g1CollectorPolicy.cpp 87.4 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
33
#include "gc_implementation/g1/g1Log.hpp"
34 35 36 37 38 39
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "runtime/arguments.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/debug.hpp"
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

// Different defaults for different number of GC threads
// They were chosen by running GCOld and SPECjbb on debris with different
//   numbers of GC threads and choosing them based on the results

// all the same
static double rs_length_diff_defaults[] = {
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

static double cost_per_card_ms_defaults[] = {
  0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
};

// all the same
55
static double young_cards_per_entry_ratio_defaults[] = {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

static double cost_per_entry_ms_defaults[] = {
  0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
};

static double cost_per_byte_ms_defaults[] = {
  0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
};

// these should be pretty consistent
static double constant_other_time_ms_defaults[] = {
  5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
};


static double young_other_cost_per_region_ms_defaults[] = {
  0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
};

static double non_young_other_cost_per_region_ms_defaults[] = {
  1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
};

G1CollectorPolicy::G1CollectorPolicy() :
82
  _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
83
                        ? ParallelGCThreads : 1),
84

85 86 87 88 89 90 91 92 93 94
  _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _stop_world_start(0.0),

  _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _prev_collection_pause_end_ms(0.0),
  _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
95 96
  _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
97
  _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
98
  _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
99 100 101 102 103 104 105 106 107 108
  _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
  _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _non_young_other_cost_per_region_ms_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),

  _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),

J
johnc 已提交
109
  _pause_time_target_ms((double) MaxGCPauseMillis),
110

111
  _gcs_are_young(true),
112 113 114 115 116

  _during_marking(false),
  _in_marking_window(false),
  _in_marking_window_im(false),

117 118
  _recent_prev_end_times_for_all_gcs_sec(
                                new TruncatedSeq(NumPrevPausesForHeuristics)),
119 120 121

  _recent_avg_pause_time_ratio(0.0),

122 123
  _initiate_conc_mark_if_possible(false),
  _during_initial_mark_pause(false),
124 125
  _last_young_gc(false),
  _last_gc_was_young(false),
126

127 128 129 130 131 132
  _eden_used_bytes_before_gc(0),
  _survivor_used_bytes_before_gc(0),
  _heap_used_bytes_before_gc(0),
  _metaspace_used_bytes_before_gc(0),
  _eden_capacity_bytes_before_gc(0),
  _heap_capacity_bytes_before_gc(0),
133

134 135 136 137
  _eden_cset_region_length(0),
  _survivor_cset_region_length(0),
  _old_cset_region_length(0),

138
  _collection_set(NULL),
139 140 141 142 143 144 145 146 147
  _collection_set_bytes_used_before(0),

  // Incremental CSet attributes
  _inc_cset_build_state(Inactive),
  _inc_cset_head(NULL),
  _inc_cset_tail(NULL),
  _inc_cset_bytes_used_before(0),
  _inc_cset_max_finger(NULL),
  _inc_cset_recorded_rs_lengths(0),
148
  _inc_cset_recorded_rs_lengths_diffs(0),
149
  _inc_cset_predicted_elapsed_time_ms(0.0),
150
  _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
151

152 153 154 155 156 157 158
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

  _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
                                                 G1YoungSurvRateNumRegionsSummary)),
  _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
159
                                              G1YoungSurvRateNumRegionsSummary)),
160
  // add here any more surv rate groups
161 162 163
  _recorded_survivor_regions(0),
  _recorded_survivor_head(NULL),
  _recorded_survivor_tail(NULL),
T
tonyp 已提交
164 165
  _survivors_age_table(true),

166
  _gc_overhead_perc(0.0) {
167

168 169 170
  // Set up the region size and associated fields. Given that the
  // policy is created before the heap, we have to set this up here,
  // so it's done as soon as possible.
171 172 173 174 175 176 177 178 179

  // It would have been natural to pass initial_heap_byte_size() and
  // max_heap_byte_size() to setup_heap_region_size() but those have
  // not been set up at this point since they should be aligned with
  // the region size. So, there is a circular dependency here. We base
  // the region size on the heap size, but the heap size should be
  // aligned with the region size. To get around this we use the
  // unaligned values for the heap.
  HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
180
  HeapRegionRemSet::setup_remset_size();
181

182 183 184 185 186 187 188 189 190 191 192 193
  G1ErgoVerbose::initialize();
  if (PrintAdaptiveSizePolicy) {
    // Currently, we only use a single switch for all the heuristics.
    G1ErgoVerbose::set_enabled(true);
    // Given that we don't currently have a verboseness level
    // parameter, we'll hardcode this to high. This can be easily
    // changed in the future.
    G1ErgoVerbose::set_level(ErgoHigh);
  } else {
    G1ErgoVerbose::set_enabled(false);
  }

194
  // Verify PLAB sizes
195
  const size_t region_size = HeapRegion::GrainWords;
196 197
  if (YoungPLABSize > region_size || OldPLABSize > region_size) {
    char buffer[128];
198
    jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
199 200 201 202
                 OldPLABSize > region_size ? "Old" : "Young", region_size);
    vm_exit_during_initialization(buffer);
  }

203 204 205
  _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
  _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;

206
  _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
207

208
  int index = MIN2(_parallel_gc_threads - 1, 7);
209 210 211

  _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
  _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
212 213
  _young_cards_per_entry_ratio_seq->add(
                                  young_cards_per_entry_ratio_defaults[index]);
214 215 216 217 218 219 220 221
  _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
  _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
  _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
  _young_other_cost_per_region_ms_seq->add(
                               young_other_cost_per_region_ms_defaults[index]);
  _non_young_other_cost_per_region_ms_seq->add(
                           non_young_other_cost_per_region_ms_defaults[index]);

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  // Below, we might need to calculate the pause time target based on
  // the pause interval. When we do so we are going to give G1 maximum
  // flexibility and allow it to do pauses when it needs to. So, we'll
  // arrange that the pause interval to be pause time target + 1 to
  // ensure that a) the pause time target is maximized with respect to
  // the pause interval and b) we maintain the invariant that pause
  // time target < pause interval. If the user does not want this
  // maximum flexibility, they will have to set the pause interval
  // explicitly.

  // First make sure that, if either parameter is set, its value is
  // reasonable.
  if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (MaxGCPauseMillis < 1) {
      vm_exit_during_initialization("MaxGCPauseMillis should be "
                                    "greater than 0");
    }
  }
  if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    if (GCPauseIntervalMillis < 1) {
      vm_exit_during_initialization("GCPauseIntervalMillis should be "
                                    "greater than 0");
    }
  }

  // Then, if the pause time target parameter was not set, set it to
  // the default value.
  if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
      // The default pause time target in G1 is 200ms
      FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
    } else {
      // We do not allow the pause interval to be set without the
      // pause time target
      vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
                                    "without setting MaxGCPauseMillis");
    }
  }

  // Then, if the interval parameter was not set, set it according to
  // the pause time target (this will also deal with the case when the
  // pause time target is the default value).
  if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
  }

  // Finally, make sure that the two parameters are consistent.
  if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
    char buffer[256];
    jio_snprintf(buffer, 256,
                 "MaxGCPauseMillis (%u) should be less than "
                 "GCPauseIntervalMillis (%u)",
                 MaxGCPauseMillis, GCPauseIntervalMillis);
    vm_exit_during_initialization(buffer);
  }

J
johnc 已提交
278
  double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
279
  double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
280
  _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
281 282 283 284 285 286 287 288 289

  uintx confidence_perc = G1ConfidencePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (confidence_perc > 100) {
    confidence_perc = 100;
    warning("G1ConfidencePercent is set to a value that is too large, "
            "it's been updated to %u", confidence_perc);
  }
  _sigma = (double) confidence_perc / 100.0;
290 291 292 293 294

  // start conservatively (around 50ms is about right)
  _concurrent_mark_remark_times_ms->add(0.05);
  _concurrent_mark_cleanup_times_ms->add(0.20);
  _tenuring_threshold = MaxTenuringThreshold;
295
  // _max_survivor_regions will be calculated by
296
  // update_young_list_target_length() during initialization.
297
  _max_survivor_regions = 0;
298

T
tonyp 已提交
299 300 301 302 303
  assert(GCTimeRatio > 0,
         "we should have set it to a default value set_g1_gc_flags() "
         "if a user set it to 0");
  _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));

304 305 306 307 308 309 310 311
  uintx reserve_perc = G1ReservePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (reserve_perc > 50) {
    reserve_perc = 50;
    warning("G1ReservePercent is set to a value that is too large, "
            "it's been updated to %u", reserve_perc);
  }
  _reserve_factor = (double) reserve_perc / 100.0;
312
  // This will be set when the heap is expanded
313 314 315
  // for the first time during initialization.
  _reserve_regions = 0;

