g1CollectorPolicy.cpp 88.5 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
33
#include "gc_implementation/g1/g1Log.hpp"
34 35 36 37 38 39
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "runtime/arguments.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/debug.hpp"
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

// Different defaults for different number of GC threads
// They were chosen by running GCOld and SPECjbb on debris with different
//   numbers of GC threads and choosing them based on the results

// all the same
static double rs_length_diff_defaults[] = {
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

static double cost_per_card_ms_defaults[] = {
  0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
};

// all the same
55
static double young_cards_per_entry_ratio_defaults[] = {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

static double cost_per_entry_ms_defaults[] = {
  0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
};

static double cost_per_byte_ms_defaults[] = {
  0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
};

// these should be pretty consistent
static double constant_other_time_ms_defaults[] = {
  5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
};


static double young_other_cost_per_region_ms_defaults[] = {
  0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
};

static double non_young_other_cost_per_region_ms_defaults[] = {
  1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
};

G1CollectorPolicy::G1CollectorPolicy() :
82
  _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
83
                        ? ParallelGCThreads : 1),
84

85 86 87 88 89 90 91 92 93 94
  _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _stop_world_start(0.0),

  _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _prev_collection_pause_end_ms(0.0),
  _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
95 96
  _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
97
  _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
98
  _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
99 100 101 102 103 104 105 106 107 108
  _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
  _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _non_young_other_cost_per_region_ms_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),

  _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),

J
johnc 已提交
109
  _pause_time_target_ms((double) MaxGCPauseMillis),
110

111
  _gcs_are_young(true),
112 113 114 115 116

  _during_marking(false),
  _in_marking_window(false),
  _in_marking_window_im(false),

117 118
  _recent_prev_end_times_for_all_gcs_sec(
                                new TruncatedSeq(NumPrevPausesForHeuristics)),
119 120 121

  _recent_avg_pause_time_ratio(0.0),

122 123
  _initiate_conc_mark_if_possible(false),
  _during_initial_mark_pause(false),
124 125
  _last_young_gc(false),
  _last_gc_was_young(false),
126

127 128 129 130 131 132
  _eden_used_bytes_before_gc(0),
  _survivor_used_bytes_before_gc(0),
  _heap_used_bytes_before_gc(0),
  _metaspace_used_bytes_before_gc(0),
  _eden_capacity_bytes_before_gc(0),
  _heap_capacity_bytes_before_gc(0),
133

134 135 136 137
  _eden_cset_region_length(0),
  _survivor_cset_region_length(0),
  _old_cset_region_length(0),

138
  _collection_set(NULL),
139 140 141 142 143 144 145 146 147
  _collection_set_bytes_used_before(0),

  // Incremental CSet attributes
  _inc_cset_build_state(Inactive),
  _inc_cset_head(NULL),
  _inc_cset_tail(NULL),
  _inc_cset_bytes_used_before(0),
  _inc_cset_max_finger(NULL),
  _inc_cset_recorded_rs_lengths(0),
148
  _inc_cset_recorded_rs_lengths_diffs(0),
149
  _inc_cset_predicted_elapsed_time_ms(0.0),
150
  _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
151

152 153 154 155 156 157 158
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

  _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
                                                 G1YoungSurvRateNumRegionsSummary)),
  _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
159
                                              G1YoungSurvRateNumRegionsSummary)),
160
  // add here any more surv rate groups
161 162 163
  _recorded_survivor_regions(0),
  _recorded_survivor_head(NULL),
  _recorded_survivor_tail(NULL),
T
tonyp 已提交
164 165
  _survivors_age_table(true),

166
  _gc_overhead_perc(0.0) {
167

168 169 170
  // Set up the region size and associated fields. Given that the
  // policy is created before the heap, we have to set this up here,
  // so it's done as soon as possible.
171 172 173 174 175 176 177 178 179

  // It would have been natural to pass initial_heap_byte_size() and
  // max_heap_byte_size() to setup_heap_region_size() but those have
  // not been set up at this point since they should be aligned with
  // the region size. So, there is a circular dependency here. We base
  // the region size on the heap size, but the heap size should be
  // aligned with the region size. To get around this we use the
  // unaligned values for the heap.
  HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
180
  HeapRegionRemSet::setup_remset_size();
181

182 183 184 185 186 187 188 189 190 191 192 193
  G1ErgoVerbose::initialize();
  if (PrintAdaptiveSizePolicy) {
    // Currently, we only use a single switch for all the heuristics.
    G1ErgoVerbose::set_enabled(true);
    // Given that we don't currently have a verboseness level
    // parameter, we'll hardcode this to high. This can be easily
    // changed in the future.
    G1ErgoVerbose::set_level(ErgoHigh);
  } else {
    G1ErgoVerbose::set_enabled(false);
  }

194
  // Verify PLAB sizes
195
  const size_t region_size = HeapRegion::GrainWords;
196 197
  if (YoungPLABSize > region_size || OldPLABSize > region_size) {
    char buffer[128];
198
    jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
199 200 201 202
                 OldPLABSize > region_size ? "Old" : "Young", region_size);
    vm_exit_during_initialization(buffer);
  }

203 204 205
  _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
  _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;

206
  _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
207

208
  int index = MIN2(_parallel_gc_threads - 1, 7);
209 210 211

  _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
  _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
212 213
  _young_cards_per_entry_ratio_seq->add(
                                  young_cards_per_entry_ratio_defaults[index]);
214 215 216 217 218 219 220 221
  _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
  _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
  _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
  _young_other_cost_per_region_ms_seq->add(
                               young_other_cost_per_region_ms_defaults[index]);
  _non_young_other_cost_per_region_ms_seq->add(
                           non_young_other_cost_per_region_ms_defaults[index]);

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  // Below, we might need to calculate the pause time target based on
  // the pause interval. When we do so we are going to give G1 maximum
  // flexibility and allow it to do pauses when it needs to. So, we'll
  // arrange that the pause interval to be pause time target + 1 to
  // ensure that a) the pause time target is maximized with respect to
  // the pause interval and b) we maintain the invariant that pause
  // time target < pause interval. If the user does not want this
  // maximum flexibility, they will have to set the pause interval
  // explicitly.

  // First make sure that, if either parameter is set, its value is
  // reasonable.
  if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (MaxGCPauseMillis < 1) {
      vm_exit_during_initialization("MaxGCPauseMillis should be "
                                    "greater than 0");
    }
  }
  if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    if (GCPauseIntervalMillis < 1) {
      vm_exit_during_initialization("GCPauseIntervalMillis should be "
                                    "greater than 0");
    }
  }

  // Then, if the pause time target parameter was not set, set it to
  // the default value.
  if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
      // The default pause time target in G1 is 200ms
      FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
    } else {
      // We do not allow the pause interval to be set without the
      // pause time target
      vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
                                    "without setting MaxGCPauseMillis");
    }
  }

  // Then, if the interval parameter was not set, set it according to
  // the pause time target (this will also deal with the case when the
  // pause time target is the default value).
  if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
  }

  // Finally, make sure that the two parameters are consistent.
  if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
    char buffer[256];
    jio_snprintf(buffer, 256,
                 "MaxGCPauseMillis (%u) should be less than "
                 "GCPauseIntervalMillis (%u)",
                 MaxGCPauseMillis, GCPauseIntervalMillis);
    vm_exit_during_initialization(buffer);
  }

J
johnc 已提交
278
  double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
279
  double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
280
  _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
281 282 283 284 285 286 287 288 289

  uintx confidence_perc = G1ConfidencePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (confidence_perc > 100) {
    confidence_perc = 100;
    warning("G1ConfidencePercent is set to a value that is too large, "
            "it's been updated to %u", confidence_perc);
  }
  _sigma = (double) confidence_perc / 100.0;
290 291 292 293 294

  // start conservatively (around 50ms is about right)
  _concurrent_mark_remark_times_ms->add(0.05);
  _concurrent_mark_cleanup_times_ms->add(0.20);
  _tenuring_threshold = MaxTenuringThreshold;
295
  // _max_survivor_regions will be calculated by
296
  // update_young_list_target_length() during initialization.
297
  _max_survivor_regions = 0;
298

T
tonyp 已提交
299 300 301 302 303
  assert(GCTimeRatio > 0,
         "we should have set it to a default value set_g1_gc_flags() "
         "if a user set it to 0");
  _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));

304 305 306 307 308 309 310 311
  uintx reserve_perc = G1ReservePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (reserve_perc > 50) {
    reserve_perc = 50;
    warning("G1ReservePercent is set to a value that is too large, "
            "it's been updated to %u", reserve_perc);
  }
  _reserve_factor = (double) reserve_perc / 100.0;
312
  // This will be set when the heap is expanded
313 314 315
  // for the first time during initialization.
  _reserve_regions = 0;

316
  _collectionSetChooser = new CollectionSetChooser();
317 318
}

319 320
void G1CollectorPolicy::initialize_alignments() {
  _space_alignment = HeapRegion::GrainBytes;
321
  size_t card_table_alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
322
  size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
323 324 325 326 327 328 329 330
  _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
}

void G1CollectorPolicy::initialize_flags() {
  if (G1HeapRegionSize != HeapRegion::GrainBytes) {
    FLAG_SET_ERGO(uintx, G1HeapRegionSize, HeapRegion::GrainBytes);
  }

