g1CollectorPolicy.cpp 86.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
33
#include "gc_implementation/g1/g1Log.hpp"
34 35 36 37 38 39
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "runtime/arguments.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/debug.hpp"
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

// Different defaults for different number of GC threads
// They were chosen by running GCOld and SPECjbb on debris with different
//   numbers of GC threads and choosing them based on the results

// all the same
static double rs_length_diff_defaults[] = {
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

static double cost_per_card_ms_defaults[] = {
  0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
};

// all the same
55
static double young_cards_per_entry_ratio_defaults[] = {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

static double cost_per_entry_ms_defaults[] = {
  0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
};

static double cost_per_byte_ms_defaults[] = {
  0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
};

// these should be pretty consistent
static double constant_other_time_ms_defaults[] = {
  5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
};


static double young_other_cost_per_region_ms_defaults[] = {
  0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
};

static double non_young_other_cost_per_region_ms_defaults[] = {
  1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
};

G1CollectorPolicy::G1CollectorPolicy() :
82
  _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
83
                        ? ParallelGCThreads : 1),
84

85 86 87 88 89 90 91 92 93 94
  _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _stop_world_start(0.0),

  _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _prev_collection_pause_end_ms(0.0),
  _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
95 96
  _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
97
  _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
98
  _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
99 100 101 102 103 104 105 106 107 108
  _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
  _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _non_young_other_cost_per_region_ms_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),

  _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),

J
johnc 已提交
109
  _pause_time_target_ms((double) MaxGCPauseMillis),
110

111
  _gcs_are_young(true),
112 113 114 115 116

  _during_marking(false),
  _in_marking_window(false),
  _in_marking_window_im(false),

117 118
  _recent_prev_end_times_for_all_gcs_sec(
                                new TruncatedSeq(NumPrevPausesForHeuristics)),
119 120 121

  _recent_avg_pause_time_ratio(0.0),

122 123
  _initiate_conc_mark_if_possible(false),
  _during_initial_mark_pause(false),
124 125
  _last_young_gc(false),
  _last_gc_was_young(false),
126

127 128 129 130 131 132
  _eden_used_bytes_before_gc(0),
  _survivor_used_bytes_before_gc(0),
  _heap_used_bytes_before_gc(0),
  _metaspace_used_bytes_before_gc(0),
  _eden_capacity_bytes_before_gc(0),
  _heap_capacity_bytes_before_gc(0),
133

134 135 136 137
  _eden_cset_region_length(0),
  _survivor_cset_region_length(0),
  _old_cset_region_length(0),

138
  _collection_set(NULL),
139 140 141 142 143 144 145 146 147
  _collection_set_bytes_used_before(0),

  // Incremental CSet attributes
  _inc_cset_build_state(Inactive),
  _inc_cset_head(NULL),
  _inc_cset_tail(NULL),
  _inc_cset_bytes_used_before(0),
  _inc_cset_max_finger(NULL),
  _inc_cset_recorded_rs_lengths(0),
148
  _inc_cset_recorded_rs_lengths_diffs(0),
149
  _inc_cset_predicted_elapsed_time_ms(0.0),
150
  _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
151

152 153 154 155 156 157 158
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

  _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
                                                 G1YoungSurvRateNumRegionsSummary)),
  _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
159
                                              G1YoungSurvRateNumRegionsSummary)),
160
  // add here any more surv rate groups
161 162 163
  _recorded_survivor_regions(0),
  _recorded_survivor_head(NULL),
  _recorded_survivor_tail(NULL),
T
tonyp 已提交
164 165
  _survivors_age_table(true),

166
  _gc_overhead_perc(0.0) {
167

168 169 170 171
  // Set up the region size and associated fields. Given that the
  // policy is created before the heap, we have to set this up here,
  // so it's done as soon as possible.
  HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
172
  HeapRegionRemSet::setup_remset_size();
173

174 175 176 177 178 179 180 181 182 183 184 185
  G1ErgoVerbose::initialize();
  if (PrintAdaptiveSizePolicy) {
    // Currently, we only use a single switch for all the heuristics.
    G1ErgoVerbose::set_enabled(true);
    // Given that we don't currently have a verboseness level
    // parameter, we'll hardcode this to high. This can be easily
    // changed in the future.
    G1ErgoVerbose::set_level(ErgoHigh);
  } else {
    G1ErgoVerbose::set_enabled(false);
  }

186
  // Verify PLAB sizes
187
  const size_t region_size = HeapRegion::GrainWords;
188 189
  if (YoungPLABSize > region_size || OldPLABSize > region_size) {
    char buffer[128];
190
    jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
191 192 193 194
                 OldPLABSize > region_size ? "Old" : "Young", region_size);
    vm_exit_during_initialization(buffer);
  }

195 196 197
  _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
  _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;

198
  _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
199

200
  int index = MIN2(_parallel_gc_threads - 1, 7);
201 202 203

  _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
  _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
204 205
  _young_cards_per_entry_ratio_seq->add(
                                  young_cards_per_entry_ratio_defaults[index]);
206 207 208 209 210 211 212 213
  _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
  _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
  _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
  _young_other_cost_per_region_ms_seq->add(
                               young_other_cost_per_region_ms_defaults[index]);
  _non_young_other_cost_per_region_ms_seq->add(
                           non_young_other_cost_per_region_ms_defaults[index]);

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  // Below, we might need to calculate the pause time target based on
  // the pause interval. When we do so we are going to give G1 maximum
  // flexibility and allow it to do pauses when it needs to. So, we'll
  // arrange that the pause interval to be pause time target + 1 to
  // ensure that a) the pause time target is maximized with respect to
  // the pause interval and b) we maintain the invariant that pause
  // time target < pause interval. If the user does not want this
  // maximum flexibility, they will have to set the pause interval
  // explicitly.

  // First make sure that, if either parameter is set, its value is
  // reasonable.
  if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (MaxGCPauseMillis < 1) {
      vm_exit_during_initialization("MaxGCPauseMillis should be "
                                    "greater than 0");
    }
  }
  if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    if (GCPauseIntervalMillis < 1) {
      vm_exit_during_initialization("GCPauseIntervalMillis should be "
                                    "greater than 0");
    }
  }

  // Then, if the pause time target parameter was not set, set it to
  // the default value.
  if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
      // The default pause time target in G1 is 200ms
      FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
    } else {
      // We do not allow the pause interval to be set without the
      // pause time target
      vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
                                    "without setting MaxGCPauseMillis");
    }
  }

  // Then, if the interval parameter was not set, set it according to
  // the pause time target (this will also deal with the case when the
  // pause time target is the default value).
  if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
  }

  // Finally, make sure that the two parameters are consistent.
  if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
    char buffer[256];
    jio_snprintf(buffer, 256,
                 "MaxGCPauseMillis (%u) should be less than "
                 "GCPauseIntervalMillis (%u)",
                 MaxGCPauseMillis, GCPauseIntervalMillis);
    vm_exit_during_initialization(buffer);
  }

J
johnc 已提交
270
  double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
271
  double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
272
  _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
273 274 275 276 277 278 279 280 281

  uintx confidence_perc = G1ConfidencePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (confidence_perc > 100) {
    confidence_perc = 100;
    warning("G1ConfidencePercent is set to a value that is too large, "
            "it's been updated to %u", confidence_perc);
  }
  _sigma = (double) confidence_perc / 100.0;
282 283 284 285 286

  // start conservatively (around 50ms is about right)
  _concurrent_mark_remark_times_ms->add(0.05);
  _concurrent_mark_cleanup_times_ms->add(0.20);
  _tenuring_threshold = MaxTenuringThreshold;
287
  // _max_survivor_regions will be calculated by
288
  // update_young_list_target_length() during initialization.
289
  _max_survivor_regions = 0;
290

T
tonyp 已提交
291 292 293 294 295
  assert(GCTimeRatio > 0,
         "we should have set it to a default value set_g1_gc_flags() "
         "if a user set it to 0");
  _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));

296 297 298 299 300 301 302 303
  uintx reserve_perc = G1ReservePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (reserve_perc > 50) {
    reserve_perc = 50;
    warning("G1ReservePercent is set to a value that is too large, "
            "it's been updated to %u", reserve_perc);
  }
  _reserve_factor = (double) reserve_perc / 100.0;
304
  // This will be set when the heap is expanded
305 306 307
  // for the first time during initialization.
  _reserve_regions = 0;

308
  initialize_all();
309
  _collectionSetChooser = new CollectionSetChooser();
310
  _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
311 312 313 314
}

void G1CollectorPolicy::initialize_flags() {
  set_min_alignment(HeapRegion::GrainBytes);
315 316
  size_t card_table_alignment = GenRemSet::max_alignment_constraint(rem_set_name());
  set_max_alignment(MAX2(card_table_alignment, min_alignment()));
317 318 319
  if (SurvivorRatio < 1) {
    vm_exit_during_initialization("Invalid survivor ratio specified");
  }
320 321 322
  CollectorPolicy::initialize_flags();
}

