g1CollectorPolicy.cpp 86.2 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
33
#include "gc_implementation/g1/g1Log.hpp"
34 35 36 37 38 39
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "runtime/arguments.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/debug.hpp"
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

// Different defaults for different number of GC threads
// They were chosen by running GCOld and SPECjbb on debris with different
//   numbers of GC threads and choosing them based on the results

// all the same
static double rs_length_diff_defaults[] = {
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

static double cost_per_card_ms_defaults[] = {
  0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
};

// all the same
55
static double young_cards_per_entry_ratio_defaults[] = {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

static double cost_per_entry_ms_defaults[] = {
  0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
};

static double cost_per_byte_ms_defaults[] = {
  0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
};

// these should be pretty consistent
static double constant_other_time_ms_defaults[] = {
  5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
};


static double young_other_cost_per_region_ms_defaults[] = {
  0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
};

static double non_young_other_cost_per_region_ms_defaults[] = {
  1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
};

G1CollectorPolicy::G1CollectorPolicy() :
82
  _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
83
                        ? ParallelGCThreads : 1),
84

85 86 87 88 89 90 91 92 93 94
  _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _stop_world_start(0.0),

  _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _prev_collection_pause_end_ms(0.0),
  _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
95 96
  _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
97
  _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
98
  _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
99 100 101 102 103 104 105 106 107 108
  _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
  _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _non_young_other_cost_per_region_ms_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),

  _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),

J
johnc 已提交
109
  _pause_time_target_ms((double) MaxGCPauseMillis),
110

111
  _gcs_are_young(true),
112 113 114 115 116

  _during_marking(false),
  _in_marking_window(false),
  _in_marking_window_im(false),

117 118
  _recent_prev_end_times_for_all_gcs_sec(
                                new TruncatedSeq(NumPrevPausesForHeuristics)),
119 120 121

  _recent_avg_pause_time_ratio(0.0),

122 123
  _initiate_conc_mark_if_possible(false),
  _during_initial_mark_pause(false),
124 125
  _last_young_gc(false),
  _last_gc_was_young(false),
126

127 128 129 130
  _eden_bytes_before_gc(0),
  _survivor_bytes_before_gc(0),
  _capacity_before_gc(0),

131 132 133 134
  _eden_cset_region_length(0),
  _survivor_cset_region_length(0),
  _old_cset_region_length(0),

135
  _collection_set(NULL),
136 137 138 139 140 141 142 143 144
  _collection_set_bytes_used_before(0),

  // Incremental CSet attributes
  _inc_cset_build_state(Inactive),
  _inc_cset_head(NULL),
  _inc_cset_tail(NULL),
  _inc_cset_bytes_used_before(0),
  _inc_cset_max_finger(NULL),
  _inc_cset_recorded_rs_lengths(0),
145
  _inc_cset_recorded_rs_lengths_diffs(0),
146
  _inc_cset_predicted_elapsed_time_ms(0.0),
147
  _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
148

149 150 151 152 153 154 155
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

  _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
                                                 G1YoungSurvRateNumRegionsSummary)),
  _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
156
                                              G1YoungSurvRateNumRegionsSummary)),
157
  // add here any more surv rate groups
158 159 160
  _recorded_survivor_regions(0),
  _recorded_survivor_head(NULL),
  _recorded_survivor_tail(NULL),
T
tonyp 已提交
161 162
  _survivors_age_table(true),

163
  _gc_overhead_perc(0.0) {
164

165 166 167 168
  // Set up the region size and associated fields. Given that the
  // policy is created before the heap, we have to set this up here,
  // so it's done as soon as possible.
  HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
169
  HeapRegionRemSet::setup_remset_size();
170

171 172 173 174 175 176 177 178 179 180 181 182
  G1ErgoVerbose::initialize();
  if (PrintAdaptiveSizePolicy) {
    // Currently, we only use a single switch for all the heuristics.
    G1ErgoVerbose::set_enabled(true);
    // Given that we don't currently have a verboseness level
    // parameter, we'll hardcode this to high. This can be easily
    // changed in the future.
    G1ErgoVerbose::set_level(ErgoHigh);
  } else {
    G1ErgoVerbose::set_enabled(false);
  }

183
  // Verify PLAB sizes
184
  const size_t region_size = HeapRegion::GrainWords;
185 186
  if (YoungPLABSize > region_size || OldPLABSize > region_size) {
    char buffer[128];
187
    jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
188 189 190 191
                 OldPLABSize > region_size ? "Old" : "Young", region_size);
    vm_exit_during_initialization(buffer);
  }

192 193 194
  _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
  _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;