331 332 333
  if (SurvivorRatio < 1) {
    vm_exit_during_initialization("Invalid survivor ratio specified");
  }
334
  CollectorPolicy::initialize_flags();
335
  _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
336 337
}

338 339 340 341 342 343 344
void G1CollectorPolicy::post_heap_initialize() {
  uintx max_regions = G1CollectedHeap::heap()->max_regions();
  size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
  if (max_young_size != MaxNewSize) {
    FLAG_SET_ERGO(uintx, MaxNewSize, max_young_size);
  }
}
345

346 347
G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
        _min_desired_young_length(0), _max_desired_young_length(0) {
348 349 350 351 352 353 354 355
  if (FLAG_IS_CMDLINE(NewRatio)) {
    if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
      warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
    } else {
      _sizer_kind = SizerNewRatio;
      _adaptive_size = false;
      return;
    }
356
  }
357

358 359 360 361 362 363 364
  if (NewSize > MaxNewSize) {
    if (FLAG_IS_CMDLINE(MaxNewSize)) {
      warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
              "A new max generation size of " SIZE_FORMAT "k will be used.",
              NewSize/K, MaxNewSize/K, NewSize/K);
    }
    MaxNewSize = NewSize;
365 366
  }

367
  if (FLAG_IS_CMDLINE(NewSize)) {
368 369
    _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
                                     1U);
370
    if (FLAG_IS_CMDLINE(MaxNewSize)) {
371 372 373
      _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
374 375 376 377 378 379
      _sizer_kind = SizerMaxAndNewSize;
      _adaptive_size = _min_desired_young_length == _max_desired_young_length;
    } else {
      _sizer_kind = SizerNewSizeOnly;
    }
  } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
380 381 382
    _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
383
    _sizer_kind = SizerMaxNewSizeOnly;
384
  }
385 386
}

387
uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
388
  uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
389
  return MAX2(1U, default_value);
390 391
}

392
uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
393
  uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
394
  return MAX2(1U, default_value);
395 396
}

397 398
void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
  assert(number_of_heap_regions > 0, "Heap must be initialized");
399 400 401

  switch (_sizer_kind) {
    case SizerDefaults:
402 403
      *min_young_length = calculate_default_min_length(number_of_heap_regions);
      *max_young_length = calculate_default_max_length(number_of_heap_regions);
404 405
      break;
    case SizerNewSizeOnly:
406 407
      *max_young_length = calculate_default_max_length(number_of_heap_regions);
      *max_young_length = MAX2(*min_young_length, *max_young_length);
408 409
      break;
    case SizerMaxNewSizeOnly:
410 411
      *min_young_length = calculate_default_min_length(number_of_heap_regions);
      *min_young_length = MIN2(*min_young_length, *max_young_length);
412 413 414 415 416
      break;
    case SizerMaxAndNewSize:
      // Do nothing. Values set on the command line, don't update them at runtime.
      break;
    case SizerNewRatio:
417 418
      *min_young_length = number_of_heap_regions / (NewRatio + 1);
      *max_young_length = *min_young_length;
419 420 421
      break;
    default:
      ShouldNotReachHere();
422 423
  }

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
  assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
}

uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
  // We need to pass the desired values because recalculation may not update these
  // values in some cases.
  uint temp = _min_desired_young_length;
  uint result = _max_desired_young_length;
  recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
  return result;
}

void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
  recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
          &_max_desired_young_length);
439 440
}

441 442 443 444 445 446
void G1CollectorPolicy::init() {
  // Set aside an initial future to_space.
  _g1 = G1CollectedHeap::heap();

  assert(Heap_lock->owned_by_self(), "Locking discipline.");

447 448
  initialize_gc_policy_counters();

449
  if (adaptive_young_list_length()) {
450
    _young_list_fixed_length = 0;
451
  } else {
452
    _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
453
  }
454
  _free_regions_at_end_of_collection = _g1->free_regions();
455
  update_young_list_target_length();
456 457 458 459

  // We may immediately start allocating regions and placing them on the
  // collection set list. Initialize the per-collection set info
  start_incremental_cset_building();
460 461
}

462
// Create the jstat counters for the policy.
463
void G1CollectorPolicy::initialize_gc_policy_counters() {
464
  _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
465 466
}

467
bool G1CollectorPolicy::predict_will_fit(uint young_length,
468
                                         double base_time_ms,
469
                                         uint base_free_regions,
470 471 472 473 474
                                         double target_pause_time_ms) {
  if (young_length >= base_free_regions) {
    // end condition 1: not enough space for the young regions
    return false;
  }
475

476
  double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
477 478 479 480 481 482 483 484 485
  size_t bytes_to_copy =
               (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
  double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
  double young_other_time_ms = predict_young_other_time_ms(young_length);
  double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
  if (pause_time_ms > target_pause_time_ms) {
    // end condition 2: prediction is over the target pause time
    return false;
  }
486

487
  size_t free_bytes =
488
                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
489 490 491
  if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
    // end condition 3: out-of-space (conservatively!)
    return false;
492
  }
493 494 495 496 497

  // success!
  return true;
}

498
void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
499 500
  // re-calculate the necessary reserve
  double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
501 502
  // We use ceiling so that if reserve_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
503
  _reserve_regions = (uint) ceil(reserve_regions_d);
504

505
  _young_gen_sizer->heap_size_changed(new_number_of_regions);
506 507
}

508 509 510
uint G1CollectorPolicy::calculate_young_list_desired_min_length(
                                                       uint base_min_length) {
  uint desired_min_length = 0;
511
  if (adaptive_young_list_length()) {
512 513 514 515
    if (_alloc_rate_ms_seq->num() > 3) {
      double now_sec = os::elapsedTime();
      double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
      double alloc_rate_ms = predict_alloc_rate_ms();
516
      desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
517 518
    } else {
      // otherwise we don't have enough info to make the prediction
519 520
    }
  }
521 522
  desired_min_length += base_min_length;
  // make sure we don't go below any user-defined minimum bound
523
  return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
524 525
}

526
uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
527 528 529
  // Here, we might want to also take into account any additional
  // constraints (i.e., user-defined minimum bound). Currently, we
  // effectively don't set this bound.
530
  return _young_gen_sizer->max_desired_young_length();
531
}
532

533 534 535 536 537 538
void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
  if (rs_lengths == (size_t) -1) {
    // if it's set to the default value (-1), we should predict it;
    // otherwise, use the given value.
    rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
  }
539

540
  // Calculate the absolute and desired min bounds.
541

542
  // This is how many young regions we already have (currently: the survivors).
543
  uint base_min_length = recorded_survivor_regions();
544 545
  // This is the absolute minimum young length, which ensures that we
  // can allocate one eden region in the worst-case.
546 547
  uint absolute_min_length = base_min_length + 1;
  uint desired_min_length =
548 549 550 551
                     calculate_young_list_desired_min_length(base_min_length);
  if (desired_min_length < absolute_min_length) {
    desired_min_length = absolute_min_length;
  }
552

553
  // Calculate the absolute and desired max bounds.
554

555
  // We will try our best not to "eat" into the reserve.
556
  uint absolute_max_length = 0;
557 558 559
  if (_free_regions_at_end_of_collection > _reserve_regions) {
    absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
  }
560
  uint desired_max_length = calculate_young_list_desired_max_length();
561 562 563
  if (desired_max_length > absolute_max_length) {
    desired_max_length = absolute_max_length;
  }
564

565
  uint young_list_target_length = 0;
566
  if (adaptive_young_list_length()) {
567
    if (gcs_are_young()) {
568 569 570 571 572 573 574 575 576 577 578 579
      young_list_target_length =
                        calculate_young_list_target_length(rs_lengths,
                                                           base_min_length,
                                                           desired_min_length,
                                                           desired_max_length);
      _rs_lengths_prediction = rs_lengths;
    } else {
      // Don't calculate anything and let the code below bound it to
      // the desired_min_length, i.e., do the next GC as soon as
      // possible to maximize how many old regions we can add to it.
    }
  } else {
580 581 582
    // The user asked for a fixed young gen so we'll fix the young gen
    // whether the next GC is young or mixed.
    young_list_target_length = _young_list_fixed_length;
583
  }
584

585 586 587 588 589 590 591 592 593
  // Make sure we don't go over the desired max length, nor under the
  // desired min length. In case they clash, desired_min_length wins
  // which is why that test is second.
  if (young_list_target_length > desired_max_length) {
    young_list_target_length = desired_max_length;
  }
  if (young_list_target_length < desired_min_length) {
    young_list_target_length = desired_min_length;
  }
594

595 596 597 598
  assert(young_list_target_length > recorded_survivor_regions(),
         "we should be able to allocate at least one eden region");
  assert(young_list_target_length >= absolute_min_length, "post-condition");
  _young_list_target_length = young_list_target_length;
599