323
G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
324 325 326
  assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
  assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
  assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
327

328 329 330 331 332 333 334 335
  if (FLAG_IS_CMDLINE(NewRatio)) {
    if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
      warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
    } else {
      _sizer_kind = SizerNewRatio;
      _adaptive_size = false;
      return;
    }
336
  }
337 338

  if (FLAG_IS_CMDLINE(NewSize)) {
339 340
    _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
                                     1U);
341
    if (FLAG_IS_CMDLINE(MaxNewSize)) {
342 343 344
      _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
345 346 347 348 349 350
      _sizer_kind = SizerMaxAndNewSize;
      _adaptive_size = _min_desired_young_length == _max_desired_young_length;
    } else {
      _sizer_kind = SizerNewSizeOnly;
    }
  } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
351 352 353
    _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
354
    _sizer_kind = SizerMaxNewSizeOnly;
355
  }
356 357
}

358
uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
359
  uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
360
  return MAX2(1U, default_value);
361 362
}

363
uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
364
  uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
365
  return MAX2(1U, default_value);
366 367
}

368
void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
  assert(new_number_of_heap_regions > 0, "Heap must be initialized");

  switch (_sizer_kind) {
    case SizerDefaults:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      break;
    case SizerNewSizeOnly:
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxNewSizeOnly:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxAndNewSize:
      // Do nothing. Values set on the command line, don't update them at runtime.
      break;
    case SizerNewRatio:
      _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
      _max_desired_young_length = _min_desired_young_length;
      break;
    default:
      ShouldNotReachHere();
393 394
  }

395
  assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
396 397
}

398 399 400 401 402 403
void G1CollectorPolicy::init() {
  // Set aside an initial future to_space.
  _g1 = G1CollectedHeap::heap();

  assert(Heap_lock->owned_by_self(), "Locking discipline.");

404 405
  initialize_gc_policy_counters();

406
  if (adaptive_young_list_length()) {
407
    _young_list_fixed_length = 0;
408
  } else {
409
    _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
410
  }
411
  _free_regions_at_end_of_collection = _g1->free_regions();
412
  update_young_list_target_length();
413 414 415 416

  // We may immediately start allocating regions and placing them on the
  // collection set list. Initialize the per-collection set info
  start_incremental_cset_building();
417 418
}

419
// Create the jstat counters for the policy.
420
void G1CollectorPolicy::initialize_gc_policy_counters() {
421
  _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
422 423
}

424
bool G1CollectorPolicy::predict_will_fit(uint young_length,
425
                                         double base_time_ms,
426
                                         uint base_free_regions,
427 428 429 430 431
                                         double target_pause_time_ms) {
  if (young_length >= base_free_regions) {
    // end condition 1: not enough space for the young regions
    return false;
  }
432

433
  double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
434 435 436 437 438 439 440 441 442
  size_t bytes_to_copy =
               (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
  double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
  double young_other_time_ms = predict_young_other_time_ms(young_length);
  double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
  if (pause_time_ms > target_pause_time_ms) {
    // end condition 2: prediction is over the target pause time
    return false;
  }
443

444
  size_t free_bytes =
445
                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
446 447 448
  if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
    // end condition 3: out-of-space (conservatively!)
    return false;
449
  }
450 451 452 453 454

  // success!
  return true;
}

455
void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
456 457
  // re-calculate the necessary reserve
  double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
458 459
  // We use ceiling so that if reserve_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
460
  _reserve_regions = (uint) ceil(reserve_regions_d);
461

462
  _young_gen_sizer->heap_size_changed(new_number_of_regions);
463 464
}

465 466 467
uint G1CollectorPolicy::calculate_young_list_desired_min_length(
                                                       uint base_min_length) {
  uint desired_min_length = 0;
468
  if (adaptive_young_list_length()) {
469 470 471 472
    if (_alloc_rate_ms_seq->num() > 3) {
      double now_sec = os::elapsedTime();
      double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
      double alloc_rate_ms = predict_alloc_rate_ms();
473
      desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
474 475
    } else {
      // otherwise we don't have enough info to make the prediction
476 477
    }
  }
478 479
  desired_min_length += base_min_length;
  // make sure we don't go below any user-defined minimum bound
480
  return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
481 482
}

483
uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
484 485 486
  // Here, we might want to also take into account any additional
  // constraints (i.e., user-defined minimum bound). Currently, we
  // effectively don't set this bound.
487
  return _young_gen_sizer->max_desired_young_length();
488
}
489

490 491 492 493 494 495
void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
  if (rs_lengths == (size_t) -1) {
    // if it's set to the default value (-1), we should predict it;
    // otherwise, use the given value.
    rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
  }
496

497
  // Calculate the absolute and desired min bounds.
498

499
  // This is how many young regions we already have (currently: the survivors).
500
  uint base_min_length = recorded_survivor_regions();
501 502
  // This is the absolute minimum young length, which ensures that we
  // can allocate one eden region in the worst-case.
503 504
  uint absolute_min_length = base_min_length + 1;
  uint desired_min_length =
505 506 507 508
                     calculate_young_list_desired_min_length(base_min_length);
  if (desired_min_length < absolute_min_length) {
    desired_min_length = absolute_min_length;
  }
509

510
  // Calculate the absolute and desired max bounds.
511

512
  // We will try our best not to "eat" into the reserve.
513
  uint absolute_max_length = 0;
514 515 516
  if (_free_regions_at_end_of_collection > _reserve_regions) {
    absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
  }
517
  uint desired_max_length = calculate_young_list_desired_max_length();
518 519 520
  if (desired_max_length > absolute_max_length) {
    desired_max_length = absolute_max_length;
  }
521

522
  uint young_list_target_length = 0;
523
  if (adaptive_young_list_length()) {
524
    if (gcs_are_young()) {
525 526 527 528 529 530 531 532 533 534 535 536
      young_list_target_length =
                        calculate_young_list_target_length(rs_lengths,
                                                           base_min_length,
                                                           desired_min_length,
                                                           desired_max_length);
      _rs_lengths_prediction = rs_lengths;
    } else {
      // Don't calculate anything and let the code below bound it to
      // the desired_min_length, i.e., do the next GC as soon as
      // possible to maximize how many old regions we can add to it.
    }
  } else {
537 538 539
    // The user asked for a fixed young gen so we'll fix the young gen
    // whether the next GC is young or mixed.
    young_list_target_length = _young_list_fixed_length;
540
  }
541

542 543 544 545 546 547 548 549 550
  // Make sure we don't go over the desired max length, nor under the
  // desired min length. In case they clash, desired_min_length wins
  // which is why that test is second.
  if (young_list_target_length > desired_max_length) {
    young_list_target_length = desired_max_length;
  }
  if (young_list_target_length < desired_min_length) {
    young_list_target_length = desired_min_length;
  }
551

552 553 554 555
  assert(young_list_target_length > recorded_survivor_regions(),
         "we should be able to allocate at least one eden region");
  assert(young_list_target_length >= absolute_min_length, "post-condition");
  _young_list_target_length = young_list_target_length;
556

557 558
  update_max_gc_locker_expansion();
}
559

560
uint
561
G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
562 563 564
                                                     uint base_min_length,
                                                     uint desired_min_length,
                                                     uint desired_max_length) {
565
  assert(adaptive_young_list_length(), "pre-condition");
566
  assert(gcs_are_young(), "only call this for young GCs");
567 568 569 570 571 572 573 574 575 576 577 578

  // In case some edge-condition makes the desired max length too small...
  if (desired_max_length <= desired_min_length) {
    return desired_min_length;
  }

  // We'll adjust min_young_length and max_young_length not to include
  // the already allocated young regions (i.e., so they reflect the
  // min and max eden regions we'll allocate). The base_min_length
  // will be reflected in the predictions by the
  // survivor_regions_evac_time prediction.
  assert(desired_min_length > base_min_length, "invariant");
579
  uint min_young_length = desired_min_length - base_min_length;
580
  assert(desired_max_length > base_min_length, "invariant");
581
  uint max_young_length = desired_max_length - base_min_length;
582 583 584 585 586 587 588 589 590

  double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
  double survivor_regions_evac_time = predict_survivor_regions_evac_time();
  size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
  size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
  size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
  double base_time_ms =
    predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
    survivor_regions_evac_time;
591 592
  uint available_free_regions = _free_regions_at_end_of_collection;
  uint base_free_regions = 0;
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
  if (available_free_regions > _reserve_regions) {
    base_free_regions = available_free_regions - _reserve_regions;
  }

  // Here, we will make sure that the shortest young length that
  // makes sense fits within the target pause time.

