g1CollectorPolicy.cpp 82.8 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
33
#include "gc_implementation/g1/g1Log.hpp"
34 35 36 37 38 39
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "runtime/arguments.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/debug.hpp"
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

// Different defaults for different number of GC threads
// They were chosen by running GCOld and SPECjbb on debris with different
//   numbers of GC threads and choosing them based on the results

// all the same
static double rs_length_diff_defaults[] = {
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

static double cost_per_card_ms_defaults[] = {
  0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
};

// all the same
55
static double young_cards_per_entry_ratio_defaults[] = {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

static double cost_per_entry_ms_defaults[] = {
  0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
};

static double cost_per_byte_ms_defaults[] = {
  0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
};

// these should be pretty consistent
static double constant_other_time_ms_defaults[] = {
  5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
};


static double young_other_cost_per_region_ms_defaults[] = {
  0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
};

static double non_young_other_cost_per_region_ms_defaults[] = {
  1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
};

G1CollectorPolicy::G1CollectorPolicy() :
82
  _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
83
                        ? ParallelGCThreads : 1),
84

85 86 87 88 89 90 91 92 93 94
  _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _stop_world_start(0.0),

  _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _prev_collection_pause_end_ms(0.0),
  _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
95 96
  _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
97
  _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
98
  _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
99 100 101 102 103 104 105 106 107 108
  _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
  _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _non_young_other_cost_per_region_ms_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),

  _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),

J
johnc 已提交
109
  _pause_time_target_ms((double) MaxGCPauseMillis),
110

111
  _gcs_are_young(true),
112 113 114 115 116

  _during_marking(false),
  _in_marking_window(false),
  _in_marking_window_im(false),

117 118
  _recent_prev_end_times_for_all_gcs_sec(
                                new TruncatedSeq(NumPrevPausesForHeuristics)),
119 120 121

  _recent_avg_pause_time_ratio(0.0),

122 123
  _initiate_conc_mark_if_possible(false),
  _during_initial_mark_pause(false),
124 125
  _last_young_gc(false),
  _last_gc_was_young(false),
126

127 128 129 130
  _eden_bytes_before_gc(0),
  _survivor_bytes_before_gc(0),
  _capacity_before_gc(0),

131 132 133 134
  _eden_cset_region_length(0),
  _survivor_cset_region_length(0),
  _old_cset_region_length(0),

135
  _collection_set(NULL),
136 137 138 139 140 141 142 143 144
  _collection_set_bytes_used_before(0),

  // Incremental CSet attributes
  _inc_cset_build_state(Inactive),
  _inc_cset_head(NULL),
  _inc_cset_tail(NULL),
  _inc_cset_bytes_used_before(0),
  _inc_cset_max_finger(NULL),
  _inc_cset_recorded_rs_lengths(0),
145
  _inc_cset_recorded_rs_lengths_diffs(0),
146
  _inc_cset_predicted_elapsed_time_ms(0.0),
147
  _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
148

149 150 151 152 153 154 155
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

  _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
                                                 G1YoungSurvRateNumRegionsSummary)),
  _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
156
                                              G1YoungSurvRateNumRegionsSummary)),
157
  // add here any more surv rate groups
158 159 160
  _recorded_survivor_regions(0),
  _recorded_survivor_head(NULL),
  _recorded_survivor_tail(NULL),
T
tonyp 已提交
161 162
  _survivors_age_table(true),

163
  _gc_overhead_perc(0.0) {
164

165 166 167 168
  // Set up the region size and associated fields. Given that the
  // policy is created before the heap, we have to set this up here,
  // so it's done as soon as possible.
  HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
169
  HeapRegionRemSet::setup_remset_size();
170

171 172 173 174 175 176 177 178 179 180 181 182
  G1ErgoVerbose::initialize();
  if (PrintAdaptiveSizePolicy) {
    // Currently, we only use a single switch for all the heuristics.
    G1ErgoVerbose::set_enabled(true);
    // Given that we don't currently have a verboseness level
    // parameter, we'll hardcode this to high. This can be easily
    // changed in the future.
    G1ErgoVerbose::set_level(ErgoHigh);
  } else {
    G1ErgoVerbose::set_enabled(false);
  }

183
  // Verify PLAB sizes
184
  const size_t region_size = HeapRegion::GrainWords;
185 186
  if (YoungPLABSize > region_size || OldPLABSize > region_size) {
    char buffer[128];
187
    jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
188 189 190 191
                 OldPLABSize > region_size ? "Old" : "Young", region_size);
    vm_exit_during_initialization(buffer);
  }

192 193 194
  _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
  _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;

195
  _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
196

197
  int index = MIN2(_parallel_gc_threads - 1, 7);
198 199 200

  _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
  _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
201 202
  _young_cards_per_entry_ratio_seq->add(
                                  young_cards_per_entry_ratio_defaults[index]);
203 204 205 206 207 208 209 210
  _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
  _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
  _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
  _young_other_cost_per_region_ms_seq->add(
                               young_other_cost_per_region_ms_defaults[index]);
  _non_young_other_cost_per_region_ms_seq->add(
                           non_young_other_cost_per_region_ms_defaults[index]);

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  // Below, we might need to calculate the pause time target based on
  // the pause interval. When we do so we are going to give G1 maximum
  // flexibility and allow it to do pauses when it needs to. So, we'll
  // arrange that the pause interval to be pause time target + 1 to
  // ensure that a) the pause time target is maximized with respect to
  // the pause interval and b) we maintain the invariant that pause
  // time target < pause interval. If the user does not want this
  // maximum flexibility, they will have to set the pause interval
  // explicitly.

  // First make sure that, if either parameter is set, its value is
  // reasonable.
  if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (MaxGCPauseMillis < 1) {
      vm_exit_during_initialization("MaxGCPauseMillis should be "
                                    "greater than 0");
    }
  }
  if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    if (GCPauseIntervalMillis < 1) {
      vm_exit_during_initialization("GCPauseIntervalMillis should be "
                                    "greater than 0");
    }
  }

  // Then, if the pause time target parameter was not set, set it to
  // the default value.
  if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
      // The default pause time target in G1 is 200ms
      FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
    } else {
      // We do not allow the pause interval to be set without the
      // pause time target
      vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
                                    "without setting MaxGCPauseMillis");
    }
  }

  // Then, if the interval parameter was not set, set it according to
  // the pause time target (this will also deal with the case when the
  // pause time target is the default value).
  if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
  }

  // Finally, make sure that the two parameters are consistent.
  if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
    char buffer[256];
    jio_snprintf(buffer, 256,
                 "MaxGCPauseMillis (%u) should be less than "
                 "GCPauseIntervalMillis (%u)",
                 MaxGCPauseMillis, GCPauseIntervalMillis);
    vm_exit_during_initialization(buffer);
  }

J
johnc 已提交
267
  double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
268
  double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
269
  _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
J
johnc 已提交
270
  _sigma = (double) G1ConfidencePercent / 100.0;
271 272 273 274 275

  // start conservatively (around 50ms is about right)
  _concurrent_mark_remark_times_ms->add(0.05);
  _concurrent_mark_cleanup_times_ms->add(0.20);
  _tenuring_threshold = MaxTenuringThreshold;
276
  // _max_survivor_regions will be calculated by
277
  // update_young_list_target_length() during initialization.
278
  _max_survivor_regions = 0;
279

T
tonyp 已提交
280 281 282 283 284
  assert(GCTimeRatio > 0,
         "we should have set it to a default value set_g1_gc_flags() "
         "if a user set it to 0");
  _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));

285 286 287 288 289 290 291 292
  uintx reserve_perc = G1ReservePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (reserve_perc > 50) {
    reserve_perc = 50;
    warning("G1ReservePercent is set to a value that is too large, "
            "it's been updated to %u", reserve_perc);
  }
  _reserve_factor = (double) reserve_perc / 100.0;
293
  // This will be set when the heap is expanded
294 295 296
  // for the first time during initialization.
  _reserve_regions = 0;

297
  initialize_all();
298
  _collectionSetChooser = new CollectionSetChooser();
299
  _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
300 301 302 303 304
}

void G1CollectorPolicy::initialize_flags() {
  set_min_alignment(HeapRegion::GrainBytes);
  set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
305 306 307
  if (SurvivorRatio < 1) {
    vm_exit_during_initialization("Invalid survivor ratio specified");
  }
308 309 310
  CollectorPolicy::initialize_flags();
}

311 312 313 314
G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
  assert(G1DefaultMinNewGenPercent <= G1DefaultMaxNewGenPercent, "Min larger than max");
  assert(G1DefaultMinNewGenPercent > 0 && G1DefaultMinNewGenPercent < 100, "Min out of bounds");
  assert(G1DefaultMaxNewGenPercent > 0 && G1DefaultMaxNewGenPercent < 100, "Max out of bounds");
315