316
  initialize_all();
317
  _collectionSetChooser = new CollectionSetChooser();
318
  _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
319 320 321
}

void G1CollectorPolicy::initialize_flags() {
322
  _min_alignment = HeapRegion::GrainBytes;
323
  size_t card_table_alignment = GenRemSet::max_alignment_constraint(rem_set_name());
324
  size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
325
  _max_alignment = MAX3(card_table_alignment, _min_alignment, page_size);
326 327 328
  if (SurvivorRatio < 1) {
    vm_exit_during_initialization("Invalid survivor ratio specified");
  }
329 330 331
  CollectorPolicy::initialize_flags();
}

332
G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
333 334 335
  assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
  assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
  assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
336

337 338 339 340 341 342 343 344
  if (FLAG_IS_CMDLINE(NewRatio)) {
    if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
      warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
    } else {
      _sizer_kind = SizerNewRatio;
      _adaptive_size = false;
      return;
    }
345
  }
346 347

  if (FLAG_IS_CMDLINE(NewSize)) {
348 349
    _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
                                     1U);
350
    if (FLAG_IS_CMDLINE(MaxNewSize)) {
351 352 353
      _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
354 355 356 357 358 359
      _sizer_kind = SizerMaxAndNewSize;
      _adaptive_size = _min_desired_young_length == _max_desired_young_length;
    } else {
      _sizer_kind = SizerNewSizeOnly;
    }
  } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
360 361 362
    _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
363
    _sizer_kind = SizerMaxNewSizeOnly;
364
  }
365 366
}

367
uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
368
  uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
369
  return MAX2(1U, default_value);
370 371
}

372
uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
373
  uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
374
  return MAX2(1U, default_value);
375 376
}

377
void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
  assert(new_number_of_heap_regions > 0, "Heap must be initialized");

  switch (_sizer_kind) {
    case SizerDefaults:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      break;
    case SizerNewSizeOnly:
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxNewSizeOnly:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxAndNewSize:
      // Do nothing. Values set on the command line, don't update them at runtime.
      break;
    case SizerNewRatio:
      _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
      _max_desired_young_length = _min_desired_young_length;
      break;
    default:
      ShouldNotReachHere();
402 403
  }

404
  assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
405 406
}

407 408 409 410 411 412
void G1CollectorPolicy::init() {
  // Set aside an initial future to_space.
  _g1 = G1CollectedHeap::heap();

  assert(Heap_lock->owned_by_self(), "Locking discipline.");

413 414
  initialize_gc_policy_counters();

415
  if (adaptive_young_list_length()) {
416
    _young_list_fixed_length = 0;
417
  } else {
418
    _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
419
  }
420
  _free_regions_at_end_of_collection = _g1->free_regions();
421
  update_young_list_target_length();
422 423 424 425

  // We may immediately start allocating regions and placing them on the
  // collection set list. Initialize the per-collection set info
  start_incremental_cset_building();
426 427
}

428
// Create the jstat counters for the policy.
429
void G1CollectorPolicy::initialize_gc_policy_counters() {
430
  _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
431 432
}

433
bool G1CollectorPolicy::predict_will_fit(uint young_length,
434
                                         double base_time_ms,
435
                                         uint base_free_regions,
436 437 438 439 440
                                         double target_pause_time_ms) {
  if (young_length >= base_free_regions) {
    // end condition 1: not enough space for the young regions
    return false;
  }
441

442
  double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
443 444 445 446 447 448 449 450 451
  size_t bytes_to_copy =
               (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
  double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
  double young_other_time_ms = predict_young_other_time_ms(young_length);
  double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
  if (pause_time_ms > target_pause_time_ms) {
    // end condition 2: prediction is over the target pause time
    return false;
  }
452

453
  size_t free_bytes =
454
                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
455 456 457
  if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
    // end condition 3: out-of-space (conservatively!)
    return false;
458
  }
459 460 461 462 463

  // success!
  return true;
}

464
void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
465 466
  // re-calculate the necessary reserve
  double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
467 468
  // We use ceiling so that if reserve_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
469
  _reserve_regions = (uint) ceil(reserve_regions_d);
470

471
  _young_gen_sizer->heap_size_changed(new_number_of_regions);
472 473
}

474 475 476
uint G1CollectorPolicy::calculate_young_list_desired_min_length(
                                                       uint base_min_length) {
  uint desired_min_length = 0;
477
  if (adaptive_young_list_length()) {
478 479 480 481
    if (_alloc_rate_ms_seq->num() > 3) {
      double now_sec = os::elapsedTime();
      double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
      double alloc_rate_ms = predict_alloc_rate_ms();
482
      desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
483 484
    } else {
      // otherwise we don't have enough info to make the prediction
485 486
    }
  }
487 488
  desired_min_length += base_min_length;
  // make sure we don't go below any user-defined minimum bound
489
  return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
490 491
}

492
uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
493 494 495
  // Here, we might want to also take into account any additional
  // constraints (i.e., user-defined minimum bound). Currently, we
  // effectively don't set this bound.
496
  return _young_gen_sizer->max_desired_young_length();
497
}
498

499 500 501 502 503 504
void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
  if (rs_lengths == (size_t) -1) {
    // if it's set to the default value (-1), we should predict it;
    // otherwise, use the given value.
    rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
  }
505

506
  // Calculate the absolute and desired min bounds.
507

508
  // This is how many young regions we already have (currently: the survivors).
509
  uint base_min_length = recorded_survivor_regions();
510 511
  // This is the absolute minimum young length, which ensures that we
  // can allocate one eden region in the worst-case.
512 513
  uint absolute_min_length = base_min_length + 1;
  uint desired_min_length =
514 515 516 517
                     calculate_young_list_desired_min_length(base_min_length);
  if (desired_min_length < absolute_min_length) {
    desired_min_length = absolute_min_length;
  }
518

519
  // Calculate the absolute and desired max bounds.
520

521
  // We will try our best not to "eat" into the reserve.
522
  uint absolute_max_length = 0;
523 524 525
  if (_free_regions_at_end_of_collection > _reserve_regions) {
    absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
  }
526
  uint desired_max_length = calculate_young_list_desired_max_length();
527 528 529
  if (desired_max_length > absolute_max_length) {
    desired_max_length = absolute_max_length;
  }
530

531
  uint young_list_target_length = 0;
532
  if (adaptive_young_list_length()) {
533
    if (gcs_are_young()) {
534 535 536 537 538 539 540 541 542 543 544 545
      young_list_target_length =
                        calculate_young_list_target_length(rs_lengths,
                                                           base_min_length,
                                                           desired_min_length,
                                                           desired_max_length);
      _rs_lengths_prediction = rs_lengths;
    } else {
      // Don't calculate anything and let the code below bound it to
      // the desired_min_length, i.e., do the next GC as soon as
      // possible to maximize how many old regions we can add to it.
    }
  } else {
546 547 548
    // The user asked for a fixed young gen so we'll fix the young gen
    // whether the next GC is young or mixed.
    young_list_target_length = _young_list_fixed_length;
549
  }
550

551 552 553 554 555 556 557 558 559
  // Make sure we don't go over the desired max length, nor under the
  // desired min length. In case they clash, desired_min_length wins
  // which is why that test is second.
  if (young_list_target_length > desired_max_length) {
    young_list_target_length = desired_max_length;
  }
  if (young_list_target_length < desired_min_length) {
    young_list_target_length = desired_min_length;
  }
560

561 562 563 564
  assert(young_list_target_length > recorded_survivor_regions(),
         "we should be able to allocate at least one eden region");
  assert(young_list_target_length >= absolute_min_length, "post-condition");
  _young_list_target_length = young_list_target_length;
565

566 567
  update_max_gc_locker_expansion();
}
568

569
uint
570
G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
571 572 573
                                                     uint base_min_length,
                                                     uint desired_min_length,
                                                     uint desired_max_length) {
574
  assert(adaptive_young_list_length(), "pre-condition");
575
  assert(gcs_are_young(), "only call this for young GCs");
576 577 578 579 580 581 582 583 584 585 586 587

  // In case some edge-condition makes the desired max length too small...
  if (desired_max_length <= desired_min_length) {
    return desired_min_length;
  }

  // We'll adjust min_young_length and max_young_length not to include
  // the already allocated young regions (i.e., so they reflect the
  // min and max eden regions we'll allocate). The base_min_length
  // will be reflected in the predictions by the
  // survivor_regions_evac_time prediction.
  assert(desired_min_length > base_min_length, "invariant");
588
  uint min_young_length = desired_min_length - base_min_length;
589
  assert(desired_max_length > base_min_length, "invariant");
590
  uint max_young_length = desired_max_length - base_min_length;
591 592 593 594 595 596 597 598 599

  double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
  double survivor_regions_evac_time = predict_survivor_regions_evac_time();
  size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
  size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
  size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
  double base_time_ms =
    predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
    survivor_regions_evac_time;
600 601
  uint available_free_regions = _free_regions_at_end_of_collection;
  uint base_free_regions = 0;
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
  if (available_free_regions > _reserve_regions) {
    base_free_regions = available_free_regions - _reserve_regions;
  }