  if (predict_will_fit(min_young_length, base_time_ms,
                       base_free_regions, target_pause_time_ms)) {
    // The shortest young length will fit into the target pause time;
    // we'll now check whether the absolute maximum number of young
    // regions will fit in the target pause time. If not, we'll do
    // a binary search between min_young_length and max_young_length.
    if (predict_will_fit(max_young_length, base_time_ms,
                         base_free_regions, target_pause_time_ms)) {
      // The maximum young length will fit into the target pause time.
      // We are done so set min young length to the maximum length (as
      // the result is assumed to be returned in min_young_length).
      min_young_length = max_young_length;
    } else {
      // The maximum possible number of young regions will not fit within
      // the target pause time so we'll search for the optimal
      // length. The loop invariants are:
      //
      // min_young_length < max_young_length
      // min_young_length is known to fit into the target pause time
      // max_young_length is known not to fit into the target pause time
      //
      // Going into the loop we know the above hold as we've just
      // checked them. Every time around the loop we check whether
      // the middle value between min_young_length and
      // max_young_length fits into the target pause time. If it
      // does, it becomes the new min. If it doesn't, it becomes
      // the new max. This way we maintain the loop invariants.

      assert(min_young_length < max_young_length, "invariant");
629
      uint diff = (max_young_length - min_young_length) / 2;
630
      while (diff > 0) {
631
        uint young_length = min_young_length + diff;
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
        if (predict_will_fit(young_length, base_time_ms,
                             base_free_regions, target_pause_time_ms)) {
          min_young_length = young_length;
        } else {
          max_young_length = young_length;
        }
        assert(min_young_length <  max_young_length, "invariant");
        diff = (max_young_length - min_young_length) / 2;
      }
      // The results is min_young_length which, according to the
      // loop invariants, should fit within the target pause time.

      // These are the post-conditions of the binary search above:
      assert(min_young_length < max_young_length,
             "otherwise we should have discovered that max_young_length "
             "fits into the pause target and not done the binary search");
      assert(predict_will_fit(min_young_length, base_time_ms,
                              base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should "
             "fit into the pause target");
      assert(!predict_will_fit(min_young_length + 1, base_time_ms,
                               base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should be "
             "optimal, so no larger length should fit into the pause target");
    }
  } else {
    // Even the minimum length doesn't fit into the pause time
    // target, return it as the result nevertheless.
  }
  return base_min_length + min_young_length;
662 663
}

664 665 666 667 668
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
  double survivor_regions_evac_time = 0.0;
  for (HeapRegion * r = _recorded_survivor_head;
       r != NULL && r != _recorded_survivor_tail->get_next_young_region();
       r = r->get_next_young_region()) {
669
    survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
670 671 672 673
  }
  return survivor_regions_evac_time;
}

674
void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
675 676
  guarantee( adaptive_young_list_length(), "should not call this otherwise" );

677
  size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
678 679 680
  if (rs_lengths > _rs_lengths_prediction) {
    // add 10% to avoid having to recalculate often
    size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
681
    update_young_list_target_length(rs_lengths_prediction);
682 683 684
  }
}

685 686


687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
                                               bool is_tlab,
                                               bool* gc_overhead_limit_was_exceeded) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}

// This method controls how a collector handles one or more
// of its generations being fully allocated.
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
                                                       bool is_tlab) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}


#ifndef PRODUCT
bool G1CollectorPolicy::verify_young_ages() {
705
  HeapRegion* head = _g1->young_list()->first_region();
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
  return
    verify_young_ages(head, _short_lived_surv_rate_group);
  // also call verify_young_ages on any additional surv rate groups
}

bool
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
                                     SurvRateGroup *surv_rate_group) {
  guarantee( surv_rate_group != NULL, "pre-condition" );

  const char* name = surv_rate_group->name();
  bool ret = true;
  int prev_age = -1;

  for (HeapRegion* curr = head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    SurvRateGroup* group = curr->surv_rate_group();
    if (group == NULL && !curr->is_survivor()) {
      gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
      ret = false;
    }

    if (surv_rate_group == group) {
      int age = curr->age_in_surv_rate_group();

      if (age < 0) {
        gclog_or_tty->print_cr("## %s: encountered negative age", name);
        ret = false;
      }

      if (age <= prev_age) {
        gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
                               "(%d, %d)", name, age, prev_age);
        ret = false;
      }
      prev_age = age;
    }
  }

  return ret;
}
#endif // PRODUCT

void G1CollectorPolicy::record_full_collection_start() {
751
  _full_collection_start_sec = os::elapsedTime();
752
  record_heap_size_info_at_start(true /* full */);
753 754 755 756 757 758 759 760
  // Release the future to-space so that it is available for compaction into.
  _g1->set_full_collection();
}

void G1CollectorPolicy::record_full_collection_end() {
  // Consider this like a collection pause for the purposes of allocation
  // since last pause.
  double end_sec = os::elapsedTime();
761
  double full_gc_time_sec = end_sec - _full_collection_start_sec;
762 763
  double full_gc_time_ms = full_gc_time_sec * 1000.0;

764
  _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
765

766
  update_recent_gc_times(end_sec, full_gc_time_ms);
767 768 769

  _g1->clear_full_collection();

770 771 772 773
  // "Nuke" the heuristics that control the young/mixed GC
  // transitions and make sure we start with young GCs after the Full GC.
  set_gcs_are_young(true);
  _last_young_gc = false;
774 775
  clear_initiate_conc_mark_if_possible();
  clear_during_initial_mark_pause();
776 777 778 779 780 781
  _in_marking_window = false;
  _in_marking_window_im = false;

  _short_lived_surv_rate_group->start_adding_regions();
  // also call this on any additional surv rate groups

782 783
  record_survivor_regions(0, NULL, NULL);

784
  _free_regions_at_end_of_collection = _g1->free_regions();
785 786
  // Reset survivors SurvRateGroup.
  _survivor_surv_rate_group->reset();
787
  update_young_list_target_length();
788
  _collectionSetChooser->clear();
789
}
790 791 792 793 794

void G1CollectorPolicy::record_stop_world_start() {
  _stop_world_start = os::elapsedTime();
}

795
void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
796 797 798 799
  // We only need to do this here as the policy will only be applied
  // to the GC we're about to start. so, no point is calculating this
  // every time we calculate / recalculate the target young length.
  update_survivors_policy();
800

801 802 803
  assert(_g1->used() == _g1->recalculate_used(),
         err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
                 _g1->used(), _g1->recalculate_used()));
804 805

  double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
806
  _trace_gen0_time_data.record_start_collection(s_w_t_ms);
807 808
  _stop_world_start = 0.0;

809
  record_heap_size_info_at_start(false /* full */);
810

811
  phase_times()->record_cur_collection_start_sec(start_time_sec);
812 813
  _pending_cards = _g1->pending_card_num();

814
  _collection_set_bytes_used_before = 0;
815
  _bytes_copied_during_gc = 0;
816

817
  _last_gc_was_young = false;
818 819 820

  // do that for any other surv rate groups
  _short_lived_surv_rate_group->stop_adding_regions();
821
  _survivors_age_table.clear();
822

823 824 825
  assert( verify_young_ages(), "region age verification" );
}

826
void G1CollectorPolicy::record_concurrent_mark_init_end(double
827 828
                                                   mark_init_elapsed_time_ms) {
  _during_marking = true;
829 830
  assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
  clear_during_initial_mark_pause();
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
  _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_remark_start() {
  _mark_remark_start_sec = os::elapsedTime();
  _during_marking = false;
}

void G1CollectorPolicy::record_concurrent_mark_remark_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
  _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  _mark_cleanup_start_sec = os::elapsedTime();
}

853
void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
854
  _last_young_gc = true;
855
  _in_marking_window = false;
856 857 858 859 860
}

void G1CollectorPolicy::record_concurrent_pause() {
  if (_stop_world_start > 0.0) {
    double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
861
    _trace_gen0_time_data.record_yield_time(yield_ms);
862 863 864
  }
}

865 866
bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
  if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
867 868 869 870 871 872
    return false;
  }

  size_t marking_initiating_used_threshold =
    (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  size_t cur_used_bytes = _g1->non_young_capacity_bytes();
873
  size_t alloc_byte_size = alloc_word_size * HeapWordSize;
874

875
  if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
876
    if (gcs_are_young()) {
877
      ergo_verbose5(ErgoConcCycles,
878 879 880
        "request concurrent cycle initiation",
        ergo_format_reason("occupancy higher than threshold")
        ergo_format_byte("occupancy")
881
        ergo_format_byte("allocation request")
882 883 884
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
885
        alloc_byte_size,
886 887 888 889 890
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
      return true;
    } else {
891
      ergo_verbose5(ErgoConcCycles,
892 893 894
        "do not request concurrent cycle initiation",
        ergo_format_reason("still doing mixed collections")
        ergo_format_byte("occupancy")
895
        ergo_format_byte("allocation request")
896 897 898
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
899
        alloc_byte_size,
900 901 902 903 904 905 906 907 908
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
    }
  }

  return false;
}

909 910 911
// Anything below that is considered to be zero
#define MIN_TIMER_GRANULARITY 0.0000001