600 601
  update_max_gc_locker_expansion();
}
602

603
uint
604
G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
605 606 607
                                                     uint base_min_length,
                                                     uint desired_min_length,
                                                     uint desired_max_length) {
608
  assert(adaptive_young_list_length(), "pre-condition");
609
  assert(gcs_are_young(), "only call this for young GCs");
610 611 612 613 614 615 616 617 618 619 620 621

  // In case some edge-condition makes the desired max length too small...
  if (desired_max_length <= desired_min_length) {
    return desired_min_length;
  }

  // We'll adjust min_young_length and max_young_length not to include
  // the already allocated young regions (i.e., so they reflect the
  // min and max eden regions we'll allocate). The base_min_length
  // will be reflected in the predictions by the
  // survivor_regions_evac_time prediction.
  assert(desired_min_length > base_min_length, "invariant");
622
  uint min_young_length = desired_min_length - base_min_length;
623
  assert(desired_max_length > base_min_length, "invariant");
624
  uint max_young_length = desired_max_length - base_min_length;
625 626 627 628 629 630 631 632 633

  double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
  double survivor_regions_evac_time = predict_survivor_regions_evac_time();
  size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
  size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
  size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
  double base_time_ms =
    predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
    survivor_regions_evac_time;
634 635
  uint available_free_regions = _free_regions_at_end_of_collection;
  uint base_free_regions = 0;
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
  if (available_free_regions > _reserve_regions) {
    base_free_regions = available_free_regions - _reserve_regions;
  }

  // Here, we will make sure that the shortest young length that
  // makes sense fits within the target pause time.

  if (predict_will_fit(min_young_length, base_time_ms,
                       base_free_regions, target_pause_time_ms)) {
    // The shortest young length will fit into the target pause time;
    // we'll now check whether the absolute maximum number of young
    // regions will fit in the target pause time. If not, we'll do
    // a binary search between min_young_length and max_young_length.
    if (predict_will_fit(max_young_length, base_time_ms,
                         base_free_regions, target_pause_time_ms)) {
      // The maximum young length will fit into the target pause time.
      // We are done so set min young length to the maximum length (as
      // the result is assumed to be returned in min_young_length).
      min_young_length = max_young_length;
    } else {
      // The maximum possible number of young regions will not fit within
      // the target pause time so we'll search for the optimal
      // length. The loop invariants are:
      //
      // min_young_length < max_young_length
      // min_young_length is known to fit into the target pause time
      // max_young_length is known not to fit into the target pause time
      //
      // Going into the loop we know the above hold as we've just
      // checked them. Every time around the loop we check whether
      // the middle value between min_young_length and
      // max_young_length fits into the target pause time. If it
      // does, it becomes the new min. If it doesn't, it becomes
      // the new max. This way we maintain the loop invariants.

      assert(min_young_length < max_young_length, "invariant");
672
      uint diff = (max_young_length - min_young_length) / 2;
673
      while (diff > 0) {
674
        uint young_length = min_young_length + diff;
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
        if (predict_will_fit(young_length, base_time_ms,
                             base_free_regions, target_pause_time_ms)) {
          min_young_length = young_length;
        } else {
          max_young_length = young_length;
        }
        assert(min_young_length <  max_young_length, "invariant");
        diff = (max_young_length - min_young_length) / 2;
      }
      // The results is min_young_length which, according to the
      // loop invariants, should fit within the target pause time.

      // These are the post-conditions of the binary search above:
      assert(min_young_length < max_young_length,
             "otherwise we should have discovered that max_young_length "
             "fits into the pause target and not done the binary search");
      assert(predict_will_fit(min_young_length, base_time_ms,
                              base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should "
             "fit into the pause target");
      assert(!predict_will_fit(min_young_length + 1, base_time_ms,
                               base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should be "
             "optimal, so no larger length should fit into the pause target");
    }
  } else {
    // Even the minimum length doesn't fit into the pause time
    // target, return it as the result nevertheless.
  }
  return base_min_length + min_young_length;
705 706
}

707 708 709 710 711
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
  double survivor_regions_evac_time = 0.0;
  for (HeapRegion * r = _recorded_survivor_head;
       r != NULL && r != _recorded_survivor_tail->get_next_young_region();
       r = r->get_next_young_region()) {
712
    survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
713 714 715 716
  }
  return survivor_regions_evac_time;
}

717
void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
718 719
  guarantee( adaptive_young_list_length(), "should not call this otherwise" );

720
  size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
721 722 723
  if (rs_lengths > _rs_lengths_prediction) {
    // add 10% to avoid having to recalculate often
    size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
724
    update_young_list_target_length(rs_lengths_prediction);
725 726 727
  }
}

728 729


730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
                                               bool is_tlab,
                                               bool* gc_overhead_limit_was_exceeded) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}

// This method controls how a collector handles one or more
// of its generations being fully allocated.
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
                                                       bool is_tlab) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}


#ifndef PRODUCT
bool G1CollectorPolicy::verify_young_ages() {
748
  HeapRegion* head = _g1->young_list()->first_region();
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
  return
    verify_young_ages(head, _short_lived_surv_rate_group);
  // also call verify_young_ages on any additional surv rate groups
}

bool
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
                                     SurvRateGroup *surv_rate_group) {
  guarantee( surv_rate_group != NULL, "pre-condition" );

  const char* name = surv_rate_group->name();
  bool ret = true;
  int prev_age = -1;

  for (HeapRegion* curr = head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    SurvRateGroup* group = curr->surv_rate_group();
    if (group == NULL && !curr->is_survivor()) {
      gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
      ret = false;
    }

    if (surv_rate_group == group) {
      int age = curr->age_in_surv_rate_group();

      if (age < 0) {
        gclog_or_tty->print_cr("## %s: encountered negative age", name);
        ret = false;
      }

      if (age <= prev_age) {
        gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
                               "(%d, %d)", name, age, prev_age);
        ret = false;
      }
      prev_age = age;
    }
  }

  return ret;
}
#endif // PRODUCT

void G1CollectorPolicy::record_full_collection_start() {
794
  _full_collection_start_sec = os::elapsedTime();
795
  record_heap_size_info_at_start(true /* full */);
796 797 798 799 800 801 802 803
  // Release the future to-space so that it is available for compaction into.
  _g1->set_full_collection();
}

void G1CollectorPolicy::record_full_collection_end() {
  // Consider this like a collection pause for the purposes of allocation
  // since last pause.
  double end_sec = os::elapsedTime();
804
  double full_gc_time_sec = end_sec - _full_collection_start_sec;
805 806
  double full_gc_time_ms = full_gc_time_sec * 1000.0;

807
  _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
808

809
  update_recent_gc_times(end_sec, full_gc_time_ms);
810 811 812

  _g1->clear_full_collection();

813 814 815 816
  // "Nuke" the heuristics that control the young/mixed GC
  // transitions and make sure we start with young GCs after the Full GC.
  set_gcs_are_young(true);
  _last_young_gc = false;
817 818
  clear_initiate_conc_mark_if_possible();
  clear_during_initial_mark_pause();
819 820 821 822 823 824
  _in_marking_window = false;
  _in_marking_window_im = false;

  _short_lived_surv_rate_group->start_adding_regions();
  // also call this on any additional surv rate groups

825 826
  record_survivor_regions(0, NULL, NULL);

827
  _free_regions_at_end_of_collection = _g1->free_regions();
828 829
  // Reset survivors SurvRateGroup.
  _survivor_surv_rate_group->reset();
830
  update_young_list_target_length();
831
  _collectionSetChooser->clear();
832
}
833 834 835 836 837

void G1CollectorPolicy::record_stop_world_start() {
  _stop_world_start = os::elapsedTime();
}

838
void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
839 840 841 842
  // We only need to do this here as the policy will only be applied
  // to the GC we're about to start. so, no point is calculating this
  // every time we calculate / recalculate the target young length.
  update_survivors_policy();
843

844 845 846
  assert(_g1->used() == _g1->recalculate_used(),
         err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
                 _g1->used(), _g1->recalculate_used()));
847 848

  double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
849
  _trace_gen0_time_data.record_start_collection(s_w_t_ms);
850 851
  _stop_world_start = 0.0;

852
  record_heap_size_info_at_start(false /* full */);
853

854
  phase_times()->record_cur_collection_start_sec(start_time_sec);
855 856
  _pending_cards = _g1->pending_card_num();

857
  _collection_set_bytes_used_before = 0;
858
  _bytes_copied_during_gc = 0;
859

860
  _last_gc_was_young = false;
861 862 863

  // do that for any other surv rate groups
  _short_lived_surv_rate_group->stop_adding_regions();
864
  _survivors_age_table.clear();
865

866 867 868
  assert( verify_young_ages(), "region age verification" );
}

869
void G1CollectorPolicy::record_concurrent_mark_init_end(double
870 871
                                                   mark_init_elapsed_time_ms) {
  _during_marking = true;
872 873
  assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
  clear_during_initial_mark_pause();
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
  _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_remark_start() {
  _mark_remark_start_sec = os::elapsedTime();
  _during_marking = false;
}

void G1CollectorPolicy::record_concurrent_mark_remark_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
  _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  _mark_cleanup_start_sec = os::elapsedTime();
}