195
  _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
196

197
  int index = MIN2(_parallel_gc_threads - 1, 7);
198 199 200

  _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
  _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
201 202
  _young_cards_per_entry_ratio_seq->add(
                                  young_cards_per_entry_ratio_defaults[index]);
203 204 205 206 207 208 209 210
  _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
  _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
  _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
  _young_other_cost_per_region_ms_seq->add(
                               young_other_cost_per_region_ms_defaults[index]);
  _non_young_other_cost_per_region_ms_seq->add(
                           non_young_other_cost_per_region_ms_defaults[index]);

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  // Below, we might need to calculate the pause time target based on
  // the pause interval. When we do so we are going to give G1 maximum
  // flexibility and allow it to do pauses when it needs to. So, we'll
  // arrange that the pause interval to be pause time target + 1 to
  // ensure that a) the pause time target is maximized with respect to
  // the pause interval and b) we maintain the invariant that pause
  // time target < pause interval. If the user does not want this
  // maximum flexibility, they will have to set the pause interval
  // explicitly.

  // First make sure that, if either parameter is set, its value is
  // reasonable.
  if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (MaxGCPauseMillis < 1) {
      vm_exit_during_initialization("MaxGCPauseMillis should be "
                                    "greater than 0");
    }
  }
  if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    if (GCPauseIntervalMillis < 1) {
      vm_exit_during_initialization("GCPauseIntervalMillis should be "
                                    "greater than 0");
    }
  }

  // Then, if the pause time target parameter was not set, set it to
  // the default value.
  if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
      // The default pause time target in G1 is 200ms
      FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
    } else {
      // We do not allow the pause interval to be set without the
      // pause time target
      vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
                                    "without setting MaxGCPauseMillis");
    }
  }

  // Then, if the interval parameter was not set, set it according to
  // the pause time target (this will also deal with the case when the
  // pause time target is the default value).
  if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
  }

  // Finally, make sure that the two parameters are consistent.
  if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
    char buffer[256];
    jio_snprintf(buffer, 256,
                 "MaxGCPauseMillis (%u) should be less than "
                 "GCPauseIntervalMillis (%u)",
                 MaxGCPauseMillis, GCPauseIntervalMillis);
    vm_exit_during_initialization(buffer);
  }

J
johnc 已提交
267
  double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
268
  double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
269
  _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
270 271 272 273 274 275 276 277 278

  uintx confidence_perc = G1ConfidencePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (confidence_perc > 100) {
    confidence_perc = 100;
    warning("G1ConfidencePercent is set to a value that is too large, "
            "it's been updated to %u", confidence_perc);
  }
  _sigma = (double) confidence_perc / 100.0;
279 280 281 282 283

  // start conservatively (around 50ms is about right)
  _concurrent_mark_remark_times_ms->add(0.05);
  _concurrent_mark_cleanup_times_ms->add(0.20);
  _tenuring_threshold = MaxTenuringThreshold;
284
  // _max_survivor_regions will be calculated by
285
  // update_young_list_target_length() during initialization.
286
  _max_survivor_regions = 0;
287

T
tonyp 已提交
288 289 290 291 292
  assert(GCTimeRatio > 0,
         "we should have set it to a default value set_g1_gc_flags() "
         "if a user set it to 0");
  _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));

293 294 295 296 297 298 299 300
  uintx reserve_perc = G1ReservePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (reserve_perc > 50) {
    reserve_perc = 50;
    warning("G1ReservePercent is set to a value that is too large, "
            "it's been updated to %u", reserve_perc);
  }
  _reserve_factor = (double) reserve_perc / 100.0;
301
  // This will be set when the heap is expanded
302 303 304
  // for the first time during initialization.
  _reserve_regions = 0;

305
  initialize_all();
306
  _collectionSetChooser = new CollectionSetChooser();
307
  _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
308 309 310 311
}

void G1CollectorPolicy::initialize_flags() {
  set_min_alignment(HeapRegion::GrainBytes);
312 313
  size_t card_table_alignment = GenRemSet::max_alignment_constraint(rem_set_name());
  set_max_alignment(MAX2(card_table_alignment, min_alignment()));
314 315 316
  if (SurvivorRatio < 1) {
    vm_exit_during_initialization("Invalid survivor ratio specified");
  }
317 318 319
  CollectorPolicy::initialize_flags();
}

320
G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
321 322 323
  assert(G1NewSizePercent <= G1MaxNewSizePercent, "Min larger than max");
  assert(G1NewSizePercent > 0 && G1NewSizePercent < 100, "Min out of bounds");
  assert(G1MaxNewSizePercent > 0 && G1MaxNewSizePercent < 100, "Max out of bounds");
324