912
void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms) {
913
  double end_time_sec = os::elapsedTime();
914 915
  assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
         "otherwise, the subtraction below does not make sense");
916
  size_t rs_size =
917
            _cur_collection_pause_used_regions_at_start - cset_region_length();
918 919 920
  size_t cur_used_bytes = _g1->used();
  assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  bool last_pause_included_initial_mark = false;
921
  bool update_stats = !_g1->evacuation_failed();
922 923 924 925 926 927 928 929 930

#ifndef PRODUCT
  if (G1YoungSurvRateVerbose) {
    gclog_or_tty->print_cr("");
    _short_lived_surv_rate_group->print();
    // do that for any other surv rate groups too
  }
#endif // PRODUCT

931
  last_pause_included_initial_mark = during_initial_mark_pause();
932
  if (last_pause_included_initial_mark) {
933
    record_concurrent_mark_init_end(0.0);
934
  } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
935 936 937 938 939
    // Note: this might have already been set, if during the last
    // pause we decided to start a cycle but at the beginning of
    // this pause we decided to postpone it. That's OK.
    set_initiate_conc_mark_if_possible();
  }
940

941
  _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
942 943
                          end_time_sec, false);

944
  if (update_stats) {
945
    _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
946 947
    // this is where we update the allocation rate of the application
    double app_time_ms =
948
      (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
949 950 951 952 953 954
    if (app_time_ms < MIN_TIMER_GRANULARITY) {
      // This usually happens due to the timer not having the required
      // granularity. Some Linuxes are the usual culprits.
      // We'll just set it to something (arbitrarily) small.
      app_time_ms = 1.0;
    }
955 956 957 958 959 960 961 962
    // We maintain the invariant that all objects allocated by mutator
    // threads will be allocated out of eden regions. So, we can use
    // the eden region number allocated since the previous GC to
    // calculate the application's allocate rate. The only exception
    // to that is humongous objects that are allocated separately. But
    // given that humongous object allocations do not really affect
    // either the pause's duration nor when the next pause will take
    // place we can safely ignore them here.
963
    uint regions_allocated = eden_cset_region_length();
964 965 966 967 968
    double alloc_rate_ms = (double) regions_allocated / app_time_ms;
    _alloc_rate_ms_seq->add(alloc_rate_ms);

    double interval_ms =
      (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
969
    update_recent_gc_times(end_time_sec, pause_time_ms);
970
    _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
971 972 973 974 975 976 977 978 979 980 981 982
    if (recent_avg_pause_time_ratio() < 0.0 ||
        (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
#ifndef PRODUCT
      // Dump info to allow post-facto debugging
      gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
      gclog_or_tty->print_cr("-------------------------------------------");
      gclog_or_tty->print_cr("Recent GC Times (ms):");
      _recent_gc_times_ms->dump();
      gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
      _recent_prev_end_times_for_all_gcs_sec->dump();
      gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
                             _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
983 984 985 986 987
      // In debug mode, terminate the JVM if the user wants to debug at this point.
      assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
#endif  // !PRODUCT
      // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
      // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
988 989 990 991 992 993 994
      if (_recent_avg_pause_time_ratio < 0.0) {
        _recent_avg_pause_time_ratio = 0.0;
      } else {
        assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
        _recent_avg_pause_time_ratio = 1.0;
      }
    }
995
  }
996

997 998
  bool new_in_marking_window = _in_marking_window;
  bool new_in_marking_window_im = false;
999
  if (during_initial_mark_pause()) {
1000 1001 1002 1003
    new_in_marking_window = true;
    new_in_marking_window_im = true;
  }

1004
  if (_last_young_gc) {
1005 1006 1007
    // This is supposed to to be the "last young GC" before we start
    // doing mixed GCs. Here we decide whether to start mixed GCs or not.

1008
    if (!last_pause_included_initial_mark) {
1009 1010 1011 1012
      if (next_gc_should_be_mixed("start mixed GCs",
                                  "do not start mixed GCs")) {
        set_gcs_are_young(false);
      }
1013
    } else {
1014 1015
      ergo_verbose0(ErgoMixedGCs,
                    "do not start mixed GCs",
1016 1017
                    ergo_format_reason("concurrent cycle is about to start"));
    }
1018
    _last_young_gc = false;
1019
  }
1020

1021
  if (!_last_gc_was_young) {
1022 1023 1024 1025 1026
    // This is a mixed GC. Here we decide whether to continue doing
    // mixed GCs or not.

    if (!next_gc_should_be_mixed("continue mixed GCs",
                                 "do not continue mixed GCs")) {
1027
      set_gcs_are_young(true);
1028
    }
1029
  }
1030 1031 1032 1033

  _short_lived_surv_rate_group->start_adding_regions();
  // do that for any other surv rate groupsx

1034
  if (update_stats) {
1035 1036
    double cost_per_card_ms = 0.0;
    if (_pending_cards > 0) {
1037
      cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1038 1039 1040 1041 1042 1043 1044
      _cost_per_card_ms_seq->add(cost_per_card_ms);
    }

    size_t cards_scanned = _g1->cards_scanned();

    double cost_per_entry_ms = 0.0;
    if (cards_scanned > 10) {
1045
      cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1046
      if (_last_gc_was_young) {
1047
        _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1048 1049 1050
      } else {
        _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
      }
1051 1052 1053 1054 1055
    }

    if (_max_rs_lengths > 0) {
      double cards_per_entry_ratio =
        (double) cards_scanned / (double) _max_rs_lengths;
1056 1057 1058 1059 1060
      if (_last_gc_was_young) {
        _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      } else {
        _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      }
1061 1062
    }

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
    // This is defensive. For a while _max_rs_lengths could get
    // smaller than _recorded_rs_lengths which was causing
    // rs_length_diff to get very large and mess up the RSet length
    // predictions. The reason was unsafe concurrent updates to the
    // _inc_cset_recorded_rs_lengths field which the code below guards
    // against (see CR 7118202). This bug has now been fixed (see CR
    // 7119027). However, I'm still worried that
    // _inc_cset_recorded_rs_lengths might still end up somewhat
    // inaccurate. The concurrent refinement thread calculates an
    // RSet's length concurrently with other CR threads updating it
    // which might cause it to calculate the length incorrectly (if,
    // say, it's in mid-coarsening). So I'll leave in the defensive
    // conditional below just in case.
1076 1077 1078 1079 1080
    size_t rs_length_diff = 0;
    if (_max_rs_lengths > _recorded_rs_lengths) {
      rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
    }
    _rs_length_diff_seq->add((double) rs_length_diff);
1081

1082 1083
    size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
    size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1084
    double cost_per_byte_ms = 0.0;
1085

1086
    if (copied_bytes > 0) {
1087
      cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1088
      if (_in_marking_window) {
1089
        _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1090
      } else {
1091
        _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1092
      }
1093 1094 1095
    }

    double all_other_time_ms = pause_time_ms -
1096 1097
      (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
      + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1098 1099

    double young_other_time_ms = 0.0;
1100
    if (young_cset_region_length() > 0) {
1101
      young_other_time_ms =
1102 1103
        phase_times()->young_cset_choice_time_ms() +
        phase_times()->young_free_cset_time_ms();
1104
      _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1105
                                          (double) young_cset_region_length());
1106 1107
    }
    double non_young_other_time_ms = 0.0;
1108
    if (old_cset_region_length() > 0) {
1109
      non_young_other_time_ms =
1110 1111
        phase_times()->non_young_cset_choice_time_ms() +
        phase_times()->non_young_free_cset_time_ms();
1112 1113

      _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1114
                                            (double) old_cset_region_length());
1115 1116 1117 1118 1119 1120 1121
    }

    double constant_other_time_ms = all_other_time_ms -
      (young_other_time_ms + non_young_other_time_ms);
    _constant_other_time_ms_seq->add(constant_other_time_ms);

    double survival_ratio = 0.0;
1122
    if (_collection_set_bytes_used_before > 0) {
1123
      survival_ratio = (double) _bytes_copied_during_gc /
1124
                                   (double) _collection_set_bytes_used_before;
1125 1126 1127 1128 1129 1130 1131 1132 1133
    }

    _pending_cards_seq->add((double) _pending_cards);
    _rs_lengths_seq->add((double) _max_rs_lengths);
  }