  // Here, we will make sure that the shortest young length that
  // makes sense fits within the target pause time.

  if (predict_will_fit(min_young_length, base_time_ms,
                       base_free_regions, target_pause_time_ms)) {
    // The shortest young length will fit into the target pause time;
    // we'll now check whether the absolute maximum number of young
    // regions will fit in the target pause time. If not, we'll do
    // a binary search between min_young_length and max_young_length.
    if (predict_will_fit(max_young_length, base_time_ms,
                         base_free_regions, target_pause_time_ms)) {
      // The maximum young length will fit into the target pause time.
      // We are done so set min young length to the maximum length (as
      // the result is assumed to be returned in min_young_length).
      min_young_length = max_young_length;
    } else {
      // The maximum possible number of young regions will not fit within
      // the target pause time so we'll search for the optimal
      // length. The loop invariants are:
      //
      // min_young_length < max_young_length
      // min_young_length is known to fit into the target pause time
      // max_young_length is known not to fit into the target pause time
      //
      // Going into the loop we know the above hold as we've just
      // checked them. Every time around the loop we check whether
      // the middle value between min_young_length and
      // max_young_length fits into the target pause time. If it
      // does, it becomes the new min. If it doesn't, it becomes
      // the new max. This way we maintain the loop invariants.

      assert(min_young_length < max_young_length, "invariant");
638
      uint diff = (max_young_length - min_young_length) / 2;
639
      while (diff > 0) {
640
        uint young_length = min_young_length + diff;
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
        if (predict_will_fit(young_length, base_time_ms,
                             base_free_regions, target_pause_time_ms)) {
          min_young_length = young_length;
        } else {
          max_young_length = young_length;
        }
        assert(min_young_length <  max_young_length, "invariant");
        diff = (max_young_length - min_young_length) / 2;
      }
      // The results is min_young_length which, according to the
      // loop invariants, should fit within the target pause time.

      // These are the post-conditions of the binary search above:
      assert(min_young_length < max_young_length,
             "otherwise we should have discovered that max_young_length "
             "fits into the pause target and not done the binary search");
      assert(predict_will_fit(min_young_length, base_time_ms,
                              base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should "
             "fit into the pause target");
      assert(!predict_will_fit(min_young_length + 1, base_time_ms,
                               base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should be "
             "optimal, so no larger length should fit into the pause target");
    }
  } else {
    // Even the minimum length doesn't fit into the pause time
    // target, return it as the result nevertheless.
  }
  return base_min_length + min_young_length;
671 672
}

673 674 675 676 677
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
  double survivor_regions_evac_time = 0.0;
  for (HeapRegion * r = _recorded_survivor_head;
       r != NULL && r != _recorded_survivor_tail->get_next_young_region();
       r = r->get_next_young_region()) {
678
    survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
679 680 681 682
  }
  return survivor_regions_evac_time;
}

683
void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
684 685
  guarantee( adaptive_young_list_length(), "should not call this otherwise" );

686
  size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
687 688 689
  if (rs_lengths > _rs_lengths_prediction) {
    // add 10% to avoid having to recalculate often
    size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
690
    update_young_list_target_length(rs_lengths_prediction);
691 692 693
  }
}

694 695


696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
                                               bool is_tlab,
                                               bool* gc_overhead_limit_was_exceeded) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}

// This method controls how a collector handles one or more
// of its generations being fully allocated.
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
                                                       bool is_tlab) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}


#ifndef PRODUCT
bool G1CollectorPolicy::verify_young_ages() {
714
  HeapRegion* head = _g1->young_list()->first_region();
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
  return
    verify_young_ages(head, _short_lived_surv_rate_group);
  // also call verify_young_ages on any additional surv rate groups
}

bool
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
                                     SurvRateGroup *surv_rate_group) {
  guarantee( surv_rate_group != NULL, "pre-condition" );

  const char* name = surv_rate_group->name();
  bool ret = true;
  int prev_age = -1;

  for (HeapRegion* curr = head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    SurvRateGroup* group = curr->surv_rate_group();
    if (group == NULL && !curr->is_survivor()) {
      gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
      ret = false;
    }

    if (surv_rate_group == group) {
      int age = curr->age_in_surv_rate_group();

      if (age < 0) {
        gclog_or_tty->print_cr("## %s: encountered negative age", name);
        ret = false;
      }

      if (age <= prev_age) {
        gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
                               "(%d, %d)", name, age, prev_age);
        ret = false;
      }
      prev_age = age;
    }
  }

  return ret;
}
#endif // PRODUCT

void G1CollectorPolicy::record_full_collection_start() {
760
  _full_collection_start_sec = os::elapsedTime();
761
  record_heap_size_info_at_start(true /* full */);
762 763 764 765 766 767 768 769
  // Release the future to-space so that it is available for compaction into.
  _g1->set_full_collection();
}

void G1CollectorPolicy::record_full_collection_end() {
  // Consider this like a collection pause for the purposes of allocation
  // since last pause.
  double end_sec = os::elapsedTime();
770
  double full_gc_time_sec = end_sec - _full_collection_start_sec;
771 772
  double full_gc_time_ms = full_gc_time_sec * 1000.0;

773
  _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
774

775
  update_recent_gc_times(end_sec, full_gc_time_ms);
776 777 778

  _g1->clear_full_collection();

779 780 781 782
  // "Nuke" the heuristics that control the young/mixed GC
  // transitions and make sure we start with young GCs after the Full GC.
  set_gcs_are_young(true);
  _last_young_gc = false;
783 784
  clear_initiate_conc_mark_if_possible();
  clear_during_initial_mark_pause();
785 786 787 788 789 790
  _in_marking_window = false;
  _in_marking_window_im = false;

  _short_lived_surv_rate_group->start_adding_regions();
  // also call this on any additional surv rate groups

791 792
  record_survivor_regions(0, NULL, NULL);

793
  _free_regions_at_end_of_collection = _g1->free_regions();
794 795
  // Reset survivors SurvRateGroup.
  _survivor_surv_rate_group->reset();
796
  update_young_list_target_length();
797
  _collectionSetChooser->clear();
798
}
799 800 801 802 803

void G1CollectorPolicy::record_stop_world_start() {
  _stop_world_start = os::elapsedTime();
}

804
void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
805 806 807 808
  // We only need to do this here as the policy will only be applied
  // to the GC we're about to start. so, no point is calculating this
  // every time we calculate / recalculate the target young length.
  update_survivors_policy();
809

810 811 812
  assert(_g1->used() == _g1->recalculate_used(),
         err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
                 _g1->used(), _g1->recalculate_used()));
813 814

  double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
815
  _trace_gen0_time_data.record_start_collection(s_w_t_ms);
816 817
  _stop_world_start = 0.0;

818
  record_heap_size_info_at_start(false /* full */);
819

820
  phase_times()->record_cur_collection_start_sec(start_time_sec);
821 822
  _pending_cards = _g1->pending_card_num();

823
  _collection_set_bytes_used_before = 0;
824
  _bytes_copied_during_gc = 0;
825

826
  _last_gc_was_young = false;
827 828 829

  // do that for any other surv rate groups
  _short_lived_surv_rate_group->stop_adding_regions();
830
  _survivors_age_table.clear();
831

832 833 834
  assert( verify_young_ages(), "region age verification" );
}

835
void G1CollectorPolicy::record_concurrent_mark_init_end(double
836 837
                                                   mark_init_elapsed_time_ms) {
  _during_marking = true;
838 839
  assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
  clear_during_initial_mark_pause();
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
  _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_remark_start() {
  _mark_remark_start_sec = os::elapsedTime();
  _during_marking = false;
}

void G1CollectorPolicy::record_concurrent_mark_remark_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
  _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  _mark_cleanup_start_sec = os::elapsedTime();
}

862
void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
863
  _last_young_gc = true;
864
  _in_marking_window = false;
865 866 867 868 869
}

void G1CollectorPolicy::record_concurrent_pause() {
  if (_stop_world_start > 0.0) {
    double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
870
    _trace_gen0_time_data.record_yield_time(yield_ms);
871 872 873
  }
}

874 875
bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
  if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
876 877 878 879 880 881
    return false;
  }

  size_t marking_initiating_used_threshold =
    (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  size_t cur_used_bytes = _g1->non_young_capacity_bytes();
882
  size_t alloc_byte_size = alloc_word_size * HeapWordSize;
883