325 326 327 328 329 330 331 332
  if (FLAG_IS_CMDLINE(NewRatio)) {
    if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
      warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
    } else {
      _sizer_kind = SizerNewRatio;
      _adaptive_size = false;
      return;
    }
333
  }
334 335

  if (FLAG_IS_CMDLINE(NewSize)) {
336 337
    _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
                                     1U);
338
    if (FLAG_IS_CMDLINE(MaxNewSize)) {
339 340 341
      _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
342 343 344 345 346 347
      _sizer_kind = SizerMaxAndNewSize;
      _adaptive_size = _min_desired_young_length == _max_desired_young_length;
    } else {
      _sizer_kind = SizerNewSizeOnly;
    }
  } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
348 349 350
    _max_desired_young_length =
                             MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
                                  1U);
351
    _sizer_kind = SizerMaxNewSizeOnly;
352
  }
353 354
}

355
uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
356
  uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
357
  return MAX2(1U, default_value);
358 359
}

360
uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
361
  uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
362
  return MAX2(1U, default_value);
363 364
}

365
void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
  assert(new_number_of_heap_regions > 0, "Heap must be initialized");

  switch (_sizer_kind) {
    case SizerDefaults:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      break;
    case SizerNewSizeOnly:
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxNewSizeOnly:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxAndNewSize:
      // Do nothing. Values set on the command line, don't update them at runtime.
      break;
    case SizerNewRatio:
      _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
      _max_desired_young_length = _min_desired_young_length;
      break;
    default:
      ShouldNotReachHere();
390 391
  }

392
  assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
393 394
}

395 396 397 398 399 400
void G1CollectorPolicy::init() {
  // Set aside an initial future to_space.
  _g1 = G1CollectedHeap::heap();

  assert(Heap_lock->owned_by_self(), "Locking discipline.");

401 402
  initialize_gc_policy_counters();

403
  if (adaptive_young_list_length()) {
404
    _young_list_fixed_length = 0;
405
  } else {
406
    _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
407
  }
408
  _free_regions_at_end_of_collection = _g1->free_regions();
409
  update_young_list_target_length();
410 411 412 413

  // We may immediately start allocating regions and placing them on the
  // collection set list. Initialize the per-collection set info
  start_incremental_cset_building();
414 415
}

416
// Create the jstat counters for the policy.
417
void G1CollectorPolicy::initialize_gc_policy_counters() {
418
  _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
419 420
}

421
bool G1CollectorPolicy::predict_will_fit(uint young_length,
422
                                         double base_time_ms,
423
                                         uint base_free_regions,
424 425 426 427 428
                                         double target_pause_time_ms) {
  if (young_length >= base_free_regions) {
    // end condition 1: not enough space for the young regions
    return false;
  }
429

430
  double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
431 432 433 434 435 436 437 438 439
  size_t bytes_to_copy =
               (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
  double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
  double young_other_time_ms = predict_young_other_time_ms(young_length);
  double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
  if (pause_time_ms > target_pause_time_ms) {
    // end condition 2: prediction is over the target pause time
    return false;
  }
440

441
  size_t free_bytes =
442
                   (base_free_regions - young_length) * HeapRegion::GrainBytes;
443 444 445
  if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
    // end condition 3: out-of-space (conservatively!)
    return false;
446
  }
447 448 449 450 451

  // success!
  return true;
}

452
void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
453 454
  // re-calculate the necessary reserve
  double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
455 456
  // We use ceiling so that if reserve_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
457
  _reserve_regions = (uint) ceil(reserve_regions_d);
458

459
  _young_gen_sizer->heap_size_changed(new_number_of_regions);
460 461
}

462 463 464
uint G1CollectorPolicy::calculate_young_list_desired_min_length(
                                                       uint base_min_length) {
  uint desired_min_length = 0;
465
  if (adaptive_young_list_length()) {
466 467 468 469
    if (_alloc_rate_ms_seq->num() > 3) {
      double now_sec = os::elapsedTime();
      double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
      double alloc_rate_ms = predict_alloc_rate_ms();
470
      desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
471 472
    } else {
      // otherwise we don't have enough info to make the prediction
473 474
    }
  }
475 476
  desired_min_length += base_min_length;
  // make sure we don't go below any user-defined minimum bound
477
  return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
478 479
}

480
uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
481 482 483
  // Here, we might want to also take into account any additional
  // constraints (i.e., user-defined minimum bound). Currently, we
  // effectively don't set this bound.
484
  return _young_gen_sizer->max_desired_young_length();
485
}
486

487 488 489 490 491 492
void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
  if (rs_lengths == (size_t) -1) {
    // if it's set to the default value (-1), we should predict it;
    // otherwise, use the given value.
    rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
  }
493

494
  // Calculate the absolute and desired min bounds.
495

496
  // This is how many young regions we already have (currently: the survivors).
497
  uint base_min_length = recorded_survivor_regions();
498 499
  // This is the absolute minimum young length, which ensures that we
  // can allocate one eden region in the worst-case.
500 501
  uint absolute_min_length = base_min_length + 1;
  uint desired_min_length =
502 503 504 505
                     calculate_young_list_desired_min_length(base_min_length);
  if (desired_min_length < absolute_min_length) {
    desired_min_length = absolute_min_length;
  }
506