896
void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
897
  _last_young_gc = true;
898
  _in_marking_window = false;
899 900 901 902 903
}

void G1CollectorPolicy::record_concurrent_pause() {
  if (_stop_world_start > 0.0) {
    double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
904
    _trace_gen0_time_data.record_yield_time(yield_ms);
905 906 907
  }
}

908 909
bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
  if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
910 911 912 913 914 915
    return false;
  }

  size_t marking_initiating_used_threshold =
    (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  size_t cur_used_bytes = _g1->non_young_capacity_bytes();
916
  size_t alloc_byte_size = alloc_word_size * HeapWordSize;
917

918
  if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
919
    if (gcs_are_young() && !_last_young_gc) {
920
      ergo_verbose5(ErgoConcCycles,
921 922 923
        "request concurrent cycle initiation",
        ergo_format_reason("occupancy higher than threshold")
        ergo_format_byte("occupancy")
924
        ergo_format_byte("allocation request")
925 926 927
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
928
        alloc_byte_size,
929 930 931 932 933
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
      return true;
    } else {
934
      ergo_verbose5(ErgoConcCycles,
935 936 937
        "do not request concurrent cycle initiation",
        ergo_format_reason("still doing mixed collections")
        ergo_format_byte("occupancy")
938
        ergo_format_byte("allocation request")
939 940 941
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
942
        alloc_byte_size,
943 944 945 946 947 948 949 950 951
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
    }
  }

  return false;
}

952 953 954
// Anything below that is considered to be zero
#define MIN_TIMER_GRANULARITY 0.0000001

S
sla 已提交
955
void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
956
  double end_time_sec = os::elapsedTime();
957 958
  assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
         "otherwise, the subtraction below does not make sense");
959
  size_t rs_size =
960
            _cur_collection_pause_used_regions_at_start - cset_region_length();
961 962 963
  size_t cur_used_bytes = _g1->used();
  assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  bool last_pause_included_initial_mark = false;
964
  bool update_stats = !_g1->evacuation_failed();
965 966 967 968 969 970 971 972 973

#ifndef PRODUCT
  if (G1YoungSurvRateVerbose) {
    gclog_or_tty->print_cr("");
    _short_lived_surv_rate_group->print();
    // do that for any other surv rate groups too
  }
#endif // PRODUCT

974
  last_pause_included_initial_mark = during_initial_mark_pause();
975
  if (last_pause_included_initial_mark) {
976
    record_concurrent_mark_init_end(0.0);
977
  } else if (need_to_start_conc_mark("end of GC")) {
978 979 980 981 982
    // Note: this might have already been set, if during the last
    // pause we decided to start a cycle but at the beginning of
    // this pause we decided to postpone it. That's OK.
    set_initiate_conc_mark_if_possible();
  }
983

984
  _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
985 986
                          end_time_sec, false);

S
sla 已提交
987 988 989
  evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
  evacuation_info.set_bytes_copied(_bytes_copied_during_gc);

990
  if (update_stats) {
991
    _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
992 993
    // this is where we update the allocation rate of the application
    double app_time_ms =
994
      (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
995 996 997 998 999 1000
    if (app_time_ms < MIN_TIMER_GRANULARITY) {
      // This usually happens due to the timer not having the required
      // granularity. Some Linuxes are the usual culprits.
      // We'll just set it to something (arbitrarily) small.
      app_time_ms = 1.0;
    }
1001 1002 1003 1004 1005 1006 1007 1008
    // We maintain the invariant that all objects allocated by mutator
    // threads will be allocated out of eden regions. So, we can use
    // the eden region number allocated since the previous GC to
    // calculate the application's allocate rate. The only exception
    // to that is humongous objects that are allocated separately. But
    // given that humongous object allocations do not really affect
    // either the pause's duration nor when the next pause will take
    // place we can safely ignore them here.
1009
    uint regions_allocated = eden_cset_region_length();
1010 1011 1012 1013 1014
    double alloc_rate_ms = (double) regions_allocated / app_time_ms;
    _alloc_rate_ms_seq->add(alloc_rate_ms);

    double interval_ms =
      (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1015
    update_recent_gc_times(end_time_sec, pause_time_ms);
1016
    _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
    if (recent_avg_pause_time_ratio() < 0.0 ||
        (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
#ifndef PRODUCT
      // Dump info to allow post-facto debugging
      gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
      gclog_or_tty->print_cr("-------------------------------------------");
      gclog_or_tty->print_cr("Recent GC Times (ms):");
      _recent_gc_times_ms->dump();
      gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
      _recent_prev_end_times_for_all_gcs_sec->dump();
      gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
                             _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1029 1030 1031 1032 1033
      // In debug mode, terminate the JVM if the user wants to debug at this point.
      assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
#endif  // !PRODUCT
      // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
      // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1034 1035 1036 1037 1038 1039 1040
      if (_recent_avg_pause_time_ratio < 0.0) {
        _recent_avg_pause_time_ratio = 0.0;
      } else {
        assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
        _recent_avg_pause_time_ratio = 1.0;
      }
    }
1041
  }
1042

1043 1044
  bool new_in_marking_window = _in_marking_window;
  bool new_in_marking_window_im = false;
1045
  if (during_initial_mark_pause()) {
1046 1047 1048 1049
    new_in_marking_window = true;
    new_in_marking_window_im = true;
  }

1050
  if (_last_young_gc) {
1051 1052 1053
    // This is supposed to to be the "last young GC" before we start
    // doing mixed GCs. Here we decide whether to start mixed GCs or not.

1054
    if (!last_pause_included_initial_mark) {
1055 1056 1057 1058
      if (next_gc_should_be_mixed("start mixed GCs",
                                  "do not start mixed GCs")) {
        set_gcs_are_young(false);
      }
1059
    } else {
1060 1061
      ergo_verbose0(ErgoMixedGCs,
                    "do not start mixed GCs",
1062 1063
                    ergo_format_reason("concurrent cycle is about to start"));
    }
1064
    _last_young_gc = false;
1065
  }
1066

1067
  if (!_last_gc_was_young) {
1068 1069 1070 1071 1072
    // This is a mixed GC. Here we decide whether to continue doing
    // mixed GCs or not.

    if (!next_gc_should_be_mixed("continue mixed GCs",
                                 "do not continue mixed GCs")) {
1073
      set_gcs_are_young(true);
1074
    }
1075
  }
1076 1077 1078 1079

  _short_lived_surv_rate_group->start_adding_regions();
  // do that for any other surv rate groupsx

1080
  if (update_stats) {
1081 1082
    double cost_per_card_ms = 0.0;
    if (_pending_cards > 0) {
1083
      cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1084 1085 1086 1087 1088 1089 1090
      _cost_per_card_ms_seq->add(cost_per_card_ms);
    }

    size_t cards_scanned = _g1->cards_scanned();

    double cost_per_entry_ms = 0.0;
    if (cards_scanned > 10) {
1091
      cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1092
      if (_last_gc_was_young) {
1093
        _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1094 1095 1096
      } else {
        _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
      }
1097 1098 1099 1100 1101
    }

    if (_max_rs_lengths > 0) {
      double cards_per_entry_ratio =
        (double) cards_scanned / (double) _max_rs_lengths;
1102 1103 1104 1105 1106
      if (_last_gc_was_young) {
        _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      } else {
        _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      }
1107 1108
    }

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
    // This is defensive. For a while _max_rs_lengths could get
    // smaller than _recorded_rs_lengths which was causing
    // rs_length_diff to get very large and mess up the RSet length
    // predictions. The reason was unsafe concurrent updates to the
    // _inc_cset_recorded_rs_lengths field which the code below guards
    // against (see CR 7118202). This bug has now been fixed (see CR
    // 7119027). However, I'm still worried that
    // _inc_cset_recorded_rs_lengths might still end up somewhat
    // inaccurate. The concurrent refinement thread calculates an
    // RSet's length concurrently with other CR threads updating it
    // which might cause it to calculate the length incorrectly (if,
    // say, it's in mid-coarsening). So I'll leave in the defensive
    // conditional below just in case.
1122 1123 1124 1125 1126
    size_t rs_length_diff = 0;
    if (_max_rs_lengths > _recorded_rs_lengths) {
      rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
    }
    _rs_length_diff_seq->add((double) rs_length_diff);
1127

1128 1129
    size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
    size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1130
    double cost_per_byte_ms = 0.0;
1131

1132
    if (copied_bytes > 0) {
1133
      cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1134
      if (_in_marking_window) {
1135
        _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1136
      } else {
1137
        _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1138
      }
1139 1140 1141
    }

    double all_other_time_ms = pause_time_ms -
1142 1143
      (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
      + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1144 1145

    double young_other_time_ms = 0.0;
1146
    if (young_cset_region_length() > 0) {
1147
      young_other_time_ms =
1148 1149
        phase_times()->young_cset_choice_time_ms() +
        phase_times()->young_free_cset_time_ms();
1150
      _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1151
                                          (double) young_cset_region_length());
1152 1153
    }
    double non_young_other_time_ms = 0.0;
1154
    if (old_cset_region_length() > 0) {
1155
      non_young_other_time_ms =
1156 1157
        phase_times()->non_young_cset_choice_time_ms() +
        phase_times()->non_young_free_cset_time_ms();
1158 1159

