1486 1487

      // And we can now clear initiate_conc_mark_if_possible() as
      // we've already acted on it.
      clear_initiate_conc_mark_if_possible();
1488 1489 1490 1491

      ergo_verbose0(ErgoConcCycles,
                  "initiate concurrent cycle",
                  ergo_format_reason("concurrent cycle initiation requested"));
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
    } else {
      // The concurrent marking thread is still finishing up the
      // previous cycle. If we start one right now the two cycles
      // overlap. In particular, the concurrent marking thread might
      // be in the process of clearing the next marking bitmap (which
      // we will use for the next cycle if we start one). Starting a
      // cycle now will be bad given that parts of the marking
      // information might get cleared by the marking thread. And we
      // cannot wait for the marking thread to finish the cycle as it
      // periodically yields while clearing the next marking bitmap
      // and, if it's in a yield point, it's waiting for us to
      // finish. So, at this point we will not start a cycle and we'll
      // let the concurrent marking thread complete the last one.
1505 1506 1507
      ergo_verbose0(ErgoConcCycles,
                    "do not initiate concurrent cycle",
                    ergo_format_reason("concurrent cycle already in progress"));
1508 1509 1510 1511
    }
  }
}

1512
class KnownGarbageClosure: public HeapRegionClosure {
1513
  G1CollectedHeap* _g1h;
1514 1515 1516 1517
  CollectionSetChooser* _hrSorted;

public:
  KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1518
    _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1519 1520 1521 1522 1523 1524 1525 1526

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.

    // Do we have any marking information for this region?
    if (r->is_marked()) {
1527 1528 1529
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1530 1531
      if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _hrSorted->add_region(r);
1532 1533 1534 1535 1536 1537 1538
      }
    }
    return false;
  }
};

class ParKnownGarbageHRClosure: public HeapRegionClosure {
1539
  G1CollectedHeap* _g1h;
1540
  CSetChooserParUpdater _cset_updater;
1541 1542 1543

public:
  ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1544
                           uint chunk_size) :
1545 1546
    _g1h(G1CollectedHeap::heap()),
    _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1547 1548 1549 1550

  bool doHeapRegion(HeapRegion* r) {
    // Do we have any marking information for this region?
    if (r->is_marked()) {
1551 1552 1553
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1554 1555
      if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _cset_updater.add_region(r);
1556 1557 1558 1559 1560 1561 1562 1563
      }
    }
    return false;
  }
};

class ParKnownGarbageTask: public AbstractGangTask {
  CollectionSetChooser* _hrSorted;
1564
  uint _chunk_size;
1565 1566
  G1CollectedHeap* _g1;
public:
1567
  ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1568 1569
    AbstractGangTask("ParKnownGarbageTask"),
    _hrSorted(hrSorted), _chunk_size(chunk_size),
1570
    _g1(G1CollectedHeap::heap()) { }
1571

1572
  void work(uint worker_id) {
1573 1574
    ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);

1575
    // Back to zero for the claim value.
1576
    _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1577
                                         _g1->workers()->active_workers(),
1578
                                         HeapRegion::InitialClaimValue);
1579 1580 1581 1582
  }
};

void
1583
G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1584
  _collectionSetChooser->clear();
1585

1586
  uint region_num = _g1->n_regions();
1587
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1588 1589
    const uint OverpartitionFactor = 4;
    uint WorkUnit;
1590 1591 1592 1593 1594
    // The use of MinChunkSize = 8 in the original code
    // causes some assertion failures when the total number of
    // region is less than 8.  The code here tries to fix that.
    // Should the original code also be fixed?
    if (no_of_gc_threads > 0) {
1595 1596 1597
      const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
      WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
                      MinWorkUnit);
1598 1599 1600 1601
    } else {
      assert(no_of_gc_threads > 0,
        "The active gc workers should be greater than 0");
      // In a product build do something reasonable to avoid a crash.
1602
      const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1603
      WorkUnit =
1604
        MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1605 1606
             MinWorkUnit);
    }
1607 1608
    _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
                                                           WorkUnit);
1609
    ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1610
                                            (int) WorkUnit);
1611
    _g1->workers()->run_task(&parKnownGarbageTask);
1612 1613 1614

    assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
1615 1616 1617 1618
  } else {
    KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
    _g1->heap_region_iterate(&knownGarbagecl);
  }
1619