316 317 318 319 320 321 322 323
  if (FLAG_IS_CMDLINE(NewRatio)) {
    if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
      warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
    } else {
      _sizer_kind = SizerNewRatio;
      _adaptive_size = false;
      return;
    }
324
  }
325 326

  if (FLAG_IS_CMDLINE(NewSize)) {
327 328
    _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
                                     1U);
329
    if (FLAG_IS_CMDLINE(MaxNewSize)) {
330 331 332
      _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
333 334 335 336 337 338
      _sizer_kind = SizerMaxAndNewSize;
      _adaptive_size = _min_desired_young_length == _max_desired_young_length;
    } else {
      _sizer_kind = SizerNewSizeOnly;
    }
  } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
339 340 341
    _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
342
    _sizer_kind = SizerMaxNewSizeOnly;
343
  }
344 345
}

346 347 348
uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
  uint default_value = (new_number_of_heap_regions * G1DefaultMinNewGenPercent) / 100;
  return MAX2(1U, default_value);
349 350
}

351 352 353
uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
  uint default_value = (new_number_of_heap_regions * G1DefaultMaxNewGenPercent) / 100;
  return MAX2(1U, default_value);
354 355
}

356
void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
  assert(new_number_of_heap_regions > 0, "Heap must be initialized");

  switch (_sizer_kind) {
    case SizerDefaults:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      break;
    case SizerNewSizeOnly:
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxNewSizeOnly:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxAndNewSize:
      // Do nothing. Values set on the command line, don't update them at runtime.
      break;
    case SizerNewRatio:
      _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
      _max_desired_young_length = _min_desired_young_length;
      break;
    default:
      ShouldNotReachHere();
381 382
  }

383
  assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
384 385
}

386 387 388 389 390 391
void G1CollectorPolicy::init() {
  // Set aside an initial future to_space.
  _g1 = G1CollectedHeap::heap();

  assert(Heap_lock->owned_by_self(), "Locking discipline.");

392 393
  initialize_gc_policy_counters();

394
  if (adaptive_young_list_length()) {
395
    _young_list_fixed_length = 0;
396
  } else {
397
    _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
398
  }
399
  _free_regions_at_end_of_collection = _g1->free_regions();
400
  update_young_list_target_length();
401
  _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
402 403 404 405

  // We may immediately start allocating regions and placing them on the
  // collection set list. Initialize the per-collection set info
  start_incremental_cset_building();
406 407
}

408
// Create the jstat counters for the policy.
409
void G1CollectorPolicy::initialize_gc_policy_counters() {
410
  _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
411 412
}

413
bool G1CollectorPolicy::predict_will_fit(uint young_length,
414
                                         double base_time_ms,
415
                                         uint base_free_regions,
416 417 418 419 420
                                         double target_pause_time_ms) {
  if (young_length >= base_free_regions) {
    // end condition 1: not enough space for the young regions
    return false;
  }
421

422
  double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
423 424 425 426 427 428 429 430 431
  size_t bytes_to_copy =
               (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
  double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
  double young_other_time_ms = predict_young_other_time_ms(young_length);
  double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
  if (pause_time_ms > target_pause_time_ms) {
    // end condition 2: prediction is over the target pause time
    return false;
  }
432

433
  size_t free_bytes =
434
                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
435 436 437
  if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
    // end condition 3: out-of-space (conservatively!)
    return false;
438
  }
439 440 441 442 443

  // success!
  return true;
}

444
void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
445 446
  // re-calculate the necessary reserve
  double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
447 448
  // We use ceiling so that if reserve_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
449
  _reserve_regions = (uint) ceil(reserve_regions_d);
450

451
  _young_gen_sizer->heap_size_changed(new_number_of_regions);
452 453
}

454 455 456
uint G1CollectorPolicy::calculate_young_list_desired_min_length(
                                                       uint base_min_length) {
  uint desired_min_length = 0;
457
  if (adaptive_young_list_length()) {
458 459 460 461
    if (_alloc_rate_ms_seq->num() > 3) {
      double now_sec = os::elapsedTime();
      double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
      double alloc_rate_ms = predict_alloc_rate_ms();
462
      desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
463 464
    } else {
      // otherwise we don't have enough info to make the prediction
465 466
    }
  }
467 468
  desired_min_length += base_min_length;
  // make sure we don't go below any user-defined minimum bound
469
  return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
470 471
}

472
uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
473 474 475
  // Here, we might want to also take into account any additional
  // constraints (i.e., user-defined minimum bound). Currently, we
  // effectively don't set this bound.
476
  return _young_gen_sizer->max_desired_young_length();
477
}
478

479 480 481 482 483 484
void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
  if (rs_lengths == (size_t) -1) {
    // if it's set to the default value (-1), we should predict it;
    // otherwise, use the given value.
    rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
  }
485

486
  // Calculate the absolute and desired min bounds.
487

488
  // This is how many young regions we already have (currently: the survivors).
489
  uint base_min_length = recorded_survivor_regions();
490 491
  // This is the absolute minimum young length, which ensures that we
  // can allocate one eden region in the worst-case.
492 493
  uint absolute_min_length = base_min_length + 1;
  uint desired_min_length =
494 495 496 497
                     calculate_young_list_desired_min_length(base_min_length);
  if (desired_min_length < absolute_min_length) {
    desired_min_length = absolute_min_length;
  }
498

499
  // Calculate the absolute and desired max bounds.
500

501
  // We will try our best not to "eat" into the reserve.
502
  uint absolute_max_length = 0;
503 504 505
  if (_free_regions_at_end_of_collection > _reserve_regions) {
    absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
  }
506
  uint desired_max_length = calculate_young_list_desired_max_length();
507 508 509
  if (desired_max_length > absolute_max_length) {
    desired_max_length = absolute_max_length;
  }
510

511
  uint young_list_target_length = 0;
512
  if (adaptive_young_list_length()) {
513
    if (gcs_are_young()) {
514 515 516 517 518 519 520 521 522 523 524 525
      young_list_target_length =
                        calculate_young_list_target_length(rs_lengths,
                                                           base_min_length,
                                                           desired_min_length,
                                                           desired_max_length);
      _rs_lengths_prediction = rs_lengths;
    } else {
      // Don't calculate anything and let the code below bound it to
      // the desired_min_length, i.e., do the next GC as soon as
      // possible to maximize how many old regions we can add to it.
    }
  } else {
526 527 528
    // The user asked for a fixed young gen so we'll fix the young gen
    // whether the next GC is young or mixed.
    young_list_target_length = _young_list_fixed_length;
529
  }
530

531 532 533 534 535 536 537 538 539
  // Make sure we don't go over the desired max length, nor under the
  // desired min length. In case they clash, desired_min_length wins
  // which is why that test is second.
  if (young_list_target_length > desired_max_length) {
    young_list_target_length = desired_max_length;
  }
  if (young_list_target_length < desired_min_length) {
    young_list_target_length = desired_min_length;
  }
540

541 542 543 544
  assert(young_list_target_length > recorded_survivor_regions(),
         "we should be able to allocate at least one eden region");
  assert(young_list_target_length >= absolute_min_length, "post-condition");
  _young_list_target_length = young_list_target_length;
545

546 547
  update_max_gc_locker_expansion();
}
548

549
uint
550
G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
551 552 553
                                                     uint base_min_length,
                                                     uint desired_min_length,
                                                     uint desired_max_length) {
554
  assert(adaptive_young_list_length(), "pre-condition");
555
  assert(gcs_are_young(), "only call this for young GCs");
556 557 558 559 560 561 562 563 564 565 566 567

  // In case some edge-condition makes the desired max length too small...
  if (desired_max_length <= desired_min_length) {
    return desired_min_length;
  }

  // We'll adjust min_young_length and max_young_length not to include
  // the already allocated young regions (i.e., so they reflect the
  // min and max eden regions we'll allocate). The base_min_length
  // will be reflected in the predictions by the
  // survivor_regions_evac_time prediction.
  assert(desired_min_length > base_min_length, "invariant");
568
  uint min_young_length = desired_min_length - base_min_length;
569
  assert(desired_max_length > base_min_length, "invariant");
570
  uint max_young_length = desired_max_length - base_min_length;
571 572 573 574 575 576 577 578 579

  double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
  double survivor_regions_evac_time = predict_survivor_regions_evac_time();
  size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
  size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
  size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
  double base_time_ms =
    predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
    survivor_regions_evac_time;
580 581
  uint available_free_regions = _free_regions_at_end_of_collection;
  uint base_free_regions = 0;
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
  if (available_free_regions > _reserve_regions) {
    base_free_regions = available_free_regions - _reserve_regions;
  }