      _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1160
                                            (double) old_cset_region_length());
1161 1162 1163 1164 1165 1166 1167
    }

    double constant_other_time_ms = all_other_time_ms -
      (young_other_time_ms + non_young_other_time_ms);
    _constant_other_time_ms_seq->add(constant_other_time_ms);

    double survival_ratio = 0.0;
1168
    if (_collection_set_bytes_used_before > 0) {
1169
      survival_ratio = (double) _bytes_copied_during_gc /
1170
                                   (double) _collection_set_bytes_used_before;
1171 1172 1173 1174 1175 1176 1177 1178 1179
    }

    _pending_cards_seq->add((double) _pending_cards);
    _rs_lengths_seq->add((double) _max_rs_lengths);
  }

  _in_marking_window = new_in_marking_window;
  _in_marking_window_im = new_in_marking_window_im;
  _free_regions_at_end_of_collection = _g1->free_regions();
1180
  update_young_list_target_length();
1181

1182
  // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1183
  double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1184 1185
  adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
                               phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1186

1187
  _collectionSetChooser->verify();
1188 1189
}

1190
#define EXT_SIZE_FORMAT "%.1f%s"
1191
#define EXT_SIZE_PARAMS(bytes)                                  \
1192
  byte_size_in_proper_unit((double)(bytes)),                    \
1193 1194
  proper_unit_for_byte_size((bytes))

1195
void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1196
  YoungList* young_list = _g1->young_list();
1197 1198 1199 1200
  _eden_used_bytes_before_gc = young_list->eden_used_bytes();
  _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
  _heap_capacity_bytes_before_gc = _g1->capacity();
  _heap_used_bytes_before_gc = _g1->used();
1201 1202
  _cur_collection_pause_used_regions_at_start = _g1->used_regions();

1203 1204
  _eden_capacity_bytes_before_gc =
         (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1205

1206 1207 1208
  if (full) {
    _metaspace_used_bytes_before_gc = MetaspaceAux::allocated_used_bytes();
  }
1209 1210
}

1211
void G1CollectorPolicy::print_heap_transition() {
1212
  _g1->print_size_transition(gclog_or_tty,
1213 1214 1215
                             _heap_used_bytes_before_gc,
                             _g1->used(),
                             _g1->capacity());
1216 1217
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
  YoungList* young_list = _g1->young_list();

  size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
  size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
  size_t heap_used_bytes_after_gc = _g1->used();

  size_t heap_capacity_bytes_after_gc = _g1->capacity();
  size_t eden_capacity_bytes_after_gc =
    (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;

  gclog_or_tty->print(
    "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
    "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
    "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
    EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
    EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
    EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
    EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
    EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
    EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
    EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
    EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
    EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
    EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
    EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));

  if (full) {
    MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
  }

  gclog_or_tty->cr();
1250 1251
}

1252 1253 1254 1255 1256 1257
void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
                                                     double update_rs_processed_buffers,
                                                     double goal_ms) {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();

1258
  if (G1UseAdaptiveConcRefinement) {
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
    const int k_gy = 3, k_gr = 6;
    const double inc_k = 1.1, dec_k = 0.9;

    int g = cg1r->green_zone();
    if (update_rs_time > goal_ms) {
      g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
    } else {
      if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
        g = (int)MAX2(g * inc_k, g + 1.0);
      }
    }
    // Change the refinement threads params
    cg1r->set_green_zone(g);
    cg1r->set_yellow_zone(g * k_gy);
    cg1r->set_red_zone(g * k_gr);
    cg1r->reinitialize_threads();

    int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
    int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
                                    cg1r->yellow_zone());
    // Change the barrier params
    dcqs.set_process_completed_threshold(processing_threshold);
    dcqs.set_max_completed_queue(cg1r->red_zone());
  }

  int curr_queue_size = dcqs.completed_buffers_num();
  if (curr_queue_size >= cg1r->yellow_zone()) {
    dcqs.set_completed_queue_padding(curr_queue_size);
  } else {
    dcqs.set_completed_queue_padding(0);
  }
  dcqs.notify_if_necessary();
}

1293 1294 1295 1296 1297 1298 1299 1300 1301
double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
                                                size_t scanned_cards) {
  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(scanned_cards) +
    predict_constant_other_time_ms();
}

1302 1303 1304 1305
double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  size_t rs_length = predict_rs_length_diff();
  size_t card_num;
1306
  if (gcs_are_young()) {
1307
    card_num = predict_young_card_num(rs_length);
1308
  } else {
1309
    card_num = predict_non_young_card_num(rs_length);
1310
  }
1311 1312 1313
  return predict_base_elapsed_time_ms(pending_cards, card_num);
}

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  size_t bytes_to_copy;
  if (hr->is_marked())
    bytes_to_copy = hr->max_live_bytes();
  else {
    assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
    int age = hr->age_in_surv_rate_group();
    double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
    bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  }
  return bytes_to_copy;
1325 1326 1327 1328
}

double
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1329
                                                  bool for_young_gc) {
1330 1331
  size_t rs_length = hr->rem_set()->occupied();
  size_t card_num;
1332 1333 1334 1335

  // Predicting the number of cards is based on which type of GC
  // we're predicting for.
  if (for_young_gc) {
1336
    card_num = predict_young_card_num(rs_length);
1337
  } else {
1338
    card_num = predict_non_young_card_num(rs_length);
1339
  }
1340 1341 1342 1343 1344 1345
  size_t bytes_to_copy = predict_bytes_to_copy(hr);

  double region_elapsed_time_ms =
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy);

1346 1347 1348
  // The prediction of the "other" time for this region is based
  // upon the region type and NOT the GC type.
  if (hr->is_young()) {
1349
    region_elapsed_time_ms += predict_young_other_time_ms(1);
1350
  } else {
1351 1352
    region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  }
1353
  return region_elapsed_time_ms;
1354 1355 1356
}

void
1357 1358
G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
                                            uint survivor_cset_region_length) {
1359 1360 1361
  _eden_cset_region_length     = eden_cset_region_length;
  _survivor_cset_region_length = survivor_cset_region_length;
  _old_cset_region_length      = 0;
1362 1363 1364 1365 1366 1367
}

void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  _recorded_rs_lengths = rs_lengths;
}

1368 1369 1370 1371 1372 1373 1374 1375
void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
                                               double elapsed_ms) {
  _recent_gc_times_ms->add(elapsed_ms);
  _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  _prev_collection_pause_end_ms = end_time_sec * 1000.0;
}

size_t G1CollectorPolicy::expansion_amount() {
1376 1377 1378
  double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  double threshold = _gc_overhead_perc;
  if (recent_gc_overhead > threshold) {
J
johnc 已提交
1379 1380 1381 1382
    // We will double the existing space, or take
    // G1ExpandByPercentOfAvailable % of the available expansion
    // space, whichever is smaller, bounded below by a minimum
    // expansion (unless that's all that's left.)
1383
    const size_t min_expand_bytes = 1*M;
1384
    size_t reserved_bytes = _g1->max_capacity();
1385 1386 1387 1388
    size_t committed_bytes = _g1->capacity();
    size_t uncommitted_bytes = reserved_bytes - committed_bytes;
    size_t expand_bytes;
    size_t expand_bytes_via_pct =
J
johnc 已提交
1389
      uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1390 1391 1392
    expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
    expand_bytes = MAX2(expand_bytes, min_expand_bytes);
    expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

    ergo_verbose5(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("recent GC overhead higher than "
                                     "threshold after GC")
                  ergo_format_perc("recent GC overhead")
                  ergo_format_perc("threshold")
                  ergo_format_byte("uncommitted")
                  ergo_format_byte_perc("calculated expansion amount"),
                  recent_gc_overhead, threshold,
                  uncommitted_bytes,
                  expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);

1406 1407 1408 1409 1410 1411 1412
    return expand_bytes;
  } else {
    return 0;
  }
}

void G1CollectorPolicy::print_tracing_info() const {
1413 1414
  _trace_gen0_time_data.print();
  _trace_gen1_time_data.print();
1415 1416 1417 1418 1419 1420 1421 1422 1423
}

void G1CollectorPolicy::print_yg_surv_rate_info() const {
#ifndef PRODUCT
  _short_lived_surv_rate_group->print_surv_rate_summary();
  // add this call for any other surv rate groups
#endif // PRODUCT
}

1424
uint G1CollectorPolicy::max_regions(int purpose) {
1425 1426
  switch (purpose) {
    case GCAllocForSurvived:
1427
      return _max_survivor_regions;
1428
    case GCAllocForTenured:
1429
      return REGIONS_UNLIMITED;
1430
    default:
1431 1432
      ShouldNotReachHere();
      return REGIONS_UNLIMITED;
1433 1434 1435
  };
}