507
  // Calculate the absolute and desired max bounds.
508

509
  // We will try our best not to "eat" into the reserve.
510
  uint absolute_max_length = 0;
511 512 513
  if (_free_regions_at_end_of_collection > _reserve_regions) {
    absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
  }
514
  uint desired_max_length = calculate_young_list_desired_max_length();
515 516 517
  if (desired_max_length > absolute_max_length) {
    desired_max_length = absolute_max_length;
  }
518

519
  uint young_list_target_length = 0;
520
  if (adaptive_young_list_length()) {
521
    if (gcs_are_young()) {
522 523 524 525 526 527 528 529 530 531 532 533
      young_list_target_length =
                        calculate_young_list_target_length(rs_lengths,
                                                           base_min_length,
                                                           desired_min_length,
                                                           desired_max_length);
      _rs_lengths_prediction = rs_lengths;
    } else {
      // Don't calculate anything and let the code below bound it to
      // the desired_min_length, i.e., do the next GC as soon as
      // possible to maximize how many old regions we can add to it.
    }
  } else {
534 535 536
    // The user asked for a fixed young gen so we'll fix the young gen
    // whether the next GC is young or mixed.
    young_list_target_length = _young_list_fixed_length;
537
  }
538

539 540 541 542 543 544 545 546 547
  // Make sure we don't go over the desired max length, nor under the
  // desired min length. In case they clash, desired_min_length wins
  // which is why that test is second.
  if (young_list_target_length > desired_max_length) {
    young_list_target_length = desired_max_length;
  }
  if (young_list_target_length < desired_min_length) {
    young_list_target_length = desired_min_length;
  }
548

549 550 551 552
  assert(young_list_target_length > recorded_survivor_regions(),
         "we should be able to allocate at least one eden region");
  assert(young_list_target_length >= absolute_min_length, "post-condition");
  _young_list_target_length = young_list_target_length;
553

554 555
  update_max_gc_locker_expansion();
}
556

557
uint
558
G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
559 560 561
                                                     uint base_min_length,
                                                     uint desired_min_length,
                                                     uint desired_max_length) {
562
  assert(adaptive_young_list_length(), "pre-condition");
563
  assert(gcs_are_young(), "only call this for young GCs");
564 565 566 567 568 569 570 571 572 573 574 575

  // In case some edge-condition makes the desired max length too small...
  if (desired_max_length <= desired_min_length) {
    return desired_min_length;
  }

  // We'll adjust min_young_length and max_young_length not to include
  // the already allocated young regions (i.e., so they reflect the
  // min and max eden regions we'll allocate). The base_min_length
  // will be reflected in the predictions by the
  // survivor_regions_evac_time prediction.
  assert(desired_min_length > base_min_length, "invariant");
576
  uint min_young_length = desired_min_length - base_min_length;
577
  assert(desired_max_length > base_min_length, "invariant");
578
  uint max_young_length = desired_max_length - base_min_length;
579 580 581 582 583 584 585 586 587

  double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
  double survivor_regions_evac_time = predict_survivor_regions_evac_time();
  size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
  size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
  size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
  double base_time_ms =
    predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
    survivor_regions_evac_time;
588 589
  uint available_free_regions = _free_regions_at_end_of_collection;
  uint base_free_regions = 0;
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
  if (available_free_regions > _reserve_regions) {
    base_free_regions = available_free_regions - _reserve_regions;
  }

  // Here, we will make sure that the shortest young length that
  // makes sense fits within the target pause time.

  if (predict_will_fit(min_young_length, base_time_ms,
                       base_free_regions, target_pause_time_ms)) {
    // The shortest young length will fit into the target pause time;
    // we'll now check whether the absolute maximum number of young
    // regions will fit in the target pause time. If not, we'll do
    // a binary search between min_young_length and max_young_length.
    if (predict_will_fit(max_young_length, base_time_ms,
                         base_free_regions, target_pause_time_ms)) {
      // The maximum young length will fit into the target pause time.
      // We are done so set min young length to the maximum length (as
      // the result is assumed to be returned in min_young_length).
      min_young_length = max_young_length;
    } else {
      // The maximum possible number of young regions will not fit within
      // the target pause time so we'll search for the optimal
      // length. The loop invariants are:
      //
      // min_young_length < max_young_length
      // min_young_length is known to fit into the target pause time
      // max_young_length is known not to fit into the target pause time
      //
      // Going into the loop we know the above hold as we've just
      // checked them. Every time around the loop we check whether
      // the middle value between min_young_length and
      // max_young_length fits into the target pause time. If it
      // does, it becomes the new min. If it doesn't, it becomes
      // the new max. This way we maintain the loop invariants.

      assert(min_young_length < max_young_length, "invariant");
626
      uint diff = (max_young_length - min_young_length) / 2;
627
      while (diff > 0) {
628
        uint young_length = min_young_length + diff;
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
        if (predict_will_fit(young_length, base_time_ms,
                             base_free_regions, target_pause_time_ms)) {
          min_young_length = young_length;
        } else {
          max_young_length = young_length;
        }
        assert(min_young_length <  max_young_length, "invariant");
        diff = (max_young_length - min_young_length) / 2;
      }
      // The results is min_young_length which, according to the
      // loop invariants, should fit within the target pause time.

