g1CollectorPolicy.cpp 103.1 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32 33 34 35 36 37
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "runtime/arguments.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/debug.hpp"
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

// Different defaults for different number of GC threads
// They were chosen by running GCOld and SPECjbb on debris with different
//   numbers of GC threads and choosing them based on the results

// all the same
static double rs_length_diff_defaults[] = {
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

static double cost_per_card_ms_defaults[] = {
  0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
};

// all the same
static double fully_young_cards_per_entry_ratio_defaults[] = {
  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

static double cost_per_entry_ms_defaults[] = {
  0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
};

static double cost_per_byte_ms_defaults[] = {
  0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
};

// these should be pretty consistent
static double constant_other_time_ms_defaults[] = {
  5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
};


static double young_other_cost_per_region_ms_defaults[] = {
  0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
};

static double non_young_other_cost_per_region_ms_defaults[] = {
  1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
};

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
// Help class for avoiding interleaved logging
class LineBuffer: public StackObj {

private:
  static const int BUFFER_LEN = 1024;
  static const int INDENT_CHARS = 3;
  char _buffer[BUFFER_LEN];
  int _indent_level;
  int _cur;

  void vappend(const char* format, va_list ap) {
    int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
    if (res != -1) {
      _cur += res;
    } else {
      DEBUG_ONLY(warning("buffer too small in LineBuffer");)
      _buffer[BUFFER_LEN -1] = 0;
      _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
    }
  }

public:
  explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
    for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
      _buffer[_cur] = ' ';
    }
  }

#ifndef PRODUCT
  ~LineBuffer() {
    assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
  }
#endif

  void append(const char* format, ...) {
    va_list ap;
    va_start(ap, format);
    vappend(format, ap);
    va_end(ap);
  }

  void append_and_print_cr(const char* format, ...) {
    va_list ap;
    va_start(ap, format);
    vappend(format, ap);
    va_end(ap);
    gclog_or_tty->print_cr("%s", _buffer);
    _cur = _indent_level * INDENT_CHARS;
  }
};

130
G1CollectorPolicy::G1CollectorPolicy() :
131
  _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
132
                        ? ParallelGCThreads : 1),
133

134 135 136 137 138
  _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _all_pause_times_ms(new NumberSeq()),
  _stop_world_start(0.0),
  _all_stop_world_times_ms(new NumberSeq()),
  _all_yield_times_ms(new NumberSeq()),
139
  _using_new_ratio_calculations(false),
140

141
  _summary(new Summary()),
142 143

  _cur_clear_ct_time_ms(0.0),
144 145 146 147 148

  _cur_ref_proc_time_ms(0.0),
  _cur_ref_enq_time_ms(0.0),

#ifndef PRODUCT
149 150 151 152 153 154
  _min_clear_cc_time_ms(-1.0),
  _max_clear_cc_time_ms(-1.0),
  _cur_clear_cc_time_ms(0.0),
  _cum_clear_cc_time_ms(0.0),
  _num_cc_clears(0L),
#endif
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

  _aux_num(10),
  _all_aux_times_ms(new NumberSeq[_aux_num]),
  _cur_aux_start_times_ms(new double[_aux_num]),
  _cur_aux_times_ms(new double[_aux_num]),
  _cur_aux_times_set(new bool[_aux_num]),

  _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _prev_collection_pause_end_ms(0.0),
  _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  _partially_young_cards_per_entry_ratio_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
  _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _non_young_other_cost_per_region_ms_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),

  _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),

J
johnc 已提交
185
  _pause_time_target_ms((double) MaxGCPauseMillis),
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

  _full_young_gcs(true),
  _full_young_pause_num(0),
  _partial_young_pause_num(0),

  _during_marking(false),
  _in_marking_window(false),
  _in_marking_window_im(false),

  _known_garbage_ratio(0.0),
  _known_garbage_bytes(0),

  _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),

   _recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _recent_avg_pause_time_ratio(0.0),

  _all_full_gc_times_ms(new NumberSeq()),

206 207
  _initiate_conc_mark_if_possible(false),
  _during_initial_mark_pause(false),
208 209 210
  _should_revert_to_full_young_gcs(false),
  _last_full_young_gc(false),

211 212 213 214
  _eden_bytes_before_gc(0),
  _survivor_bytes_before_gc(0),
  _capacity_before_gc(0),

215 216
  _prev_collection_pause_used_at_end_bytes(0),

217 218 219 220
  _eden_cset_region_length(0),
  _survivor_cset_region_length(0),
  _old_cset_region_length(0),

221
  _collection_set(NULL),
222 223 224 225 226 227 228 229 230 231 232
  _collection_set_bytes_used_before(0),

  // Incremental CSet attributes
  _inc_cset_build_state(Inactive),
  _inc_cset_head(NULL),
  _inc_cset_tail(NULL),
  _inc_cset_bytes_used_before(0),
  _inc_cset_max_finger(NULL),
  _inc_cset_recorded_rs_lengths(0),
  _inc_cset_predicted_elapsed_time_ms(0.0),

233 234 235 236 237 238 239
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

  _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
                                                 G1YoungSurvRateNumRegionsSummary)),
  _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
240
                                              G1YoungSurvRateNumRegionsSummary)),
241
  // add here any more surv rate groups
242 243 244
  _recorded_survivor_regions(0),
  _recorded_survivor_head(NULL),
  _recorded_survivor_tail(NULL),
T
tonyp 已提交
245 246
  _survivors_age_table(true),

247
  _gc_overhead_perc(0.0) {
248

249 250 251 252
  // Set up the region size and associated fields. Given that the
  // policy is created before the heap, we have to set this up here,
  // so it's done as soon as possible.
  HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
253
  HeapRegionRemSet::setup_remset_size();
254

255 256 257 258 259 260 261 262 263 264 265 266
  G1ErgoVerbose::initialize();
  if (PrintAdaptiveSizePolicy) {
    // Currently, we only use a single switch for all the heuristics.
    G1ErgoVerbose::set_enabled(true);
    // Given that we don't currently have a verboseness level
    // parameter, we'll hardcode this to high. This can be easily
    // changed in the future.
    G1ErgoVerbose::set_level(ErgoHigh);
  } else {
    G1ErgoVerbose::set_enabled(false);
  }

267
  // Verify PLAB sizes
268
  const size_t region_size = HeapRegion::GrainWords;
269 270
  if (YoungPLABSize > region_size || OldPLABSize > region_size) {
    char buffer[128];
271
    jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
272 273 274 275
                 OldPLABSize > region_size ? "Old" : "Young", region_size);
    vm_exit_during_initialization(buffer);
  }

276 277 278
  _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
  _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;

279
  _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
280 281 282 283 284 285 286 287 288 289 290
  _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
  _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];

  _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
  _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];

  _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];

  _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];

  _par_last_termination_times_ms = new double[_parallel_gc_threads];
291 292
  _par_last_termination_attempts = new double[_parallel_gc_threads];
  _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
293
  _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
J
johnc 已提交
294
  _par_last_gc_worker_other_times_ms = new double[_parallel_gc_threads];
295 296

  // start conservatively
J
johnc 已提交
297
  _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

  int index;
  if (ParallelGCThreads == 0)
    index = 0;
  else if (ParallelGCThreads > 8)
    index = 7;
  else
    index = ParallelGCThreads - 1;

  _pending_card_diff_seq->add(0.0);
  _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
  _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
  _fully_young_cards_per_entry_ratio_seq->add(
                            fully_young_cards_per_entry_ratio_defaults[index]);
  _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
  _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
  _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
  _young_other_cost_per_region_ms_seq->add(
                               young_other_cost_per_region_ms_defaults[index]);
  _non_young_other_cost_per_region_ms_seq->add(
                           non_young_other_cost_per_region_ms_defaults[index]);

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
  // Below, we might need to calculate the pause time target based on
  // the pause interval. When we do so we are going to give G1 maximum
  // flexibility and allow it to do pauses when it needs to. So, we'll
  // arrange that the pause interval to be pause time target + 1 to
  // ensure that a) the pause time target is maximized with respect to
  // the pause interval and b) we maintain the invariant that pause
  // time target < pause interval. If the user does not want this
  // maximum flexibility, they will have to set the pause interval
  // explicitly.

  // First make sure that, if either parameter is set, its value is
  // reasonable.
  if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (MaxGCPauseMillis < 1) {
      vm_exit_during_initialization("MaxGCPauseMillis should be "
                                    "greater than 0");
    }
  }
  if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    if (GCPauseIntervalMillis < 1) {
      vm_exit_during_initialization("GCPauseIntervalMillis should be "
                                    "greater than 0");
    }
  }

  // Then, if the pause time target parameter was not set, set it to
  // the default value.
  if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
      // The default pause time target in G1 is 200ms
      FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
    } else {
      // We do not allow the pause interval to be set without the
      // pause time target
      vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
                                    "without setting MaxGCPauseMillis");
    }
  }

  // Then, if the interval parameter was not set, set it according to
  // the pause time target (this will also deal with the case when the
  // pause time target is the default value).
  if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
  }

  // Finally, make sure that the two parameters are consistent.
  if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
    char buffer[256];
    jio_snprintf(buffer, 256,
                 "MaxGCPauseMillis (%u) should be less than "
                 "GCPauseIntervalMillis (%u)",
                 MaxGCPauseMillis, GCPauseIntervalMillis);
    vm_exit_during_initialization(buffer);
  }

J
johnc 已提交
376
  double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
377
  double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
378
  _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
J
johnc 已提交
379
  _sigma = (double) G1ConfidencePercent / 100.0;
380 381 382 383 384

  // start conservatively (around 50ms is about right)
  _concurrent_mark_remark_times_ms->add(0.05);
  _concurrent_mark_cleanup_times_ms->add(0.20);
  _tenuring_threshold = MaxTenuringThreshold;
385
  // _max_survivor_regions will be calculated by
386
  // update_young_list_target_length() during initialization.
387
  _max_survivor_regions = 0;
388

T
tonyp 已提交
389 390 391 392 393
  assert(GCTimeRatio > 0,
         "we should have set it to a default value set_g1_gc_flags() "
         "if a user set it to 0");
  _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));

394 395 396 397 398 399 400 401
  uintx reserve_perc = G1ReservePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (reserve_perc > 50) {
    reserve_perc = 50;
    warning("G1ReservePercent is set to a value that is too large, "
            "it's been updated to %u", reserve_perc);
  }
  _reserve_factor = (double) reserve_perc / 100.0;
402
  // This will be set when the heap is expanded
403 404 405
  // for the first time during initialization.
  _reserve_regions = 0;

406
  initialize_all();
407
  _collectionSetChooser = new CollectionSetChooser();
408 409 410 411 412 413 414 415 416 417
}

// Increment "i", mod "len"
static void inc_mod(int& i, int len) {
  i++; if (i == len) i = 0;
}

void G1CollectorPolicy::initialize_flags() {
  set_min_alignment(HeapRegion::GrainBytes);
  set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
418 419 420
  if (SurvivorRatio < 1) {
    vm_exit_during_initialization("Invalid survivor ratio specified");
  }
421 422 423
  CollectorPolicy::initialize_flags();
}