  _in_marking_window = new_in_marking_window;
  _in_marking_window_im = new_in_marking_window_im;
  _free_regions_at_end_of_collection = _g1->free_regions();
1134
  update_young_list_target_length();
1135

1136
  // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1137
  double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1138 1139
  adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
                               phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1140

1141
  _collectionSetChooser->verify();
1142 1143
}

1144
#define EXT_SIZE_FORMAT "%.1f%s"
1145
#define EXT_SIZE_PARAMS(bytes)                                  \
1146
  byte_size_in_proper_unit((double)(bytes)),                    \
1147 1148
  proper_unit_for_byte_size((bytes))

1149
void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1150
  YoungList* young_list = _g1->young_list();
1151 1152 1153 1154
  _eden_used_bytes_before_gc = young_list->eden_used_bytes();
  _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
  _heap_capacity_bytes_before_gc = _g1->capacity();
  _heap_used_bytes_before_gc = _g1->used();
1155 1156
  _cur_collection_pause_used_regions_at_start = _g1->used_regions();

1157 1158
  _eden_capacity_bytes_before_gc =
         (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1159

1160 1161 1162
  if (full) {
    _metaspace_used_bytes_before_gc = MetaspaceAux::allocated_used_bytes();
  }
1163 1164
}

1165
void G1CollectorPolicy::print_heap_transition() {
1166
  _g1->print_size_transition(gclog_or_tty,
1167 1168 1169
                             _heap_used_bytes_before_gc,
                             _g1->used(),
                             _g1->capacity());
1170 1171
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
  YoungList* young_list = _g1->young_list();

  size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
  size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
  size_t heap_used_bytes_after_gc = _g1->used();

  size_t heap_capacity_bytes_after_gc = _g1->capacity();
  size_t eden_capacity_bytes_after_gc =
    (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;

  gclog_or_tty->print(
    "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
    "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
    "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
    EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
    EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
    EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
    EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
    EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
    EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
    EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
    EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
    EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
    EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
    EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));

  if (full) {
    MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
  }

  gclog_or_tty->cr();
1204 1205
}

1206 1207 1208 1209 1210 1211
void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
                                                     double update_rs_processed_buffers,
                                                     double goal_ms) {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();

1212
  if (G1UseAdaptiveConcRefinement) {
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    const int k_gy = 3, k_gr = 6;
    const double inc_k = 1.1, dec_k = 0.9;

    int g = cg1r->green_zone();
    if (update_rs_time > goal_ms) {
      g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
    } else {
      if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
        g = (int)MAX2(g * inc_k, g + 1.0);
      }
    }
    // Change the refinement threads params
    cg1r->set_green_zone(g);
    cg1r->set_yellow_zone(g * k_gy);
    cg1r->set_red_zone(g * k_gr);
    cg1r->reinitialize_threads();

    int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
    int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
                                    cg1r->yellow_zone());
    // Change the barrier params
    dcqs.set_process_completed_threshold(processing_threshold);
    dcqs.set_max_completed_queue(cg1r->red_zone());
  }

  int curr_queue_size = dcqs.completed_buffers_num();
  if (curr_queue_size >= cg1r->yellow_zone()) {
    dcqs.set_completed_queue_padding(curr_queue_size);
  } else {
    dcqs.set_completed_queue_padding(0);
  }
  dcqs.notify_if_necessary();
}

1247 1248 1249 1250 1251 1252 1253 1254 1255
double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
                                                size_t scanned_cards) {
  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(scanned_cards) +
    predict_constant_other_time_ms();
}

1256 1257 1258 1259
double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  size_t rs_length = predict_rs_length_diff();
  size_t card_num;
1260
  if (gcs_are_young()) {
1261
    card_num = predict_young_card_num(rs_length);
1262
  } else {
1263
    card_num = predict_non_young_card_num(rs_length);
1264
  }
1265 1266 1267
  return predict_base_elapsed_time_ms(pending_cards, card_num);
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  size_t bytes_to_copy;
  if (hr->is_marked())
    bytes_to_copy = hr->max_live_bytes();
  else {
    assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
    int age = hr->age_in_surv_rate_group();
    double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
    bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  }
  return bytes_to_copy;
1279 1280 1281 1282
}

double
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1283
                                                  bool for_young_gc) {
1284 1285
  size_t rs_length = hr->rem_set()->occupied();
  size_t card_num;
1286 1287 1288 1289

  // Predicting the number of cards is based on which type of GC
  // we're predicting for.
  if (for_young_gc) {
1290
    card_num = predict_young_card_num(rs_length);
1291
  } else {
1292
    card_num = predict_non_young_card_num(rs_length);
1293
  }
1294 1295 1296 1297 1298 1299
  size_t bytes_to_copy = predict_bytes_to_copy(hr);

  double region_elapsed_time_ms =
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy);

1300 1301 1302
  // The prediction of the "other" time for this region is based
  // upon the region type and NOT the GC type.
  if (hr->is_young()) {
1303
    region_elapsed_time_ms += predict_young_other_time_ms(1);
1304
  } else {
1305 1306
    region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  }
1307
  return region_elapsed_time_ms;
1308 1309 1310
}

void
1311 1312
G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
                                            uint survivor_cset_region_length) {
1313 1314 1315
  _eden_cset_region_length     = eden_cset_region_length;
  _survivor_cset_region_length = survivor_cset_region_length;
  _old_cset_region_length      = 0;
1316 1317 1318 1319 1320 1321
}

void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  _recorded_rs_lengths = rs_lengths;
}

1322 1323 1324 1325 1326 1327 1328 1329
void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
                                               double elapsed_ms) {
  _recent_gc_times_ms->add(elapsed_ms);
  _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  _prev_collection_pause_end_ms = end_time_sec * 1000.0;
}

size_t G1CollectorPolicy::expansion_amount() {
1330 1331 1332
  double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  double threshold = _gc_overhead_perc;
  if (recent_gc_overhead > threshold) {
J
johnc 已提交
1333 1334 1335 1336
    // We will double the existing space, or take
    // G1ExpandByPercentOfAvailable % of the available expansion
    // space, whichever is smaller, bounded below by a minimum
    // expansion (unless that's all that's left.)
1337
    const size_t min_expand_bytes = 1*M;
1338
    size_t reserved_bytes = _g1->max_capacity();
1339 1340 1341 1342
    size_t committed_bytes = _g1->capacity();
    size_t uncommitted_bytes = reserved_bytes - committed_bytes;
    size_t expand_bytes;
    size_t expand_bytes_via_pct =
J
johnc 已提交
1343
      uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1344 1345 1346
    expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
    expand_bytes = MAX2(expand_bytes, min_expand_bytes);
    expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

    ergo_verbose5(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("recent GC overhead higher than "
                                     "threshold after GC")
                  ergo_format_perc("recent GC overhead")
                  ergo_format_perc("threshold")
                  ergo_format_byte("uncommitted")
                  ergo_format_byte_perc("calculated expansion amount"),
                  recent_gc_overhead, threshold,
                  uncommitted_bytes,
                  expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);

1360 1361 1362 1363 1364 1365 1366
    return expand_bytes;
  } else {
    return 0;
  }
}

void G1CollectorPolicy::print_tracing_info() const {
1367 1368
  _trace_gen0_time_data.print();
  _trace_gen1_time_data.print();
1369 1370 1371 1372 1373 1374 1375 1376 1377
}

void G1CollectorPolicy::print_yg_surv_rate_info() const {
#ifndef PRODUCT
  _short_lived_surv_rate_group->print_surv_rate_summary();
  // add this call for any other surv rate groups
#endif // PRODUCT
}

1378
uint G1CollectorPolicy::max_regions(int purpose) {
1379 1380
  switch (purpose) {
    case GCAllocForSurvived:
1381
      return _max_survivor_regions;
1382
    case GCAllocForTenured:
1383
      return REGIONS_UNLIMITED;
1384
    default:
1385 1386
      ShouldNotReachHere();
      return REGIONS_UNLIMITED;
1387 1388 1389
  };
}

1390
void G1CollectorPolicy::update_max_gc_locker_expansion() {
1391
  uint expansion_region_num = 0;
1392 1393 1394 1395 1396
  if (GCLockerEdenExpansionPercent > 0) {
    double perc = (double) GCLockerEdenExpansionPercent / 100.0;
    double expansion_region_num_d = perc * (double) _young_list_target_length;
    // We use ceiling so that if expansion_region_num_d is > 0.0 (but
    // less than 1.0) we'll get 1.
1397
    expansion_region_num = (uint) ceil(expansion_region_num_d);
1398 1399 1400 1401 1402 1403 1404
  } else {
    assert(expansion_region_num == 0, "sanity");
  }
  _young_list_max_length = _young_list_target_length + expansion_region_num;
  assert(_young_list_target_length <= _young_list_max_length, "post-condition");
}

1405
// Calculates survivor space parameters.
1406 1407 1408 1409 1410
void G1CollectorPolicy::update_survivors_policy() {
  double max_survivor_regions_d =
                 (double) _young_list_target_length / (double) SurvivorRatio;
  // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
1411
  _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1412

1413
  _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1414 1415 1416
        HeapRegion::GrainWords * _max_survivor_regions);
}

1417 1418
bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
                                                     GCCause::Cause gc_cause) {
1419 1420
  bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  if (!during_cycle) {
1421 1422 1423 1424 1425
    ergo_verbose1(ErgoConcCycles,
                  "request concurrent cycle initiation",
                  ergo_format_reason("requested by GC cause")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1426 1427 1428
    set_initiate_conc_mark_if_possible();
    return true;
  } else {
1429 1430 1431 1432 1433
    ergo_verbose1(ErgoConcCycles,
                  "do not request concurrent cycle initiation",
                  ergo_format_reason("concurrent cycle already in progress")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1434 1435 1436 1437
    return false;
  }
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
void
G1CollectorPolicy::decide_on_conc_mark_initiation() {
  // We are about to decide on whether this pause will be an
  // initial-mark pause.