      // These are the post-conditions of the binary search above:
      assert(min_young_length < max_young_length,
             "otherwise we should have discovered that max_young_length "
             "fits into the pause target and not done the binary search");
      assert(predict_will_fit(min_young_length, base_time_ms,
                              base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should "
             "fit into the pause target");
      assert(!predict_will_fit(min_young_length + 1, base_time_ms,
                               base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should be "
             "optimal, so no larger length should fit into the pause target");
    }
  } else {
    // Even the minimum length doesn't fit into the pause time
    // target, return it as the result nevertheless.
  }
  return base_min_length + min_young_length;
659 660
}

661 662 663 664 665
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
  double survivor_regions_evac_time = 0.0;
  for (HeapRegion * r = _recorded_survivor_head;
       r != NULL && r != _recorded_survivor_tail->get_next_young_region();
       r = r->get_next_young_region()) {
666
    survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
667 668 669 670
  }
  return survivor_regions_evac_time;
}

671
void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
672 673
  guarantee( adaptive_young_list_length(), "should not call this otherwise" );

674
  size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
675 676 677
  if (rs_lengths > _rs_lengths_prediction) {
    // add 10% to avoid having to recalculate often
    size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
678
    update_young_list_target_length(rs_lengths_prediction);
679 680 681
  }
}

682 683


684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
                                               bool is_tlab,
                                               bool* gc_overhead_limit_was_exceeded) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}

// This method controls how a collector handles one or more
// of its generations being fully allocated.
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
                                                       bool is_tlab) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}


#ifndef PRODUCT
bool G1CollectorPolicy::verify_young_ages() {
702
  HeapRegion* head = _g1->young_list()->first_region();
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
  return
    verify_young_ages(head, _short_lived_surv_rate_group);
  // also call verify_young_ages on any additional surv rate groups
}

bool
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
                                     SurvRateGroup *surv_rate_group) {
  guarantee( surv_rate_group != NULL, "pre-condition" );

  const char* name = surv_rate_group->name();
  bool ret = true;
  int prev_age = -1;

  for (HeapRegion* curr = head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    SurvRateGroup* group = curr->surv_rate_group();
    if (group == NULL && !curr->is_survivor()) {
      gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
      ret = false;
    }

    if (surv_rate_group == group) {
      int age = curr->age_in_surv_rate_group();

      if (age < 0) {
        gclog_or_tty->print_cr("## %s: encountered negative age", name);
        ret = false;
      }

      if (age <= prev_age) {
        gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
                               "(%d, %d)", name, age, prev_age);
        ret = false;
      }
      prev_age = age;
    }
  }

  return ret;
}
#endif // PRODUCT

void G1CollectorPolicy::record_full_collection_start() {
748
  _full_collection_start_sec = os::elapsedTime();
749
  record_heap_size_info_at_start();
750 751 752 753 754 755 756 757
  // Release the future to-space so that it is available for compaction into.
  _g1->set_full_collection();
}

void G1CollectorPolicy::record_full_collection_end() {
  // Consider this like a collection pause for the purposes of allocation
  // since last pause.
  double end_sec = os::elapsedTime();
758
  double full_gc_time_sec = end_sec - _full_collection_start_sec;
759 760
  double full_gc_time_ms = full_gc_time_sec * 1000.0;

761
  _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
762

763
  update_recent_gc_times(end_sec, full_gc_time_ms);
764 765 766

  _g1->clear_full_collection();

767 768 769 770
  // "Nuke" the heuristics that control the young/mixed GC
  // transitions and make sure we start with young GCs after the Full GC.
  set_gcs_are_young(true);
  _last_young_gc = false;
771 772
  clear_initiate_conc_mark_if_possible();
  clear_during_initial_mark_pause();
773 774 775 776 777 778
  _in_marking_window = false;
  _in_marking_window_im = false;

  _short_lived_surv_rate_group->start_adding_regions();
  // also call this on any additional surv rate groups

779 780
  record_survivor_regions(0, NULL, NULL);

781
  _free_regions_at_end_of_collection = _g1->free_regions();
782 783
  // Reset survivors SurvRateGroup.
  _survivor_surv_rate_group->reset();
784
  update_young_list_target_length();
785
  _collectionSetChooser->clear();
786
}
787 788 789 790 791

void G1CollectorPolicy::record_stop_world_start() {
  _stop_world_start = os::elapsedTime();
}