424 425 426 427 428 429 430
// The easiest way to deal with the parsing of the NewSize /
// MaxNewSize / etc. parameteres is to re-use the code in the
// TwoGenerationCollectorPolicy class. This is similar to what
// ParallelScavenge does with its GenerationSizer class (see
// ParallelScavengeHeap::initialize()). We might change this in the
// future, but it's a good start.
class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
431 432 433 434
private:
  size_t size_to_region_num(size_t byte_size) {
    return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
  }
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

public:
  G1YoungGenSizer() {
    initialize_flags();
    initialize_size_info();
  }
  size_t min_young_region_num() {
    return size_to_region_num(_min_gen0_size);
  }
  size_t initial_young_region_num() {
    return size_to_region_num(_initial_gen0_size);
  }
  size_t max_young_region_num() {
    return size_to_region_num(_max_gen0_size);
  }
};

452 453 454 455 456 457 458
void G1CollectorPolicy::update_young_list_size_using_newratio(size_t number_of_heap_regions) {
  assert(number_of_heap_regions > 0, "Heap must be initialized");
  size_t young_size = number_of_heap_regions / (NewRatio + 1);
  _min_desired_young_length = young_size;
  _max_desired_young_length = young_size;
}

459 460 461 462 463 464
void G1CollectorPolicy::init() {
  // Set aside an initial future to_space.
  _g1 = G1CollectedHeap::heap();

  assert(Heap_lock->owned_by_self(), "Locking discipline.");

465 466
  initialize_gc_policy_counters();

467
  G1YoungGenSizer sizer;
468 469
  _min_desired_young_length = sizer.min_young_region_num();
  _max_desired_young_length = sizer.max_young_region_num();
470

471 472
  if (FLAG_IS_CMDLINE(NewRatio)) {
    if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
473
      warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
474 475
    } else {
      // Treat NewRatio as a fixed size that is only recalculated when the heap size changes
476
      update_young_list_size_using_newratio(_g1->n_regions());
477 478 479 480 481 482 483 484
      _using_new_ratio_calculations = true;
    }
  }

  assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");

  set_adaptive_young_list_length(_min_desired_young_length < _max_desired_young_length);
  if (adaptive_young_list_length()) {
485
    _young_list_fixed_length = 0;
486
  } else {
487 488
    assert(_min_desired_young_length == _max_desired_young_length, "Min and max young size differ");
    _young_list_fixed_length = _min_desired_young_length;
489
  }
490
  _free_regions_at_end_of_collection = _g1->free_regions();
491
  update_young_list_target_length();
492
  _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
493 494 495 496

  // We may immediately start allocating regions and placing them on the
  // collection set list. Initialize the per-collection set info
  start_incremental_cset_building();
497 498
}

499
// Create the jstat counters for the policy.
500
void G1CollectorPolicy::initialize_gc_policy_counters() {
501
  _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
502 503
}

504 505 506 507 508 509 510 511
bool G1CollectorPolicy::predict_will_fit(size_t young_length,
                                         double base_time_ms,
                                         size_t base_free_regions,
                                         double target_pause_time_ms) {
  if (young_length >= base_free_regions) {
    // end condition 1: not enough space for the young regions
    return false;
  }
512

513 514 515 516 517 518 519 520 521 522
  double accum_surv_rate = accum_yg_surv_rate_pred((int)(young_length - 1));
  size_t bytes_to_copy =
               (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
  double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
  double young_other_time_ms = predict_young_other_time_ms(young_length);
  double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
  if (pause_time_ms > target_pause_time_ms) {
    // end condition 2: prediction is over the target pause time
    return false;
  }
523

524 525 526 527 528
  size_t free_bytes =
                  (base_free_regions - young_length) * HeapRegion::GrainBytes;
  if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
    // end condition 3: out-of-space (conservatively!)
    return false;
529
  }
530 531 532 533 534

  // success!
  return true;
}

535 536 537
void G1CollectorPolicy::record_new_heap_size(size_t new_number_of_regions) {
  // re-calculate the necessary reserve
  double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
538 539 540
  // We use ceiling so that if reserve_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
  _reserve_regions = (size_t) ceil(reserve_regions_d);
541 542 543 544 545 546

  if (_using_new_ratio_calculations) {
    // -XX:NewRatio was specified so we need to update the
    // young gen length when the heap size has changed.
    update_young_list_size_using_newratio(new_number_of_regions);
  }
547 548
}

549 550 551
size_t G1CollectorPolicy::calculate_young_list_desired_min_length(
                                                     size_t base_min_length) {
  size_t desired_min_length = 0;
552
  if (adaptive_young_list_length()) {
553 554 555 556 557 558 559
    if (_alloc_rate_ms_seq->num() > 3) {
      double now_sec = os::elapsedTime();
      double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
      double alloc_rate_ms = predict_alloc_rate_ms();
      desired_min_length = (size_t) ceil(alloc_rate_ms * when_ms);
    } else {
      // otherwise we don't have enough info to make the prediction
560 561
    }
  }
562 563 564
  desired_min_length += base_min_length;
  // make sure we don't go below any user-defined minimum bound
  return MAX2(_min_desired_young_length, desired_min_length);
565 566
}

567 568 569 570
size_t G1CollectorPolicy::calculate_young_list_desired_max_length() {
  // Here, we might want to also take into account any additional
  // constraints (i.e., user-defined minimum bound). Currently, we
  // effectively don't set this bound.
571
  return _max_desired_young_length;
572
}
573

574 575 576 577 578 579
void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
  if (rs_lengths == (size_t) -1) {
    // if it's set to the default value (-1), we should predict it;
    // otherwise, use the given value.
    rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
  }
580

581
  // Calculate the absolute and desired min bounds.
582

583 584 585 586 587 588 589 590 591 592
  // This is how many young regions we already have (currently: the survivors).
  size_t base_min_length = recorded_survivor_regions();
  // This is the absolute minimum young length, which ensures that we
  // can allocate one eden region in the worst-case.
  size_t absolute_min_length = base_min_length + 1;
  size_t desired_min_length =
                     calculate_young_list_desired_min_length(base_min_length);
  if (desired_min_length < absolute_min_length) {
    desired_min_length = absolute_min_length;
  }
593

594
  // Calculate the absolute and desired max bounds.
595

596 597 598 599 600 601 602 603 604
  // We will try our best not to "eat" into the reserve.
  size_t absolute_max_length = 0;
  if (_free_regions_at_end_of_collection > _reserve_regions) {
    absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
  }
  size_t desired_max_length = calculate_young_list_desired_max_length();
  if (desired_max_length > absolute_max_length) {
    desired_max_length = absolute_max_length;
  }
605

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
  size_t young_list_target_length = 0;
  if (adaptive_young_list_length()) {
    if (full_young_gcs()) {
      young_list_target_length =
                        calculate_young_list_target_length(rs_lengths,
                                                           base_min_length,
                                                           desired_min_length,
                                                           desired_max_length);
      _rs_lengths_prediction = rs_lengths;
    } else {
      // Don't calculate anything and let the code below bound it to
      // the desired_min_length, i.e., do the next GC as soon as
      // possible to maximize how many old regions we can add to it.
    }
  } else {
    if (full_young_gcs()) {
      young_list_target_length = _young_list_fixed_length;
    } else {
      // A bit arbitrary: during partially-young GCs we allocate half
      // the young regions to try to add old regions to the CSet.
      young_list_target_length = _young_list_fixed_length / 2;
      // We choose to accept that we might go under the desired min
      // length given that we intentionally ask for a smaller young gen.
      desired_min_length = absolute_min_length;
    }
  }
632

633 634 635 636 637 638 639 640 641
  // Make sure we don't go over the desired max length, nor under the
  // desired min length. In case they clash, desired_min_length wins
  // which is why that test is second.
  if (young_list_target_length > desired_max_length) {
    young_list_target_length = desired_max_length;
  }
  if (young_list_target_length < desired_min_length) {
    young_list_target_length = desired_min_length;
  }
642

643 644 645 646
  assert(young_list_target_length > recorded_survivor_regions(),
         "we should be able to allocate at least one eden region");
  assert(young_list_target_length >= absolute_min_length, "post-condition");
  _young_list_target_length = young_list_target_length;
647

648 649
  update_max_gc_locker_expansion();
}
650

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
size_t
G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
                                                   size_t base_min_length,
                                                   size_t desired_min_length,
                                                   size_t desired_max_length) {
  assert(adaptive_young_list_length(), "pre-condition");
  assert(full_young_gcs(), "only call this for fully-young GCs");

  // In case some edge-condition makes the desired max length too small...
  if (desired_max_length <= desired_min_length) {
    return desired_min_length;
  }

  // We'll adjust min_young_length and max_young_length not to include
  // the already allocated young regions (i.e., so they reflect the
  // min and max eden regions we'll allocate). The base_min_length
  // will be reflected in the predictions by the
  // survivor_regions_evac_time prediction.
  assert(desired_min_length > base_min_length, "invariant");
  size_t min_young_length = desired_min_length - base_min_length;
  assert(desired_max_length > base_min_length, "invariant");
  size_t max_young_length = desired_max_length - base_min_length;

  double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
  double survivor_regions_evac_time = predict_survivor_regions_evac_time();
  size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
  size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
  size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
  double base_time_ms =
    predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
    survivor_regions_evac_time;
  size_t available_free_regions = _free_regions_at_end_of_collection;
  size_t base_free_regions = 0;
  if (available_free_regions > _reserve_regions) {
    base_free_regions = available_free_regions - _reserve_regions;
  }

  // Here, we will make sure that the shortest young length that
  // makes sense fits within the target pause time.

  if (predict_will_fit(min_young_length, base_time_ms,
                       base_free_regions, target_pause_time_ms)) {
    // The shortest young length will fit into the target pause time;
    // we'll now check whether the absolute maximum number of young
    // regions will fit in the target pause time. If not, we'll do
    // a binary search between min_young_length and max_young_length.
    if (predict_will_fit(max_young_length, base_time_ms,
                         base_free_regions, target_pause_time_ms)) {
      // The maximum young length will fit into the target pause time.
      // We are done so set min young length to the maximum length (as
      // the result is assumed to be returned in min_young_length).
      min_young_length = max_young_length;
    } else {
      // The maximum possible number of young regions will not fit within
      // the target pause time so we'll search for the optimal
      // length. The loop invariants are:
      //
      // min_young_length < max_young_length
      // min_young_length is known to fit into the target pause time
      // max_young_length is known not to fit into the target pause time
      //
      // Going into the loop we know the above hold as we've just
      // checked them. Every time around the loop we check whether
      // the middle value between min_young_length and
      // max_young_length fits into the target pause time. If it
      // does, it becomes the new min. If it doesn't, it becomes
      // the new max. This way we maintain the loop invariants.

      assert(min_young_length < max_young_length, "invariant");
      size_t diff = (max_young_length - min_young_length) / 2;
      while (diff > 0) {
        size_t young_length = min_young_length + diff;
        if (predict_will_fit(young_length, base_time_ms,
                             base_free_regions, target_pause_time_ms)) {
          min_young_length = young_length;
        } else {
          max_young_length = young_length;
        }
        assert(min_young_length <  max_young_length, "invariant");
        diff = (max_young_length - min_young_length) / 2;
      }
      // The results is min_young_length which, according to the
      // loop invariants, should fit within the target pause time.