1436
void G1CollectorPolicy::update_max_gc_locker_expansion() {
1437
  uint expansion_region_num = 0;
1438 1439 1440 1441 1442
  if (GCLockerEdenExpansionPercent > 0) {
    double perc = (double) GCLockerEdenExpansionPercent / 100.0;
    double expansion_region_num_d = perc * (double) _young_list_target_length;
    // We use ceiling so that if expansion_region_num_d is > 0.0 (but
    // less than 1.0) we'll get 1.
1443
    expansion_region_num = (uint) ceil(expansion_region_num_d);
1444 1445 1446 1447 1448 1449 1450
  } else {
    assert(expansion_region_num == 0, "sanity");
  }
  _young_list_max_length = _young_list_target_length + expansion_region_num;
  assert(_young_list_target_length <= _young_list_max_length, "post-condition");
}

1451
// Calculates survivor space parameters.
1452 1453 1454 1455 1456
void G1CollectorPolicy::update_survivors_policy() {
  double max_survivor_regions_d =
                 (double) _young_list_target_length / (double) SurvivorRatio;
  // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
1457
  _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1458

1459
  _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1460 1461 1462
        HeapRegion::GrainWords * _max_survivor_regions);
}

1463 1464
bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
                                                     GCCause::Cause gc_cause) {
1465 1466
  bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  if (!during_cycle) {
1467 1468 1469 1470 1471
    ergo_verbose1(ErgoConcCycles,
                  "request concurrent cycle initiation",
                  ergo_format_reason("requested by GC cause")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1472 1473 1474
    set_initiate_conc_mark_if_possible();
    return true;
  } else {
1475 1476 1477 1478 1479
    ergo_verbose1(ErgoConcCycles,
                  "do not request concurrent cycle initiation",
                  ergo_format_reason("concurrent cycle already in progress")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1480 1481 1482 1483
    return false;
  }
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
void
G1CollectorPolicy::decide_on_conc_mark_initiation() {
  // We are about to decide on whether this pause will be an
  // initial-mark pause.

  // First, during_initial_mark_pause() should not be already set. We
  // will set it here if we have to. However, it should be cleared by
  // the end of the pause (it's only set for the duration of an
  // initial-mark pause).
  assert(!during_initial_mark_pause(), "pre-condition");

  if (initiate_conc_mark_if_possible()) {
    // We had noticed on a previous pause that the heap occupancy has
    // gone over the initiating threshold and we should start a
    // concurrent marking cycle. So we might initiate one.

    bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
    if (!during_cycle) {
      // The concurrent marking thread is not "during a cycle", i.e.,
      // it has completed the last one. So we can go ahead and
      // initiate a new cycle.

      set_during_initial_mark_pause();
1507 1508 1509 1510 1511
      // We do not allow mixed GCs during marking.
      if (!gcs_are_young()) {
        set_gcs_are_young(true);
        ergo_verbose0(ErgoMixedGCs,
                      "end mixed GCs",
1512 1513
                      ergo_format_reason("concurrent cycle is about to start"));
      }
1514 1515 1516 1517

      // And we can now clear initiate_conc_mark_if_possible() as
      // we've already acted on it.
      clear_initiate_conc_mark_if_possible();
1518 1519 1520 1521

      ergo_verbose0(ErgoConcCycles,
                  "initiate concurrent cycle",
                  ergo_format_reason("concurrent cycle initiation requested"));
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
    } else {
      // The concurrent marking thread is still finishing up the
      // previous cycle. If we start one right now the two cycles
      // overlap. In particular, the concurrent marking thread might
      // be in the process of clearing the next marking bitmap (which
      // we will use for the next cycle if we start one). Starting a
      // cycle now will be bad given that parts of the marking
      // information might get cleared by the marking thread. And we
      // cannot wait for the marking thread to finish the cycle as it
      // periodically yields while clearing the next marking bitmap
      // and, if it's in a yield point, it's waiting for us to
      // finish. So, at this point we will not start a cycle and we'll
      // let the concurrent marking thread complete the last one.
1535 1536 1537
      ergo_verbose0(ErgoConcCycles,
                    "do not initiate concurrent cycle",
                    ergo_format_reason("concurrent cycle already in progress"));
1538 1539 1540 1541
    }
  }
}

1542
class KnownGarbageClosure: public HeapRegionClosure {
1543
  G1CollectedHeap* _g1h;
1544 1545 1546 1547
  CollectionSetChooser* _hrSorted;

public:
  KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1548
    _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1549 1550 1551 1552 1553 1554 1555 1556

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.

    // Do we have any marking information for this region?
    if (r->is_marked()) {
1557 1558 1559
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1560 1561
      if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _hrSorted->add_region(r);
1562 1563 1564 1565 1566 1567 1568
      }
    }
    return false;
  }
};

class ParKnownGarbageHRClosure: public HeapRegionClosure {
1569
  G1CollectedHeap* _g1h;
1570
  CSetChooserParUpdater _cset_updater;
1571 1572 1573

public:
  ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1574
                           uint chunk_size) :
1575 1576
    _g1h(G1CollectedHeap::heap()),
    _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1577 1578 1579 1580

  bool doHeapRegion(HeapRegion* r) {
    // Do we have any marking information for this region?
    if (r->is_marked()) {
1581 1582 1583
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1584 1585
      if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _cset_updater.add_region(r);
1586 1587 1588 1589 1590 1591 1592 1593
      }
    }
    return false;
  }
};

class ParKnownGarbageTask: public AbstractGangTask {
  CollectionSetChooser* _hrSorted;
1594
  uint _chunk_size;
1595 1596
  G1CollectedHeap* _g1;
public:
1597
  ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1598 1599
    AbstractGangTask("ParKnownGarbageTask"),
    _hrSorted(hrSorted), _chunk_size(chunk_size),
1600
    _g1(G1CollectedHeap::heap()) { }
1601

1602
  void work(uint worker_id) {
1603 1604
    ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);

1605
    // Back to zero for the claim value.
1606
    _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1607
                                         _g1->workers()->active_workers(),
1608
                                         HeapRegion::InitialClaimValue);
1609 1610 1611 1612
  }
};

void
1613
G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1614
  _collectionSetChooser->clear();
1615

1616
  uint region_num = _g1->n_regions();
1617
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1618 1619
    const uint OverpartitionFactor = 4;
    uint WorkUnit;
1620 1621 1622 1623 1624
    // The use of MinChunkSize = 8 in the original code
    // causes some assertion failures when the total number of
    // region is less than 8.  The code here tries to fix that.
    // Should the original code also be fixed?
    if (no_of_gc_threads > 0) {
1625 1626 1627
      const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
      WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
                      MinWorkUnit);
1628 1629 1630 1631
    } else {
      assert(no_of_gc_threads > 0,
        "The active gc workers should be greater than 0");
      // In a product build do something reasonable to avoid a crash.
1632
      const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1633
      WorkUnit =
1634
        MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1635 1636
             MinWorkUnit);
    }
1637 1638
    _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
                                                           WorkUnit);
1639
    ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1640
                                            (int) WorkUnit);
1641
    _g1->workers()->run_task(&parKnownGarbageTask);
1642 1643 1644

    assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
1645 1646 1647 1648
  } else {
    KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
    _g1->heap_region_iterate(&knownGarbagecl);
  }
1649

1650
  _collectionSetChooser->sort_regions();
1651

1652
  double end_sec = os::elapsedTime();
1653 1654 1655 1656 1657
  double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;
  _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1658 1659
}

1660
// Add the heap region at the head of the non-incremental collection set
1661
void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1662 1663 1664 1665
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(!hr->is_young(), "non-incremental add of young region");

  assert(!hr->in_collection_set(), "should not already be in the CSet");
1666 1667 1668 1669
  hr->set_in_collection_set(true);
  hr->set_next_in_collection_set(_collection_set);
  _collection_set = hr;
  _collection_set_bytes_used_before += hr->used();
1670
  _g1->register_region_with_in_cset_fast_test(hr);
1671 1672 1673
  size_t rs_length = hr->rem_set()->occupied();
  _recorded_rs_lengths += rs_length;
  _old_cset_region_length += 1;
1674 1675
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
// Initialize the per-collection-set information
void G1CollectorPolicy::start_incremental_cset_building() {
  assert(_inc_cset_build_state == Inactive, "Precondition");

  _inc_cset_head = NULL;
  _inc_cset_tail = NULL;
  _inc_cset_bytes_used_before = 0;

  _inc_cset_max_finger = 0;
  _inc_cset_recorded_rs_lengths = 0;
1686 1687 1688
  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms = 0.0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1689 1690 1691
  _inc_cset_build_state = Active;
}

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
void G1CollectorPolicy::finalize_incremental_cset_building() {
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");

  // The two "main" fields, _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  // that adds a new region to the CSet. Further updates by the
  // concurrent refinement thread that samples the young RSet lengths
  // are accumulated in the *_diffs fields. Here we add the diffs to
  // the "main" fields.

  if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
    _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  } else {
    // This is defensive. The diff should in theory be always positive
    // as RSets can only grow between GCs. However, given that we
    // sample their size concurrently with other threads updating them
    // it's possible that we might get the wrong size back, which
    // could make the calculations somewhat inaccurate.
    size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
    if (_inc_cset_recorded_rs_lengths >= diffs) {
      _inc_cset_recorded_rs_lengths -= diffs;
    } else {
      _inc_cset_recorded_rs_lengths = 0;
    }
  }
  _inc_cset_predicted_elapsed_time_ms +=
                                     _inc_cset_predicted_elapsed_time_ms_diffs;

  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  // This routine is used when:
  // * adding survivor regions to the incremental cset at the end of an
  //   evacuation pause,
  // * adding the current allocation region to the incremental cset
  //   when it is retired, and
  // * updating existing policy information for a region in the
  //   incremental cset via young list RSet sampling.
  // Therefore this routine may be called at a safepoint by the
  // VM thread, or in-between safepoints by mutator threads (when
  // retiring the current allocation region) or a concurrent
  // refine thread (RSet sampling).