792
void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
793 794 795 796
  // We only need to do this here as the policy will only be applied
  // to the GC we're about to start. so, no point is calculating this
  // every time we calculate / recalculate the target young length.
  update_survivors_policy();
797

798 799 800
  assert(_g1->used() == _g1->recalculate_used(),
         err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
                 _g1->used(), _g1->recalculate_used()));
801 802

  double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
803
  _trace_gen0_time_data.record_start_collection(s_w_t_ms);
804 805
  _stop_world_start = 0.0;

806 807
  record_heap_size_info_at_start();

808
  phase_times()->record_cur_collection_start_sec(start_time_sec);
809 810
  _pending_cards = _g1->pending_card_num();

811
  _collection_set_bytes_used_before = 0;
812
  _bytes_copied_during_gc = 0;
813

814
  _last_gc_was_young = false;
815 816 817

  // do that for any other surv rate groups
  _short_lived_surv_rate_group->stop_adding_regions();
818
  _survivors_age_table.clear();
819

820 821 822
  assert( verify_young_ages(), "region age verification" );
}

823
void G1CollectorPolicy::record_concurrent_mark_init_end(double
824 825
                                                   mark_init_elapsed_time_ms) {
  _during_marking = true;
826 827
  assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
  clear_during_initial_mark_pause();
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
  _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_remark_start() {
  _mark_remark_start_sec = os::elapsedTime();
  _during_marking = false;
}

void G1CollectorPolicy::record_concurrent_mark_remark_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
  _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  _mark_cleanup_start_sec = os::elapsedTime();
}

850
void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
851
  _last_young_gc = true;
852
  _in_marking_window = false;
853 854 855 856 857
}

void G1CollectorPolicy::record_concurrent_pause() {
  if (_stop_world_start > 0.0) {
    double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
858
    _trace_gen0_time_data.record_yield_time(yield_ms);
859 860 861
  }
}

862 863
bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
  if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
864 865 866 867 868 869
    return false;
  }

  size_t marking_initiating_used_threshold =
    (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  size_t cur_used_bytes = _g1->non_young_capacity_bytes();
870
  size_t alloc_byte_size = alloc_word_size * HeapWordSize;
871

872
  if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
873
    if (gcs_are_young()) {
874
      ergo_verbose5(ErgoConcCycles,
875 876 877
        "request concurrent cycle initiation",
        ergo_format_reason("occupancy higher than threshold")
        ergo_format_byte("occupancy")
878
        ergo_format_byte("allocation request")
879 880 881
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
882
        alloc_byte_size,
883 884 885 886 887
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
      return true;
    } else {
888
      ergo_verbose5(ErgoConcCycles,
889 890 891
        "do not request concurrent cycle initiation",
        ergo_format_reason("still doing mixed collections")
        ergo_format_byte("occupancy")
892
        ergo_format_byte("allocation request")
893 894 895
        ergo_format_byte_perc("threshold")
        ergo_format_str("source"),
        cur_used_bytes,
896
        alloc_byte_size,
897 898 899 900 901 902 903 904 905
        marking_initiating_used_threshold,
        (double) InitiatingHeapOccupancyPercent,
        source);
    }
  }

  return false;
}

906 907 908
// Anything below that is considered to be zero
#define MIN_TIMER_GRANULARITY 0.0000001

909
void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms) {
910
  double end_time_sec = os::elapsedTime();
911 912
  assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
         "otherwise, the subtraction below does not make sense");
913
  size_t rs_size =
914
            _cur_collection_pause_used_regions_at_start - cset_region_length();
915 916 917
  size_t cur_used_bytes = _g1->used();
  assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  bool last_pause_included_initial_mark = false;
918
  bool update_stats = !_g1->evacuation_failed();
919 920 921 922 923 924 925 926 927

#ifndef PRODUCT
  if (G1YoungSurvRateVerbose) {
    gclog_or_tty->print_cr("");
    _short_lived_surv_rate_group->print();
    // do that for any other surv rate groups too
  }
#endif // PRODUCT

928
  last_pause_included_initial_mark = during_initial_mark_pause();
929
  if (last_pause_included_initial_mark) {
930
    record_concurrent_mark_init_end(0.0);
931
  } else if (!_last_young_gc && need_to_start_conc_mark("end of GC")) {
932 933 934 935 936
    // Note: this might have already been set, if during the last
    // pause we decided to start a cycle but at the beginning of
    // this pause we decided to postpone it. That's OK.
    set_initiate_conc_mark_if_possible();
  }
937

938
  _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
939 940 941 942 943
                          end_time_sec, false);

  size_t freed_bytes =
    _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
944

945 946 947 948
  double survival_fraction =
    (double)surviving_bytes/
    (double)_collection_set_bytes_used_before;