      // These are the post-conditions of the binary search above:
      assert(min_young_length < max_young_length,
             "otherwise we should have discovered that max_young_length "
             "fits into the pause target and not done the binary search");
      assert(predict_will_fit(min_young_length, base_time_ms,
                              base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should "
             "fit into the pause target");
      assert(!predict_will_fit(min_young_length + 1, base_time_ms,
                               base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should be "
             "optimal, so no larger length should fit into the pause target");
    }
  } else {
    // Even the minimum length doesn't fit into the pause time
    // target, return it as the result nevertheless.
  }
  return base_min_length + min_young_length;
753 754
}

755 756 757 758 759 760 761 762 763 764
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
  double survivor_regions_evac_time = 0.0;
  for (HeapRegion * r = _recorded_survivor_head;
       r != NULL && r != _recorded_survivor_tail->get_next_young_region();
       r = r->get_next_young_region()) {
    survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
  }
  return survivor_regions_evac_time;
}

765
void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
766 767
  guarantee( adaptive_young_list_length(), "should not call this otherwise" );

768
  size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
769 770 771
  if (rs_lengths > _rs_lengths_prediction) {
    // add 10% to avoid having to recalculate often
    size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
772
    update_young_list_target_length(rs_lengths_prediction);
773 774 775
  }
}

776 777


778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
                                               bool is_tlab,
                                               bool* gc_overhead_limit_was_exceeded) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}

// This method controls how a collector handles one or more
// of its generations being fully allocated.
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
                                                       bool is_tlab) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}


#ifndef PRODUCT
bool G1CollectorPolicy::verify_young_ages() {
796
  HeapRegion* head = _g1->young_list()->first_region();
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
  return
    verify_young_ages(head, _short_lived_surv_rate_group);
  // also call verify_young_ages on any additional surv rate groups
}

bool
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
                                     SurvRateGroup *surv_rate_group) {
  guarantee( surv_rate_group != NULL, "pre-condition" );

  const char* name = surv_rate_group->name();
  bool ret = true;
  int prev_age = -1;

  for (HeapRegion* curr = head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    SurvRateGroup* group = curr->surv_rate_group();
    if (group == NULL && !curr->is_survivor()) {
      gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
      ret = false;
    }

    if (surv_rate_group == group) {
      int age = curr->age_in_surv_rate_group();

      if (age < 0) {
        gclog_or_tty->print_cr("## %s: encountered negative age", name);
        ret = false;
      }

      if (age <= prev_age) {
        gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
                               "(%d, %d)", name, age, prev_age);
        ret = false;
      }
      prev_age = age;
    }
  }

  return ret;
}
#endif // PRODUCT

void G1CollectorPolicy::record_full_collection_start() {
  _cur_collection_start_sec = os::elapsedTime();
  // Release the future to-space so that it is available for compaction into.
  _g1->set_full_collection();
}

void G1CollectorPolicy::record_full_collection_end() {
  // Consider this like a collection pause for the purposes of allocation
  // since last pause.
  double end_sec = os::elapsedTime();
  double full_gc_time_sec = end_sec - _cur_collection_start_sec;
  double full_gc_time_ms = full_gc_time_sec * 1000.0;

  _all_full_gc_times_ms->add(full_gc_time_ms);

856
  update_recent_gc_times(end_sec, full_gc_time_ms);
857 858 859 860 861 862 863 864 865

  _g1->clear_full_collection();

  // "Nuke" the heuristics that control the fully/partially young GC
  // transitions and make sure we start with fully young GCs after the
  // Full GC.
  set_full_young_gcs(true);
  _last_full_young_gc = false;
  _should_revert_to_full_young_gcs = false;
866 867
  clear_initiate_conc_mark_if_possible();
  clear_during_initial_mark_pause();
868 869 870 871 872 873 874 875
  _known_garbage_bytes = 0;
  _known_garbage_ratio = 0.0;
  _in_marking_window = false;
  _in_marking_window_im = false;

  _short_lived_surv_rate_group->start_adding_regions();
  // also call this on any additional surv rate groups

876 877
  record_survivor_regions(0, NULL, NULL);

878
  _free_regions_at_end_of_collection = _g1->free_regions();
879 880
  // Reset survivors SurvRateGroup.
  _survivor_surv_rate_group->reset();
881
  update_young_list_target_length();
882
  _collectionSetChooser->updateAfterFullCollection();
883
}
884 885 886 887 888 889 890 891 892 893

void G1CollectorPolicy::record_stop_world_start() {
  _stop_world_start = os::elapsedTime();
}

void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
                                                      size_t start_used) {
  if (PrintGCDetails) {
    gclog_or_tty->stamp(PrintGCTimeStamps);
    gclog_or_tty->print("[GC pause");
894
    gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
895 896
  }

897 898 899 900 901
  // We only need to do this here as the policy will only be applied
  // to the GC we're about to start. so, no point is calculating this
  // every time we calculate / recalculate the target young length.
  update_survivors_policy();

902 903 904
  assert(_g1->used() == _g1->recalculate_used(),
         err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
                 _g1->used(), _g1->recalculate_used()));
905 906 907 908 909 910 911 912 913 914 915 916

  double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
  _all_stop_world_times_ms->add(s_w_t_ms);
  _stop_world_start = 0.0;

  _cur_collection_start_sec = start_time_sec;
  _cur_collection_pause_used_at_start_bytes = start_used;
  _cur_collection_pause_used_regions_at_start = _g1->used_regions();
  _pending_cards = _g1->pending_card_num();
  _max_pending_cards = _g1->max_pending_card_num();

  _bytes_in_collection_set_before_gc = 0;
917
  _bytes_copied_during_gc = 0;
918

919 920 921 922 923
  YoungList* young_list = _g1->young_list();
  _eden_bytes_before_gc = young_list->eden_used_bytes();
  _survivor_bytes_before_gc = young_list->survivor_used_bytes();
  _capacity_before_gc = _g1->capacity();

924 925 926 927 928
#ifdef DEBUG
  // initialise these to something well known so that we can spot
  // if they are not set properly

  for (int i = 0; i < _parallel_gc_threads; ++i) {
929 930 931 932 933 934 935 936 937 938
    _par_last_gc_worker_start_times_ms[i] = -1234.0;
    _par_last_ext_root_scan_times_ms[i] = -1234.0;
    _par_last_mark_stack_scan_times_ms[i] = -1234.0;
    _par_last_update_rs_times_ms[i] = -1234.0;
    _par_last_update_rs_processed_buffers[i] = -1234.0;
    _par_last_scan_rs_times_ms[i] = -1234.0;
    _par_last_obj_copy_times_ms[i] = -1234.0;
    _par_last_termination_times_ms[i] = -1234.0;
    _par_last_termination_attempts[i] = -1234.0;
    _par_last_gc_worker_end_times_ms[i] = -1234.0;
939
    _par_last_gc_worker_times_ms[i] = -1234.0;
J
johnc 已提交
940
    _par_last_gc_worker_other_times_ms[i] = -1234.0;
941 942 943 944 945 946 947 948
  }
#endif

  for (int i = 0; i < _aux_num; ++i) {
    _cur_aux_times_ms[i] = 0.0;
    _cur_aux_times_set[i] = false;
  }

J
johnc 已提交
949 950 951 952
  // These are initialized to zero here and they are set during
  // the evacuation pause if marking is in progress.
  _cur_satb_drain_time_ms = 0.0;
  _last_satb_drain_processed_buffers = 0;
953

954
  _last_young_gc_full = false;
955 956 957

  // do that for any other surv rate groups
  _short_lived_surv_rate_group->stop_adding_regions();
958
  _survivors_age_table.clear();
959

960 961 962 963 964 965 966
  assert( verify_young_ages(), "region age verification" );
}

void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
  _mark_closure_time_ms = mark_closure_time_ms;
}

967
void G1CollectorPolicy::record_concurrent_mark_init_end(double
968 969
                                                   mark_init_elapsed_time_ms) {
  _during_marking = true;
970 971
  assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
  clear_during_initial_mark_pause();
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
  _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_remark_start() {
  _mark_remark_start_sec = os::elapsedTime();
  _during_marking = false;
}

void G1CollectorPolicy::record_concurrent_mark_remark_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
  _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  _mark_cleanup_start_sec = os::elapsedTime();
}

994
void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
995 996 997
  _should_revert_to_full_young_gcs = false;
  _last_full_young_gc = true;
  _in_marking_window = false;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
}

void G1CollectorPolicy::record_concurrent_pause() {
  if (_stop_world_start > 0.0) {
    double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
    _all_yield_times_ms->add(yield_ms);
  }
}

void G1CollectorPolicy::record_concurrent_pause_end() {
}

template<class T>
T sum_of(T* sum_arr, int start, int n, int N) {
  T sum = (T)0;
  for (int i = 0; i < n; i++) {
    int j = (start + i) % N;
    sum += sum_arr[j];
  }
  return sum;
}

1020 1021
void G1CollectorPolicy::print_par_stats(int level,
                                        const char* str,
1022
                                        double* data) {
1023 1024
  double min = data[0], max = data[0];
  double total = 0.0;
1025 1026
  LineBuffer buf(level);
  buf.append("[%s (ms):", str);
1027 1028 1029 1030 1031 1032 1033
  for (uint i = 0; i < ParallelGCThreads; ++i) {
    double val = data[i];
    if (val < min)
      min = val;
    if (val > max)
      max = val;
    total += val;
1034
    buf.append("  %3.1lf", val);
1035
  }
1036 1037 1038 1039
  buf.append_and_print_cr("");
  double avg = total / (double) ParallelGCThreads;
  buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
    avg, min, max, max - min);
1040 1041
}

1042 1043
void G1CollectorPolicy::print_par_sizes(int level,
                                        const char* str,
1044
                                        double* data) {
1045 1046
  double min = data[0], max = data[0];
  double total = 0.0;
1047 1048
  LineBuffer buf(level);
  buf.append("[%s :", str);
1049 1050 1051 1052 1053 1054 1055
  for (uint i = 0; i < ParallelGCThreads; ++i) {
    double val = data[i];
    if (val < min)
      min = val;
    if (val > max)
      max = val;
    total += val;
1056
    buf.append(" %d", (int) val);
1057
  }
1058 1059 1060 1061
  buf.append_and_print_cr("");
  double avg = total / (double) ParallelGCThreads;
  buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
    (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
1062 1063
}

J
johnc 已提交
1064 1065 1066
void G1CollectorPolicy::print_stats(int level,
                                    const char* str,
                                    double value) {
1067
  LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
1068 1069
}

J
johnc 已提交
1070 1071 1072
void G1CollectorPolicy::print_stats(int level,
                                    const char* str,
                                    int value) {
1073
  LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
1074 1075
}

J
johnc 已提交
1076
double G1CollectorPolicy::avg_value(double* data) {
1077
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1078
    double ret = 0.0;
J
johnc 已提交
1079
    for (uint i = 0; i < ParallelGCThreads; ++i) {
1080
      ret += data[i];
J
johnc 已提交
1081
    }
1082 1083 1084 1085 1086 1087
    return ret / (double) ParallelGCThreads;
  } else {
    return data[0];
  }
}

J
johnc 已提交
1088
double G1CollectorPolicy::max_value(double* data) {
1089
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1090
    double ret = data[0];
J
johnc 已提交
1091 1092
    for (uint i = 1; i < ParallelGCThreads; ++i) {
      if (data[i] > ret) {
1093
        ret = data[i];
J
johnc 已提交
1094 1095
      }
    }
1096 1097 1098 1099 1100 1101
    return ret;
  } else {
    return data[0];
  }
}

J
johnc 已提交
1102
double G1CollectorPolicy::sum_of_values(double* data) {
1103
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1104
    double sum = 0.0;
J
johnc 已提交
1105
    for (uint i = 0; i < ParallelGCThreads; i++) {
1106
      sum += data[i];
J
johnc 已提交
1107
    }
1108 1109 1110 1111 1112 1113
    return sum;
  } else {
    return data[0];
  }
}