884
  if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
885
    if (gcs_are_young() && !_last_young_gc) {
886
      ergo_verbose5(ErgoConcCycles,
887 888 889
        "request concurrent cycle initiation",
        ergo_format_reason("occupancy higher than threshold")
        ergo_format_byte("occupancy")
890
        ergo_format_byte("allocation request")
891 892 893
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
894
        alloc_byte_size,
895 896 897 898 899
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
      return true;
    } else {
900
      ergo_verbose5(ErgoConcCycles,
901 902 903
        "do not request concurrent cycle initiation",
        ergo_format_reason("still doing mixed collections")
        ergo_format_byte("occupancy")
904
        ergo_format_byte("allocation request")
905 906 907
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
908
        alloc_byte_size,
909 910 911 912 913 914 915 916 917
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
    }
  }

  return false;
}

918 919 920
// Anything below that is considered to be zero
#define MIN_TIMER_GRANULARITY 0.0000001

S
sla 已提交
921
void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
922
  double end_time_sec = os::elapsedTime();
923 924
  assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
         "otherwise, the subtraction below does not make sense");
925
  size_t rs_size =
926
            _cur_collection_pause_used_regions_at_start - cset_region_length();
927 928 929
  size_t cur_used_bytes = _g1->used();
  assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  bool last_pause_included_initial_mark = false;
930
  bool update_stats = !_g1->evacuation_failed();
931 932 933 934 935 936 937 938 939

#ifndef PRODUCT
  if (G1YoungSurvRateVerbose) {
    gclog_or_tty->print_cr("");
    _short_lived_surv_rate_group->print();
    // do that for any other surv rate groups too
  }
#endif // PRODUCT

940
  last_pause_included_initial_mark = during_initial_mark_pause();
941
  if (last_pause_included_initial_mark) {
942
    record_concurrent_mark_init_end(0.0);
943
  } else if (need_to_start_conc_mark("end of GC")) {
944 945 946 947 948
    // Note: this might have already been set, if during the last
    // pause we decided to start a cycle but at the beginning of
    // this pause we decided to postpone it. That's OK.
    set_initiate_conc_mark_if_possible();
  }
949

950
  _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
951 952
                          end_time_sec, false);

S
sla 已提交
953 954 955
  evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
  evacuation_info.set_bytes_copied(_bytes_copied_during_gc);

956
  if (update_stats) {
957
    _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
958 959
    // this is where we update the allocation rate of the application
    double app_time_ms =
960
      (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
961 962 963 964 965 966
    if (app_time_ms < MIN_TIMER_GRANULARITY) {
      // This usually happens due to the timer not having the required
      // granularity. Some Linuxes are the usual culprits.
      // We'll just set it to something (arbitrarily) small.
      app_time_ms = 1.0;
    }
967 968 969 970 971 972 973 974
    // We maintain the invariant that all objects allocated by mutator
    // threads will be allocated out of eden regions. So, we can use
    // the eden region number allocated since the previous GC to
    // calculate the application's allocate rate. The only exception
    // to that is humongous objects that are allocated separately. But
    // given that humongous object allocations do not really affect
    // either the pause's duration nor when the next pause will take
    // place we can safely ignore them here.
975
    uint regions_allocated = eden_cset_region_length();
976 977 978 979 980
    double alloc_rate_ms = (double) regions_allocated / app_time_ms;
    _alloc_rate_ms_seq->add(alloc_rate_ms);

    double interval_ms =
      (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
981
    update_recent_gc_times(end_time_sec, pause_time_ms);
982
    _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
983 984 985 986 987 988 989 990 991 992 993 994
    if (recent_avg_pause_time_ratio() < 0.0 ||
        (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
#ifndef PRODUCT
      // Dump info to allow post-facto debugging
      gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
      gclog_or_tty->print_cr("-------------------------------------------");
      gclog_or_tty->print_cr("Recent GC Times (ms):");
      _recent_gc_times_ms->dump();
      gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
      _recent_prev_end_times_for_all_gcs_sec->dump();
      gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
                             _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
995 996 997 998 999
      // In debug mode, terminate the JVM if the user wants to debug at this point.
      assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
#endif  // !PRODUCT
      // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
      // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1000 1001 1002 1003 1004 1005 1006
      if (_recent_avg_pause_time_ratio < 0.0) {
        _recent_avg_pause_time_ratio = 0.0;
      } else {
        assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
        _recent_avg_pause_time_ratio = 1.0;
      }
    }
1007
  }
1008

1009 1010
  bool new_in_marking_window = _in_marking_window;
  bool new_in_marking_window_im = false;
1011
  if (during_initial_mark_pause()) {
1012 1013 1014 1015
    new_in_marking_window = true;
    new_in_marking_window_im = true;
  }

1016
  if (_last_young_gc) {
1017 1018 1019
    // This is supposed to to be the "last young GC" before we start
    // doing mixed GCs. Here we decide whether to start mixed GCs or not.

1020
    if (!last_pause_included_initial_mark) {
1021 1022 1023 1024
      if (next_gc_should_be_mixed("start mixed GCs",
                                  "do not start mixed GCs")) {
        set_gcs_are_young(false);
      }
1025
    } else {
1026 1027
      ergo_verbose0(ErgoMixedGCs,
                    "do not start mixed GCs",
1028 1029
                    ergo_format_reason("concurrent cycle is about to start"));
    }
1030
    _last_young_gc = false;
1031
  }
1032

1033
  if (!_last_gc_was_young) {
1034 1035 1036 1037 1038
    // This is a mixed GC. Here we decide whether to continue doing
    // mixed GCs or not.

    if (!next_gc_should_be_mixed("continue mixed GCs",
                                 "do not continue mixed GCs")) {
1039
      set_gcs_are_young(true);
1040
    }
1041
  }
1042 1043 1044 1045

  _short_lived_surv_rate_group->start_adding_regions();
  // do that for any other surv rate groupsx

1046
  if (update_stats) {
1047 1048
    double cost_per_card_ms = 0.0;
    if (_pending_cards > 0) {
1049
      cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1050 1051 1052 1053 1054 1055 1056
      _cost_per_card_ms_seq->add(cost_per_card_ms);
    }

    size_t cards_scanned = _g1->cards_scanned();

    double cost_per_entry_ms = 0.0;
    if (cards_scanned > 10) {
1057
      cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1058
      if (_last_gc_was_young) {
1059
        _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1060 1061 1062
      } else {
        _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
      }
1063 1064 1065 1066 1067
    }

    if (_max_rs_lengths > 0) {
      double cards_per_entry_ratio =
        (double) cards_scanned / (double) _max_rs_lengths;
1068 1069 1070 1071 1072
      if (_last_gc_was_young) {
        _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      } else {
        _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      }
1073 1074
    }

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
    // This is defensive. For a while _max_rs_lengths could get
    // smaller than _recorded_rs_lengths which was causing
    // rs_length_diff to get very large and mess up the RSet length
    // predictions. The reason was unsafe concurrent updates to the
    // _inc_cset_recorded_rs_lengths field which the code below guards
    // against (see CR 7118202). This bug has now been fixed (see CR
    // 7119027). However, I'm still worried that
    // _inc_cset_recorded_rs_lengths might still end up somewhat
    // inaccurate. The concurrent refinement thread calculates an
    // RSet's length concurrently with other CR threads updating it
    // which might cause it to calculate the length incorrectly (if,
    // say, it's in mid-coarsening). So I'll leave in the defensive
    // conditional below just in case.
1088 1089 1090 1091 1092
    size_t rs_length_diff = 0;
    if (_max_rs_lengths > _recorded_rs_lengths) {
      rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
    }
    _rs_length_diff_seq->add((double) rs_length_diff);
1093

1094 1095
    size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
    size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1096
    double cost_per_byte_ms = 0.0;
1097

1098
    if (copied_bytes > 0) {
1099
      cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1100
      if (_in_marking_window) {
1101
        _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1102
      } else {
1103
        _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1104
      }
1105 1106 1107
    }

    double all_other_time_ms = pause_time_ms -
1108 1109
      (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
      + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1110 1111

    double young_other_time_ms = 0.0;
1112
    if (young_cset_region_length() > 0) {
1113
      young_other_time_ms =
1114 1115
        phase_times()->young_cset_choice_time_ms() +
        phase_times()->young_free_cset_time_ms();
1116
      _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1117
                                          (double) young_cset_region_length());
1118 1119
    }
    double non_young_other_time_ms = 0.0;
1120
    if (old_cset_region_length() > 0) {
1121
      non_young_other_time_ms =
1122 1123
        phase_times()->non_young_cset_choice_time_ms() +
        phase_times()->non_young_free_cset_time_ms();
1124 1125

      _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1126
                                            (double) old_cset_region_length());
1127 1128 1129 1130 1131 1132 1133
    }

    double constant_other_time_ms = all_other_time_ms -
      (young_other_time_ms + non_young_other_time_ms);
    _constant_other_time_ms_seq->add(constant_other_time_ms);

    double survival_ratio = 0.0;
1134
    if (_collection_set_bytes_used_before > 0) {
1135
      survival_ratio = (double) _bytes_copied_during_gc /
1136
                                   (double) _collection_set_bytes_used_before;
1137 1138 1139 1140 1141 1142 1143 1144 1145
    }