949
  if (update_stats) {
950
    _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
951 952
    // this is where we update the allocation rate of the application
    double app_time_ms =
953
      (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
954 955 956 957 958 959
    if (app_time_ms < MIN_TIMER_GRANULARITY) {
      // This usually happens due to the timer not having the required
      // granularity. Some Linuxes are the usual culprits.
      // We'll just set it to something (arbitrarily) small.
      app_time_ms = 1.0;
    }
960 961 962 963 964 965 966 967
    // We maintain the invariant that all objects allocated by mutator
    // threads will be allocated out of eden regions. So, we can use
    // the eden region number allocated since the previous GC to
    // calculate the application's allocate rate. The only exception
    // to that is humongous objects that are allocated separately. But
    // given that humongous object allocations do not really affect
    // either the pause's duration nor when the next pause will take
    // place we can safely ignore them here.
968
    uint regions_allocated = eden_cset_region_length();
969 970 971 972 973
    double alloc_rate_ms = (double) regions_allocated / app_time_ms;
    _alloc_rate_ms_seq->add(alloc_rate_ms);

    double interval_ms =
      (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
974
    update_recent_gc_times(end_time_sec, pause_time_ms);
975
    _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
976 977 978 979 980 981 982 983 984 985 986 987
    if (recent_avg_pause_time_ratio() < 0.0 ||
        (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
#ifndef PRODUCT
      // Dump info to allow post-facto debugging
      gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
      gclog_or_tty->print_cr("-------------------------------------------");
      gclog_or_tty->print_cr("Recent GC Times (ms):");
      _recent_gc_times_ms->dump();
      gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
      _recent_prev_end_times_for_all_gcs_sec->dump();
      gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
                             _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
988 989 990 991 992
      // In debug mode, terminate the JVM if the user wants to debug at this point.
      assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
#endif  // !PRODUCT
      // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
      // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
993 994 995 996 997 998 999
      if (_recent_avg_pause_time_ratio < 0.0) {
        _recent_avg_pause_time_ratio = 0.0;
      } else {
        assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
        _recent_avg_pause_time_ratio = 1.0;
      }
    }
1000 1001 1002
  }
  bool new_in_marking_window = _in_marking_window;
  bool new_in_marking_window_im = false;
1003
  if (during_initial_mark_pause()) {
1004 1005 1006 1007
    new_in_marking_window = true;
    new_in_marking_window_im = true;
  }

1008
  if (_last_young_gc) {
1009 1010 1011
    // This is supposed to to be the "last young GC" before we start
    // doing mixed GCs. Here we decide whether to start mixed GCs or not.

1012
    if (!last_pause_included_initial_mark) {
1013 1014 1015 1016
      if (next_gc_should_be_mixed("start mixed GCs",
                                  "do not start mixed GCs")) {
        set_gcs_are_young(false);
      }
1017
    } else {
1018 1019
      ergo_verbose0(ErgoMixedGCs,
                    "do not start mixed GCs",
1020 1021
                    ergo_format_reason("concurrent cycle is about to start"));
    }
1022
    _last_young_gc = false;
1023
  }
1024

1025
  if (!_last_gc_was_young) {
1026 1027 1028 1029 1030
    // This is a mixed GC. Here we decide whether to continue doing
    // mixed GCs or not.

    if (!next_gc_should_be_mixed("continue mixed GCs",
                                 "do not continue mixed GCs")) {
1031
      set_gcs_are_young(true);
1032
    }
1033
  }
1034 1035 1036 1037

  _short_lived_surv_rate_group->start_adding_regions();
  // do that for any other surv rate groupsx

1038
  if (update_stats) {
1039 1040
    double cost_per_card_ms = 0.0;
    if (_pending_cards > 0) {
1041
      cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1042 1043 1044 1045 1046 1047 1048
      _cost_per_card_ms_seq->add(cost_per_card_ms);
    }

    size_t cards_scanned = _g1->cards_scanned();

    double cost_per_entry_ms = 0.0;
    if (cards_scanned > 10) {
1049
      cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1050
      if (_last_gc_was_young) {
1051
        _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1052 1053 1054
      } else {
        _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
      }
1055 1056 1057 1058 1059
    }

    if (_max_rs_lengths > 0) {
      double cards_per_entry_ratio =
        (double) cards_scanned / (double) _max_rs_lengths;
1060 1061 1062 1063 1064
      if (_last_gc_was_young) {
        _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      } else {
        _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      }
1065 1066
    }