J
johnc 已提交
1114
double G1CollectorPolicy::max_sum(double* data1, double* data2) {
1115 1116
  double ret = data1[0] + data2[0];

1117
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1118 1119
    for (uint i = 1; i < ParallelGCThreads; ++i) {
      double data = data1[i] + data2[i];
J
johnc 已提交
1120
      if (data > ret) {
1121
        ret = data;
J
johnc 已提交
1122
      }
1123 1124 1125 1126 1127 1128 1129 1130
    }
  }
  return ret;
}

// Anything below that is considered to be zero
#define MIN_TIMER_GRANULARITY 0.0000001

1131
void G1CollectorPolicy::record_collection_pause_end() {
1132 1133
  double end_time_sec = os::elapsedTime();
  double elapsed_ms = _last_pause_time_ms;
1134
  bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1135 1136
  assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
         "otherwise, the subtraction below does not make sense");
1137
  size_t rs_size =
1138
            _cur_collection_pause_used_regions_at_start - cset_region_length();
1139 1140 1141
  size_t cur_used_bytes = _g1->used();
  assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  bool last_pause_included_initial_mark = false;
1142
  bool update_stats = !_g1->evacuation_failed();
1143 1144 1145 1146 1147 1148 1149 1150 1151

#ifndef PRODUCT
  if (G1YoungSurvRateVerbose) {
    gclog_or_tty->print_cr("");
    _short_lived_surv_rate_group->print();
    // do that for any other surv rate groups too
  }
#endif // PRODUCT

1152 1153 1154
  last_pause_included_initial_mark = during_initial_mark_pause();
  if (last_pause_included_initial_mark)
    record_concurrent_mark_init_end(0.0);
1155

1156
  size_t marking_initiating_used_threshold =
1157
    (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
1158

1159 1160
  if (!_g1->mark_in_progress() && !_last_full_young_gc) {
    assert(!last_pause_included_initial_mark, "invariant");
1161 1162
    if (cur_used_bytes > marking_initiating_used_threshold) {
      if (cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
1163 1164
        assert(!during_initial_mark_pause(), "we should not see this here");

1165 1166 1167 1168 1169 1170 1171 1172 1173
        ergo_verbose3(ErgoConcCycles,
                      "request concurrent cycle initiation",
                      ergo_format_reason("occupancy higher than threshold")
                      ergo_format_byte("occupancy")
                      ergo_format_byte_perc("threshold"),
                      cur_used_bytes,
                      marking_initiating_used_threshold,
                      (double) InitiatingHeapOccupancyPercent);

1174 1175 1176 1177
        // Note: this might have already been set, if during the last
        // pause we decided to start a cycle but at the beginning of
        // this pause we decided to postpone it. That's OK.
        set_initiate_conc_mark_if_possible();
1178 1179 1180 1181 1182 1183 1184 1185 1186
      } else {
        ergo_verbose2(ErgoConcCycles,
                  "do not request concurrent cycle initiation",
                  ergo_format_reason("occupancy lower than previous occupancy")
                  ergo_format_byte("occupancy")
                  ergo_format_byte("previous occupancy"),
                  cur_used_bytes,
                  _prev_collection_pause_used_at_end_bytes);
      }
1187 1188 1189
    }
  }

1190 1191
  _prev_collection_pause_used_at_end_bytes = cur_used_bytes;

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
  _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
                          end_time_sec, false);

  // This assert is exempted when we're doing parallel collection pauses,
  // because the fragmentation caused by the parallel GC allocation buffers
  // can lead to more memory being used during collection than was used
  // before. Best leave this out until the fragmentation problem is fixed.
  // Pauses in which evacuation failed can also lead to negative
  // collections, since no space is reclaimed from a region containing an
  // object whose evacuation failed.
  // Further, we're now always doing parallel collection.  But I'm still
  // leaving this here as a placeholder for a more precise assertion later.
  // (DLD, 10/05.)
  assert((true || parallel) // Always using GC LABs now.
         || _g1->evacuation_failed()
         || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
         "Negative collection");

  size_t freed_bytes =
    _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
1213

1214 1215 1216 1217
  double survival_fraction =
    (double)surviving_bytes/
    (double)_collection_set_bytes_used_before;

J
johnc 已提交
1218 1219 1220 1221
  // These values are used to update the summary information that is
  // displayed when TraceGen0Time is enabled, and are output as part
  // of the PrintGCDetails output, in the non-parallel case.

1222 1223 1224 1225 1226 1227 1228 1229 1230
  double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
  double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  double update_rs_processed_buffers =
    sum_of_values(_par_last_update_rs_processed_buffers);
  double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  double termination_time = avg_value(_par_last_termination_times_ms);

J
johnc 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
  double known_time = ext_root_scan_time +
                      mark_stack_scan_time +
                      update_rs_time +
                      scan_rs_time +
                      obj_copy_time;

  double other_time_ms = elapsed_ms;

  // Subtract the SATB drain time. It's initialized to zero at the
  // start of the pause and is updated during the pause if marking
  // is in progress.
  other_time_ms -= _cur_satb_drain_time_ms;

  if (parallel) {
    other_time_ms -= _cur_collection_par_time_ms;
  } else {
    other_time_ms -= known_time;
  }
1249

J
johnc 已提交
1250 1251 1252
  // Subtract the time taken to clean the card table from the
  // current value of "other time"
  other_time_ms -= _cur_clear_ct_time_ms;
1253

J
johnc 已提交
1254 1255
  // TraceGen0Time and TraceGen1Time summary info updating.
  _all_pause_times_ms->add(elapsed_ms);
1256

1257
  if (update_stats) {
J
johnc 已提交
1258 1259 1260 1261 1262
    _summary->record_total_time_ms(elapsed_ms);
    _summary->record_other_time_ms(other_time_ms);

    MainBodySummary* body_summary = _summary->main_body_summary();
    assert(body_summary != NULL, "should not be null!");
1263

J
johnc 已提交
1264 1265 1266 1267 1268 1269 1270
    // This will be non-zero iff marking is currently in progress (i.e.
    // _g1->mark_in_progress() == true) and the currrent pause was not
    // an initial mark pause. Since the body_summary items are NumberSeqs,
    // however, they have to be consistent and updated in lock-step with
    // each other. Therefore we unconditionally record the SATB drain
    // time - even if it's zero.
    body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
1271 1272 1273 1274 1275 1276

    body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
    body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
    body_summary->record_update_rs_time_ms(update_rs_time);
    body_summary->record_scan_rs_time_ms(scan_rs_time);
    body_summary->record_obj_copy_time_ms(obj_copy_time);
J
johnc 已提交
1277

1278 1279 1280
    if (parallel) {
      body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
      body_summary->record_termination_time_ms(termination_time);
J
johnc 已提交
1281 1282 1283

      double parallel_known_time = known_time + termination_time;
      double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
1284 1285
      body_summary->record_parallel_other_time_ms(parallel_other_time);
    }
J
johnc 已提交
1286

1287
    body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
J
johnc 已提交
1288
    body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
1289

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    // We exempt parallel collection from this check because Alloc Buffer
    // fragmentation can produce negative collections.  Same with evac
    // failure.
    // Further, we're now always doing parallel collection.  But I'm still
    // leaving this here as a placeholder for a more precise assertion later.
    // (DLD, 10/05.
    assert((true || parallel)
           || _g1->evacuation_failed()
           || surviving_bytes <= _collection_set_bytes_used_before,
           "Or else negative collection!");
J
johnc 已提交
1300

1301 1302 1303 1304 1305 1306 1307 1308 1309
    // this is where we update the allocation rate of the application
    double app_time_ms =
      (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
    if (app_time_ms < MIN_TIMER_GRANULARITY) {
      // This usually happens due to the timer not having the required
      // granularity. Some Linuxes are the usual culprits.
      // We'll just set it to something (arbitrarily) small.
      app_time_ms = 1.0;
    }
1310 1311 1312 1313 1314 1315 1316 1317 1318
    // We maintain the invariant that all objects allocated by mutator
    // threads will be allocated out of eden regions. So, we can use
    // the eden region number allocated since the previous GC to
    // calculate the application's allocate rate. The only exception
    // to that is humongous objects that are allocated separately. But
    // given that humongous object allocations do not really affect
    // either the pause's duration nor when the next pause will take
    // place we can safely ignore them here.
    size_t regions_allocated = eden_cset_region_length();
1319 1320 1321 1322 1323 1324 1325
    double alloc_rate_ms = (double) regions_allocated / app_time_ms;
    _alloc_rate_ms_seq->add(alloc_rate_ms);

    double interval_ms =
      (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
    update_recent_gc_times(end_time_sec, elapsed_ms);
    _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    if (recent_avg_pause_time_ratio() < 0.0 ||
        (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
#ifndef PRODUCT
      // Dump info to allow post-facto debugging
      gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
      gclog_or_tty->print_cr("-------------------------------------------");
      gclog_or_tty->print_cr("Recent GC Times (ms):");
      _recent_gc_times_ms->dump();
      gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
      _recent_prev_end_times_for_all_gcs_sec->dump();
      gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
                             _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1338 1339 1340 1341 1342
      // In debug mode, terminate the JVM if the user wants to debug at this point.
      assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
#endif  // !PRODUCT
      // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
      // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1343 1344 1345 1346 1347 1348 1349
      if (_recent_avg_pause_time_ratio < 0.0) {
        _recent_avg_pause_time_ratio = 0.0;
      } else {
        assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
        _recent_avg_pause_time_ratio = 1.0;
      }
    }
1350 1351
  }

J
johnc 已提交
1352 1353 1354 1355 1356 1357 1358
  for (int i = 0; i < _aux_num; ++i) {
    if (_cur_aux_times_set[i]) {
      _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
    }
  }

  // PrintGCDetails output
1359
  if (PrintGCDetails) {
J
johnc 已提交
1360 1361 1362
    bool print_marking_info =
      _g1->mark_in_progress() && !last_pause_included_initial_mark;

1363
    gclog_or_tty->print_cr("%s, %1.8lf secs]",
1364 1365 1366
                           (last_pause_included_initial_mark) ? " (initial-mark)" : "",
                           elapsed_ms / 1000.0);

J
johnc 已提交
1367
    if (print_marking_info) {
1368 1369 1370
      print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
      print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
    }
J
johnc 已提交
1371

1372 1373
    if (parallel) {
      print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
J
johnc 已提交
1374 1375 1376 1377 1378
      print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms);
      print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
      if (print_marking_info) {
        print_par_stats(2, "Mark Stack Scanning", _par_last_mark_stack_scan_times_ms);
      }
1379
      print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
1380
      print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
1381 1382 1383
      print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
      print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
      print_par_stats(2, "Termination", _par_last_termination_times_ms);
1384
      print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
J
johnc 已提交
1385
      print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms);
1386 1387 1388 1389

      for (int i = 0; i < _parallel_gc_threads; i++) {
        _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i];

J
johnc 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
        double worker_known_time = _par_last_ext_root_scan_times_ms[i] +
                                   _par_last_mark_stack_scan_times_ms[i] +
                                   _par_last_update_rs_times_ms[i] +
                                   _par_last_scan_rs_times_ms[i] +
                                   _par_last_obj_copy_times_ms[i] +
                                   _par_last_termination_times_ms[i];