  // Here, we will make sure that the shortest young length that
  // makes sense fits within the target pause time.

  if (predict_will_fit(min_young_length, base_time_ms,
                       base_free_regions, target_pause_time_ms)) {
    // The shortest young length will fit into the target pause time;
    // we'll now check whether the absolute maximum number of young
    // regions will fit in the target pause time. If not, we'll do
    // a binary search between min_young_length and max_young_length.
    if (predict_will_fit(max_young_length, base_time_ms,
                         base_free_regions, target_pause_time_ms)) {
      // The maximum young length will fit into the target pause time.
      // We are done so set min young length to the maximum length (as
      // the result is assumed to be returned in min_young_length).
      min_young_length = max_young_length;
    } else {
      // The maximum possible number of young regions will not fit within
      // the target pause time so we'll search for the optimal
      // length. The loop invariants are:
      //
      // min_young_length < max_young_length
      // min_young_length is known to fit into the target pause time
      // max_young_length is known not to fit into the target pause time
      //
      // Going into the loop we know the above hold as we've just
      // checked them. Every time around the loop we check whether
      // the middle value between min_young_length and
      // max_young_length fits into the target pause time. If it
      // does, it becomes the new min. If it doesn't, it becomes
      // the new max. This way we maintain the loop invariants.

      assert(min_young_length < max_young_length, "invariant");
618
      uint diff = (max_young_length - min_young_length) / 2;
619
      while (diff > 0) {
620
        uint young_length = min_young_length + diff;
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
        if (predict_will_fit(young_length, base_time_ms,
                             base_free_regions, target_pause_time_ms)) {
          min_young_length = young_length;
        } else {
          max_young_length = young_length;
        }
        assert(min_young_length <  max_young_length, "invariant");
        diff = (max_young_length - min_young_length) / 2;
      }
      // The results is min_young_length which, according to the
      // loop invariants, should fit within the target pause time.

      // These are the post-conditions of the binary search above:
      assert(min_young_length < max_young_length,
             "otherwise we should have discovered that max_young_length "
             "fits into the pause target and not done the binary search");
      assert(predict_will_fit(min_young_length, base_time_ms,
                              base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should "
             "fit into the pause target");
      assert(!predict_will_fit(min_young_length + 1, base_time_ms,
                               base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should be "
             "optimal, so no larger length should fit into the pause target");
    }
  } else {
    // Even the minimum length doesn't fit into the pause time
    // target, return it as the result nevertheless.
  }
  return base_min_length + min_young_length;
651 652
}

653 654 655 656 657
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
  double survivor_regions_evac_time = 0.0;
  for (HeapRegion * r = _recorded_survivor_head;
       r != NULL && r != _recorded_survivor_tail->get_next_young_region();
       r = r->get_next_young_region()) {
658
    survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
659 660 661 662
  }
  return survivor_regions_evac_time;
}

663
void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
664 665
  guarantee( adaptive_young_list_length(), "should not call this otherwise" );

666
  size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
667 668 669
  if (rs_lengths > _rs_lengths_prediction) {
    // add 10% to avoid having to recalculate often
    size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
670
    update_young_list_target_length(rs_lengths_prediction);
671 672 673
  }
}

674 675


676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
                                               bool is_tlab,
                                               bool* gc_overhead_limit_was_exceeded) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}

// This method controls how a collector handles one or more
// of its generations being fully allocated.
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
                                                       bool is_tlab) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}


#ifndef PRODUCT
bool G1CollectorPolicy::verify_young_ages() {
694
  HeapRegion* head = _g1->young_list()->first_region();
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
  return
    verify_young_ages(head, _short_lived_surv_rate_group);
  // also call verify_young_ages on any additional surv rate groups
}

bool
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
                                     SurvRateGroup *surv_rate_group) {
  guarantee( surv_rate_group != NULL, "pre-condition" );

  const char* name = surv_rate_group->name();
  bool ret = true;
  int prev_age = -1;

  for (HeapRegion* curr = head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    SurvRateGroup* group = curr->surv_rate_group();
    if (group == NULL && !curr->is_survivor()) {
      gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
      ret = false;
    }

    if (surv_rate_group == group) {
      int age = curr->age_in_surv_rate_group();

      if (age < 0) {
        gclog_or_tty->print_cr("## %s: encountered negative age", name);
        ret = false;
      }

      if (age <= prev_age) {
        gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
                               "(%d, %d)", name, age, prev_age);
        ret = false;
      }
      prev_age = age;
    }
  }

  return ret;
}
#endif // PRODUCT

void G1CollectorPolicy::record_full_collection_start() {
740
  _full_collection_start_sec = os::elapsedTime();
741 742 743 744 745 746 747 748
  // Release the future to-space so that it is available for compaction into.
  _g1->set_full_collection();
}

void G1CollectorPolicy::record_full_collection_end() {
  // Consider this like a collection pause for the purposes of allocation
  // since last pause.
  double end_sec = os::elapsedTime();
749
  double full_gc_time_sec = end_sec - _full_collection_start_sec;
750 751
  double full_gc_time_ms = full_gc_time_sec * 1000.0;

752
  _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
753

754
  update_recent_gc_times(end_sec, full_gc_time_ms);
755 756 757

  _g1->clear_full_collection();

758 759 760 761
  // "Nuke" the heuristics that control the young/mixed GC
  // transitions and make sure we start with young GCs after the Full GC.
  set_gcs_are_young(true);
  _last_young_gc = false;
762 763
  clear_initiate_conc_mark_if_possible();
  clear_during_initial_mark_pause();
764 765 766 767 768 769
  _in_marking_window = false;
  _in_marking_window_im = false;

  _short_lived_surv_rate_group->start_adding_regions();
  // also call this on any additional surv rate groups

770 771
  record_survivor_regions(0, NULL, NULL);

772
  _free_regions_at_end_of_collection = _g1->free_regions();
773 774
  // Reset survivors SurvRateGroup.
  _survivor_surv_rate_group->reset();
775
  update_young_list_target_length();
776
  _collectionSetChooser->clear();
777
}
778 779 780 781 782 783 784

void G1CollectorPolicy::record_stop_world_start() {
  _stop_world_start = os::elapsedTime();
}

void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
                                                      size_t start_used) {
785 786 787 788
  // We only need to do this here as the policy will only be applied
  // to the GC we're about to start. so, no point is calculating this
  // every time we calculate / recalculate the target young length.
  update_survivors_policy();
789

790 791 792
  assert(_g1->used() == _g1->recalculate_used(),
         err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
                 _g1->used(), _g1->recalculate_used()));
793 794

  double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
795
  _trace_gen0_time_data.record_start_collection(s_w_t_ms);
796 797
  _stop_world_start = 0.0;

798
  phase_times()->_cur_collection_start_sec = start_time_sec;
799 800 801 802
  _cur_collection_pause_used_at_start_bytes = start_used;
  _cur_collection_pause_used_regions_at_start = _g1->used_regions();
  _pending_cards = _g1->pending_card_num();

803
  _collection_set_bytes_used_before = 0;
804
  _bytes_copied_during_gc = 0;
805

806 807 808 809 810
  YoungList* young_list = _g1->young_list();
  _eden_bytes_before_gc = young_list->eden_used_bytes();
  _survivor_bytes_before_gc = young_list->survivor_used_bytes();
  _capacity_before_gc = _g1->capacity();

811
  _last_gc_was_young = false;
812 813 814

  // do that for any other surv rate groups
  _short_lived_surv_rate_group->stop_adding_regions();
815
  _survivors_age_table.clear();
816

817 818 819
  assert( verify_young_ages(), "region age verification" );
}

820
void G1CollectorPolicy::record_concurrent_mark_init_end(double
821 822
                                                   mark_init_elapsed_time_ms) {
  _during_marking = true;
823 824
  assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
  clear_during_initial_mark_pause();
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
  _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_remark_start() {
  _mark_remark_start_sec = os::elapsedTime();
  _during_marking = false;
}

void G1CollectorPolicy::record_concurrent_mark_remark_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
  _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  _mark_cleanup_start_sec = os::elapsedTime();
}

847
void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
848
  _last_young_gc = true;
849
  _in_marking_window = false;
850 851 852 853 854
}

void G1CollectorPolicy::record_concurrent_pause() {
  if (_stop_world_start > 0.0) {
    double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
855
    _trace_gen0_time_data.record_yield_time(yield_ms);
856 857 858
  }
}

859 860
bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
  if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
861 862 863 864 865 866
    return false;
  }

  size_t marking_initiating_used_threshold =
    (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  size_t cur_used_bytes = _g1->non_young_capacity_bytes();
867
  size_t alloc_byte_size = alloc_word_size * HeapWordSize;
868