  // First, during_initial_mark_pause() should not be already set. We
  // will set it here if we have to. However, it should be cleared by
  // the end of the pause (it's only set for the duration of an
  // initial-mark pause).
  assert(!during_initial_mark_pause(), "pre-condition");

  if (initiate_conc_mark_if_possible()) {
    // We had noticed on a previous pause that the heap occupancy has
    // gone over the initiating threshold and we should start a
    // concurrent marking cycle. So we might initiate one.

    bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
    if (!during_cycle) {
      // The concurrent marking thread is not "during a cycle", i.e.,
      // it has completed the last one. So we can go ahead and
      // initiate a new cycle.

      set_during_initial_mark_pause();
1461 1462 1463 1464 1465
      // We do not allow mixed GCs during marking.
      if (!gcs_are_young()) {
        set_gcs_are_young(true);
        ergo_verbose0(ErgoMixedGCs,
                      "end mixed GCs",
1466 1467
                      ergo_format_reason("concurrent cycle is about to start"));
      }
1468 1469 1470 1471

      // And we can now clear initiate_conc_mark_if_possible() as
      // we've already acted on it.
      clear_initiate_conc_mark_if_possible();
1472 1473 1474 1475

      ergo_verbose0(ErgoConcCycles,
                  "initiate concurrent cycle",
                  ergo_format_reason("concurrent cycle initiation requested"));
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
    } else {
      // The concurrent marking thread is still finishing up the
      // previous cycle. If we start one right now the two cycles
      // overlap. In particular, the concurrent marking thread might
      // be in the process of clearing the next marking bitmap (which
      // we will use for the next cycle if we start one). Starting a
      // cycle now will be bad given that parts of the marking
      // information might get cleared by the marking thread. And we
      // cannot wait for the marking thread to finish the cycle as it
      // periodically yields while clearing the next marking bitmap
      // and, if it's in a yield point, it's waiting for us to
      // finish. So, at this point we will not start a cycle and we'll
      // let the concurrent marking thread complete the last one.
1489 1490 1491
      ergo_verbose0(ErgoConcCycles,
                    "do not initiate concurrent cycle",
                    ergo_format_reason("concurrent cycle already in progress"));
1492 1493 1494 1495
    }
  }
}

1496
class KnownGarbageClosure: public HeapRegionClosure {
1497
  G1CollectedHeap* _g1h;
1498 1499 1500 1501
  CollectionSetChooser* _hrSorted;

public:
  KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1502
    _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1503 1504 1505 1506 1507 1508 1509 1510

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.

    // Do we have any marking information for this region?
    if (r->is_marked()) {
1511 1512 1513
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1514 1515
      if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _hrSorted->add_region(r);
1516 1517 1518 1519 1520 1521 1522
      }
    }
    return false;
  }
};

class ParKnownGarbageHRClosure: public HeapRegionClosure {
1523
  G1CollectedHeap* _g1h;
1524
  CSetChooserParUpdater _cset_updater;
1525 1526 1527

public:
  ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1528
                           uint chunk_size) :
1529 1530
    _g1h(G1CollectedHeap::heap()),
    _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1531 1532 1533 1534

  bool doHeapRegion(HeapRegion* r) {
    // Do we have any marking information for this region?
    if (r->is_marked()) {
1535 1536 1537
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1538 1539
      if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _cset_updater.add_region(r);
1540 1541 1542 1543 1544 1545 1546 1547
      }
    }
    return false;
  }
};

class ParKnownGarbageTask: public AbstractGangTask {
  CollectionSetChooser* _hrSorted;
1548
  uint _chunk_size;
1549 1550
  G1CollectedHeap* _g1;
public:
1551
  ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1552 1553
    AbstractGangTask("ParKnownGarbageTask"),
    _hrSorted(hrSorted), _chunk_size(chunk_size),
1554
    _g1(G1CollectedHeap::heap()) { }
1555

1556
  void work(uint worker_id) {
1557 1558
    ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);

1559
    // Back to zero for the claim value.
1560
    _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1561
                                         _g1->workers()->active_workers(),
1562
                                         HeapRegion::InitialClaimValue);
1563 1564 1565 1566
  }
};

void
1567
G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1568
  _collectionSetChooser->clear();
1569

1570
  uint region_num = _g1->n_regions();
1571
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1572 1573
    const uint OverpartitionFactor = 4;
    uint WorkUnit;
1574 1575 1576 1577 1578
    // The use of MinChunkSize = 8 in the original code
    // causes some assertion failures when the total number of
    // region is less than 8.  The code here tries to fix that.
    // Should the original code also be fixed?
    if (no_of_gc_threads > 0) {
1579 1580 1581
      const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
      WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
                      MinWorkUnit);
1582 1583 1584 1585
    } else {
      assert(no_of_gc_threads > 0,
        "The active gc workers should be greater than 0");
      // In a product build do something reasonable to avoid a crash.
1586
      const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1587
      WorkUnit =
1588
        MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1589 1590
             MinWorkUnit);
    }
1591 1592
    _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
                                                           WorkUnit);
1593
    ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1594
                                            (int) WorkUnit);
1595
    _g1->workers()->run_task(&parKnownGarbageTask);
1596 1597 1598

    assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
1599 1600 1601 1602
  } else {
    KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
    _g1->heap_region_iterate(&knownGarbagecl);
  }
1603

1604
  _collectionSetChooser->sort_regions();
1605

1606
  double end_sec = os::elapsedTime();
1607 1608 1609 1610 1611
  double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;
  _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1612 1613
}

1614
// Add the heap region at the head of the non-incremental collection set
1615
void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1616 1617 1618 1619
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(!hr->is_young(), "non-incremental add of young region");

  assert(!hr->in_collection_set(), "should not already be in the CSet");
1620 1621 1622 1623
  hr->set_in_collection_set(true);
  hr->set_next_in_collection_set(_collection_set);
  _collection_set = hr;
  _collection_set_bytes_used_before += hr->used();
1624
  _g1->register_region_with_in_cset_fast_test(hr);
1625 1626 1627
  size_t rs_length = hr->rem_set()->occupied();
  _recorded_rs_lengths += rs_length;
  _old_cset_region_length += 1;
1628 1629
}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
// Initialize the per-collection-set information
void G1CollectorPolicy::start_incremental_cset_building() {
  assert(_inc_cset_build_state == Inactive, "Precondition");

  _inc_cset_head = NULL;
  _inc_cset_tail = NULL;
  _inc_cset_bytes_used_before = 0;

  _inc_cset_max_finger = 0;
  _inc_cset_recorded_rs_lengths = 0;
1640 1641 1642
  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms = 0.0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1643 1644 1645
  _inc_cset_build_state = Active;
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
void G1CollectorPolicy::finalize_incremental_cset_building() {
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");

  // The two "main" fields, _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  // that adds a new region to the CSet. Further updates by the
  // concurrent refinement thread that samples the young RSet lengths
  // are accumulated in the *_diffs fields. Here we add the diffs to
  // the "main" fields.

  if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
    _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  } else {
    // This is defensive. The diff should in theory be always positive
    // as RSets can only grow between GCs. However, given that we
    // sample their size concurrently with other threads updating them
    // it's possible that we might get the wrong size back, which
    // could make the calculations somewhat inaccurate.
    size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
    if (_inc_cset_recorded_rs_lengths >= diffs) {
      _inc_cset_recorded_rs_lengths -= diffs;
    } else {
      _inc_cset_recorded_rs_lengths = 0;
    }
  }
  _inc_cset_predicted_elapsed_time_ms +=
                                     _inc_cset_predicted_elapsed_time_ms_diffs;

  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
}

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  // This routine is used when:
  // * adding survivor regions to the incremental cset at the end of an
  //   evacuation pause,
  // * adding the current allocation region to the incremental cset
  //   when it is retired, and
  // * updating existing policy information for a region in the
  //   incremental cset via young list RSet sampling.
  // Therefore this routine may be called at a safepoint by the
  // VM thread, or in-between safepoints by mutator threads (when
  // retiring the current allocation region) or a concurrent
  // refine thread (RSet sampling).