1738
  double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
  size_t used_bytes = hr->used();
  _inc_cset_recorded_rs_lengths += rs_length;
  _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  _inc_cset_bytes_used_before += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_recorded_rs_length(rs_length);
  hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
}

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
                                                     size_t new_rs_length) {
  // Update the CSet information that is dependent on the new RS length
  assert(hr->is_young(), "Precondition");
  assert(!SafepointSynchronize::is_at_safepoint(),
                                               "should not be at a safepoint");

  // We could have updated _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  // that atomically, as this code is executed by a concurrent
  // refinement thread, potentially concurrently with a mutator thread
  // allocating a new region and also updating the same fields. To
  // avoid the atomic operations we accumulate these updates on two
  // separate fields (*_diffs) and we'll just add them to the "main"
  // fields at the start of a GC.

  ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1771 1772

  double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1773
  double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1774 1775
  double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1776

1777 1778
  hr->set_recorded_rs_length(new_rs_length);
  hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1779 1780 1781
}

void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1782 1783
  assert(hr->is_young(), "invariant");
  assert(hr->young_index_in_cset() > -1, "should have already been set");
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
  assert(_inc_cset_build_state == Active, "Precondition");

  // We need to clear and set the cached recorded/cached collection set
  // information in the heap region here (before the region gets added
  // to the collection set). An individual heap region's cached values
  // are calculated, aggregated with the policy collection set info,
  // and cached in the heap region here (initially) and (subsequently)
  // by the Young List sampling code.

  size_t rs_length = hr->rem_set()->occupied();
  add_to_incremental_cset_info(hr, rs_length);

  HeapWord* hr_end = hr->end();
  _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);

  assert(!hr->in_collection_set(), "invariant");
  hr->set_in_collection_set(true);
  assert( hr->next_in_collection_set() == NULL, "invariant");

  _g1->register_region_with_in_cset_fast_test(hr);
}

// Add the region at the RHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  // We should only ever be appending survivors at the end of a pause
  assert( hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Now add the region at the right hand side
  if (_inc_cset_tail == NULL) {
    assert(_inc_cset_head == NULL, "invariant");
    _inc_cset_head = hr;
  } else {
    _inc_cset_tail->set_next_in_collection_set(hr);
  }
  _inc_cset_tail = hr;
}

// Add the region to the LHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  // Survivors should be added to the RHS at the end of a pause
  assert(!hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Add the region at the left hand side
  hr->set_next_in_collection_set(_inc_cset_head);
  if (_inc_cset_head == NULL) {
    assert(_inc_cset_tail == NULL, "Invariant");
    _inc_cset_tail = hr;
  }
  _inc_cset_head = hr;
}

#ifndef PRODUCT
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");

  st->print_cr("\nCollection_set:");
  HeapRegion* csr = list_head;
  while (csr != NULL) {
    HeapRegion* next = csr->next_in_collection_set();
    assert(csr->in_collection_set(), "bad CS");
1850 1851 1852 1853
    st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                 HR_FORMAT_PARAMS(csr),
                 csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
                 csr->age_in_surv_rate_group_cond());
1854 1855 1856 1857 1858
    csr = next;
  }
}
#endif // !PRODUCT

1859 1860 1861 1862 1863 1864 1865 1866
double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
  // Returns the given amount of reclaimable bytes (that represents
  // the amount of reclaimable space still to be collected) as a
  // percentage of the current heap capacity.
  size_t capacity_bytes = _g1->capacity();
  return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
}

1867 1868 1869
bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
                                                const char* false_action_str) {
  CollectionSetChooser* cset_chooser = _collectionSetChooser;
1870
  if (cset_chooser->is_empty()) {
1871 1872 1873 1874 1875
    ergo_verbose0(ErgoMixedGCs,
                  false_action_str,
                  ergo_format_reason("candidate old regions not available"));
    return false;
  }
1876 1877

  // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1878
  size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1879
  double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1880
  double threshold = (double) G1HeapWastePercent;
1881
  if (reclaimable_perc <= threshold) {
1882 1883
    ergo_verbose4(ErgoMixedGCs,
              false_action_str,
1884
              ergo_format_reason("reclaimable percentage not over threshold")
1885 1886 1887
              ergo_format_region("candidate old regions")
              ergo_format_byte_perc("reclaimable")
              ergo_format_perc("threshold"),
1888
              cset_chooser->remaining_regions(),
1889 1890
              reclaimable_bytes,
              reclaimable_perc, threshold);
1891 1892 1893 1894 1895 1896 1897 1898 1899
    return false;
  }

  ergo_verbose4(ErgoMixedGCs,
                true_action_str,
                ergo_format_reason("candidate old regions available")
                ergo_format_region("candidate old regions")
                ergo_format_byte_perc("reclaimable")
                ergo_format_perc("threshold"),
1900
                cset_chooser->remaining_regions(),
1901 1902
                reclaimable_bytes,
                reclaimable_perc, threshold);
1903 1904 1905
  return true;
}

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
uint G1CollectorPolicy::calc_min_old_cset_length() {
  // The min old CSet region bound is based on the maximum desired
  // number of mixed GCs after a cycle. I.e., even if some old regions
  // look expensive, we should add them to the CSet anyway to make
  // sure we go through the available old regions in no more than the
  // maximum desired number of mixed GCs.
  //
  // The calculation is based on the number of marked regions we added
  // to the CSet chooser in the first place, not how many remain, so
  // that the result is the same during all mixed GCs that follow a cycle.

  const size_t region_num = (size_t) _collectionSetChooser->length();
  const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
  size_t result = region_num / gc_num;
  // emulate ceiling
  if (result * gc_num < region_num) {
    result += 1;
  }
  return (uint) result;
}

uint G1CollectorPolicy::calc_max_old_cset_length() {
  // The max old CSet region bound is based on the threshold expressed
  // as a percentage of the heap size. I.e., it should bound the
  // number of old regions added to the CSet irrespective of how many
  // of them are available.

  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  const size_t region_num = g1h->n_regions();
  const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
  size_t result = region_num * perc / 100;
  // emulate ceiling
  if (100 * result < region_num * perc) {
    result += 1;
  }
  return (uint) result;
}


S
sla 已提交
1945
void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1946
  double young_start_time_sec = os::elapsedTime();
1947

1948
  YoungList* young_list = _g1->young_list();
1949
  finalize_incremental_cset_building();
1950

1951 1952 1953 1954
  guarantee(target_pause_time_ms > 0.0,
            err_msg("target_pause_time_ms = %1.6lf should be positive",
                    target_pause_time_ms));
  guarantee(_collection_set == NULL, "Precondition");
1955 1956 1957

  double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  double predicted_pause_time_ms = base_time_ms;
1958
  double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1959

1960
  ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1961
                "start choosing CSet",
1962
                ergo_format_size("_pending_cards")
1963 1964 1965
                ergo_format_ms("predicted base time")
                ergo_format_ms("remaining time")
                ergo_format_ms("target pause time"),
1966
                _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1967

1968
  _last_gc_was_young = gcs_are_young() ? true : false;
1969

1970
  if (_last_gc_was_young) {
1971
    _trace_gen0_time_data.increment_young_collection_count();
1972
  } else {
1973
    _trace_gen0_time_data.increment_mixed_collection_count();
1974
  }
1975

1976 1977 1978
  // The young list is laid with the survivor regions from the previous
  // pause are appended to the RHS of the young list, i.e.
  //   [Newly Young Regions ++ Survivors from last pause].
1979

1980 1981
  uint survivor_region_length = young_list->survivor_length();
  uint eden_region_length = young_list->length() - survivor_region_length;
1982
  init_cset_region_lengths(eden_region_length, survivor_region_length);
1983 1984

  HeapRegion* hr = young_list->first_survivor_region();
1985 1986 1987 1988 1989
  while (hr != NULL) {
    assert(hr->is_survivor(), "badly formed young list");
    hr->set_young();
    hr = hr->get_next_young_region();
  }
1990

1991 1992
  // Clear the fields that point to the survivor list - they are all young now.
  young_list->clear_survivors();
1993

1994 1995
  _collection_set = _inc_cset_head;
  _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1996
  time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1997
  predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1998