        _par_last_gc_worker_other_times_ms[i] = _cur_collection_par_time_ms - worker_known_time;
      }
      print_par_stats(2, "GC Worker", _par_last_gc_worker_times_ms);
      print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms);
1401 1402
    } else {
      print_stats(1, "Ext Root Scanning", ext_root_scan_time);
J
johnc 已提交
1403 1404 1405 1406 1407
      if (print_marking_info) {
        print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
      }
      print_stats(1, "Update RS", update_rs_time);
      print_stats(2, "Processed Buffers", (int)update_rs_processed_buffers);
1408 1409
      print_stats(1, "Scan RS", scan_rs_time);
      print_stats(1, "Object Copying", obj_copy_time);
1410
    }
J
johnc 已提交
1411
    print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
1412 1413 1414 1415 1416 1417 1418 1419 1420
#ifndef PRODUCT
    print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
    print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
    print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
    print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
    if (_num_cc_clears > 0) {
      print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
    }
#endif
1421
    print_stats(1, "Other", other_time_ms);
1422
    print_stats(2, "Choose CSet", _recorded_young_cset_choice_time_ms);
1423 1424
    print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
    print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
1425

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
    for (int i = 0; i < _aux_num; ++i) {
      if (_cur_aux_times_set[i]) {
        char buffer[96];
        sprintf(buffer, "Aux%d", i);
        print_stats(1, buffer, _cur_aux_times_ms[i]);
      }
    }
  }

  // Update the efficiency-since-mark vars.
  double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  if (elapsed_ms < MIN_TIMER_GRANULARITY) {
    // This usually happens due to the timer not having the required
    // granularity. Some Linuxes are the usual culprits.
    // We'll just set it to something (arbitrarily) small.
    proc_ms = 1.0;
  }
  double cur_efficiency = (double) freed_bytes / proc_ms;

  bool new_in_marking_window = _in_marking_window;
  bool new_in_marking_window_im = false;
1447
  if (during_initial_mark_pause()) {
1448 1449 1450 1451
    new_in_marking_window = true;
    new_in_marking_window_im = true;
  }

1452
  if (_last_full_young_gc) {
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
    if (!last_pause_included_initial_mark) {
      ergo_verbose2(ErgoPartiallyYoungGCs,
                    "start partially-young GCs",
                    ergo_format_byte_perc("known garbage"),
                    _known_garbage_bytes, _known_garbage_ratio * 100.0);
      set_full_young_gcs(false);
    } else {
      ergo_verbose0(ErgoPartiallyYoungGCs,
                    "do not start partially-young GCs",
                    ergo_format_reason("concurrent cycle is about to start"));
    }
1464 1465
    _last_full_young_gc = false;
  }
1466

1467
  if ( !_last_young_gc_full ) {
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
    if (_should_revert_to_full_young_gcs) {
      ergo_verbose2(ErgoPartiallyYoungGCs,
                    "end partially-young GCs",
                    ergo_format_reason("partially-young GCs end requested")
                    ergo_format_byte_perc("known garbage"),
                    _known_garbage_bytes, _known_garbage_ratio * 100.0);
      set_full_young_gcs(true);
    } else if (_known_garbage_ratio < 0.05) {
      ergo_verbose3(ErgoPartiallyYoungGCs,
               "end partially-young GCs",
               ergo_format_reason("known garbage percent lower than threshold")
               ergo_format_byte_perc("known garbage")
               ergo_format_perc("threshold"),
               _known_garbage_bytes, _known_garbage_ratio * 100.0,
               0.05 * 100.0);
      set_full_young_gcs(true);
    } else if (adaptive_young_list_length() &&
              (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) {
      ergo_verbose5(ErgoPartiallyYoungGCs,
                    "end partially-young GCs",
                    ergo_format_reason("current GC efficiency lower than "
                                       "predicted fully-young GC efficiency")
                    ergo_format_double("GC efficiency factor")
                    ergo_format_double("current GC efficiency")
                    ergo_format_double("predicted fully-young GC efficiency")
                    ergo_format_byte_perc("known garbage"),
                    get_gc_eff_factor(), cur_efficiency,
                    predict_young_gc_eff(),
                    _known_garbage_bytes, _known_garbage_ratio * 100.0);
      set_full_young_gcs(true);
1498
    }
1499 1500
  }
  _should_revert_to_full_young_gcs = false;
1501

1502 1503
  if (_last_young_gc_full && !_during_marking) {
    _young_gc_eff_seq->add(cur_efficiency);
1504 1505 1506 1507 1508
  }

  _short_lived_surv_rate_group->start_adding_regions();
  // do that for any other surv rate groupsx

1509
  if (update_stats) {
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    double pause_time_ms = elapsed_ms;

    size_t diff = 0;
    if (_max_pending_cards >= _pending_cards)
      diff = _max_pending_cards - _pending_cards;
    _pending_card_diff_seq->add((double) diff);

    double cost_per_card_ms = 0.0;
    if (_pending_cards > 0) {
      cost_per_card_ms = update_rs_time / (double) _pending_cards;
      _cost_per_card_ms_seq->add(cost_per_card_ms);
    }

    size_t cards_scanned = _g1->cards_scanned();

    double cost_per_entry_ms = 0.0;
    if (cards_scanned > 10) {
      cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
      if (_last_young_gc_full)
        _cost_per_entry_ms_seq->add(cost_per_entry_ms);
      else
        _partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
    }

    if (_max_rs_lengths > 0) {
      double cards_per_entry_ratio =
        (double) cards_scanned / (double) _max_rs_lengths;
      if (_last_young_gc_full)
        _fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      else
        _partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
    }

    size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
    if (rs_length_diff >= 0)
      _rs_length_diff_seq->add((double) rs_length_diff);

    size_t copied_bytes = surviving_bytes;
    double cost_per_byte_ms = 0.0;
    if (copied_bytes > 0) {
      cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
      if (_in_marking_window)
        _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
      else
        _cost_per_byte_ms_seq->add(cost_per_byte_ms);
    }

    double all_other_time_ms = pause_time_ms -
1558
      (update_rs_time + scan_rs_time + obj_copy_time +
1559 1560 1561
       _mark_closure_time_ms + termination_time);

    double young_other_time_ms = 0.0;
1562
    if (young_cset_region_length() > 0) {
1563 1564 1565 1566
      young_other_time_ms =
        _recorded_young_cset_choice_time_ms +
        _recorded_young_free_cset_time_ms;
      _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1567
                                          (double) young_cset_region_length());
1568 1569
    }
    double non_young_other_time_ms = 0.0;
1570
    if (old_cset_region_length() > 0) {
1571 1572 1573 1574 1575
      non_young_other_time_ms =
        _recorded_non_young_cset_choice_time_ms +
        _recorded_non_young_free_cset_time_ms;

      _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1576
                                            (double) old_cset_region_length());
1577 1578 1579 1580 1581 1582 1583 1584
    }

    double constant_other_time_ms = all_other_time_ms -
      (young_other_time_ms + non_young_other_time_ms);
    _constant_other_time_ms_seq->add(constant_other_time_ms);

    double survival_ratio = 0.0;
    if (_bytes_in_collection_set_before_gc > 0) {
1585 1586
      survival_ratio = (double) _bytes_copied_during_gc /
                                   (double) _bytes_in_collection_set_before_gc;
1587 1588 1589 1590 1591 1592
    }

    _pending_cards_seq->add((double) _pending_cards);
    _rs_lengths_seq->add((double) _max_rs_lengths);

    double expensive_region_limit_ms =
J
johnc 已提交
1593
      (double) MaxGCPauseMillis - predict_constant_other_time_ms();
1594 1595 1596
    if (expensive_region_limit_ms < 0.0) {
      // this means that the other time was predicted to be longer than
      // than the max pause time
J
johnc 已提交
1597
      expensive_region_limit_ms = (double) MaxGCPauseMillis;
1598 1599 1600 1601 1602 1603 1604
    }
    _expensive_region_limit_ms = expensive_region_limit_ms;
  }

  _in_marking_window = new_in_marking_window;
  _in_marking_window_im = new_in_marking_window_im;
  _free_regions_at_end_of_collection = _g1->free_regions();
1605
  update_young_list_target_length();
1606

1607
  // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1608
  double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1609
  adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
1610 1611

  assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
1612 1613
}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
#define EXT_SIZE_FORMAT "%d%s"
#define EXT_SIZE_PARAMS(bytes)                                  \
  byte_size_in_proper_unit((bytes)),                            \
  proper_unit_for_byte_size((bytes))

void G1CollectorPolicy::print_heap_transition() {
  if (PrintGCDetails) {
    YoungList* young_list = _g1->young_list();
    size_t eden_bytes = young_list->eden_used_bytes();
    size_t survivor_bytes = young_list->survivor_used_bytes();
    size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
    size_t used = _g1->used();
    size_t capacity = _g1->capacity();
1627 1628
    size_t eden_capacity =
      (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
1629 1630

    gclog_or_tty->print_cr(
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
      "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
      "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
      "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
      EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
      EXT_SIZE_PARAMS(_eden_bytes_before_gc),
      EXT_SIZE_PARAMS(_prev_eden_capacity),
      EXT_SIZE_PARAMS(eden_bytes),
      EXT_SIZE_PARAMS(eden_capacity),
      EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
      EXT_SIZE_PARAMS(survivor_bytes),
      EXT_SIZE_PARAMS(used_before_gc),
      EXT_SIZE_PARAMS(_capacity_before_gc),
      EXT_SIZE_PARAMS(used),
      EXT_SIZE_PARAMS(capacity));

    _prev_eden_capacity = eden_capacity;
1647 1648 1649 1650 1651 1652 1653
  } else if (PrintGC) {
    _g1->print_size_transition(gclog_or_tty,
                               _cur_collection_pause_used_at_start_bytes,
                               _g1->used(), _g1->capacity());
  }
}

1654 1655 1656 1657 1658 1659
void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
                                                     double update_rs_processed_buffers,
                                                     double goal_ms) {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();

1660
  if (G1UseAdaptiveConcRefinement) {
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
    const int k_gy = 3, k_gr = 6;
    const double inc_k = 1.1, dec_k = 0.9;

    int g = cg1r->green_zone();
    if (update_rs_time > goal_ms) {
      g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
    } else {
      if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
        g = (int)MAX2(g * inc_k, g + 1.0);
      }
    }
    // Change the refinement threads params
    cg1r->set_green_zone(g);
    cg1r->set_yellow_zone(g * k_gy);
    cg1r->set_red_zone(g * k_gr);
    cg1r->reinitialize_threads();

    int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
    int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
                                    cg1r->yellow_zone());
    // Change the barrier params
    dcqs.set_process_completed_threshold(processing_threshold);
    dcqs.set_max_completed_queue(cg1r->red_zone());
  }

  int curr_queue_size = dcqs.completed_buffers_num();
  if (curr_queue_size >= cg1r->yellow_zone()) {
    dcqs.set_completed_queue_padding(curr_queue_size);
  } else {
    dcqs.set_completed_queue_padding(0);
  }
  dcqs.notify_if_necessary();
}

1695 1696 1697 1698 1699 1700
double
G1CollectorPolicy::
predict_young_collection_elapsed_time_ms(size_t adjustment) {
  guarantee( adjustment == 0 || adjustment == 1, "invariant" );

  G1CollectedHeap* g1h = G1CollectedHeap::heap();
1701
  size_t young_num = g1h->young_list()->length();
1702 1703 1704 1705 1706
  if (young_num == 0)
    return 0.0;

  young_num += adjustment;
  size_t pending_cards = predict_pending_cards();
1707
  size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
                      predict_rs_length_diff();
  size_t card_num;
  if (full_young_gcs())
    card_num = predict_young_card_num(rs_lengths);
  else
    card_num = predict_non_young_card_num(rs_lengths);
  size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  double accum_yg_surv_rate =
    _short_lived_surv_rate_group->accum_surv_rate(adjustment);

  size_t bytes_to_copy =
    (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);