    _pending_cards_seq->add((double) _pending_cards);
    _rs_lengths_seq->add((double) _max_rs_lengths);
  }

  _in_marking_window = new_in_marking_window;
  _in_marking_window_im = new_in_marking_window_im;
  _free_regions_at_end_of_collection = _g1->free_regions();
1146
  update_young_list_target_length();
1147

1148
  // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1149
  double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1150 1151
  adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
                               phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1152

1153
  _collectionSetChooser->verify();
1154 1155
}

1156
#define EXT_SIZE_FORMAT "%.1f%s"
1157
#define EXT_SIZE_PARAMS(bytes)                                  \
1158
  byte_size_in_proper_unit((double)(bytes)),                    \
1159 1160
  proper_unit_for_byte_size((bytes))

1161
void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1162
  YoungList* young_list = _g1->young_list();
1163 1164 1165 1166
  _eden_used_bytes_before_gc = young_list->eden_used_bytes();
  _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
  _heap_capacity_bytes_before_gc = _g1->capacity();
  _heap_used_bytes_before_gc = _g1->used();
1167 1168
  _cur_collection_pause_used_regions_at_start = _g1->used_regions();

1169 1170
  _eden_capacity_bytes_before_gc =
         (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1171

1172 1173 1174
  if (full) {
    _metaspace_used_bytes_before_gc = MetaspaceAux::allocated_used_bytes();
  }
1175 1176
}

1177
void G1CollectorPolicy::print_heap_transition() {
1178
  _g1->print_size_transition(gclog_or_tty,
1179 1180 1181
                             _heap_used_bytes_before_gc,
                             _g1->used(),
                             _g1->capacity());
1182 1183
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
  YoungList* young_list = _g1->young_list();

  size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
  size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
  size_t heap_used_bytes_after_gc = _g1->used();

  size_t heap_capacity_bytes_after_gc = _g1->capacity();
  size_t eden_capacity_bytes_after_gc =
    (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;

  gclog_or_tty->print(
    "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
    "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
    "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
    EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
    EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
    EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
    EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
    EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
    EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
    EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
    EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
    EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
    EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
    EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));

  if (full) {
    MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
  }

  gclog_or_tty->cr();
1216 1217
}

1218 1219 1220 1221 1222 1223
void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
                                                     double update_rs_processed_buffers,
                                                     double goal_ms) {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();

1224
  if (G1UseAdaptiveConcRefinement) {
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
    const int k_gy = 3, k_gr = 6;
    const double inc_k = 1.1, dec_k = 0.9;

    int g = cg1r->green_zone();
    if (update_rs_time > goal_ms) {
      g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
    } else {
      if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
        g = (int)MAX2(g * inc_k, g + 1.0);
      }
    }
    // Change the refinement threads params
    cg1r->set_green_zone(g);
    cg1r->set_yellow_zone(g * k_gy);
    cg1r->set_red_zone(g * k_gr);
    cg1r->reinitialize_threads();

    int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
    int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
                                    cg1r->yellow_zone());
    // Change the barrier params
    dcqs.set_process_completed_threshold(processing_threshold);
    dcqs.set_max_completed_queue(cg1r->red_zone());
  }

  int curr_queue_size = dcqs.completed_buffers_num();
  if (curr_queue_size >= cg1r->yellow_zone()) {
    dcqs.set_completed_queue_padding(curr_queue_size);
  } else {
    dcqs.set_completed_queue_padding(0);
  }
  dcqs.notify_if_necessary();
}

1259 1260 1261 1262 1263 1264 1265 1266 1267
double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
                                                size_t scanned_cards) {
  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(scanned_cards) +
    predict_constant_other_time_ms();
}

1268 1269 1270 1271
double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  size_t rs_length = predict_rs_length_diff();
  size_t card_num;
1272
  if (gcs_are_young()) {
1273
    card_num = predict_young_card_num(rs_length);
1274
  } else {
1275
    card_num = predict_non_young_card_num(rs_length);
1276
  }
1277 1278 1279
  return predict_base_elapsed_time_ms(pending_cards, card_num);
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  size_t bytes_to_copy;
  if (hr->is_marked())
    bytes_to_copy = hr->max_live_bytes();
  else {
    assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
    int age = hr->age_in_surv_rate_group();
    double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
    bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  }
  return bytes_to_copy;
1291 1292 1293 1294
}

double
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1295
                                                  bool for_young_gc) {
1296 1297
  size_t rs_length = hr->rem_set()->occupied();
  size_t card_num;
1298 1299 1300 1301

  // Predicting the number of cards is based on which type of GC
  // we're predicting for.
  if (for_young_gc) {
1302
    card_num = predict_young_card_num(rs_length);
1303
  } else {
1304
    card_num = predict_non_young_card_num(rs_length);
1305
  }
1306 1307 1308 1309 1310 1311
  size_t bytes_to_copy = predict_bytes_to_copy(hr);

  double region_elapsed_time_ms =
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy);

1312 1313 1314
  // The prediction of the "other" time for this region is based
  // upon the region type and NOT the GC type.
  if (hr->is_young()) {
1315
    region_elapsed_time_ms += predict_young_other_time_ms(1);
1316
  } else {
1317 1318
    region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  }
1319
  return region_elapsed_time_ms;
1320 1321 1322
}

void
1323 1324
G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
                                            uint survivor_cset_region_length) {
1325 1326 1327
  _eden_cset_region_length     = eden_cset_region_length;
  _survivor_cset_region_length = survivor_cset_region_length;
  _old_cset_region_length      = 0;
1328 1329 1330 1331 1332 1333
}

void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  _recorded_rs_lengths = rs_lengths;
}

1334 1335 1336 1337 1338 1339 1340 1341
void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
                                               double elapsed_ms) {
  _recent_gc_times_ms->add(elapsed_ms);
  _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  _prev_collection_pause_end_ms = end_time_sec * 1000.0;
}

size_t G1CollectorPolicy::expansion_amount() {
1342 1343 1344
  double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  double threshold = _gc_overhead_perc;
  if (recent_gc_overhead > threshold) {
J
johnc 已提交
1345 1346 1347 1348
    // We will double the existing space, or take
    // G1ExpandByPercentOfAvailable % of the available expansion
    // space, whichever is smaller, bounded below by a minimum
    // expansion (unless that's all that's left.)
1349
    const size_t min_expand_bytes = 1*M;
1350
    size_t reserved_bytes = _g1->max_capacity();
1351 1352 1353 1354
    size_t committed_bytes = _g1->capacity();
    size_t uncommitted_bytes = reserved_bytes - committed_bytes;
    size_t expand_bytes;
    size_t expand_bytes_via_pct =
J
johnc 已提交
1355
      uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1356 1357 1358
    expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
    expand_bytes = MAX2(expand_bytes, min_expand_bytes);
    expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

    ergo_verbose5(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("recent GC overhead higher than "
                                     "threshold after GC")
                  ergo_format_perc("recent GC overhead")
                  ergo_format_perc("threshold")
                  ergo_format_byte("uncommitted")
                  ergo_format_byte_perc("calculated expansion amount"),
                  recent_gc_overhead, threshold,
                  uncommitted_bytes,
                  expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);

1372 1373 1374 1375 1376 1377 1378
    return expand_bytes;
  } else {
    return 0;
  }
}

void G1CollectorPolicy::print_tracing_info() const {
1379 1380
  _trace_gen0_time_data.print();
  _trace_gen1_time_data.print();
1381 1382 1383 1384 1385 1386 1387 1388 1389
}

void G1CollectorPolicy::print_yg_surv_rate_info() const {
#ifndef PRODUCT
  _short_lived_surv_rate_group->print_surv_rate_summary();
  // add this call for any other surv rate groups
#endif // PRODUCT
}

1390
uint G1CollectorPolicy::max_regions(int purpose) {
1391 1392
  switch (purpose) {
    case GCAllocForSurvived:
1393
      return _max_survivor_regions;
1394
    case GCAllocForTenured:
1395
      return REGIONS_UNLIMITED;
1396
    default:
1397 1398
      ShouldNotReachHere();
      return REGIONS_UNLIMITED;
1399 1400 1401
  };
}

1402
void G1CollectorPolicy::update_max_gc_locker_expansion() {
1403
  uint expansion_region_num = 0;
1404 1405 1406 1407 1408
  if (GCLockerEdenExpansionPercent > 0) {
    double perc = (double) GCLockerEdenExpansionPercent / 100.0;
    double expansion_region_num_d = perc * (double) _young_list_target_length;
    // We use ceiling so that if expansion_region_num_d is > 0.0 (but
    // less than 1.0) we'll get 1.
1409
    expansion_region_num = (uint) ceil(expansion_region_num_d);
1410 1411 1412 1413 1414 1415 1416
  } else {
    assert(expansion_region_num == 0, "sanity");
  }
  _young_list_max_length = _young_list_target_length + expansion_region_num;
  assert(_young_list_target_length <= _young_list_max_length, "post-condition");
}

1417
// Calculates survivor space parameters.
1418 1419 1420 1421 1422
void G1CollectorPolicy::update_survivors_policy() {
  double max_survivor_regions_d =
                 (double) _young_list_target_length / (double) SurvivorRatio;
  // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
1423
  _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1424

1425
  _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1426 1427 1428
        HeapRegion::GrainWords * _max_survivor_regions);
}

1429 1430
bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
                                                     GCCause::Cause gc_cause) {
1431 1432
  bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  if (!during_cycle) {
1433 1434 1435 1436 1437
    ergo_verbose1(ErgoConcCycles,
                  "request concurrent cycle initiation",
                  ergo_format_reason("requested by GC cause")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1438 1439 1440
    set_initiate_conc_mark_if_possible();
    return true;
  } else {
1441 1442 1443 1444 1445
    ergo_verbose1(ErgoConcCycles,
                  "do not request concurrent cycle initiation",
                  ergo_format_reason("concurrent cycle already in progress")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1446 1447 1448 1449
    return false;
  }
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
void
G1CollectorPolicy::decide_on_conc_mark_initiation() {
  // We are about to decide on whether this pause will be an
  // initial-mark pause.