1692
  double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
  size_t used_bytes = hr->used();
  _inc_cset_recorded_rs_lengths += rs_length;
  _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  _inc_cset_bytes_used_before += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_recorded_rs_length(rs_length);
  hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
                                                     size_t new_rs_length) {
  // Update the CSet information that is dependent on the new RS length
  assert(hr->is_young(), "Precondition");
  assert(!SafepointSynchronize::is_at_safepoint(),
                                               "should not be at a safepoint");

  // We could have updated _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  // that atomically, as this code is executed by a concurrent
  // refinement thread, potentially concurrently with a mutator thread
  // allocating a new region and also updating the same fields. To
  // avoid the atomic operations we accumulate these updates on two
  // separate fields (*_diffs) and we'll just add them to the "main"
  // fields at the start of a GC.

  ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1725 1726

  double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1727
  double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1728 1729
  double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1730

1731 1732
  hr->set_recorded_rs_length(new_rs_length);
  hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1733 1734 1735
}

void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1736 1737
  assert(hr->is_young(), "invariant");
  assert(hr->young_index_in_cset() > -1, "should have already been set");
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
  assert(_inc_cset_build_state == Active, "Precondition");

  // We need to clear and set the cached recorded/cached collection set
  // information in the heap region here (before the region gets added
  // to the collection set). An individual heap region's cached values
  // are calculated, aggregated with the policy collection set info,
  // and cached in the heap region here (initially) and (subsequently)
  // by the Young List sampling code.

  size_t rs_length = hr->rem_set()->occupied();
  add_to_incremental_cset_info(hr, rs_length);

  HeapWord* hr_end = hr->end();
  _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);

  assert(!hr->in_collection_set(), "invariant");
  hr->set_in_collection_set(true);
  assert( hr->next_in_collection_set() == NULL, "invariant");

  _g1->register_region_with_in_cset_fast_test(hr);
}

// Add the region at the RHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  // We should only ever be appending survivors at the end of a pause
  assert( hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Now add the region at the right hand side
  if (_inc_cset_tail == NULL) {
    assert(_inc_cset_head == NULL, "invariant");
    _inc_cset_head = hr;
  } else {
    _inc_cset_tail->set_next_in_collection_set(hr);
  }
  _inc_cset_tail = hr;
}

// Add the region to the LHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  // Survivors should be added to the RHS at the end of a pause
  assert(!hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Add the region at the left hand side
  hr->set_next_in_collection_set(_inc_cset_head);
  if (_inc_cset_head == NULL) {
    assert(_inc_cset_tail == NULL, "Invariant");
    _inc_cset_tail = hr;
  }
  _inc_cset_head = hr;
}

#ifndef PRODUCT
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");

  st->print_cr("\nCollection_set:");
  HeapRegion* csr = list_head;
  while (csr != NULL) {
    HeapRegion* next = csr->next_in_collection_set();
    assert(csr->in_collection_set(), "bad CS");
1804 1805 1806 1807
    st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                 HR_FORMAT_PARAMS(csr),
                 csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
                 csr->age_in_surv_rate_group_cond());
1808 1809 1810 1811 1812
    csr = next;
  }
}
#endif // !PRODUCT

1813 1814 1815 1816 1817 1818 1819 1820
double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
  // Returns the given amount of reclaimable bytes (that represents
  // the amount of reclaimable space still to be collected) as a
  // percentage of the current heap capacity.
  size_t capacity_bytes = _g1->capacity();
  return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
}

1821 1822 1823
bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
                                                const char* false_action_str) {
  CollectionSetChooser* cset_chooser = _collectionSetChooser;
1824
  if (cset_chooser->is_empty()) {
1825 1826 1827 1828 1829
    ergo_verbose0(ErgoMixedGCs,
                  false_action_str,
                  ergo_format_reason("candidate old regions not available"));
    return false;
  }
1830 1831

  // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1832
  size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1833
  double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1834
  double threshold = (double) G1HeapWastePercent;
1835
  if (reclaimable_perc <= threshold) {
1836 1837
    ergo_verbose4(ErgoMixedGCs,
              false_action_str,
1838
              ergo_format_reason("reclaimable percentage not over threshold")
1839 1840 1841
              ergo_format_region("candidate old regions")
              ergo_format_byte_perc("reclaimable")
              ergo_format_perc("threshold"),
1842
              cset_chooser->remaining_regions(),
1843 1844
              reclaimable_bytes,
              reclaimable_perc, threshold);
1845 1846 1847 1848 1849 1850 1851 1852 1853
    return false;
  }

  ergo_verbose4(ErgoMixedGCs,
                true_action_str,
                ergo_format_reason("candidate old regions available")
                ergo_format_region("candidate old regions")
                ergo_format_byte_perc("reclaimable")
                ergo_format_perc("threshold"),
1854
                cset_chooser->remaining_regions(),
1855 1856
                reclaimable_bytes,
                reclaimable_perc, threshold);
1857 1858 1859
  return true;
}

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
uint G1CollectorPolicy::calc_min_old_cset_length() {
  // The min old CSet region bound is based on the maximum desired
  // number of mixed GCs after a cycle. I.e., even if some old regions
  // look expensive, we should add them to the CSet anyway to make
  // sure we go through the available old regions in no more than the
  // maximum desired number of mixed GCs.
  //
  // The calculation is based on the number of marked regions we added
  // to the CSet chooser in the first place, not how many remain, so
  // that the result is the same during all mixed GCs that follow a cycle.

  const size_t region_num = (size_t) _collectionSetChooser->length();
  const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
  size_t result = region_num / gc_num;
  // emulate ceiling
  if (result * gc_num < region_num) {
    result += 1;
  }
  return (uint) result;
}

uint G1CollectorPolicy::calc_max_old_cset_length() {
  // The max old CSet region bound is based on the threshold expressed
  // as a percentage of the heap size. I.e., it should bound the
  // number of old regions added to the CSet irrespective of how many
  // of them are available.

  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  const size_t region_num = g1h->n_regions();
  const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
  size_t result = region_num * perc / 100;
  // emulate ceiling
  if (100 * result < region_num * perc) {
    result += 1;
  }
  return (uint) result;
}


1899
void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
1900
  double young_start_time_sec = os::elapsedTime();
1901

1902
  YoungList* young_list = _g1->young_list();
1903
  finalize_incremental_cset_building();
1904

1905 1906 1907 1908
  guarantee(target_pause_time_ms > 0.0,
            err_msg("target_pause_time_ms = %1.6lf should be positive",
                    target_pause_time_ms));
  guarantee(_collection_set == NULL, "Precondition");
1909 1910 1911

  double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  double predicted_pause_time_ms = base_time_ms;
1912
  double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1913

1914
  ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1915
                "start choosing CSet",
1916
                ergo_format_size("_pending_cards")
1917 1918 1919
                ergo_format_ms("predicted base time")
                ergo_format_ms("remaining time")
                ergo_format_ms("target pause time"),
1920
                _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1921

1922
  _last_gc_was_young = gcs_are_young() ? true : false;
1923

1924
  if (_last_gc_was_young) {
1925
    _trace_gen0_time_data.increment_young_collection_count();
1926
  } else {
1927
    _trace_gen0_time_data.increment_mixed_collection_count();
1928
  }
1929

1930 1931 1932
  // The young list is laid with the survivor regions from the previous
  // pause are appended to the RHS of the young list, i.e.
  //   [Newly Young Regions ++ Survivors from last pause].
1933

1934 1935
  uint survivor_region_length = young_list->survivor_length();
  uint eden_region_length = young_list->length() - survivor_region_length;
1936
  init_cset_region_lengths(eden_region_length, survivor_region_length);
1937 1938

  HeapRegion* hr = young_list->first_survivor_region();
1939 1940 1941 1942 1943
  while (hr != NULL) {
    assert(hr->is_survivor(), "badly formed young list");
    hr->set_young();
    hr = hr->get_next_young_region();
  }
1944

1945 1946
  // Clear the fields that point to the survivor list - they are all young now.
  young_list->clear_survivors();
1947

1948 1949
  _collection_set = _inc_cset_head;
  _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1950
  time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1951
  predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1952

1953 1954 1955 1956 1957
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "add young regions to CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_ms("predicted young region time"),
1958
                eden_region_length, survivor_region_length,
1959 1960
                _inc_cset_predicted_elapsed_time_ms);

1961 1962 1963
  // The number of recorded young regions is the incremental
  // collection set's current size
  set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1964