869
  if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
870
    if (gcs_are_young()) {
871
      ergo_verbose5(ErgoConcCycles,
872 873 874
        "request concurrent cycle initiation",
        ergo_format_reason("occupancy higher than threshold")
        ergo_format_byte("occupancy")
875
        ergo_format_byte("allocation request")
876 877 878
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
879
        alloc_byte_size,
880 881 882 883 884
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
      return true;
    } else {
885
      ergo_verbose5(ErgoConcCycles,
886 887 888
        "do not request concurrent cycle initiation",
        ergo_format_reason("still doing mixed collections")
        ergo_format_byte("occupancy")
889
        ergo_format_byte("allocation request")
890 891 892
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
893
        alloc_byte_size,
894 895 896 897 898 899 900 901 902
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
    }
  }

  return false;
}

903 904 905
// Anything below that is considered to be zero
#define MIN_TIMER_GRANULARITY 0.0000001

906
void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms) {
907
  double end_time_sec = os::elapsedTime();
908 909
  assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
         "otherwise, the subtraction below does not make sense");
910
  size_t rs_size =
911
            _cur_collection_pause_used_regions_at_start - cset_region_length();
912 913 914
  size_t cur_used_bytes = _g1->used();
  assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  bool last_pause_included_initial_mark = false;
915
  bool update_stats = !_g1->evacuation_failed();
916 917 918 919 920 921 922 923 924

#ifndef PRODUCT
  if (G1YoungSurvRateVerbose) {
    gclog_or_tty->print_cr("");
    _short_lived_surv_rate_group->print();
    // do that for any other surv rate groups too
  }
#endif // PRODUCT

925
  last_pause_included_initial_mark = during_initial_mark_pause();
926
  if (last_pause_included_initial_mark) {
927
    record_concurrent_mark_init_end(0.0);
928
  } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
929 930 931 932 933
    // Note: this might have already been set, if during the last
    // pause we decided to start a cycle but at the beginning of
    // this pause we decided to postpone it. That's OK.
    set_initiate_conc_mark_if_possible();
  }
934

935
  _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
936 937 938 939 940
                          end_time_sec, false);

  size_t freed_bytes =
    _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
941

942 943 944 945
  double survival_fraction =
    (double)surviving_bytes/
    (double)_collection_set_bytes_used_before;

946
  if (update_stats) {
947
    _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
948 949
    // this is where we update the allocation rate of the application
    double app_time_ms =
950
      (phase_times()->_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
951 952 953 954 955 956
    if (app_time_ms < MIN_TIMER_GRANULARITY) {
      // This usually happens due to the timer not having the required
      // granularity. Some Linuxes are the usual culprits.
      // We'll just set it to something (arbitrarily) small.
      app_time_ms = 1.0;
    }
957 958 959 960 961 962 963 964
    // We maintain the invariant that all objects allocated by mutator
    // threads will be allocated out of eden regions. So, we can use
    // the eden region number allocated since the previous GC to
    // calculate the application's allocate rate. The only exception
    // to that is humongous objects that are allocated separately. But
    // given that humongous object allocations do not really affect
    // either the pause's duration nor when the next pause will take
    // place we can safely ignore them here.
965
    uint regions_allocated = eden_cset_region_length();
966 967 968 969 970
    double alloc_rate_ms = (double) regions_allocated / app_time_ms;
    _alloc_rate_ms_seq->add(alloc_rate_ms);

    double interval_ms =
      (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
971
    update_recent_gc_times(end_time_sec, pause_time_ms);
972
    _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
973 974 975 976 977 978 979 980 981 982 983 984
    if (recent_avg_pause_time_ratio() < 0.0 ||
        (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
#ifndef PRODUCT
      // Dump info to allow post-facto debugging
      gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
      gclog_or_tty->print_cr("-------------------------------------------");
      gclog_or_tty->print_cr("Recent GC Times (ms):");
      _recent_gc_times_ms->dump();
      gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
      _recent_prev_end_times_for_all_gcs_sec->dump();
      gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
                             _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
985 986 987 988 989
      // In debug mode, terminate the JVM if the user wants to debug at this point.
      assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
#endif  // !PRODUCT
      // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
      // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
990 991 992 993 994 995 996
      if (_recent_avg_pause_time_ratio < 0.0) {
        _recent_avg_pause_time_ratio = 0.0;
      } else {
        assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
        _recent_avg_pause_time_ratio = 1.0;
      }
    }
997 998 999
  }
  bool new_in_marking_window = _in_marking_window;
  bool new_in_marking_window_im = false;
1000
  if (during_initial_mark_pause()) {
1001 1002 1003 1004
    new_in_marking_window = true;
    new_in_marking_window_im = true;
  }

1005
  if (_last_young_gc) {
1006 1007 1008
    // This is supposed to to be the "last young GC" before we start
    // doing mixed GCs. Here we decide whether to start mixed GCs or not.

1009
    if (!last_pause_included_initial_mark) {
1010 1011 1012 1013
      if (next_gc_should_be_mixed("start mixed GCs",
                                  "do not start mixed GCs")) {
        set_gcs_are_young(false);
      }
1014
    } else {
1015 1016
      ergo_verbose0(ErgoMixedGCs,
                    "do not start mixed GCs",
1017 1018
                    ergo_format_reason("concurrent cycle is about to start"));
    }
1019
    _last_young_gc = false;
1020
  }
1021

1022
  if (!_last_gc_was_young) {
1023 1024 1025 1026 1027
    // This is a mixed GC. Here we decide whether to continue doing
    // mixed GCs or not.

    if (!next_gc_should_be_mixed("continue mixed GCs",
                                 "do not continue mixed GCs")) {
1028
      set_gcs_are_young(true);
1029
    }
1030
  }
1031 1032 1033 1034

  _short_lived_surv_rate_group->start_adding_regions();
  // do that for any other surv rate groupsx

1035
  if (update_stats) {
1036 1037
    double cost_per_card_ms = 0.0;
    if (_pending_cards > 0) {
1038
      cost_per_card_ms = phase_times()->_update_rs_time / (double) _pending_cards;
1039 1040 1041 1042 1043 1044 1045
      _cost_per_card_ms_seq->add(cost_per_card_ms);
    }

    size_t cards_scanned = _g1->cards_scanned();

    double cost_per_entry_ms = 0.0;
    if (cards_scanned > 10) {
1046
      cost_per_entry_ms = phase_times()->_scan_rs_time / (double) cards_scanned;
1047
      if (_last_gc_was_young) {
1048
        _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1049 1050 1051
      } else {
        _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
      }
1052 1053 1054 1055 1056
    }

    if (_max_rs_lengths > 0) {
      double cards_per_entry_ratio =
        (double) cards_scanned / (double) _max_rs_lengths;
1057 1058 1059 1060 1061
      if (_last_gc_was_young) {
        _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      } else {
        _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      }
1062 1063
    }

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    // This is defensive. For a while _max_rs_lengths could get
    // smaller than _recorded_rs_lengths which was causing
    // rs_length_diff to get very large and mess up the RSet length
    // predictions. The reason was unsafe concurrent updates to the
    // _inc_cset_recorded_rs_lengths field which the code below guards
    // against (see CR 7118202). This bug has now been fixed (see CR
    // 7119027). However, I'm still worried that
    // _inc_cset_recorded_rs_lengths might still end up somewhat
    // inaccurate. The concurrent refinement thread calculates an
    // RSet's length concurrently with other CR threads updating it
    // which might cause it to calculate the length incorrectly (if,
    // say, it's in mid-coarsening). So I'll leave in the defensive
    // conditional below just in case.
1077 1078 1079 1080 1081
    size_t rs_length_diff = 0;
    if (_max_rs_lengths > _recorded_rs_lengths) {
      rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
    }
    _rs_length_diff_seq->add((double) rs_length_diff);
1082 1083 1084 1085

    size_t copied_bytes = surviving_bytes;
    double cost_per_byte_ms = 0.0;
    if (copied_bytes > 0) {
1086
      cost_per_byte_ms = phase_times()->_obj_copy_time / (double) copied_bytes;
1087
      if (_in_marking_window) {
1088
        _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1089
      } else {
1090
        _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1091
      }
1092 1093 1094
    }

    double all_other_time_ms = pause_time_ms -
1095
      (phase_times()->_update_rs_time + phase_times()->_scan_rs_time + phase_times()->_obj_copy_time + phase_times()->_termination_time);
1096 1097

    double young_other_time_ms = 0.0;
1098
    if (young_cset_region_length() > 0) {
1099
      young_other_time_ms =
1100 1101
        phase_times()->_recorded_young_cset_choice_time_ms +
        phase_times()->_recorded_young_free_cset_time_ms;
1102
      _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1103
                                          (double) young_cset_region_length());
1104 1105
    }
    double non_young_other_time_ms = 0.0;
1106
    if (old_cset_region_length() > 0) {
1107
      non_young_other_time_ms =
1108 1109
        phase_times()->_recorded_non_young_cset_choice_time_ms +
        phase_times()->_recorded_non_young_free_cset_time_ms;
1110 1111