  // First, during_initial_mark_pause() should not be already set. We
  // will set it here if we have to. However, it should be cleared by
  // the end of the pause (it's only set for the duration of an
  // initial-mark pause).
  assert(!during_initial_mark_pause(), "pre-condition");

  if (initiate_conc_mark_if_possible()) {
    // We had noticed on a previous pause that the heap occupancy has
    // gone over the initiating threshold and we should start a
    // concurrent marking cycle. So we might initiate one.

    bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
    if (!during_cycle) {
      // The concurrent marking thread is not "during a cycle", i.e.,
      // it has completed the last one. So we can go ahead and
      // initiate a new cycle.

      set_during_initial_mark_pause();
1473 1474 1475 1476 1477
      // We do not allow mixed GCs during marking.
      if (!gcs_are_young()) {
        set_gcs_are_young(true);
        ergo_verbose0(ErgoMixedGCs,
                      "end mixed GCs",
1478 1479
                      ergo_format_reason("concurrent cycle is about to start"));
      }
1480 1481 1482 1483

      // And we can now clear initiate_conc_mark_if_possible() as
      // we've already acted on it.
      clear_initiate_conc_mark_if_possible();
1484 1485 1486 1487

      ergo_verbose0(ErgoConcCycles,
                  "initiate concurrent cycle",
                  ergo_format_reason("concurrent cycle initiation requested"));
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
    } else {
      // The concurrent marking thread is still finishing up the
      // previous cycle. If we start one right now the two cycles
      // overlap. In particular, the concurrent marking thread might
      // be in the process of clearing the next marking bitmap (which
      // we will use for the next cycle if we start one). Starting a
      // cycle now will be bad given that parts of the marking
      // information might get cleared by the marking thread. And we
      // cannot wait for the marking thread to finish the cycle as it
      // periodically yields while clearing the next marking bitmap
      // and, if it's in a yield point, it's waiting for us to
      // finish. So, at this point we will not start a cycle and we'll
      // let the concurrent marking thread complete the last one.
1501 1502 1503
      ergo_verbose0(ErgoConcCycles,
                    "do not initiate concurrent cycle",
                    ergo_format_reason("concurrent cycle already in progress"));
1504 1505 1506 1507
    }
  }
}

1508
class KnownGarbageClosure: public HeapRegionClosure {
1509
  G1CollectedHeap* _g1h;
1510 1511 1512 1513
  CollectionSetChooser* _hrSorted;

public:
  KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1514
    _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1515 1516 1517 1518 1519 1520 1521 1522

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.

    // Do we have any marking information for this region?
    if (r->is_marked()) {
1523 1524 1525
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1526 1527
      if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _hrSorted->add_region(r);
1528 1529 1530 1531 1532 1533 1534
      }
    }
    return false;
  }
};

class ParKnownGarbageHRClosure: public HeapRegionClosure {
1535
  G1CollectedHeap* _g1h;
1536
  CSetChooserParUpdater _cset_updater;
1537 1538 1539

public:
  ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1540
                           uint chunk_size) :
1541 1542
    _g1h(G1CollectedHeap::heap()),
    _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1543 1544 1545 1546

  bool doHeapRegion(HeapRegion* r) {
    // Do we have any marking information for this region?
    if (r->is_marked()) {
1547 1548 1549
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1550 1551
      if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _cset_updater.add_region(r);
1552 1553 1554 1555 1556 1557 1558 1559
      }
    }
    return false;
  }
};

class ParKnownGarbageTask: public AbstractGangTask {
  CollectionSetChooser* _hrSorted;
1560
  uint _chunk_size;
1561 1562
  G1CollectedHeap* _g1;
public:
1563
  ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1564 1565
    AbstractGangTask("ParKnownGarbageTask"),
    _hrSorted(hrSorted), _chunk_size(chunk_size),
1566
    _g1(G1CollectedHeap::heap()) { }
1567

1568
  void work(uint worker_id) {
1569 1570
    ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);

1571
    // Back to zero for the claim value.
1572
    _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1573
                                         _g1->workers()->active_workers(),
1574
                                         HeapRegion::InitialClaimValue);
1575 1576 1577 1578
  }
};

void
1579
G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1580
  _collectionSetChooser->clear();
1581

1582
  uint region_num = _g1->n_regions();
1583
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1584 1585
    const uint OverpartitionFactor = 4;
    uint WorkUnit;
1586 1587 1588 1589 1590
    // The use of MinChunkSize = 8 in the original code
    // causes some assertion failures when the total number of
    // region is less than 8.  The code here tries to fix that.
    // Should the original code also be fixed?
    if (no_of_gc_threads > 0) {
1591 1592 1593
      const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
      WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
                      MinWorkUnit);
1594 1595 1596 1597
    } else {
      assert(no_of_gc_threads > 0,
        "The active gc workers should be greater than 0");
      // In a product build do something reasonable to avoid a crash.
1598
      const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1599
      WorkUnit =
1600
        MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1601 1602
             MinWorkUnit);
    }
1603 1604
    _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
                                                           WorkUnit);
1605
    ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1606
                                            (int) WorkUnit);
1607
    _g1->workers()->run_task(&parKnownGarbageTask);
1608 1609 1610

    assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
1611 1612 1613 1614
  } else {
    KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
    _g1->heap_region_iterate(&knownGarbagecl);
  }
1615

1616
  _collectionSetChooser->sort_regions();
1617

1618
  double end_sec = os::elapsedTime();
1619 1620 1621 1622 1623
  double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;
  _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1624 1625
}

1626
// Add the heap region at the head of the non-incremental collection set
1627
void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1628 1629 1630 1631
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(!hr->is_young(), "non-incremental add of young region");

  assert(!hr->in_collection_set(), "should not already be in the CSet");
1632 1633 1634 1635
  hr->set_in_collection_set(true);
  hr->set_next_in_collection_set(_collection_set);
  _collection_set = hr;
  _collection_set_bytes_used_before += hr->used();
1636
  _g1->register_region_with_in_cset_fast_test(hr);
1637 1638 1639
  size_t rs_length = hr->rem_set()->occupied();
  _recorded_rs_lengths += rs_length;
  _old_cset_region_length += 1;
1640 1641
}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
// Initialize the per-collection-set information
void G1CollectorPolicy::start_incremental_cset_building() {
  assert(_inc_cset_build_state == Inactive, "Precondition");

  _inc_cset_head = NULL;
  _inc_cset_tail = NULL;
  _inc_cset_bytes_used_before = 0;

  _inc_cset_max_finger = 0;
  _inc_cset_recorded_rs_lengths = 0;
1652 1653 1654
  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms = 0.0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1655 1656 1657
  _inc_cset_build_state = Active;
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
void G1CollectorPolicy::finalize_incremental_cset_building() {
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");

  // The two "main" fields, _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  // that adds a new region to the CSet. Further updates by the
  // concurrent refinement thread that samples the young RSet lengths
  // are accumulated in the *_diffs fields. Here we add the diffs to
  // the "main" fields.

  if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
    _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  } else {
    // This is defensive. The diff should in theory be always positive
    // as RSets can only grow between GCs. However, given that we
    // sample their size concurrently with other threads updating them
    // it's possible that we might get the wrong size back, which
    // could make the calculations somewhat inaccurate.
    size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
    if (_inc_cset_recorded_rs_lengths >= diffs) {
      _inc_cset_recorded_rs_lengths -= diffs;
    } else {
      _inc_cset_recorded_rs_lengths = 0;
    }
  }
  _inc_cset_predicted_elapsed_time_ms +=
                                     _inc_cset_predicted_elapsed_time_ms_diffs;

  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  // This routine is used when:
  // * adding survivor regions to the incremental cset at the end of an
  //   evacuation pause,
  // * adding the current allocation region to the incremental cset
  //   when it is retired, and
  // * updating existing policy information for a region in the
  //   incremental cset via young list RSet sampling.
  // Therefore this routine may be called at a safepoint by the
  // VM thread, or in-between safepoints by mutator threads (when
  // retiring the current allocation region) or a concurrent
  // refine thread (RSet sampling).