1999 2000 2001 2002 2003
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "add young regions to CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_ms("predicted young region time"),
2004
                eden_region_length, survivor_region_length,
2005 2006
                _inc_cset_predicted_elapsed_time_ms);

2007 2008 2009
  // The number of recorded young regions is the incremental
  // collection set's current size
  set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2010

2011
  double young_end_time_sec = os::elapsedTime();
2012
  phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
2013

2014 2015
  // Set the start of the non-young choice time.
  double non_young_start_time_sec = young_end_time_sec;
2016

2017
  if (!gcs_are_young()) {
2018
    CollectionSetChooser* cset_chooser = _collectionSetChooser;
2019
    cset_chooser->verify();
2020 2021
    const uint min_old_cset_length = calc_min_old_cset_length();
    const uint max_old_cset_length = calc_max_old_cset_length();
2022

2023
    uint expensive_region_num = 0;
2024
    bool check_time_remaining = adaptive_young_list_length();
2025

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
    HeapRegion* hr = cset_chooser->peek();
    while (hr != NULL) {
      if (old_cset_region_length() >= max_old_cset_length) {
        // Added maximum number of old regions to the CSet.
        ergo_verbose2(ErgoCSetConstruction,
                      "finish adding old regions to CSet",
                      ergo_format_reason("old CSet region num reached max")
                      ergo_format_region("old")
                      ergo_format_region("max"),
                      old_cset_region_length(), max_old_cset_length);
        break;
2037
      }
2038

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

      // Stop adding regions if the remaining reclaimable space is
      // not above G1HeapWastePercent.
      size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
      double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
      double threshold = (double) G1HeapWastePercent;
      if (reclaimable_perc <= threshold) {
        // We've added enough old regions that the amount of uncollected
        // reclaimable space is at or below the waste threshold. Stop
        // adding old regions to the CSet.
        ergo_verbose5(ErgoCSetConstruction,
                      "finish adding old regions to CSet",
                      ergo_format_reason("reclaimable percentage not over threshold")
                      ergo_format_region("old")
                      ergo_format_region("max")
                      ergo_format_byte_perc("reclaimable")
                      ergo_format_perc("threshold"),
                      old_cset_region_length(),
                      max_old_cset_length,
                      reclaimable_bytes,
                      reclaimable_perc, threshold);
        break;
      }

2063
      double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
      if (check_time_remaining) {
        if (predicted_time_ms > time_remaining_ms) {
          // Too expensive for the current CSet.

          if (old_cset_region_length() >= min_old_cset_length) {
            // We have added the minimum number of old regions to the CSet,
            // we are done with this CSet.
            ergo_verbose4(ErgoCSetConstruction,
                          "finish adding old regions to CSet",
                          ergo_format_reason("predicted time is too high")
                          ergo_format_ms("predicted time")
                          ergo_format_ms("remaining time")
                          ergo_format_region("old")
                          ergo_format_region("min"),
                          predicted_time_ms, time_remaining_ms,
                          old_cset_region_length(), min_old_cset_length);
            break;
2081
          }
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

          // We'll add it anyway given that we haven't reached the
          // minimum number of old regions.
          expensive_region_num += 1;
        }
      } else {
        if (old_cset_region_length() >= min_old_cset_length) {
          // In the non-auto-tuning case, we'll finish adding regions
          // to the CSet if we reach the minimum.
          ergo_verbose2(ErgoCSetConstruction,
                        "finish adding old regions to CSet",
                        ergo_format_reason("old CSet region num reached min")
                        ergo_format_region("old")
                        ergo_format_region("min"),
                        old_cset_region_length(), min_old_cset_length);
          break;
2098 2099
        }
      }
2100 2101

      // We will add this region to the CSet.
2102
      time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
      predicted_pause_time_ms += predicted_time_ms;
      cset_chooser->remove_and_move_to_next(hr);
      _g1->old_set_remove(hr);
      add_old_region_to_cset(hr);

      hr = cset_chooser->peek();
    }
    if (hr == NULL) {
      ergo_verbose0(ErgoCSetConstruction,
                    "finish adding old regions to CSet",
                    ergo_format_reason("candidate old regions not available"));
    }

    if (expensive_region_num > 0) {
      // We print the information once here at the end, predicated on
      // whether we added any apparently expensive regions or not, to
      // avoid generating output per region.
      ergo_verbose4(ErgoCSetConstruction,
                    "added expensive regions to CSet",
                    ergo_format_reason("old CSet region num not reached min")
                    ergo_format_region("old")
                    ergo_format_region("expensive")
                    ergo_format_region("min")
                    ergo_format_ms("remaining time"),
                    old_cset_region_length(),
                    expensive_region_num,
                    min_old_cset_length,
                    time_remaining_ms);
2131 2132
    }

2133
    cset_chooser->verify();
2134 2135
  }

2136 2137
  stop_incremental_cset_building();

2138 2139 2140 2141 2142 2143 2144
  ergo_verbose5(ErgoCSetConstruction,
                "finish choosing CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_region("old")
                ergo_format_ms("predicted pause time")
                ergo_format_ms("target pause time"),
2145 2146
                eden_region_length, survivor_region_length,
                old_cset_region_length(),
2147 2148
                predicted_pause_time_ms, target_pause_time_ms);

2149
  double non_young_end_time_sec = os::elapsedTime();
2150
  phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
S
sla 已提交
2151
  evacuation_info.set_collectionset_regions(cset_region_length());
2152
}
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165

void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  if(TraceGen0Time) {
    _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  }
}

void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  if(TraceGen0Time) {
    _all_yield_times_ms.add(yield_time_ms);
  }
}

2166
void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2167
  if(TraceGen0Time) {
2168 2169
    _total.add(pause_time_ms);
    _other.add(pause_time_ms - phase_times->accounted_time_ms());
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
    _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
    _parallel.add(phase_times->cur_collection_par_time_ms());
    _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
    _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
    _update_rs.add(phase_times->average_last_update_rs_time());
    _scan_rs.add(phase_times->average_last_scan_rs_time());
    _obj_copy.add(phase_times->average_last_obj_copy_time());
    _termination.add(phase_times->average_last_termination_time());

    double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
      phase_times->average_last_satb_filtering_times_ms() +
      phase_times->average_last_update_rs_time() +
      phase_times->average_last_scan_rs_time() +
      phase_times->average_last_obj_copy_time() +
      + phase_times->average_last_termination_time();

    double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2187
    _parallel_other.add(parallel_other_time);
2188
    _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
  }
}

void TraceGen0TimeData::increment_young_collection_count() {
  if(TraceGen0Time) {
    ++_young_pause_num;
  }
}

void TraceGen0TimeData::increment_mixed_collection_count() {
  if(TraceGen0Time) {
    ++_mixed_pause_num;
  }
}

2204
void TraceGen0TimeData::print_summary(const char* str,
2205 2206
                                      const NumberSeq* seq) const {
  double sum = seq->sum();
2207
  gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2208 2209 2210
                str, sum / 1000.0, seq->avg());
}

2211
void TraceGen0TimeData::print_summary_sd(const char* str,
2212
                                         const NumberSeq* seq) const {
2213 2214 2215
  print_summary(str, seq);
  gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
                "(num", seq->num(), seq->sd(), seq->maximum());
2216 2217 2218 2219 2220 2221 2222 2223
}

void TraceGen0TimeData::print() const {
  if (!TraceGen0Time) {
    return;
  }

  gclog_or_tty->print_cr("ALL PAUSES");
2224
  print_summary_sd("   Total", &_total);
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
  gclog_or_tty->print_cr("");
  gclog_or_tty->print_cr("");
  gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  gclog_or_tty->print_cr("");

  gclog_or_tty->print_cr("EVACUATION PAUSES");

  if (_young_pause_num == 0 && _mixed_pause_num == 0) {
    gclog_or_tty->print_cr("none");
  } else {
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
    print_summary_sd("   Evacuation Pauses", &_total);
    print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
    print_summary("      Parallel Time", &_parallel);
    print_summary("         Ext Root Scanning", &_ext_root_scan);
    print_summary("         SATB Filtering", &_satb_filtering);
    print_summary("         Update RS", &_update_rs);
    print_summary("         Scan RS", &_scan_rs);
    print_summary("         Object Copy", &_obj_copy);
    print_summary("         Termination", &_termination);
    print_summary("         Parallel Other", &_parallel_other);
    print_summary("      Clear CT", &_clear_ct);
    print_summary("      Other", &_other);
2248 2249 2250 2251
  }
  gclog_or_tty->print_cr("");

  gclog_or_tty->print_cr("MISC");
2252 2253
  print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  print_summary_sd("   Yields", &_all_yield_times_ms);
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
}

void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  if (TraceGen1Time) {
    _all_full_gc_times.add(full_gc_time_ms);
  }
}

void TraceGen1TimeData::print() const {
  if (!TraceGen1Time) {
    return;
  }

  if (_all_full_gc_times.num() > 0) {
    gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
      _all_full_gc_times.num(),
      _all_full_gc_times.sum() / 1000.0);
    gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
    gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
      _all_full_gc_times.sd(),
      _all_full_gc_times.maximum());
  }
}