      _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1112
                                            (double) old_cset_region_length());
1113 1114 1115 1116 1117 1118 1119
    }

    double constant_other_time_ms = all_other_time_ms -
      (young_other_time_ms + non_young_other_time_ms);
    _constant_other_time_ms_seq->add(constant_other_time_ms);

    double survival_ratio = 0.0;
1120
    if (_collection_set_bytes_used_before > 0) {
1121
      survival_ratio = (double) _bytes_copied_during_gc /
1122
                                   (double) _collection_set_bytes_used_before;
1123 1124 1125 1126 1127 1128 1129 1130 1131
    }

    _pending_cards_seq->add((double) _pending_cards);
    _rs_lengths_seq->add((double) _max_rs_lengths);
  }

  _in_marking_window = new_in_marking_window;
  _in_marking_window_im = new_in_marking_window_im;
  _free_regions_at_end_of_collection = _g1->free_regions();
1132
  update_young_list_target_length();
1133

1134
  // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1135
  double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1136
  adjust_concurrent_refinement(phase_times()->_update_rs_time, phase_times()->_update_rs_processed_buffers, update_rs_time_goal_ms);
1137

1138
  _collectionSetChooser->verify();
1139 1140
}

1141
#define EXT_SIZE_FORMAT "%.1f%s"
1142
#define EXT_SIZE_PARAMS(bytes)                                  \
1143
  byte_size_in_proper_unit((double)(bytes)),                    \
1144 1145 1146
  proper_unit_for_byte_size((bytes))

void G1CollectorPolicy::print_heap_transition() {
1147
  if (G1Log::finer()) {
1148 1149 1150 1151 1152 1153
    YoungList* young_list = _g1->young_list();
    size_t eden_bytes = young_list->eden_used_bytes();
    size_t survivor_bytes = young_list->survivor_used_bytes();
    size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
    size_t used = _g1->used();
    size_t capacity = _g1->capacity();
1154 1155
    size_t eden_capacity =
      (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
1156 1157

    gclog_or_tty->print_cr(
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
      "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
      "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
      "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
      EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
      EXT_SIZE_PARAMS(_eden_bytes_before_gc),
      EXT_SIZE_PARAMS(_prev_eden_capacity),
      EXT_SIZE_PARAMS(eden_bytes),
      EXT_SIZE_PARAMS(eden_capacity),
      EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
      EXT_SIZE_PARAMS(survivor_bytes),
      EXT_SIZE_PARAMS(used_before_gc),
      EXT_SIZE_PARAMS(_capacity_before_gc),
      EXT_SIZE_PARAMS(used),
      EXT_SIZE_PARAMS(capacity));

    _prev_eden_capacity = eden_capacity;
1174
  } else if (G1Log::fine()) {
1175 1176 1177 1178 1179 1180
    _g1->print_size_transition(gclog_or_tty,
                               _cur_collection_pause_used_at_start_bytes,
                               _g1->used(), _g1->capacity());
  }
}

1181 1182 1183 1184 1185 1186
void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
                                                     double update_rs_processed_buffers,
                                                     double goal_ms) {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();

1187
  if (G1UseAdaptiveConcRefinement) {
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
    const int k_gy = 3, k_gr = 6;
    const double inc_k = 1.1, dec_k = 0.9;

    int g = cg1r->green_zone();
    if (update_rs_time > goal_ms) {
      g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
    } else {
      if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
        g = (int)MAX2(g * inc_k, g + 1.0);
      }
    }
    // Change the refinement threads params
    cg1r->set_green_zone(g);
    cg1r->set_yellow_zone(g * k_gy);
    cg1r->set_red_zone(g * k_gr);
    cg1r->reinitialize_threads();

    int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
    int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
                                    cg1r->yellow_zone());
    // Change the barrier params
    dcqs.set_process_completed_threshold(processing_threshold);
    dcqs.set_max_completed_queue(cg1r->red_zone());
  }

  int curr_queue_size = dcqs.completed_buffers_num();
  if (curr_queue_size >= cg1r->yellow_zone()) {
    dcqs.set_completed_queue_padding(curr_queue_size);
  } else {
    dcqs.set_completed_queue_padding(0);
  }
  dcqs.notify_if_necessary();
}

1222 1223 1224 1225 1226 1227 1228 1229 1230
double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
                                                size_t scanned_cards) {
  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(scanned_cards) +
    predict_constant_other_time_ms();
}

1231 1232 1233 1234
double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  size_t rs_length = predict_rs_length_diff();
  size_t card_num;
1235
  if (gcs_are_young()) {
1236
    card_num = predict_young_card_num(rs_length);
1237
  } else {
1238
    card_num = predict_non_young_card_num(rs_length);
1239
  }
1240 1241 1242
  return predict_base_elapsed_time_ms(pending_cards, card_num);
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  size_t bytes_to_copy;
  if (hr->is_marked())
    bytes_to_copy = hr->max_live_bytes();
  else {
    assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
    int age = hr->age_in_surv_rate_group();
    double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
    bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  }
  return bytes_to_copy;
1254 1255 1256 1257
}

double
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1258
                                                  bool for_young_gc) {
1259 1260
  size_t rs_length = hr->rem_set()->occupied();
  size_t card_num;
1261 1262 1263 1264

  // Predicting the number of cards is based on which type of GC
  // we're predicting for.
  if (for_young_gc) {
1265
    card_num = predict_young_card_num(rs_length);
1266
  } else {
1267
    card_num = predict_non_young_card_num(rs_length);
1268
  }
1269 1270 1271 1272 1273 1274
  size_t bytes_to_copy = predict_bytes_to_copy(hr);

  double region_elapsed_time_ms =
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy);

1275 1276 1277
  // The prediction of the "other" time for this region is based
  // upon the region type and NOT the GC type.
  if (hr->is_young()) {
1278
    region_elapsed_time_ms += predict_young_other_time_ms(1);
1279
  } else {
1280 1281
    region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  }
1282
  return region_elapsed_time_ms;
1283 1284 1285
}

void
1286 1287
G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
                                            uint survivor_cset_region_length) {
1288 1289 1290
  _eden_cset_region_length     = eden_cset_region_length;
  _survivor_cset_region_length = survivor_cset_region_length;
  _old_cset_region_length      = 0;
1291 1292 1293 1294 1295 1296
}

void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  _recorded_rs_lengths = rs_lengths;
}

1297 1298 1299 1300 1301 1302 1303 1304
void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
                                               double elapsed_ms) {
  _recent_gc_times_ms->add(elapsed_ms);
  _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  _prev_collection_pause_end_ms = end_time_sec * 1000.0;
}

size_t G1CollectorPolicy::expansion_amount() {
1305 1306 1307
  double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  double threshold = _gc_overhead_perc;
  if (recent_gc_overhead > threshold) {
J
johnc 已提交
1308 1309 1310 1311
    // We will double the existing space, or take
    // G1ExpandByPercentOfAvailable % of the available expansion
    // space, whichever is smaller, bounded below by a minimum
    // expansion (unless that's all that's left.)
1312
    const size_t min_expand_bytes = 1*M;
1313
    size_t reserved_bytes = _g1->max_capacity();
1314 1315 1316 1317
    size_t committed_bytes = _g1->capacity();
    size_t uncommitted_bytes = reserved_bytes - committed_bytes;
    size_t expand_bytes;
    size_t expand_bytes_via_pct =
J
johnc 已提交
1318
      uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1319 1320 1321
    expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
    expand_bytes = MAX2(expand_bytes, min_expand_bytes);
    expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

    ergo_verbose5(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("recent GC overhead higher than "
                                     "threshold after GC")
                  ergo_format_perc("recent GC overhead")
                  ergo_format_perc("threshold")
                  ergo_format_byte("uncommitted")
                  ergo_format_byte_perc("calculated expansion amount"),
                  recent_gc_overhead, threshold,
                  uncommitted_bytes,
                  expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);

1335 1336 1337 1338 1339 1340 1341
    return expand_bytes;
  } else {
    return 0;
  }
}

void G1CollectorPolicy::print_tracing_info() const {
1342 1343
  _trace_gen0_time_data.print();
  _trace_gen1_time_data.print();
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
}

void G1CollectorPolicy::print_yg_surv_rate_info() const {
#ifndef PRODUCT
  _short_lived_surv_rate_group->print_surv_rate_summary();
  // add this call for any other surv rate groups
#endif // PRODUCT
}