1704
  double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
  size_t used_bytes = hr->used();
  _inc_cset_recorded_rs_lengths += rs_length;
  _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  _inc_cset_bytes_used_before += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_recorded_rs_length(rs_length);
  hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
}

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
                                                     size_t new_rs_length) {
  // Update the CSet information that is dependent on the new RS length
  assert(hr->is_young(), "Precondition");
  assert(!SafepointSynchronize::is_at_safepoint(),
                                               "should not be at a safepoint");

  // We could have updated _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  // that atomically, as this code is executed by a concurrent
  // refinement thread, potentially concurrently with a mutator thread
  // allocating a new region and also updating the same fields. To
  // avoid the atomic operations we accumulate these updates on two
  // separate fields (*_diffs) and we'll just add them to the "main"
  // fields at the start of a GC.

  ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1737 1738

  double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1739
  double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1740 1741
  double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1742

1743 1744
  hr->set_recorded_rs_length(new_rs_length);
  hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1745 1746 1747
}

void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1748 1749
  assert(hr->is_young(), "invariant");
  assert(hr->young_index_in_cset() > -1, "should have already been set");
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
  assert(_inc_cset_build_state == Active, "Precondition");

  // We need to clear and set the cached recorded/cached collection set
  // information in the heap region here (before the region gets added
  // to the collection set). An individual heap region's cached values
  // are calculated, aggregated with the policy collection set info,
  // and cached in the heap region here (initially) and (subsequently)
  // by the Young List sampling code.

  size_t rs_length = hr->rem_set()->occupied();
  add_to_incremental_cset_info(hr, rs_length);

  HeapWord* hr_end = hr->end();
  _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);

  assert(!hr->in_collection_set(), "invariant");
  hr->set_in_collection_set(true);
  assert( hr->next_in_collection_set() == NULL, "invariant");

  _g1->register_region_with_in_cset_fast_test(hr);
}

// Add the region at the RHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  // We should only ever be appending survivors at the end of a pause
  assert( hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Now add the region at the right hand side
  if (_inc_cset_tail == NULL) {
    assert(_inc_cset_head == NULL, "invariant");
    _inc_cset_head = hr;
  } else {
    _inc_cset_tail->set_next_in_collection_set(hr);
  }
  _inc_cset_tail = hr;
}

// Add the region to the LHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  // Survivors should be added to the RHS at the end of a pause
  assert(!hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Add the region at the left hand side
  hr->set_next_in_collection_set(_inc_cset_head);
  if (_inc_cset_head == NULL) {
    assert(_inc_cset_tail == NULL, "Invariant");
    _inc_cset_tail = hr;
  }
  _inc_cset_head = hr;
}

#ifndef PRODUCT
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");

  st->print_cr("\nCollection_set:");
  HeapRegion* csr = list_head;
  while (csr != NULL) {
    HeapRegion* next = csr->next_in_collection_set();
    assert(csr->in_collection_set(), "bad CS");
1816 1817 1818 1819
    st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                 HR_FORMAT_PARAMS(csr),
                 csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
                 csr->age_in_surv_rate_group_cond());
1820 1821 1822 1823 1824
    csr = next;
  }
}
#endif // !PRODUCT

1825 1826 1827 1828 1829 1830 1831 1832
double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
  // Returns the given amount of reclaimable bytes (that represents
  // the amount of reclaimable space still to be collected) as a
  // percentage of the current heap capacity.
  size_t capacity_bytes = _g1->capacity();
  return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
}

1833 1834 1835
bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
                                                const char* false_action_str) {
  CollectionSetChooser* cset_chooser = _collectionSetChooser;
1836
  if (cset_chooser->is_empty()) {
1837 1838 1839 1840 1841
    ergo_verbose0(ErgoMixedGCs,
                  false_action_str,
                  ergo_format_reason("candidate old regions not available"));
    return false;
  }
1842 1843

  // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1844
  size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1845
  double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1846
  double threshold = (double) G1HeapWastePercent;
1847
  if (reclaimable_perc <= threshold) {
1848 1849
    ergo_verbose4(ErgoMixedGCs,
              false_action_str,
1850
              ergo_format_reason("reclaimable percentage not over threshold")
1851 1852 1853
              ergo_format_region("candidate old regions")
              ergo_format_byte_perc("reclaimable")
              ergo_format_perc("threshold"),
1854
              cset_chooser->remaining_regions(),
1855 1856
              reclaimable_bytes,
              reclaimable_perc, threshold);
1857 1858 1859 1860 1861 1862 1863 1864 1865
    return false;
  }

  ergo_verbose4(ErgoMixedGCs,
                true_action_str,
                ergo_format_reason("candidate old regions available")
                ergo_format_region("candidate old regions")
                ergo_format_byte_perc("reclaimable")
                ergo_format_perc("threshold"),
1866
                cset_chooser->remaining_regions(),
1867 1868
                reclaimable_bytes,
                reclaimable_perc, threshold);
1869 1870 1871
  return true;
}

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
uint G1CollectorPolicy::calc_min_old_cset_length() {
  // The min old CSet region bound is based on the maximum desired
  // number of mixed GCs after a cycle. I.e., even if some old regions
  // look expensive, we should add them to the CSet anyway to make
  // sure we go through the available old regions in no more than the
  // maximum desired number of mixed GCs.
  //
  // The calculation is based on the number of marked regions we added
  // to the CSet chooser in the first place, not how many remain, so
  // that the result is the same during all mixed GCs that follow a cycle.

  const size_t region_num = (size_t) _collectionSetChooser->length();
  const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
  size_t result = region_num / gc_num;
  // emulate ceiling
  if (result * gc_num < region_num) {
    result += 1;
  }
  return (uint) result;
}

uint G1CollectorPolicy::calc_max_old_cset_length() {
  // The max old CSet region bound is based on the threshold expressed
  // as a percentage of the heap size. I.e., it should bound the
  // number of old regions added to the CSet irrespective of how many
  // of them are available.

  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  const size_t region_num = g1h->n_regions();
  const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
  size_t result = region_num * perc / 100;
  // emulate ceiling
  if (100 * result < region_num * perc) {
    result += 1;
  }
  return (uint) result;
}


S
sla 已提交
1911
void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1912
  double young_start_time_sec = os::elapsedTime();
1913

1914
  YoungList* young_list = _g1->young_list();
1915
  finalize_incremental_cset_building();
1916

1917 1918 1919 1920
  guarantee(target_pause_time_ms > 0.0,
            err_msg("target_pause_time_ms = %1.6lf should be positive",
                    target_pause_time_ms));
  guarantee(_collection_set == NULL, "Precondition");
1921 1922 1923

  double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  double predicted_pause_time_ms = base_time_ms;
1924
  double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1925

1926
  ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1927
                "start choosing CSet",
1928
                ergo_format_size("_pending_cards")
1929 1930 1931
                ergo_format_ms("predicted base time")
                ergo_format_ms("remaining time")
                ergo_format_ms("target pause time"),
1932
                _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1933

1934
  _last_gc_was_young = gcs_are_young() ? true : false;
1935

1936
  if (_last_gc_was_young) {
1937
    _trace_gen0_time_data.increment_young_collection_count();
1938
  } else {
1939
    _trace_gen0_time_data.increment_mixed_collection_count();
1940
  }
1941

1942 1943 1944
  // The young list is laid with the survivor regions from the previous
  // pause are appended to the RHS of the young list, i.e.
  //   [Newly Young Regions ++ Survivors from last pause].
1945

1946 1947
  uint survivor_region_length = young_list->survivor_length();
  uint eden_region_length = young_list->length() - survivor_region_length;
1948
  init_cset_region_lengths(eden_region_length, survivor_region_length);
1949 1950

  HeapRegion* hr = young_list->first_survivor_region();
1951 1952 1953 1954 1955
  while (hr != NULL) {
    assert(hr->is_survivor(), "badly formed young list");
    hr->set_young();
    hr = hr->get_next_young_region();
  }
1956

1957 1958
  // Clear the fields that point to the survivor list - they are all young now.
  young_list->clear_survivors();
1959

1960 1961
  _collection_set = _inc_cset_head;
  _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1962
  time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1963
  predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1964

1965 1966 1967 1968 1969
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "add young regions to CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_ms("predicted young region time"),
1970
                eden_region_length, survivor_region_length,
1971 1972
                _inc_cset_predicted_elapsed_time_ms);