1620
  _collectionSetChooser->sort_regions();
1621

1622
  double end_sec = os::elapsedTime();
1623 1624 1625 1626 1627
  double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;
  _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1628 1629
}

1630
// Add the heap region at the head of the non-incremental collection set
1631
void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1632 1633 1634 1635
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(!hr->is_young(), "non-incremental add of young region");

  assert(!hr->in_collection_set(), "should not already be in the CSet");
1636 1637 1638 1639
  hr->set_in_collection_set(true);
  hr->set_next_in_collection_set(_collection_set);
  _collection_set = hr;
  _collection_set_bytes_used_before += hr->used();
1640
  _g1->register_region_with_in_cset_fast_test(hr);
1641 1642 1643
  size_t rs_length = hr->rem_set()->occupied();
  _recorded_rs_lengths += rs_length;
  _old_cset_region_length += 1;
1644 1645
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
// Initialize the per-collection-set information
void G1CollectorPolicy::start_incremental_cset_building() {
  assert(_inc_cset_build_state == Inactive, "Precondition");

  _inc_cset_head = NULL;
  _inc_cset_tail = NULL;
  _inc_cset_bytes_used_before = 0;

  _inc_cset_max_finger = 0;
  _inc_cset_recorded_rs_lengths = 0;
1656 1657 1658
  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms = 0.0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1659 1660 1661
  _inc_cset_build_state = Active;
}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
void G1CollectorPolicy::finalize_incremental_cset_building() {
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");

  // The two "main" fields, _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  // that adds a new region to the CSet. Further updates by the
  // concurrent refinement thread that samples the young RSet lengths
  // are accumulated in the *_diffs fields. Here we add the diffs to
  // the "main" fields.

  if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
    _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  } else {
    // This is defensive. The diff should in theory be always positive
    // as RSets can only grow between GCs. However, given that we
    // sample their size concurrently with other threads updating them
    // it's possible that we might get the wrong size back, which
    // could make the calculations somewhat inaccurate.
    size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
    if (_inc_cset_recorded_rs_lengths >= diffs) {
      _inc_cset_recorded_rs_lengths -= diffs;
    } else {
      _inc_cset_recorded_rs_lengths = 0;
    }
  }
  _inc_cset_predicted_elapsed_time_ms +=
                                     _inc_cset_predicted_elapsed_time_ms_diffs;

  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  // This routine is used when:
  // * adding survivor regions to the incremental cset at the end of an
  //   evacuation pause,
  // * adding the current allocation region to the incremental cset
  //   when it is retired, and
  // * updating existing policy information for a region in the
  //   incremental cset via young list RSet sampling.
  // Therefore this routine may be called at a safepoint by the
  // VM thread, or in-between safepoints by mutator threads (when
  // retiring the current allocation region) or a concurrent
  // refine thread (RSet sampling).

1708
  double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
  size_t used_bytes = hr->used();
  _inc_cset_recorded_rs_lengths += rs_length;
  _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  _inc_cset_bytes_used_before += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_recorded_rs_length(rs_length);
  hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
}

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
                                                     size_t new_rs_length) {
  // Update the CSet information that is dependent on the new RS length
  assert(hr->is_young(), "Precondition");
  assert(!SafepointSynchronize::is_at_safepoint(),
                                               "should not be at a safepoint");

  // We could have updated _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  // that atomically, as this code is executed by a concurrent
  // refinement thread, potentially concurrently with a mutator thread
  // allocating a new region and also updating the same fields. To
  // avoid the atomic operations we accumulate these updates on two
  // separate fields (*_diffs) and we'll just add them to the "main"
  // fields at the start of a GC.

  ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1741 1742

  double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1743
  double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1744 1745
  double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1746

1747 1748
  hr->set_recorded_rs_length(new_rs_length);
  hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1749 1750 1751
}

void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1752 1753
  assert(hr->is_young(), "invariant");
  assert(hr->young_index_in_cset() > -1, "should have already been set");
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
  assert(_inc_cset_build_state == Active, "Precondition");

  // We need to clear and set the cached recorded/cached collection set
  // information in the heap region here (before the region gets added
  // to the collection set). An individual heap region's cached values
  // are calculated, aggregated with the policy collection set info,
  // and cached in the heap region here (initially) and (subsequently)
  // by the Young List sampling code.

  size_t rs_length = hr->rem_set()->occupied();
  add_to_incremental_cset_info(hr, rs_length);

  HeapWord* hr_end = hr->end();
  _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);

  assert(!hr->in_collection_set(), "invariant");
  hr->set_in_collection_set(true);
  assert( hr->next_in_collection_set() == NULL, "invariant");

  _g1->register_region_with_in_cset_fast_test(hr);
}

// Add the region at the RHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  // We should only ever be appending survivors at the end of a pause
  assert( hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Now add the region at the right hand side
  if (_inc_cset_tail == NULL) {
    assert(_inc_cset_head == NULL, "invariant");
    _inc_cset_head = hr;
  } else {
    _inc_cset_tail->set_next_in_collection_set(hr);
  }
  _inc_cset_tail = hr;
}

// Add the region to the LHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  // Survivors should be added to the RHS at the end of a pause
  assert(!hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Add the region at the left hand side
  hr->set_next_in_collection_set(_inc_cset_head);
  if (_inc_cset_head == NULL) {
    assert(_inc_cset_tail == NULL, "Invariant");
    _inc_cset_tail = hr;
  }
  _inc_cset_head = hr;
}

#ifndef PRODUCT
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");

  st->print_cr("\nCollection_set:");
  HeapRegion* csr = list_head;
  while (csr != NULL) {
    HeapRegion* next = csr->next_in_collection_set();
    assert(csr->in_collection_set(), "bad CS");
1820 1821 1822 1823
    st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                 HR_FORMAT_PARAMS(csr),
                 csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
                 csr->age_in_surv_rate_group_cond());
1824 1825 1826 1827 1828
    csr = next;
  }
}
#endif // !PRODUCT

1829 1830 1831 1832 1833 1834 1835 1836
double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
  // Returns the given amount of reclaimable bytes (that represents
  // the amount of reclaimable space still to be collected) as a
  // percentage of the current heap capacity.
  size_t capacity_bytes = _g1->capacity();
  return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
}

1837 1838 1839
bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
                                                const char* false_action_str) {
  CollectionSetChooser* cset_chooser = _collectionSetChooser;
1840
  if (cset_chooser->is_empty()) {
1841 1842 1843 1844 1845
    ergo_verbose0(ErgoMixedGCs,
                  false_action_str,
                  ergo_format_reason("candidate old regions not available"));
    return false;
  }
1846 1847

  // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1848
  size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1849
  double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1850
  double threshold = (double) G1HeapWastePercent;
1851
  if (reclaimable_perc <= threshold) {
1852 1853
    ergo_verbose4(ErgoMixedGCs,
              false_action_str,
1854
              ergo_format_reason("reclaimable percentage not over threshold")
1855 1856 1857
              ergo_format_region("candidate old regions")
              ergo_format_byte_perc("reclaimable")
              ergo_format_perc("threshold"),
1858
              cset_chooser->remaining_regions(),
1859 1860
              reclaimable_bytes,
              reclaimable_perc, threshold);
1861 1862 1863 1864 1865 1866 1867 1868 1869
    return false;
  }

  ergo_verbose4(ErgoMixedGCs,
                true_action_str,
                ergo_format_reason("candidate old regions available")
                ergo_format_region("candidate old regions")
                ergo_format_byte_perc("reclaimable")
                ergo_format_perc("threshold"),
1870
                cset_chooser->remaining_regions(),
1871 1872
                reclaimable_bytes,
                reclaimable_perc, threshold);
1873 1874 1875
  return true;
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
uint G1CollectorPolicy::calc_min_old_cset_length() {
  // The min old CSet region bound is based on the maximum desired
  // number of mixed GCs after a cycle. I.e., even if some old regions
  // look expensive, we should add them to the CSet anyway to make
  // sure we go through the available old regions in no more than the
  // maximum desired number of mixed GCs.
  //
  // The calculation is based on the number of marked regions we added
  // to the CSet chooser in the first place, not how many remain, so
  // that the result is the same during all mixed GCs that follow a cycle.