#ifndef PRODUCT
// for debugging, bit of a hack...
static char*
region_num_to_mbs(int length) {
  static char buffer[64];
  double bytes = (double) (length * HeapRegion::GrainBytes);
  double mbs = bytes / (double) (1024 * 1024);
  sprintf(buffer, "%7.2lfMB", mbs);
  return buffer;
}
#endif // PRODUCT

1365
uint G1CollectorPolicy::max_regions(int purpose) {
1366 1367
  switch (purpose) {
    case GCAllocForSurvived:
1368
      return _max_survivor_regions;
1369
    case GCAllocForTenured:
1370
      return REGIONS_UNLIMITED;
1371
    default:
1372 1373
      ShouldNotReachHere();
      return REGIONS_UNLIMITED;
1374 1375 1376
  };
}

1377
void G1CollectorPolicy::update_max_gc_locker_expansion() {
1378
  uint expansion_region_num = 0;
1379 1380 1381 1382 1383
  if (GCLockerEdenExpansionPercent > 0) {
    double perc = (double) GCLockerEdenExpansionPercent / 100.0;
    double expansion_region_num_d = perc * (double) _young_list_target_length;
    // We use ceiling so that if expansion_region_num_d is > 0.0 (but
    // less than 1.0) we'll get 1.
1384
    expansion_region_num = (uint) ceil(expansion_region_num_d);
1385 1386 1387 1388 1389 1390 1391
  } else {
    assert(expansion_region_num == 0, "sanity");
  }
  _young_list_max_length = _young_list_target_length + expansion_region_num;
  assert(_young_list_target_length <= _young_list_max_length, "post-condition");
}

1392
// Calculates survivor space parameters.
1393 1394 1395 1396 1397
void G1CollectorPolicy::update_survivors_policy() {
  double max_survivor_regions_d =
                 (double) _young_list_target_length / (double) SurvivorRatio;
  // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
1398
  _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1399

1400
  _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1401 1402 1403
        HeapRegion::GrainWords * _max_survivor_regions);
}

1404 1405
bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
                                                     GCCause::Cause gc_cause) {
1406 1407
  bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  if (!during_cycle) {
1408 1409 1410 1411 1412
    ergo_verbose1(ErgoConcCycles,
                  "request concurrent cycle initiation",
                  ergo_format_reason("requested by GC cause")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1413 1414 1415
    set_initiate_conc_mark_if_possible();
    return true;
  } else {
1416 1417 1418 1419 1420
    ergo_verbose1(ErgoConcCycles,
                  "do not request concurrent cycle initiation",
                  ergo_format_reason("concurrent cycle already in progress")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1421 1422 1423 1424
    return false;
  }
}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
void
G1CollectorPolicy::decide_on_conc_mark_initiation() {
  // We are about to decide on whether this pause will be an
  // initial-mark pause.

  // First, during_initial_mark_pause() should not be already set. We
  // will set it here if we have to. However, it should be cleared by
  // the end of the pause (it's only set for the duration of an
  // initial-mark pause).
  assert(!during_initial_mark_pause(), "pre-condition");

  if (initiate_conc_mark_if_possible()) {
    // We had noticed on a previous pause that the heap occupancy has
    // gone over the initiating threshold and we should start a
    // concurrent marking cycle. So we might initiate one.

    bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
    if (!during_cycle) {
      // The concurrent marking thread is not "during a cycle", i.e.,
      // it has completed the last one. So we can go ahead and
      // initiate a new cycle.

      set_during_initial_mark_pause();
1448 1449 1450 1451 1452
      // We do not allow mixed GCs during marking.
      if (!gcs_are_young()) {
        set_gcs_are_young(true);
        ergo_verbose0(ErgoMixedGCs,
                      "end mixed GCs",
1453 1454
                      ergo_format_reason("concurrent cycle is about to start"));
      }
1455 1456 1457 1458

      // And we can now clear initiate_conc_mark_if_possible() as
      // we've already acted on it.
      clear_initiate_conc_mark_if_possible();
1459 1460 1461 1462

      ergo_verbose0(ErgoConcCycles,
                  "initiate concurrent cycle",
                  ergo_format_reason("concurrent cycle initiation requested"));
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
    } else {
      // The concurrent marking thread is still finishing up the
      // previous cycle. If we start one right now the two cycles
      // overlap. In particular, the concurrent marking thread might
      // be in the process of clearing the next marking bitmap (which
      // we will use for the next cycle if we start one). Starting a
      // cycle now will be bad given that parts of the marking
      // information might get cleared by the marking thread. And we
      // cannot wait for the marking thread to finish the cycle as it
      // periodically yields while clearing the next marking bitmap
      // and, if it's in a yield point, it's waiting for us to
      // finish. So, at this point we will not start a cycle and we'll
      // let the concurrent marking thread complete the last one.
1476 1477 1478
      ergo_verbose0(ErgoConcCycles,
                    "do not initiate concurrent cycle",
                    ergo_format_reason("concurrent cycle already in progress"));
1479 1480 1481 1482
    }
  }
}

1483
class KnownGarbageClosure: public HeapRegionClosure {
1484
  G1CollectedHeap* _g1h;
1485 1486 1487 1488
  CollectionSetChooser* _hrSorted;

public:
  KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1489
    _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1490 1491 1492 1493 1494 1495 1496 1497

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.

    // Do we have any marking information for this region?
    if (r->is_marked()) {
1498 1499 1500
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1501 1502
      if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _hrSorted->add_region(r);
1503 1504 1505 1506 1507 1508 1509
      }
    }
    return false;
  }
};

class ParKnownGarbageHRClosure: public HeapRegionClosure {
1510
  G1CollectedHeap* _g1h;
1511
  CSetChooserParUpdater _cset_updater;
1512 1513 1514

public:
  ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1515
                           uint chunk_size) :
1516 1517
    _g1h(G1CollectedHeap::heap()),
    _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1518 1519 1520 1521

  bool doHeapRegion(HeapRegion* r) {
    // Do we have any marking information for this region?
    if (r->is_marked()) {
1522 1523 1524
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1525 1526
      if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _cset_updater.add_region(r);
1527 1528 1529 1530 1531 1532 1533 1534
      }
    }
    return false;
  }
};

class ParKnownGarbageTask: public AbstractGangTask {
  CollectionSetChooser* _hrSorted;
1535
  uint _chunk_size;
1536 1537
  G1CollectedHeap* _g1;
public:
1538
  ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1539 1540
    AbstractGangTask("ParKnownGarbageTask"),
    _hrSorted(hrSorted), _chunk_size(chunk_size),
1541
    _g1(G1CollectedHeap::heap()) { }
1542

1543
  void work(uint worker_id) {
1544 1545
    ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);

1546
    // Back to zero for the claim value.
1547
    _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1548
                                         _g1->workers()->active_workers(),
1549
                                         HeapRegion::InitialClaimValue);
1550 1551 1552 1553
  }
};

void
1554
G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1555
  _collectionSetChooser->clear();
1556

1557
  uint region_num = _g1->n_regions();
1558
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1559 1560
    const uint OverpartitionFactor = 4;
    uint WorkUnit;
1561 1562 1563 1564 1565
    // The use of MinChunkSize = 8 in the original code
    // causes some assertion failures when the total number of
    // region is less than 8.  The code here tries to fix that.
    // Should the original code also be fixed?
    if (no_of_gc_threads > 0) {
1566 1567 1568
      const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
      WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
                      MinWorkUnit);
1569 1570 1571 1572
    } else {
      assert(no_of_gc_threads > 0,
        "The active gc workers should be greater than 0");
      // In a product build do something reasonable to avoid a crash.
1573
      const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1574
      WorkUnit =
1575
        MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1576 1577
             MinWorkUnit);
    }
1578 1579
    _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
                                                           WorkUnit);
1580
    ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1581
                                            (int) WorkUnit);
1582
    _g1->workers()->run_task(&parKnownGarbageTask);
1583 1584 1585

    assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
1586 1587 1588 1589
  } else {
    KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
    _g1->heap_region_iterate(&knownGarbagecl);
  }
1590

1591
  _collectionSetChooser->sort_regions();
1592

1593
  double end_sec = os::elapsedTime();
1594 1595 1596 1597 1598
  double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;
  _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1599 1600
}

1601
// Add the heap region at the head of the non-incremental collection set
1602
void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1603 1604 1605 1606
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(!hr->is_young(), "non-incremental add of young region");

  assert(!hr->in_collection_set(), "should not already be in the CSet");
1607 1608 1609 1610
  hr->set_in_collection_set(true);
  hr->set_next_in_collection_set(_collection_set);
  _collection_set = hr;
  _collection_set_bytes_used_before += hr->used();
1611
  _g1->register_region_with_in_cset_fast_test(hr);
1612 1613 1614
  size_t rs_length = hr->rem_set()->occupied();
  _recorded_rs_lengths += rs_length;
  _old_cset_region_length += 1;
1615 1616
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
// Initialize the per-collection-set information
void G1CollectorPolicy::start_incremental_cset_building() {
  assert(_inc_cset_build_state == Inactive, "Precondition");