  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy) +
    predict_young_other_time_ms(young_num) +
    predict_constant_other_time_ms();
}

double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  size_t rs_length = predict_rs_length_diff();
  size_t card_num;
  if (full_young_gcs())
    card_num = predict_young_card_num(rs_length);
  else
    card_num = predict_non_young_card_num(rs_length);
  return predict_base_elapsed_time_ms(pending_cards, card_num);
}

double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
                                                size_t scanned_cards) {
  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(scanned_cards) +
    predict_constant_other_time_ms();
}

double
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
                                                  bool young) {
  size_t rs_length = hr->rem_set()->occupied();
  size_t card_num;
  if (full_young_gcs())
    card_num = predict_young_card_num(rs_length);
  else
    card_num = predict_non_young_card_num(rs_length);
  size_t bytes_to_copy = predict_bytes_to_copy(hr);

  double region_elapsed_time_ms =
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy);

  if (young)
    region_elapsed_time_ms += predict_young_other_time_ms(1);
  else
    region_elapsed_time_ms += predict_non_young_other_time_ms(1);

  return region_elapsed_time_ms;
}

size_t
G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  size_t bytes_to_copy;
  if (hr->is_marked())
    bytes_to_copy = hr->max_live_bytes();
  else {
    guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
               "invariant" );
    int age = hr->age_in_surv_rate_group();
1781
    double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1782 1783 1784 1785 1786 1787 1788
    bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  }

  return bytes_to_copy;
}

void
1789 1790 1791 1792 1793
G1CollectorPolicy::init_cset_region_lengths(size_t eden_cset_region_length,
                                          size_t survivor_cset_region_length) {
  _eden_cset_region_length     = eden_cset_region_length;
  _survivor_cset_region_length = survivor_cset_region_length;
  _old_cset_region_length      = 0;
1794 1795 1796 1797 1798 1799
}

void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  _recorded_rs_lengths = rs_lengths;
}

1800 1801 1802 1803 1804
void G1CollectorPolicy::check_if_region_is_too_expensive(double
                                                           predicted_time_ms) {
  // I don't think we need to do this when in young GC mode since
  // marking will be initiated next time we hit the soft limit anyway...
  if (predicted_time_ms > _expensive_region_limit_ms) {
1805 1806 1807 1808 1809 1810
    ergo_verbose2(ErgoPartiallyYoungGCs,
              "request partially-young GCs end",
              ergo_format_reason("predicted region time higher than threshold")
              ergo_format_ms("predicted region time")
              ergo_format_ms("threshold"),
              predicted_time_ms, _expensive_region_limit_ms);
1811 1812
    // no point in doing another partial one
    _should_revert_to_full_young_gcs = true;
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
  }
}

void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
                                               double elapsed_ms) {
  _recent_gc_times_ms->add(elapsed_ms);
  _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  _prev_collection_pause_end_ms = end_time_sec * 1000.0;
}

size_t G1CollectorPolicy::expansion_amount() {
1824 1825 1826
  double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  double threshold = _gc_overhead_perc;
  if (recent_gc_overhead > threshold) {
J
johnc 已提交
1827 1828 1829 1830
    // We will double the existing space, or take
    // G1ExpandByPercentOfAvailable % of the available expansion
    // space, whichever is smaller, bounded below by a minimum
    // expansion (unless that's all that's left.)
1831
    const size_t min_expand_bytes = 1*M;
1832
    size_t reserved_bytes = _g1->max_capacity();
1833 1834 1835 1836
    size_t committed_bytes = _g1->capacity();
    size_t uncommitted_bytes = reserved_bytes - committed_bytes;
    size_t expand_bytes;
    size_t expand_bytes_via_pct =
J
johnc 已提交
1837
      uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1838 1839 1840
    expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
    expand_bytes = MAX2(expand_bytes, min_expand_bytes);
    expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853

    ergo_verbose5(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("recent GC overhead higher than "
                                     "threshold after GC")
                  ergo_format_perc("recent GC overhead")
                  ergo_format_perc("threshold")
                  ergo_format_byte("uncommitted")
                  ergo_format_byte_perc("calculated expansion amount"),
                  recent_gc_overhead, threshold,
                  uncommitted_bytes,
                  expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
    return expand_bytes;
  } else {
    return 0;
  }
}

class CountCSClosure: public HeapRegionClosure {
  G1CollectorPolicy* _g1_policy;
public:
  CountCSClosure(G1CollectorPolicy* g1_policy) :
    _g1_policy(g1_policy) {}
  bool doHeapRegion(HeapRegion* r) {
    _g1_policy->_bytes_in_collection_set_before_gc += r->used();
    return false;
  }
};

void G1CollectorPolicy::count_CS_bytes_used() {
  CountCSClosure cs_closure(this);
  _g1->collection_set_iterate(&cs_closure);
}

J
johnc 已提交
1876 1877 1878
void G1CollectorPolicy::print_summary(int level,
                                      const char* str,
                                      NumberSeq* seq) const {
1879
  double sum = seq->sum();
1880
  LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
1881 1882 1883
                str, sum / 1000.0, seq->avg());
}

J
johnc 已提交
1884 1885 1886
void G1CollectorPolicy::print_summary_sd(int level,
                                         const char* str,
                                         NumberSeq* seq) const {
1887
  print_summary(level, str, seq);
1888
  LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
1889 1890 1891 1892 1893 1894 1895
                seq->num(), seq->sd(), seq->maximum());
}

void G1CollectorPolicy::check_other_times(int level,
                                        NumberSeq* other_times_ms,
                                        NumberSeq* calc_other_times_ms) const {
  bool should_print = false;
1896
  LineBuffer buf(level + 2);
1897 1898 1899 1900 1901 1902 1903 1904

  double max_sum = MAX2(fabs(other_times_ms->sum()),
                        fabs(calc_other_times_ms->sum()));
  double min_sum = MIN2(fabs(other_times_ms->sum()),
                        fabs(calc_other_times_ms->sum()));
  double sum_ratio = max_sum / min_sum;
  if (sum_ratio > 1.1) {
    should_print = true;
1905
    buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
1906 1907 1908 1909 1910 1911 1912 1913 1914
  }

  double max_avg = MAX2(fabs(other_times_ms->avg()),
                        fabs(calc_other_times_ms->avg()));
  double min_avg = MIN2(fabs(other_times_ms->avg()),
                        fabs(calc_other_times_ms->avg()));
  double avg_ratio = max_avg / min_avg;
  if (avg_ratio > 1.1) {
    should_print = true;
1915
    buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
1916 1917 1918
  }

  if (other_times_ms->sum() < -0.01) {
1919
    buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
1920 1921 1922
  }

  if (other_times_ms->avg() < -0.01) {
1923
    buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
1924 1925 1926 1927
  }

  if (calc_other_times_ms->sum() < -0.01) {
    should_print = true;
1928
    buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
1929 1930 1931 1932
  }

  if (calc_other_times_ms->avg() < -0.01) {
    should_print = true;
1933
    buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
1934 1935 1936 1937 1938 1939 1940
  }

  if (should_print)
    print_summary(level, "Other(Calc)", calc_other_times_ms);
}

void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
1941
  bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1942 1943
  MainBodySummary*    body_summary = summary->main_body_summary();
  if (summary->get_total_seq()->num() > 0) {
1944
    print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
1945 1946 1947 1948
    if (body_summary != NULL) {
      print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
      if (parallel) {
        print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
J
johnc 已提交
1949 1950
        print_summary(2, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
        print_summary(2, "Mark Stack Scanning", body_summary->get_mark_stack_scan_seq());
1951 1952 1953 1954
        print_summary(2, "Update RS", body_summary->get_update_rs_seq());
        print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
        print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
        print_summary(2, "Termination", body_summary->get_termination_seq());
J
johnc 已提交
1955
        print_summary(2, "Parallel Other", body_summary->get_parallel_other_seq());
1956 1957 1958 1959
        {
          NumberSeq* other_parts[] = {
            body_summary->get_ext_root_scan_seq(),
            body_summary->get_mark_stack_scan_seq(),
J
johnc 已提交
1960
            body_summary->get_update_rs_seq(),
1961 1962 1963 1964 1965
            body_summary->get_scan_rs_seq(),
            body_summary->get_obj_copy_seq(),
            body_summary->get_termination_seq()
          };
          NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
1966
                                        6, other_parts);
1967 1968 1969 1970
          check_other_times(2, body_summary->get_parallel_other_seq(),
                            &calc_other_times_ms);
        }
      } else {
J
johnc 已提交
1971 1972
        print_summary(1, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
        print_summary(1, "Mark Stack Scanning", body_summary->get_mark_stack_scan_seq());
1973 1974 1975 1976 1977
        print_summary(1, "Update RS", body_summary->get_update_rs_seq());
        print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
        print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
      }
    }
J
johnc 已提交
1978 1979
    print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
    print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
1980 1981
    print_summary(1, "Other", summary->get_other_seq());
    {
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
      if (body_summary != NULL) {
        NumberSeq calc_other_times_ms;
        if (parallel) {
          // parallel
          NumberSeq* other_parts[] = {
            body_summary->get_satb_drain_seq(),
            body_summary->get_parallel_seq(),
            body_summary->get_clear_ct_seq()
          };
          calc_other_times_ms = NumberSeq(summary->get_total_seq(),
                                                3, other_parts);
        } else {
          // serial
          NumberSeq* other_parts[] = {
            body_summary->get_satb_drain_seq(),
            body_summary->get_update_rs_seq(),
            body_summary->get_ext_root_scan_seq(),
            body_summary->get_mark_stack_scan_seq(),
            body_summary->get_scan_rs_seq(),
            body_summary->get_obj_copy_seq()
          };
          calc_other_times_ms = NumberSeq(summary->get_total_seq(),
                                                6, other_parts);
        }
        check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
2007 2008 2009
      }
    }
  } else {
2010
    LineBuffer(1).append_and_print_cr("none");
2011
  }
2012
  LineBuffer(0).append_and_print_cr("");
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
}

void G1CollectorPolicy::print_tracing_info() const {
  if (TraceGen0Time) {
    gclog_or_tty->print_cr("ALL PAUSES");
    print_summary_sd(0, "Total", _all_pause_times_ms);
    gclog_or_tty->print_cr("");
    gclog_or_tty->print_cr("");
    gclog_or_tty->print_cr("   Full Young GC Pauses:    %8d", _full_young_pause_num);
    gclog_or_tty->print_cr("   Partial Young GC Pauses: %8d", _partial_young_pause_num);
    gclog_or_tty->print_cr("");

2025 2026
    gclog_or_tty->print_cr("EVACUATION PAUSES");
    print_summary(_summary);
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070

    gclog_or_tty->print_cr("MISC");
    print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
    print_summary_sd(0, "Yields", _all_yield_times_ms);
    for (int i = 0; i < _aux_num; ++i) {
      if (_all_aux_times_ms[i].num() > 0) {
        char buffer[96];
        sprintf(buffer, "Aux%d", i);
        print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
      }
    }
  }
  if (TraceGen1Time) {
    if (_all_full_gc_times_ms->num() > 0) {
      gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
                 _all_full_gc_times_ms->num(),
                 _all_full_gc_times_ms->sum() / 1000.0);
      gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
      gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
                    _all_full_gc_times_ms->sd(),
                    _all_full_gc_times_ms->maximum());
    }
  }
}

void G1CollectorPolicy::print_yg_surv_rate_info() const {
#ifndef PRODUCT
  _short_lived_surv_rate_group->print_surv_rate_summary();
  // add this call for any other surv rate groups
#endif // PRODUCT
}