  const size_t region_num = (size_t) _collectionSetChooser->length();
  const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
  size_t result = region_num / gc_num;
  // emulate ceiling
  if (result * gc_num < region_num) {
    result += 1;
  }
  return (uint) result;
}

uint G1CollectorPolicy::calc_max_old_cset_length() {
  // The max old CSet region bound is based on the threshold expressed
  // as a percentage of the heap size. I.e., it should bound the
  // number of old regions added to the CSet irrespective of how many
  // of them are available.

  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  const size_t region_num = g1h->n_regions();
  const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
  size_t result = region_num * perc / 100;
  // emulate ceiling
  if (100 * result < region_num * perc) {
    result += 1;
  }
  return (uint) result;
}


S
sla 已提交
1915
void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1916
  double young_start_time_sec = os::elapsedTime();
1917

1918
  YoungList* young_list = _g1->young_list();
1919
  finalize_incremental_cset_building();
1920

1921 1922 1923 1924
  guarantee(target_pause_time_ms > 0.0,
            err_msg("target_pause_time_ms = %1.6lf should be positive",
                    target_pause_time_ms));
  guarantee(_collection_set == NULL, "Precondition");
1925 1926 1927

  double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  double predicted_pause_time_ms = base_time_ms;
1928
  double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1929

1930
  ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1931
                "start choosing CSet",
1932
                ergo_format_size("_pending_cards")
1933 1934 1935
                ergo_format_ms("predicted base time")
                ergo_format_ms("remaining time")
                ergo_format_ms("target pause time"),
1936
                _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1937

1938
  _last_gc_was_young = gcs_are_young() ? true : false;
1939

1940
  if (_last_gc_was_young) {
1941
    _trace_gen0_time_data.increment_young_collection_count();
1942
  } else {
1943
    _trace_gen0_time_data.increment_mixed_collection_count();
1944
  }
1945

1946 1947 1948
  // The young list is laid with the survivor regions from the previous
  // pause are appended to the RHS of the young list, i.e.
  //   [Newly Young Regions ++ Survivors from last pause].
1949

1950 1951
  uint survivor_region_length = young_list->survivor_length();
  uint eden_region_length = young_list->length() - survivor_region_length;
1952
  init_cset_region_lengths(eden_region_length, survivor_region_length);
1953 1954

  HeapRegion* hr = young_list->first_survivor_region();
1955 1956 1957 1958 1959
  while (hr != NULL) {
    assert(hr->is_survivor(), "badly formed young list");
    hr->set_young();
    hr = hr->get_next_young_region();
  }
1960

1961 1962
  // Clear the fields that point to the survivor list - they are all young now.
  young_list->clear_survivors();
1963

1964 1965
  _collection_set = _inc_cset_head;
  _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1966
  time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1967
  predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1968

1969 1970 1971 1972 1973
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "add young regions to CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_ms("predicted young region time"),
1974
                eden_region_length, survivor_region_length,
1975 1976
                _inc_cset_predicted_elapsed_time_ms);

1977 1978 1979
  // The number of recorded young regions is the incremental
  // collection set's current size
  set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1980

1981
  double young_end_time_sec = os::elapsedTime();
1982
  phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1983

1984 1985
  // Set the start of the non-young choice time.
  double non_young_start_time_sec = young_end_time_sec;
1986

1987
  if (!gcs_are_young()) {
1988
    CollectionSetChooser* cset_chooser = _collectionSetChooser;
1989
    cset_chooser->verify();
1990 1991
    const uint min_old_cset_length = calc_min_old_cset_length();
    const uint max_old_cset_length = calc_max_old_cset_length();
1992

1993
    uint expensive_region_num = 0;
1994
    bool check_time_remaining = adaptive_young_list_length();
1995