  _inc_cset_head = NULL;
  _inc_cset_tail = NULL;
  _inc_cset_bytes_used_before = 0;

  _inc_cset_max_finger = 0;
  _inc_cset_recorded_rs_lengths = 0;
1627 1628 1629
  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms = 0.0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1630 1631 1632
  _inc_cset_build_state = Active;
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
void G1CollectorPolicy::finalize_incremental_cset_building() {
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");

  // The two "main" fields, _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  // that adds a new region to the CSet. Further updates by the
  // concurrent refinement thread that samples the young RSet lengths
  // are accumulated in the *_diffs fields. Here we add the diffs to
  // the "main" fields.

  if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
    _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  } else {
    // This is defensive. The diff should in theory be always positive
    // as RSets can only grow between GCs. However, given that we
    // sample their size concurrently with other threads updating them
    // it's possible that we might get the wrong size back, which
    // could make the calculations somewhat inaccurate.
    size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
    if (_inc_cset_recorded_rs_lengths >= diffs) {
      _inc_cset_recorded_rs_lengths -= diffs;
    } else {
      _inc_cset_recorded_rs_lengths = 0;
    }
  }
  _inc_cset_predicted_elapsed_time_ms +=
                                     _inc_cset_predicted_elapsed_time_ms_diffs;

  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
}

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  // This routine is used when:
  // * adding survivor regions to the incremental cset at the end of an
  //   evacuation pause,
  // * adding the current allocation region to the incremental cset
  //   when it is retired, and
  // * updating existing policy information for a region in the
  //   incremental cset via young list RSet sampling.
  // Therefore this routine may be called at a safepoint by the
  // VM thread, or in-between safepoints by mutator threads (when
  // retiring the current allocation region) or a concurrent
  // refine thread (RSet sampling).

1679
  double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
  size_t used_bytes = hr->used();
  _inc_cset_recorded_rs_lengths += rs_length;
  _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  _inc_cset_bytes_used_before += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_recorded_rs_length(rs_length);
  hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
                                                     size_t new_rs_length) {
  // Update the CSet information that is dependent on the new RS length
  assert(hr->is_young(), "Precondition");
  assert(!SafepointSynchronize::is_at_safepoint(),
                                               "should not be at a safepoint");

  // We could have updated _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  // that atomically, as this code is executed by a concurrent
  // refinement thread, potentially concurrently with a mutator thread
  // allocating a new region and also updating the same fields. To
  // avoid the atomic operations we accumulate these updates on two
  // separate fields (*_diffs) and we'll just add them to the "main"
  // fields at the start of a GC.

  ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1712 1713

  double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1714
  double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1715 1716
  double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1717

1718 1719
  hr->set_recorded_rs_length(new_rs_length);
  hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1720 1721 1722
}

void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1723 1724
  assert(hr->is_young(), "invariant");
  assert(hr->young_index_in_cset() > -1, "should have already been set");
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
  assert(_inc_cset_build_state == Active, "Precondition");

  // We need to clear and set the cached recorded/cached collection set
  // information in the heap region here (before the region gets added
  // to the collection set). An individual heap region's cached values
  // are calculated, aggregated with the policy collection set info,
  // and cached in the heap region here (initially) and (subsequently)
  // by the Young List sampling code.

  size_t rs_length = hr->rem_set()->occupied();
  add_to_incremental_cset_info(hr, rs_length);

  HeapWord* hr_end = hr->end();
  _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);

  assert(!hr->in_collection_set(), "invariant");
  hr->set_in_collection_set(true);
  assert( hr->next_in_collection_set() == NULL, "invariant");

  _g1->register_region_with_in_cset_fast_test(hr);
}

// Add the region at the RHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  // We should only ever be appending survivors at the end of a pause
  assert( hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Now add the region at the right hand side
  if (_inc_cset_tail == NULL) {
    assert(_inc_cset_head == NULL, "invariant");
    _inc_cset_head = hr;
  } else {
    _inc_cset_tail->set_next_in_collection_set(hr);
  }
  _inc_cset_tail = hr;
}

// Add the region to the LHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  // Survivors should be added to the RHS at the end of a pause
  assert(!hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Add the region at the left hand side
  hr->set_next_in_collection_set(_inc_cset_head);
  if (_inc_cset_head == NULL) {
    assert(_inc_cset_tail == NULL, "Invariant");
    _inc_cset_tail = hr;
  }
  _inc_cset_head = hr;
}

#ifndef PRODUCT
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");

  st->print_cr("\nCollection_set:");
  HeapRegion* csr = list_head;
  while (csr != NULL) {
    HeapRegion* next = csr->next_in_collection_set();
    assert(csr->in_collection_set(), "bad CS");
1791 1792 1793 1794
    st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                 HR_FORMAT_PARAMS(csr),
                 csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
                 csr->age_in_surv_rate_group_cond());
1795 1796 1797 1798 1799
    csr = next;
  }
}
#endif // !PRODUCT

1800 1801 1802
bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
                                                const char* false_action_str) {
  CollectionSetChooser* cset_chooser = _collectionSetChooser;
1803
  if (cset_chooser->is_empty()) {
1804 1805 1806 1807 1808
    ergo_verbose0(ErgoMixedGCs,
                  false_action_str,
                  ergo_format_reason("candidate old regions not available"));
    return false;
  }
1809
  size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1810 1811
  size_t capacity_bytes = _g1->capacity();
  double perc = (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1812
  double threshold = (double) G1HeapWastePercent;
1813 1814 1815 1816 1817 1818 1819
  if (perc < threshold) {
    ergo_verbose4(ErgoMixedGCs,
              false_action_str,
              ergo_format_reason("reclaimable percentage lower than threshold")
              ergo_format_region("candidate old regions")
              ergo_format_byte_perc("reclaimable")
              ergo_format_perc("threshold"),
1820
              cset_chooser->remaining_regions(),
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
              reclaimable_bytes, perc, threshold);
    return false;
  }

  ergo_verbose4(ErgoMixedGCs,
                true_action_str,
                ergo_format_reason("candidate old regions available")
                ergo_format_region("candidate old regions")
                ergo_format_byte_perc("reclaimable")
                ergo_format_perc("threshold"),
1831
                cset_chooser->remaining_regions(),
1832 1833 1834 1835 1836
                reclaimable_bytes, perc, threshold);
  return true;
}

void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
1837
  double young_start_time_sec = os::elapsedTime();
1838

1839
  YoungList* young_list = _g1->young_list();
1840
  finalize_incremental_cset_building();
1841

1842 1843 1844 1845
  guarantee(target_pause_time_ms > 0.0,
            err_msg("target_pause_time_ms = %1.6lf should be positive",
                    target_pause_time_ms));
  guarantee(_collection_set == NULL, "Precondition");
1846 1847 1848

  double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  double predicted_pause_time_ms = base_time_ms;
1849
  double time_remaining_ms = target_pause_time_ms - base_time_ms;
1850

1851
  ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1852
                "start choosing CSet",
1853
                ergo_format_size("_pending_cards")
1854 1855 1856
                ergo_format_ms("predicted base time")
                ergo_format_ms("remaining time")
                ergo_format_ms("target pause time"),
1857
                _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1858

1859
  _last_gc_was_young = gcs_are_young() ? true : false;
1860

1861
  if (_last_gc_was_young) {
1862
    _trace_gen0_time_data.increment_young_collection_count();
1863
  } else {
1864
    _trace_gen0_time_data.increment_mixed_collection_count();
1865
  }
1866

1867 1868 1869
  // The young list is laid with the survivor regions from the previous
  // pause are appended to the RHS of the young list, i.e.
  //   [Newly Young Regions ++ Survivors from last pause].
1870

1871 1872
  uint survivor_region_length = young_list->survivor_length();
  uint eden_region_length = young_list->length() - survivor_region_length;
1873
  init_cset_region_lengths(eden_region_length, survivor_region_length);
1874 1875

  HeapRegion* hr = young_list->first_survivor_region();
1876 1877 1878 1879 1880
  while (hr != NULL) {
    assert(hr->is_survivor(), "badly formed young list");
    hr->set_young();
    hr = hr->get_next_young_region();
  }
1881

1882 1883
  // Clear the fields that point to the survivor list - they are all young now.
  young_list->clear_survivors();
1884

1885 1886 1887 1888
  _collection_set = _inc_cset_head;
  _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1889