1973 1974 1975
  // The number of recorded young regions is the incremental
  // collection set's current size
  set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1976

1977
  double young_end_time_sec = os::elapsedTime();
1978
  phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1979

1980 1981
  // Set the start of the non-young choice time.
  double non_young_start_time_sec = young_end_time_sec;
1982

1983
  if (!gcs_are_young()) {
1984
    CollectionSetChooser* cset_chooser = _collectionSetChooser;
1985
    cset_chooser->verify();
1986 1987
    const uint min_old_cset_length = calc_min_old_cset_length();
    const uint max_old_cset_length = calc_max_old_cset_length();
1988

1989
    uint expensive_region_num = 0;
1990
    bool check_time_remaining = adaptive_young_list_length();
1991

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
    HeapRegion* hr = cset_chooser->peek();
    while (hr != NULL) {
      if (old_cset_region_length() >= max_old_cset_length) {
        // Added maximum number of old regions to the CSet.
        ergo_verbose2(ErgoCSetConstruction,
                      "finish adding old regions to CSet",
                      ergo_format_reason("old CSet region num reached max")
                      ergo_format_region("old")
                      ergo_format_region("max"),
                      old_cset_region_length(), max_old_cset_length);
        break;
2003
      }
2004

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

      // Stop adding regions if the remaining reclaimable space is
      // not above G1HeapWastePercent.
      size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
      double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
      double threshold = (double) G1HeapWastePercent;
      if (reclaimable_perc <= threshold) {
        // We've added enough old regions that the amount of uncollected
        // reclaimable space is at or below the waste threshold. Stop
        // adding old regions to the CSet.
        ergo_verbose5(ErgoCSetConstruction,
                      "finish adding old regions to CSet",
                      ergo_format_reason("reclaimable percentage not over threshold")
                      ergo_format_region("old")
                      ergo_format_region("max")
                      ergo_format_byte_perc("reclaimable")
                      ergo_format_perc("threshold"),
                      old_cset_region_length(),
                      max_old_cset_length,
                      reclaimable_bytes,
                      reclaimable_perc, threshold);
        break;
      }

2029
      double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
      if (check_time_remaining) {
        if (predicted_time_ms > time_remaining_ms) {
          // Too expensive for the current CSet.

          if (old_cset_region_length() >= min_old_cset_length) {
            // We have added the minimum number of old regions to the CSet,
            // we are done with this CSet.
            ergo_verbose4(ErgoCSetConstruction,
                          "finish adding old regions to CSet",
                          ergo_format_reason("predicted time is too high")
                          ergo_format_ms("predicted time")
                          ergo_format_ms("remaining time")
                          ergo_format_region("old")
                          ergo_format_region("min"),
                          predicted_time_ms, time_remaining_ms,
                          old_cset_region_length(), min_old_cset_length);
            break;
2047
          }
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

          // We'll add it anyway given that we haven't reached the
          // minimum number of old regions.
          expensive_region_num += 1;
        }
      } else {
        if (old_cset_region_length() >= min_old_cset_length) {
          // In the non-auto-tuning case, we'll finish adding regions
          // to the CSet if we reach the minimum.
          ergo_verbose2(ErgoCSetConstruction,
                        "finish adding old regions to CSet",
                        ergo_format_reason("old CSet region num reached min")
                        ergo_format_region("old")
                        ergo_format_region("min"),
                        old_cset_region_length(), min_old_cset_length);
          break;
2064 2065
        }
      }
2066 2067

      // We will add this region to the CSet.
2068
      time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
      predicted_pause_time_ms += predicted_time_ms;
      cset_chooser->remove_and_move_to_next(hr);
      _g1->old_set_remove(hr);
      add_old_region_to_cset(hr);

      hr = cset_chooser->peek();
    }
    if (hr == NULL) {
      ergo_verbose0(ErgoCSetConstruction,
                    "finish adding old regions to CSet",
                    ergo_format_reason("candidate old regions not available"));
    }

    if (expensive_region_num > 0) {
      // We print the information once here at the end, predicated on
      // whether we added any apparently expensive regions or not, to
      // avoid generating output per region.
      ergo_verbose4(ErgoCSetConstruction,
                    "added expensive regions to CSet",
                    ergo_format_reason("old CSet region num not reached min")
                    ergo_format_region("old")
                    ergo_format_region("expensive")
                    ergo_format_region("min")
                    ergo_format_ms("remaining time"),
                    old_cset_region_length(),
                    expensive_region_num,
                    min_old_cset_length,
                    time_remaining_ms);
2097 2098
    }

2099
    cset_chooser->verify();
2100 2101
  }

2102 2103
  stop_incremental_cset_building();

2104 2105 2106 2107 2108 2109 2110
  ergo_verbose5(ErgoCSetConstruction,
                "finish choosing CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_region("old")
                ergo_format_ms("predicted pause time")
                ergo_format_ms("target pause time"),
2111 2112
                eden_region_length, survivor_region_length,
                old_cset_region_length(),
2113 2114
                predicted_pause_time_ms, target_pause_time_ms);

2115
  double non_young_end_time_sec = os::elapsedTime();
2116
  phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
S
sla 已提交
2117
  evacuation_info.set_collectionset_regions(cset_region_length());
2118
}
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  if(TraceGen0Time) {
    _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  }
}

void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  if(TraceGen0Time) {
    _all_yield_times_ms.add(yield_time_ms);
  }
}

2132
void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2133
  if(TraceGen0Time) {
2134 2135
    _total.add(pause_time_ms);
    _other.add(pause_time_ms - phase_times->accounted_time_ms());
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
    _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
    _parallel.add(phase_times->cur_collection_par_time_ms());
    _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
    _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
    _update_rs.add(phase_times->average_last_update_rs_time());
    _scan_rs.add(phase_times->average_last_scan_rs_time());
    _obj_copy.add(phase_times->average_last_obj_copy_time());
    _termination.add(phase_times->average_last_termination_time());

    double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
      phase_times->average_last_satb_filtering_times_ms() +
      phase_times->average_last_update_rs_time() +
      phase_times->average_last_scan_rs_time() +
      phase_times->average_last_obj_copy_time() +
      + phase_times->average_last_termination_time();

    double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2153
    _parallel_other.add(parallel_other_time);
2154
    _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
  }
}

void TraceGen0TimeData::increment_young_collection_count() {
  if(TraceGen0Time) {
    ++_young_pause_num;
  }
}

void TraceGen0TimeData::increment_mixed_collection_count() {
  if(TraceGen0Time) {
    ++_mixed_pause_num;
  }
}

2170
void TraceGen0TimeData::print_summary(const char* str,
2171 2172
                                      const NumberSeq* seq) const {
  double sum = seq->sum();
2173
  gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2174 2175 2176
                str, sum / 1000.0, seq->avg());
}

2177
void TraceGen0TimeData::print_summary_sd(const char* str,
2178
                                         const NumberSeq* seq) const {
2179 2180 2181
  print_summary(str, seq);
  gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
                "(num", seq->num(), seq->sd(), seq->maximum());
2182 2183 2184 2185 2186 2187 2188 2189
}

void TraceGen0TimeData::print() const {
  if (!TraceGen0Time) {
    return;
  }

  gclog_or_tty->print_cr("ALL PAUSES");
2190
  print_summary_sd("   Total", &_total);
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
  gclog_or_tty->print_cr("");
  gclog_or_tty->print_cr("");
  gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  gclog_or_tty->print_cr("");

  gclog_or_tty->print_cr("EVACUATION PAUSES");

  if (_young_pause_num == 0 && _mixed_pause_num == 0) {
    gclog_or_tty->print_cr("none");
  } else {
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
    print_summary_sd("   Evacuation Pauses", &_total);
    print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
    print_summary("      Parallel Time", &_parallel);
    print_summary("         Ext Root Scanning", &_ext_root_scan);
    print_summary("         SATB Filtering", &_satb_filtering);
    print_summary("         Update RS", &_update_rs);
    print_summary("         Scan RS", &_scan_rs);
    print_summary("         Object Copy", &_obj_copy);
    print_summary("         Termination", &_termination);
    print_summary("         Parallel Other", &_parallel_other);
    print_summary("      Clear CT", &_clear_ct);
    print_summary("      Other", &_other);
2214 2215 2216 2217
  }
  gclog_or_tty->print_cr("");

  gclog_or_tty->print_cr("MISC");
2218 2219
  print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  print_summary_sd("   Yields", &_all_yield_times_ms);
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
}

void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  if (TraceGen1Time) {
    _all_full_gc_times.add(full_gc_time_ms);
  }
}

void TraceGen1TimeData::print() const {
  if (!TraceGen1Time) {
    return;
  }

  if (_all_full_gc_times.num() > 0) {
    gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
      _all_full_gc_times.num(),
      _all_full_gc_times.sum() / 1000.0);
    gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
    gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
      _all_full_gc_times.sd(),
      _all_full_gc_times.maximum());
  }
}