1965
  double young_end_time_sec = os::elapsedTime();
1966
  phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1967

1968 1969
  // Set the start of the non-young choice time.
  double non_young_start_time_sec = young_end_time_sec;
1970

1971
  if (!gcs_are_young()) {
1972
    CollectionSetChooser* cset_chooser = _collectionSetChooser;
1973
    cset_chooser->verify();
1974 1975
    const uint min_old_cset_length = calc_min_old_cset_length();
    const uint max_old_cset_length = calc_max_old_cset_length();
1976

1977
    uint expensive_region_num = 0;
1978
    bool check_time_remaining = adaptive_young_list_length();
1979

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
    HeapRegion* hr = cset_chooser->peek();
    while (hr != NULL) {
      if (old_cset_region_length() >= max_old_cset_length) {
        // Added maximum number of old regions to the CSet.
        ergo_verbose2(ErgoCSetConstruction,
                      "finish adding old regions to CSet",
                      ergo_format_reason("old CSet region num reached max")
                      ergo_format_region("old")
                      ergo_format_region("max"),
                      old_cset_region_length(), max_old_cset_length);
        break;
1991
      }
1992

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

      // Stop adding regions if the remaining reclaimable space is
      // not above G1HeapWastePercent.
      size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
      double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
      double threshold = (double) G1HeapWastePercent;
      if (reclaimable_perc <= threshold) {
        // We've added enough old regions that the amount of uncollected
        // reclaimable space is at or below the waste threshold. Stop
        // adding old regions to the CSet.
        ergo_verbose5(ErgoCSetConstruction,
                      "finish adding old regions to CSet",
                      ergo_format_reason("reclaimable percentage not over threshold")
                      ergo_format_region("old")
                      ergo_format_region("max")
                      ergo_format_byte_perc("reclaimable")
                      ergo_format_perc("threshold"),
                      old_cset_region_length(),
                      max_old_cset_length,
                      reclaimable_bytes,
                      reclaimable_perc, threshold);
        break;
      }

2017
      double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
      if (check_time_remaining) {
        if (predicted_time_ms > time_remaining_ms) {
          // Too expensive for the current CSet.

          if (old_cset_region_length() >= min_old_cset_length) {
            // We have added the minimum number of old regions to the CSet,
            // we are done with this CSet.
            ergo_verbose4(ErgoCSetConstruction,
                          "finish adding old regions to CSet",
                          ergo_format_reason("predicted time is too high")
                          ergo_format_ms("predicted time")
                          ergo_format_ms("remaining time")
                          ergo_format_region("old")
                          ergo_format_region("min"),
                          predicted_time_ms, time_remaining_ms,
                          old_cset_region_length(), min_old_cset_length);
            break;
2035
          }
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051

          // We'll add it anyway given that we haven't reached the
          // minimum number of old regions.
          expensive_region_num += 1;
        }
      } else {
        if (old_cset_region_length() >= min_old_cset_length) {
          // In the non-auto-tuning case, we'll finish adding regions
          // to the CSet if we reach the minimum.
          ergo_verbose2(ErgoCSetConstruction,
                        "finish adding old regions to CSet",
                        ergo_format_reason("old CSet region num reached min")
                        ergo_format_region("old")
                        ergo_format_region("min"),
                        old_cset_region_length(), min_old_cset_length);
          break;
2052 2053
        }
      }
2054 2055

      // We will add this region to the CSet.
2056
      time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
      predicted_pause_time_ms += predicted_time_ms;
      cset_chooser->remove_and_move_to_next(hr);
      _g1->old_set_remove(hr);
      add_old_region_to_cset(hr);

      hr = cset_chooser->peek();
    }
    if (hr == NULL) {
      ergo_verbose0(ErgoCSetConstruction,
                    "finish adding old regions to CSet",
                    ergo_format_reason("candidate old regions not available"));
    }

    if (expensive_region_num > 0) {
      // We print the information once here at the end, predicated on
      // whether we added any apparently expensive regions or not, to
      // avoid generating output per region.
      ergo_verbose4(ErgoCSetConstruction,
                    "added expensive regions to CSet",
                    ergo_format_reason("old CSet region num not reached min")
                    ergo_format_region("old")
                    ergo_format_region("expensive")
                    ergo_format_region("min")
                    ergo_format_ms("remaining time"),
                    old_cset_region_length(),
                    expensive_region_num,
                    min_old_cset_length,
                    time_remaining_ms);
2085 2086
    }

2087
    cset_chooser->verify();
2088 2089
  }

2090 2091
  stop_incremental_cset_building();

2092 2093 2094 2095 2096 2097 2098
  ergo_verbose5(ErgoCSetConstruction,
                "finish choosing CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_region("old")
                ergo_format_ms("predicted pause time")
                ergo_format_ms("target pause time"),
2099 2100
                eden_region_length, survivor_region_length,
                old_cset_region_length(),
2101 2102
                predicted_pause_time_ms, target_pause_time_ms);

2103
  double non_young_end_time_sec = os::elapsedTime();
2104
  phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2105
}
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  if(TraceGen0Time) {
    _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  }
}

void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  if(TraceGen0Time) {
    _all_yield_times_ms.add(yield_time_ms);
  }
}

2119
void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2120
  if(TraceGen0Time) {
2121 2122
    _total.add(pause_time_ms);
    _other.add(pause_time_ms - phase_times->accounted_time_ms());
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
    _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
    _parallel.add(phase_times->cur_collection_par_time_ms());
    _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
    _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
    _update_rs.add(phase_times->average_last_update_rs_time());
    _scan_rs.add(phase_times->average_last_scan_rs_time());
    _obj_copy.add(phase_times->average_last_obj_copy_time());
    _termination.add(phase_times->average_last_termination_time());

    double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
      phase_times->average_last_satb_filtering_times_ms() +
      phase_times->average_last_update_rs_time() +
      phase_times->average_last_scan_rs_time() +
      phase_times->average_last_obj_copy_time() +
      + phase_times->average_last_termination_time();

    double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2140
    _parallel_other.add(parallel_other_time);
2141
    _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
  }
}

void TraceGen0TimeData::increment_young_collection_count() {
  if(TraceGen0Time) {
    ++_young_pause_num;
  }
}

void TraceGen0TimeData::increment_mixed_collection_count() {
  if(TraceGen0Time) {
    ++_mixed_pause_num;
  }
}

2157
void TraceGen0TimeData::print_summary(const char* str,
2158 2159
                                      const NumberSeq* seq) const {
  double sum = seq->sum();
2160
  gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2161 2162 2163
                str, sum / 1000.0, seq->avg());
}

2164
void TraceGen0TimeData::print_summary_sd(const char* str,
2165
                                         const NumberSeq* seq) const {
2166 2167 2168
  print_summary(str, seq);
  gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
                "(num", seq->num(), seq->sd(), seq->maximum());
2169 2170 2171 2172 2173 2174 2175 2176
}

void TraceGen0TimeData::print() const {
  if (!TraceGen0Time) {
    return;
  }

  gclog_or_tty->print_cr("ALL PAUSES");
2177
  print_summary_sd("   Total", &_total);
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
  gclog_or_tty->print_cr("");
  gclog_or_tty->print_cr("");
  gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  gclog_or_tty->print_cr("");

  gclog_or_tty->print_cr("EVACUATION PAUSES");

  if (_young_pause_num == 0 && _mixed_pause_num == 0) {
    gclog_or_tty->print_cr("none");
  } else {
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
    print_summary_sd("   Evacuation Pauses", &_total);
    print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
    print_summary("      Parallel Time", &_parallel);
    print_summary("         Ext Root Scanning", &_ext_root_scan);
    print_summary("         SATB Filtering", &_satb_filtering);
    print_summary("         Update RS", &_update_rs);
    print_summary("         Scan RS", &_scan_rs);
    print_summary("         Object Copy", &_obj_copy);
    print_summary("         Termination", &_termination);
    print_summary("         Parallel Other", &_parallel_other);
    print_summary("      Clear CT", &_clear_ct);
    print_summary("      Other", &_other);
2201 2202 2203 2204
  }
  gclog_or_tty->print_cr("");

  gclog_or_tty->print_cr("MISC");
2205 2206
  print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  print_summary_sd("   Yields", &_all_yield_times_ms);
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
}

void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  if (TraceGen1Time) {
    _all_full_gc_times.add(full_gc_time_ms);
  }
}

void TraceGen1TimeData::print() const {
  if (!TraceGen1Time) {
    return;
  }

  if (_all_full_gc_times.num() > 0) {
    gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
      _all_full_gc_times.num(),
      _all_full_gc_times.sum() / 1000.0);
    gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
    gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
      _all_full_gc_times.sd(),
      _all_full_gc_times.maximum());
  }
}