#ifndef PRODUCT
// for debugging, bit of a hack...
static char*
region_num_to_mbs(int length) {
  static char buffer[64];
  double bytes = (double) (length * HeapRegion::GrainBytes);
  double mbs = bytes / (double) (1024 * 1024);
  sprintf(buffer, "%7.2lfMB", mbs);
  return buffer;
}
#endif // PRODUCT

2071
size_t G1CollectorPolicy::max_regions(int purpose) {
2072 2073
  switch (purpose) {
    case GCAllocForSurvived:
2074
      return _max_survivor_regions;
2075
    case GCAllocForTenured:
2076
      return REGIONS_UNLIMITED;
2077
    default:
2078 2079
      ShouldNotReachHere();
      return REGIONS_UNLIMITED;
2080 2081 2082
  };
}

2083
void G1CollectorPolicy::update_max_gc_locker_expansion() {
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
  size_t expansion_region_num = 0;
  if (GCLockerEdenExpansionPercent > 0) {
    double perc = (double) GCLockerEdenExpansionPercent / 100.0;
    double expansion_region_num_d = perc * (double) _young_list_target_length;
    // We use ceiling so that if expansion_region_num_d is > 0.0 (but
    // less than 1.0) we'll get 1.
    expansion_region_num = (size_t) ceil(expansion_region_num_d);
  } else {
    assert(expansion_region_num == 0, "sanity");
  }
  _young_list_max_length = _young_list_target_length + expansion_region_num;
  assert(_young_list_target_length <= _young_list_max_length, "post-condition");
}

2098
// Calculates survivor space parameters.
2099 2100 2101 2102 2103 2104 2105
void G1CollectorPolicy::update_survivors_policy() {
  double max_survivor_regions_d =
                 (double) _young_list_target_length / (double) SurvivorRatio;
  // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
  _max_survivor_regions = (size_t) ceil(max_survivor_regions_d);

2106
  _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
2107 2108 2109
        HeapRegion::GrainWords * _max_survivor_regions);
}

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
#ifndef PRODUCT
class HRSortIndexIsOKClosure: public HeapRegionClosure {
  CollectionSetChooser* _chooser;
public:
  HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
    _chooser(chooser) {}

  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
    }
    return false;
  }
};

2125
bool G1CollectorPolicy::assertMarkedBytesDataOK() {
2126 2127 2128 2129 2130 2131
  HRSortIndexIsOKClosure cl(_collectionSetChooser);
  _g1->heap_region_iterate(&cl);
  return true;
}
#endif

2132 2133
bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
                                                     GCCause::Cause gc_cause) {
2134 2135
  bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  if (!during_cycle) {
2136 2137 2138 2139 2140
    ergo_verbose1(ErgoConcCycles,
                  "request concurrent cycle initiation",
                  ergo_format_reason("requested by GC cause")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
2141 2142 2143
    set_initiate_conc_mark_if_possible();
    return true;
  } else {
2144 2145 2146 2147 2148
    ergo_verbose1(ErgoConcCycles,
                  "do not request concurrent cycle initiation",
                  ergo_format_reason("concurrent cycle already in progress")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
2149 2150 2151 2152
    return false;
  }
}

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
void
G1CollectorPolicy::decide_on_conc_mark_initiation() {
  // We are about to decide on whether this pause will be an
  // initial-mark pause.

  // First, during_initial_mark_pause() should not be already set. We
  // will set it here if we have to. However, it should be cleared by
  // the end of the pause (it's only set for the duration of an
  // initial-mark pause).
  assert(!during_initial_mark_pause(), "pre-condition");

  if (initiate_conc_mark_if_possible()) {
    // We had noticed on a previous pause that the heap occupancy has
    // gone over the initiating threshold and we should start a
    // concurrent marking cycle. So we might initiate one.

    bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
    if (!during_cycle) {
      // The concurrent marking thread is not "during a cycle", i.e.,
      // it has completed the last one. So we can go ahead and
      // initiate a new cycle.

      set_during_initial_mark_pause();
2176 2177 2178 2179 2180 2181 2182
      // We do not allow non-full young GCs during marking.
      if (!full_young_gcs()) {
        set_full_young_gcs(true);
        ergo_verbose0(ErgoPartiallyYoungGCs,
                      "end partially-young GCs",
                      ergo_format_reason("concurrent cycle is about to start"));
      }
2183 2184 2185 2186

      // And we can now clear initiate_conc_mark_if_possible() as
      // we've already acted on it.
      clear_initiate_conc_mark_if_possible();
2187 2188 2189 2190

      ergo_verbose0(ErgoConcCycles,
                  "initiate concurrent cycle",
                  ergo_format_reason("concurrent cycle initiation requested"));
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
    } else {
      // The concurrent marking thread is still finishing up the
      // previous cycle. If we start one right now the two cycles
      // overlap. In particular, the concurrent marking thread might
      // be in the process of clearing the next marking bitmap (which
      // we will use for the next cycle if we start one). Starting a
      // cycle now will be bad given that parts of the marking
      // information might get cleared by the marking thread. And we
      // cannot wait for the marking thread to finish the cycle as it
      // periodically yields while clearing the next marking bitmap
      // and, if it's in a yield point, it's waiting for us to
      // finish. So, at this point we will not start a cycle and we'll
      // let the concurrent marking thread complete the last one.
2204 2205 2206
      ergo_verbose0(ErgoConcCycles,
                    "do not initiate concurrent cycle",
                    ergo_format_reason("concurrent cycle already in progress"));
2207 2208 2209 2210
    }
  }
}

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
class KnownGarbageClosure: public HeapRegionClosure {
  CollectionSetChooser* _hrSorted;

public:
  KnownGarbageClosure(CollectionSetChooser* hrSorted) :
    _hrSorted(hrSorted)
  {}

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.

    // Do we have any marking information for this region?
    if (r->is_marked()) {
      // We don't include humongous regions in collection
      // sets because we collect them immediately at the end of a marking
      // cycle.  We also don't include young regions because we *must*
      // include them in the next collection pause.
      if (!r->isHumongous() && !r->is_young()) {
        _hrSorted->addMarkedHeapRegion(r);
      }
    }
    return false;
  }
};

class ParKnownGarbageHRClosure: public HeapRegionClosure {
  CollectionSetChooser* _hrSorted;
  jint _marked_regions_added;
  jint _chunk_size;
  jint _cur_chunk_idx;
  jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  int _worker;
  int _invokes;

  void get_new_chunk() {
    _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
    _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  }
  void add_region(HeapRegion* r) {
    if (_cur_chunk_idx == _cur_chunk_end) {
      get_new_chunk();
    }
    assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
    _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
    _marked_regions_added++;
    _cur_chunk_idx++;
  }

public:
  ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
                           jint chunk_size,
                           int worker) :
    _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
    _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
    _invokes(0)
  {}

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.
    _invokes++;

    // Do we have any marking information for this region?
    if (r->is_marked()) {
      // We don't include humongous regions in collection
      // sets because we collect them immediately at the end of a marking
      // cycle.
      // We also do not include young regions in collection sets
      if (!r->isHumongous() && !r->is_young()) {
        add_region(r);
      }
    }
    return false;
  }
  jint marked_regions_added() { return _marked_regions_added; }
  int invokes() { return _invokes; }
};

class ParKnownGarbageTask: public AbstractGangTask {
  CollectionSetChooser* _hrSorted;
  jint _chunk_size;
  G1CollectedHeap* _g1;
public:
  ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
    AbstractGangTask("ParKnownGarbageTask"),
    _hrSorted(hrSorted), _chunk_size(chunk_size),
    _g1(G1CollectedHeap::heap())
  {}

  void work(int i) {
    ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
    // Back to zero for the claim value.
2306 2307
    _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
                                         HeapRegion::InitialClaimValue);
2308 2309 2310
    jint regions_added = parKnownGarbageCl.marked_regions_added();
    _hrSorted->incNumMarkedHeapRegions(regions_added);
    if (G1PrintParCleanupStats) {
2311
      gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
2312 2313 2314 2315 2316 2317
                 i, parKnownGarbageCl.invokes(), regions_added);
    }
  }
};

void
2318 2319 2320 2321 2322
G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
  double start_sec;
  if (G1PrintParCleanupStats) {
    start_sec = os::elapsedTime();
  }
2323 2324

  _collectionSetChooser->clearMarkedHeapRegions();
2325
  double clear_marked_end_sec;
2326
  if (G1PrintParCleanupStats) {
2327 2328 2329
    clear_marked_end_sec = os::elapsedTime();
    gclog_or_tty->print_cr("  clear marked regions: %8.3f ms.",
                           (clear_marked_end_sec - start_sec) * 1000.0);
2330
  }
2331

2332
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2333
    const size_t OverpartitionFactor = 4;
2334 2335
    const size_t MinWorkUnit = 8;
    const size_t WorkUnit =
2336
      MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
2337
           MinWorkUnit);
2338
    _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
2339
                                                             WorkUnit);
2340
    ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
2341
                                            (int) WorkUnit);
2342
    _g1->workers()->run_task(&parKnownGarbageTask);
2343 2344 2345

    assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
2346 2347 2348 2349
  } else {
    KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
    _g1->heap_region_iterate(&knownGarbagecl);
  }
2350
  double known_garbage_end_sec;
2351
  if (G1PrintParCleanupStats) {
2352
    known_garbage_end_sec = os::elapsedTime();
2353
    gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
2354
                      (known_garbage_end_sec - clear_marked_end_sec) * 1000.0);
2355
  }
2356

2357
  _collectionSetChooser->sortMarkedHeapRegions();
2358
  double end_sec = os::elapsedTime();
2359 2360
  if (G1PrintParCleanupStats) {
    gclog_or_tty->print_cr("  sorting: %8.3f ms.",
2361
                           (end_sec - known_garbage_end_sec) * 1000.0);
2362 2363
  }

2364 2365 2366 2367 2368
  double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;
  _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
2369 2370
}

2371
// Add the heap region at the head of the non-incremental collection set
2372
void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
2373 2374 2375
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(!hr->is_young(), "non-incremental add of young region");

2376 2377 2378
  if (_g1->mark_in_progress())
    _g1->concurrent_mark()->registerCSetRegion(hr);

2379
  assert(!hr->in_collection_set(), "should not already be in the CSet");
2380 2381 2382 2383
  hr->set_in_collection_set(true);
  hr->set_next_in_collection_set(_collection_set);
  _collection_set = hr;
  _collection_set_bytes_used_before += hr->used();
2384
  _g1->register_region_with_in_cset_fast_test(hr);
2385 2386 2387
  size_t rs_length = hr->rem_set()->occupied();
  _recorded_rs_lengths += rs_length;
  _old_cset_region_length += 1;
2388 2389
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
// Initialize the per-collection-set information
void G1CollectorPolicy::start_incremental_cset_building() {
  assert(_inc_cset_build_state == Inactive, "Precondition");

  _inc_cset_head = NULL;
  _inc_cset_tail = NULL;
  _inc_cset_bytes_used_before = 0;