1890 1891 1892 1893 1894
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "add young regions to CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_ms("predicted young region time"),
1895
                eden_region_length, survivor_region_length,
1896 1897
                _inc_cset_predicted_elapsed_time_ms);

1898 1899 1900
  // The number of recorded young regions is the incremental
  // collection set's current size
  set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1901

1902
  double young_end_time_sec = os::elapsedTime();
1903
  phase_times()->_recorded_young_cset_choice_time_ms =
1904
    (young_end_time_sec - young_start_time_sec) * 1000.0;
1905

1906 1907
  // Set the start of the non-young choice time.
  double non_young_start_time_sec = young_end_time_sec;
1908

1909
  if (!gcs_are_young()) {
1910
    CollectionSetChooser* cset_chooser = _collectionSetChooser;
1911 1912 1913
    cset_chooser->verify();
    const uint min_old_cset_length = cset_chooser->calc_min_old_cset_length();
    const uint max_old_cset_length = cset_chooser->calc_max_old_cset_length();
1914

1915
    uint expensive_region_num = 0;
1916
    bool check_time_remaining = adaptive_young_list_length();
1917

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
    HeapRegion* hr = cset_chooser->peek();
    while (hr != NULL) {
      if (old_cset_region_length() >= max_old_cset_length) {
        // Added maximum number of old regions to the CSet.
        ergo_verbose2(ErgoCSetConstruction,
                      "finish adding old regions to CSet",
                      ergo_format_reason("old CSet region num reached max")
                      ergo_format_region("old")
                      ergo_format_region("max"),
                      old_cset_region_length(), max_old_cset_length);
        break;
1929
      }
1930

1931
      double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
      if (check_time_remaining) {
        if (predicted_time_ms > time_remaining_ms) {
          // Too expensive for the current CSet.

          if (old_cset_region_length() >= min_old_cset_length) {
            // We have added the minimum number of old regions to the CSet,
            // we are done with this CSet.
            ergo_verbose4(ErgoCSetConstruction,
                          "finish adding old regions to CSet",
                          ergo_format_reason("predicted time is too high")
                          ergo_format_ms("predicted time")
                          ergo_format_ms("remaining time")
                          ergo_format_region("old")
                          ergo_format_region("min"),
                          predicted_time_ms, time_remaining_ms,
                          old_cset_region_length(), min_old_cset_length);
            break;
1949
          }
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965

          // We'll add it anyway given that we haven't reached the
          // minimum number of old regions.
          expensive_region_num += 1;
        }
      } else {
        if (old_cset_region_length() >= min_old_cset_length) {
          // In the non-auto-tuning case, we'll finish adding regions
          // to the CSet if we reach the minimum.
          ergo_verbose2(ErgoCSetConstruction,
                        "finish adding old regions to CSet",
                        ergo_format_reason("old CSet region num reached min")
                        ergo_format_region("old")
                        ergo_format_region("min"),
                        old_cset_region_length(), min_old_cset_length);
          break;
1966 1967
        }
      }
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

      // We will add this region to the CSet.
      time_remaining_ms -= predicted_time_ms;
      predicted_pause_time_ms += predicted_time_ms;
      cset_chooser->remove_and_move_to_next(hr);
      _g1->old_set_remove(hr);
      add_old_region_to_cset(hr);

      hr = cset_chooser->peek();
    }
    if (hr == NULL) {
      ergo_verbose0(ErgoCSetConstruction,
                    "finish adding old regions to CSet",
                    ergo_format_reason("candidate old regions not available"));
    }

    if (expensive_region_num > 0) {
      // We print the information once here at the end, predicated on
      // whether we added any apparently expensive regions or not, to
      // avoid generating output per region.
      ergo_verbose4(ErgoCSetConstruction,
                    "added expensive regions to CSet",
                    ergo_format_reason("old CSet region num not reached min")
                    ergo_format_region("old")
                    ergo_format_region("expensive")
                    ergo_format_region("min")
                    ergo_format_ms("remaining time"),
                    old_cset_region_length(),
                    expensive_region_num,
                    min_old_cset_length,
                    time_remaining_ms);
1999 2000
    }

2001
    cset_chooser->verify();
2002 2003
  }

2004 2005
  stop_incremental_cset_building();

2006 2007 2008 2009 2010 2011 2012
  ergo_verbose5(ErgoCSetConstruction,
                "finish choosing CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_region("old")
                ergo_format_ms("predicted pause time")
                ergo_format_ms("target pause time"),
2013 2014
                eden_region_length, survivor_region_length,
                old_cset_region_length(),
2015 2016
                predicted_pause_time_ms, target_pause_time_ms);

2017
  double non_young_end_time_sec = os::elapsedTime();
2018
  phase_times()->_recorded_non_young_cset_choice_time_ms =
2019 2020
    (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
}
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  if(TraceGen0Time) {
    _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  }
}

void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  if(TraceGen0Time) {
    _all_yield_times_ms.add(yield_time_ms);
  }
}

2034
void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2035
  if(TraceGen0Time) {
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
    _total.add(pause_time_ms);
    _other.add(pause_time_ms - phase_times->accounted_time_ms());
    _root_region_scan_wait.add(phase_times->_root_region_scan_wait_time_ms);
    _parallel.add(phase_times->_cur_collection_par_time_ms);
    _ext_root_scan.add(phase_times->_ext_root_scan_time);
    _satb_filtering.add(phase_times->_satb_filtering_time);
    _update_rs.add(phase_times->_update_rs_time);
    _scan_rs.add(phase_times->_scan_rs_time);
    _obj_copy.add(phase_times->_obj_copy_time);
    _termination.add(phase_times->_termination_time);

    double parallel_known_time = phase_times->_ext_root_scan_time +
      phase_times->_satb_filtering_time +
      phase_times->_update_rs_time +
      phase_times->_scan_rs_time +
      phase_times->_obj_copy_time +
      + phase_times->_termination_time;

    double parallel_other_time = phase_times->_cur_collection_par_time_ms - parallel_known_time;
    _parallel_other.add(parallel_other_time);
    _clear_ct.add(phase_times->_cur_clear_ct_time_ms);
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
  }
}

void TraceGen0TimeData::increment_young_collection_count() {
  if(TraceGen0Time) {
    ++_young_pause_num;
  }
}

void TraceGen0TimeData::increment_mixed_collection_count() {
  if(TraceGen0Time) {
    ++_mixed_pause_num;
  }
}

2072
void TraceGen0TimeData::print_summary(const char* str,
2073 2074
                                      const NumberSeq* seq) const {
  double sum = seq->sum();
2075
  gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2076 2077 2078
                str, sum / 1000.0, seq->avg());
}

2079
void TraceGen0TimeData::print_summary_sd(const char* str,
2080
                                         const NumberSeq* seq) const {
2081 2082 2083
  print_summary(str, seq);
  gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
                "(num", seq->num(), seq->sd(), seq->maximum());
2084 2085 2086 2087 2088 2089 2090 2091
}

void TraceGen0TimeData::print() const {
  if (!TraceGen0Time) {
    return;
  }

  gclog_or_tty->print_cr("ALL PAUSES");
2092
  print_summary_sd("   Total", &_total);
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
  gclog_or_tty->print_cr("");
  gclog_or_tty->print_cr("");
  gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  gclog_or_tty->print_cr("");

  gclog_or_tty->print_cr("EVACUATION PAUSES");

  if (_young_pause_num == 0 && _mixed_pause_num == 0) {
    gclog_or_tty->print_cr("none");
  } else {
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
    print_summary_sd("   Evacuation Pauses", &_total);
    print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
    print_summary("      Parallel Time", &_parallel);
    print_summary("         Ext Root Scanning", &_ext_root_scan);
    print_summary("         SATB Filtering", &_satb_filtering);
    print_summary("         Update RS", &_update_rs);
    print_summary("         Scan RS", &_scan_rs);
    print_summary("         Object Copy", &_obj_copy);
    print_summary("         Termination", &_termination);
    print_summary("         Parallel Other", &_parallel_other);
    print_summary("      Clear CT", &_clear_ct);
    print_summary("      Other", &_other);
2116 2117 2118 2119
  }
  gclog_or_tty->print_cr("");

  gclog_or_tty->print_cr("MISC");
2120 2121
  print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  print_summary_sd("   Yields", &_all_yield_times_ms);
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
}

void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  if (TraceGen1Time) {
    _all_full_gc_times.add(full_gc_time_ms);
  }
}

void TraceGen1TimeData::print() const {
  if (!TraceGen1Time) {
    return;
  }

  if (_all_full_gc_times.num() > 0) {
    gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
      _all_full_gc_times.num(),
      _all_full_gc_times.sum() / 1000.0);
    gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
    gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
      _all_full_gc_times.sd(),
      _all_full_gc_times.maximum());
  }
}