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
    HeapRegion* hr = cset_chooser->peek();
    while (hr != NULL) {
      if (old_cset_region_length() >= max_old_cset_length) {
        // Added maximum number of old regions to the CSet.
        ergo_verbose2(ErgoCSetConstruction,
                      "finish adding old regions to CSet",
                      ergo_format_reason("old CSet region num reached max")
                      ergo_format_region("old")
                      ergo_format_region("max"),
                      old_cset_region_length(), max_old_cset_length);
        break;
2007
      }
2008

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

      // Stop adding regions if the remaining reclaimable space is
      // not above G1HeapWastePercent.
      size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
      double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
      double threshold = (double) G1HeapWastePercent;
      if (reclaimable_perc <= threshold) {
        // We've added enough old regions that the amount of uncollected
        // reclaimable space is at or below the waste threshold. Stop
        // adding old regions to the CSet.
        ergo_verbose5(ErgoCSetConstruction,
                      "finish adding old regions to CSet",
                      ergo_format_reason("reclaimable percentage not over threshold")
                      ergo_format_region("old")
                      ergo_format_region("max")
                      ergo_format_byte_perc("reclaimable")
                      ergo_format_perc("threshold"),
                      old_cset_region_length(),
                      max_old_cset_length,
                      reclaimable_bytes,
                      reclaimable_perc, threshold);
        break;
      }

2033
      double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
      if (check_time_remaining) {
        if (predicted_time_ms > time_remaining_ms) {
          // Too expensive for the current CSet.

          if (old_cset_region_length() >= min_old_cset_length) {
            // We have added the minimum number of old regions to the CSet,
            // we are done with this CSet.
            ergo_verbose4(ErgoCSetConstruction,
                          "finish adding old regions to CSet",
                          ergo_format_reason("predicted time is too high")
                          ergo_format_ms("predicted time")
                          ergo_format_ms("remaining time")
                          ergo_format_region("old")
                          ergo_format_region("min"),
                          predicted_time_ms, time_remaining_ms,
                          old_cset_region_length(), min_old_cset_length);
            break;
2051
          }
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067

          // We'll add it anyway given that we haven't reached the
          // minimum number of old regions.
          expensive_region_num += 1;
        }
      } else {
        if (old_cset_region_length() >= min_old_cset_length) {
          // In the non-auto-tuning case, we'll finish adding regions
          // to the CSet if we reach the minimum.
          ergo_verbose2(ErgoCSetConstruction,
                        "finish adding old regions to CSet",
                        ergo_format_reason("old CSet region num reached min")
                        ergo_format_region("old")
                        ergo_format_region("min"),
                        old_cset_region_length(), min_old_cset_length);
          break;
2068 2069
        }
      }
2070 2071

      // We will add this region to the CSet.
2072
      time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
      predicted_pause_time_ms += predicted_time_ms;
      cset_chooser->remove_and_move_to_next(hr);
      _g1->old_set_remove(hr);
      add_old_region_to_cset(hr);

      hr = cset_chooser->peek();
    }
    if (hr == NULL) {
      ergo_verbose0(ErgoCSetConstruction,
                    "finish adding old regions to CSet",
                    ergo_format_reason("candidate old regions not available"));
    }

    if (expensive_region_num > 0) {
      // We print the information once here at the end, predicated on
      // whether we added any apparently expensive regions or not, to
      // avoid generating output per region.
      ergo_verbose4(ErgoCSetConstruction,
                    "added expensive regions to CSet",
                    ergo_format_reason("old CSet region num not reached min")
                    ergo_format_region("old")
                    ergo_format_region("expensive")
                    ergo_format_region("min")
                    ergo_format_ms("remaining time"),
                    old_cset_region_length(),
                    expensive_region_num,
                    min_old_cset_length,
                    time_remaining_ms);
2101 2102
    }

2103
    cset_chooser->verify();
2104 2105
  }

2106 2107
  stop_incremental_cset_building();

2108 2109 2110 2111 2112 2113 2114
  ergo_verbose5(ErgoCSetConstruction,
                "finish choosing CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_region("old")
                ergo_format_ms("predicted pause time")
                ergo_format_ms("target pause time"),
2115 2116
                eden_region_length, survivor_region_length,
                old_cset_region_length(),
2117 2118
                predicted_pause_time_ms, target_pause_time_ms);