  _inc_cset_max_finger = 0;
  _inc_cset_recorded_rs_lengths = 0;
  _inc_cset_predicted_elapsed_time_ms = 0;
  _inc_cset_build_state = Active;
}

void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  // This routine is used when:
  // * adding survivor regions to the incremental cset at the end of an
  //   evacuation pause,
  // * adding the current allocation region to the incremental cset
  //   when it is retired, and
  // * updating existing policy information for a region in the
  //   incremental cset via young list RSet sampling.
  // Therefore this routine may be called at a safepoint by the
  // VM thread, or in-between safepoints by mutator threads (when
  // retiring the current allocation region) or a concurrent
  // refine thread (RSet sampling).

  double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  size_t used_bytes = hr->used();

  _inc_cset_recorded_rs_lengths += rs_length;
  _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;

  _inc_cset_bytes_used_before += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_recorded_rs_length(rs_length);
  hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
}

void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
  // This routine is currently only called as part of the updating of
  // existing policy information for regions in the incremental cset that
  // is performed by the concurrent refine thread(s) as part of young list
  // RSet sampling. Therefore we should not be at a safepoint.

  assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
  assert(hr->is_young(), "it should be");

  size_t used_bytes = hr->used();
  size_t old_rs_length = hr->recorded_rs_length();
  double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();

  // Subtract the old recorded/predicted policy information for
  // the given heap region from the collection set info.
  _inc_cset_recorded_rs_lengths -= old_rs_length;
  _inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;

  _inc_cset_bytes_used_before -= used_bytes;

  // Clear the values cached in the heap region
  hr->set_recorded_rs_length(0);
  hr->set_predicted_elapsed_time_ms(0);
}

void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
  // Update the collection set information that is dependent on the new RS length
  assert(hr->is_young(), "Precondition");

  remove_from_incremental_cset_info(hr);
  add_to_incremental_cset_info(hr, new_rs_length);
}

void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
2467 2468
  assert(hr->is_young(), "invariant");
  assert(hr->young_index_in_cset() > -1, "should have already been set");
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
  assert(_inc_cset_build_state == Active, "Precondition");

  // We need to clear and set the cached recorded/cached collection set
  // information in the heap region here (before the region gets added
  // to the collection set). An individual heap region's cached values
  // are calculated, aggregated with the policy collection set info,
  // and cached in the heap region here (initially) and (subsequently)
  // by the Young List sampling code.

  size_t rs_length = hr->rem_set()->occupied();
  add_to_incremental_cset_info(hr, rs_length);

  HeapWord* hr_end = hr->end();
  _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);

  assert(!hr->in_collection_set(), "invariant");
  hr->set_in_collection_set(true);
  assert( hr->next_in_collection_set() == NULL, "invariant");

  _g1->register_region_with_in_cset_fast_test(hr);
}

// Add the region at the RHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  // We should only ever be appending survivors at the end of a pause
  assert( hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Now add the region at the right hand side
  if (_inc_cset_tail == NULL) {
    assert(_inc_cset_head == NULL, "invariant");
    _inc_cset_head = hr;
  } else {
    _inc_cset_tail->set_next_in_collection_set(hr);
  }
  _inc_cset_tail = hr;
}

// Add the region to the LHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  // Survivors should be added to the RHS at the end of a pause
  assert(!hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Add the region at the left hand side
  hr->set_next_in_collection_set(_inc_cset_head);
  if (_inc_cset_head == NULL) {
    assert(_inc_cset_tail == NULL, "Invariant");
    _inc_cset_tail = hr;
  }
  _inc_cset_head = hr;
}

#ifndef PRODUCT
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");

  st->print_cr("\nCollection_set:");
  HeapRegion* csr = list_head;
  while (csr != NULL) {
    HeapRegion* next = csr->next_in_collection_set();
    assert(csr->in_collection_set(), "bad CS");
    st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
                 "age: %4d, y: %d, surv: %d",
                        csr->bottom(), csr->end(),
                        csr->top(),
                        csr->prev_top_at_mark_start(),
                        csr->next_top_at_mark_start(),
                        csr->top_at_conc_mark_count(),
                        csr->age_in_surv_rate_group_cond(),
                        csr->is_young(),
                        csr->is_survivor());
    csr = next;
  }
}
#endif // !PRODUCT

2550
void G1CollectorPolicy::choose_collection_set(double target_pause_time_ms) {
2551 2552 2553
  // Set this here - in case we're not doing young collections.
  double non_young_start_time_sec = os::elapsedTime();

2554 2555
  YoungList* young_list = _g1->young_list();

2556 2557 2558 2559
  guarantee(target_pause_time_ms > 0.0,
            err_msg("target_pause_time_ms = %1.6lf should be positive",
                    target_pause_time_ms));
  guarantee(_collection_set == NULL, "Precondition");
2560 2561 2562 2563

  double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  double predicted_pause_time_ms = base_time_ms;

2564
  double time_remaining_ms = target_pause_time_ms - base_time_ms;
2565

2566 2567 2568 2569 2570 2571 2572
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "start choosing CSet",
                ergo_format_ms("predicted base time")
                ergo_format_ms("remaining time")
                ergo_format_ms("target pause time"),
                base_time_ms, time_remaining_ms, target_pause_time_ms);

2573
  // the 10% and 50% values are arbitrary...
2574 2575 2576
  double threshold = 0.10 * target_pause_time_ms;
  if (time_remaining_ms < threshold) {
    double prev_time_remaining_ms = time_remaining_ms;
2577
    time_remaining_ms = 0.50 * target_pause_time_ms;
2578 2579 2580 2581 2582 2583 2584
    ergo_verbose3(ErgoCSetConstruction,
                  "adjust remaining time",
                  ergo_format_reason("remaining time lower than threshold")
                  ergo_format_ms("remaining time")
                  ergo_format_ms("threshold")
                  ergo_format_ms("adjusted remaining time"),
                  prev_time_remaining_ms, threshold, time_remaining_ms);
2585 2586
  }

2587
  size_t expansion_bytes = _g1->expansion_regions() * HeapRegion::GrainBytes;
2588 2589

  HeapRegion* hr;
2590
  double young_start_time_sec = os::elapsedTime();
2591

2592
  _collection_set_bytes_used_before = 0;
2593
  _last_young_gc_full = full_young_gcs() ? true : false;
2594

2595
  if (_last_young_gc_full) {
2596
    ++_full_young_pause_num;
2597
  } else {
2598
    ++_partial_young_pause_num;
2599
  }
2600

2601 2602 2603
  // The young list is laid with the survivor regions from the previous
  // pause are appended to the RHS of the young list, i.e.
  //   [Newly Young Regions ++ Survivors from last pause].
2604

2605 2606 2607
  size_t survivor_region_length = young_list->survivor_length();
  size_t eden_region_length = young_list->length() - survivor_region_length;
  init_cset_region_lengths(eden_region_length, survivor_region_length);
2608
  hr = young_list->first_survivor_region();
2609 2610 2611 2612 2613
  while (hr != NULL) {
    assert(hr->is_survivor(), "badly formed young list");
    hr->set_young();
    hr = hr->get_next_young_region();
  }
2614

2615 2616
  // Clear the fields that point to the survivor list - they are all young now.
  young_list->clear_survivors();
2617

2618 2619
  if (_g1->mark_in_progress())
    _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);
2620

2621 2622 2623 2624
  _collection_set = _inc_cset_head;
  _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
2625

2626 2627 2628 2629 2630
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "add young regions to CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_ms("predicted young region time"),
2631
                eden_region_length, survivor_region_length,
2632 2633
                _inc_cset_predicted_elapsed_time_ms);

2634 2635 2636
  // The number of recorded young regions is the incremental
  // collection set's current size
  set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2637

2638 2639 2640
  double young_end_time_sec = os::elapsedTime();
  _recorded_young_cset_choice_time_ms =
    (young_end_time_sec - young_start_time_sec) * 1000.0;
2641

2642 2643
  // We are doing young collections so reset this.
  non_young_start_time_sec = young_end_time_sec;
2644

2645
  if (!full_young_gcs()) {
2646 2647 2648
    bool should_continue = true;
    NumberSeq seq;
    double avg_prediction = 100000000000000000.0; // something very large
2649

2650
    double prev_predicted_pause_time_ms = predicted_pause_time_ms;
2651
    do {
2652 2653 2654 2655 2656 2657 2658 2659
      // Note that add_old_region_to_cset() increments the
      // _old_cset_region_length field and cset_region_length() returns the
      // sum of _eden_cset_region_length, _survivor_cset_region_length, and
      // _old_cset_region_length. So, as old regions are added to the
      // CSet, _old_cset_region_length will be incremented and
      // cset_region_length(), which is used below, will always reflect
      // the the total number of regions added up to this point to the CSet.

2660 2661
      hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
                                                      avg_prediction);
2662
      if (hr != NULL) {
T
tonyp 已提交
2663
        _g1->old_set_remove(hr);
2664 2665 2666
        double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
        time_remaining_ms -= predicted_time_ms;
        predicted_pause_time_ms += predicted_time_ms;
2667
        add_old_region_to_cset(hr);
2668 2669 2670
        seq.add(predicted_time_ms);
        avg_prediction = seq.avg() + seq.sd();
      }
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

      should_continue = true;
      if (hr == NULL) {
        // No need for an ergo verbose message here,
        // getNextMarkRegion() does this when it returns NULL.
        should_continue = false;
      } else {
        if (adaptive_young_list_length()) {
          if (time_remaining_ms < 0.0) {
            ergo_verbose1(ErgoCSetConstruction,
                          "stop adding old regions to CSet",
                          ergo_format_reason("remaining time is lower than 0")
                          ergo_format_ms("remaining time"),
                          time_remaining_ms);
            should_continue = false;
          }
        } else {
2688
          if (cset_region_length() >= _young_list_fixed_length) {
2689 2690
            ergo_verbose2(ErgoCSetConstruction,
                          "stop adding old regions to CSet",
2691
                          ergo_format_reason("CSet length reached target")
2692 2693
                          ergo_format_region("CSet")
                          ergo_format_region("young target"),
2694
                          cset_region_length(), _young_list_fixed_length);
2695 2696 2697 2698
            should_continue = false;
          }
        }
      }
2699 2700 2701
    } while (should_continue);

    if (!adaptive_young_list_length() &&
2702
                             cset_region_length() < _young_list_fixed_length) {
2703 2704 2705 2706 2707
      ergo_verbose2(ErgoCSetConstruction,
                    "request partially-young GCs end",
                    ergo_format_reason("CSet length lower than target")
                    ergo_format_region("CSet")
                    ergo_format_region("young target"),
2708
                    cset_region_length(), _young_list_fixed_length);
2709
      _should_revert_to_full_young_gcs  = true;
2710 2711 2712 2713 2714 2715
    }

    ergo_verbose2(ErgoCSetConstruction | ErgoHigh,
                  "add old regions to CSet",
                  ergo_format_region("old")
                  ergo_format_ms("predicted old region time"),
2716
                  old_cset_region_length(),
2717
                  predicted_pause_time_ms - prev_predicted_pause_time_ms);
2718 2719
  }

2720 2721
  stop_incremental_cset_building();

2722 2723
  count_CS_bytes_used();

2724 2725 2726 2727 2728 2729 2730
  ergo_verbose5(ErgoCSetConstruction,
                "finish choosing CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_region("old")
                ergo_format_ms("predicted pause time")
                ergo_format_ms("target pause time"),
2731 2732
                eden_region_length, survivor_region_length,
                old_cset_region_length(),
2733 2734
                predicted_pause_time_ms, target_pause_time_ms);

2735 2736 2737 2738
  double non_young_end_time_sec = os::elapsedTime();
  _recorded_non_young_cset_choice_time_ms =
    (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
}