2119
  double non_young_end_time_sec = os::elapsedTime();
2120
  phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
S
sla 已提交
2121
  evacuation_info.set_collectionset_regions(cset_region_length());
2122
}
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  if(TraceGen0Time) {
    _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  }
}

void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  if(TraceGen0Time) {
    _all_yield_times_ms.add(yield_time_ms);
  }
}

2136
void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2137
  if(TraceGen0Time) {
2138 2139
    _total.add(pause_time_ms);
    _other.add(pause_time_ms - phase_times->accounted_time_ms());
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
    _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
    _parallel.add(phase_times->cur_collection_par_time_ms());
    _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
    _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
    _update_rs.add(phase_times->average_last_update_rs_time());
    _scan_rs.add(phase_times->average_last_scan_rs_time());
    _obj_copy.add(phase_times->average_last_obj_copy_time());
    _termination.add(phase_times->average_last_termination_time());

    double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
      phase_times->average_last_satb_filtering_times_ms() +
      phase_times->average_last_update_rs_time() +
      phase_times->average_last_scan_rs_time() +
      phase_times->average_last_obj_copy_time() +
      + phase_times->average_last_termination_time();

    double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2157
    _parallel_other.add(parallel_other_time);
2158
    _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
  }
}

void TraceGen0TimeData::increment_young_collection_count() {
  if(TraceGen0Time) {
    ++_young_pause_num;
  }
}

void TraceGen0TimeData::increment_mixed_collection_count() {
  if(TraceGen0Time) {
    ++_mixed_pause_num;
  }
}

2174
void TraceGen0TimeData::print_summary(const char* str,
2175 2176
                                      const NumberSeq* seq) const {
  double sum = seq->sum();
2177
  gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2178 2179 2180
                str, sum / 1000.0, seq->avg());
}

2181
void TraceGen0TimeData::print_summary_sd(const char* str,
2182
                                         const NumberSeq* seq) const {
2183 2184 2185
  print_summary(str, seq);
  gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
                "(num", seq->num(), seq->sd(), seq->maximum());
2186 2187 2188 2189 2190 2191 2192 2193
}

void TraceGen0TimeData::print() const {
  if (!TraceGen0Time) {
    return;
  }

  gclog_or_tty->print_cr("ALL PAUSES");
2194
  print_summary_sd("   Total", &_total);
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
  gclog_or_tty->print_cr("");
  gclog_or_tty->print_cr("");
  gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  gclog_or_tty->print_cr("");

  gclog_or_tty->print_cr("EVACUATION PAUSES");

  if (_young_pause_num == 0 && _mixed_pause_num == 0) {
    gclog_or_tty->print_cr("none");
  } else {
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
    print_summary_sd("   Evacuation Pauses", &_total);
    print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
    print_summary("      Parallel Time", &_parallel);
    print_summary("         Ext Root Scanning", &_ext_root_scan);
    print_summary("         SATB Filtering", &_satb_filtering);
    print_summary("         Update RS", &_update_rs);
    print_summary("         Scan RS", &_scan_rs);
    print_summary("         Object Copy", &_obj_copy);
    print_summary("         Termination", &_termination);
    print_summary("         Parallel Other", &_parallel_other);
    print_summary("      Clear CT", &_clear_ct);
    print_summary("      Other", &_other);
2218 2219 2220 2221
  }
  gclog_or_tty->print_cr("");

  gclog_or_tty->print_cr("MISC");
2222 2223
  print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  print_summary_sd("   Yields", &_all_yield_times_ms);
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
}

void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  if (TraceGen1Time) {
    _all_full_gc_times.add(full_gc_time_ms);
  }
}

void TraceGen1TimeData::print() const {
  if (!TraceGen1Time) {
    return;
  }

  if (_all_full_gc_times.num() > 0) {
    gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
      _all_full_gc_times.num(),
      _all_full_gc_times.sum() / 1000.0);
    gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
    gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
      _all_full_gc_times.sd(),
      _all_full_gc_times.maximum());
  }
}