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
    // This is defensive. For a while _max_rs_lengths could get
    // smaller than _recorded_rs_lengths which was causing
    // rs_length_diff to get very large and mess up the RSet length
    // predictions. The reason was unsafe concurrent updates to the
    // _inc_cset_recorded_rs_lengths field which the code below guards
    // against (see CR 7118202). This bug has now been fixed (see CR
    // 7119027). However, I'm still worried that
    // _inc_cset_recorded_rs_lengths might still end up somewhat
    // inaccurate. The concurrent refinement thread calculates an
    // RSet's length concurrently with other CR threads updating it
    // which might cause it to calculate the length incorrectly (if,
    // say, it's in mid-coarsening). So I'll leave in the defensive
    // conditional below just in case.
1080 1081 1082 1083 1084
    size_t rs_length_diff = 0;
    if (_max_rs_lengths > _recorded_rs_lengths) {
      rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
    }
    _rs_length_diff_seq->add((double) rs_length_diff);
1085 1086 1087 1088

    size_t copied_bytes = surviving_bytes;
    double cost_per_byte_ms = 0.0;
    if (copied_bytes > 0) {
1089
      cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1090
      if (_in_marking_window) {
1091
        _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1092
      } else {
1093
        _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1094
      }
1095 1096 1097
    }

    double all_other_time_ms = pause_time_ms -
1098 1099
      (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
      + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1100 1101

    double young_other_time_ms = 0.0;
1102
    if (young_cset_region_length() > 0) {
1103
      young_other_time_ms =
1104 1105
        phase_times()->young_cset_choice_time_ms() +
        phase_times()->young_free_cset_time_ms();
1106
      _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1107
                                          (double) young_cset_region_length());
1108 1109
    }
    double non_young_other_time_ms = 0.0;
1110
    if (old_cset_region_length() > 0) {
1111
      non_young_other_time_ms =
1112 1113
        phase_times()->non_young_cset_choice_time_ms() +
        phase_times()->non_young_free_cset_time_ms();
1114 1115

      _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1116
                                            (double) old_cset_region_length());
1117 1118 1119 1120 1121 1122 1123
    }

    double constant_other_time_ms = all_other_time_ms -
      (young_other_time_ms + non_young_other_time_ms);
    _constant_other_time_ms_seq->add(constant_other_time_ms);

    double survival_ratio = 0.0;
1124
    if (_collection_set_bytes_used_before > 0) {
1125
      survival_ratio = (double) _bytes_copied_during_gc /
1126
                                   (double) _collection_set_bytes_used_before;
1127 1128 1129 1130 1131 1132 1133 1134 1135
    }

    _pending_cards_seq->add((double) _pending_cards);
    _rs_lengths_seq->add((double) _max_rs_lengths);
  }

  _in_marking_window = new_in_marking_window;
  _in_marking_window_im = new_in_marking_window_im;
  _free_regions_at_end_of_collection = _g1->free_regions();
1136
  update_young_list_target_length();
1137

1138
  // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1139
  double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1140 1141
  adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
                               phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1142

1143
  _collectionSetChooser->verify();
1144 1145
}

1146
#define EXT_SIZE_FORMAT "%.1f%s"
1147
#define EXT_SIZE_PARAMS(bytes)                                  \
1148
  byte_size_in_proper_unit((double)(bytes)),                    \
1149 1150
  proper_unit_for_byte_size((bytes))

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
void G1CollectorPolicy::record_heap_size_info_at_start() {
  YoungList* young_list = _g1->young_list();
  _eden_bytes_before_gc = young_list->eden_used_bytes();
  _survivor_bytes_before_gc = young_list->survivor_used_bytes();
  _capacity_before_gc = _g1->capacity();

  _cur_collection_pause_used_at_start_bytes = _g1->used();
  _cur_collection_pause_used_regions_at_start = _g1->used_regions();

  size_t eden_capacity_before_gc =
         (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_bytes_before_gc;

  _prev_eden_capacity = eden_capacity_before_gc;
}

1166
void G1CollectorPolicy::print_heap_transition() {
1167 1168 1169 1170 1171
  _g1->print_size_transition(gclog_or_tty,
    _cur_collection_pause_used_at_start_bytes, _g1->used(), _g1->capacity());
}

void G1CollectorPolicy::print_detailed_heap_transition() {
1172 1173 1174 1175 1176 1177
    YoungList* young_list = _g1->young_list();
    size_t eden_bytes = young_list->eden_used_bytes();
    size_t survivor_bytes = young_list->survivor_used_bytes();
    size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
    size_t used = _g1->used();
    size_t capacity = _g1->capacity();
1178 1179
    size_t eden_capacity =
      (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
1180 1181

    gclog_or_tty->print_cr(
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
      "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
      "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
      "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
      EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
      EXT_SIZE_PARAMS(_eden_bytes_before_gc),
      EXT_SIZE_PARAMS(_prev_eden_capacity),
      EXT_SIZE_PARAMS(eden_bytes),
      EXT_SIZE_PARAMS(eden_capacity),
      EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
      EXT_SIZE_PARAMS(survivor_bytes),
      EXT_SIZE_PARAMS(used_before_gc),
      EXT_SIZE_PARAMS(_capacity_before_gc),
      EXT_SIZE_PARAMS(used),
      EXT_SIZE_PARAMS(capacity));
1196 1197
}

1198 1199 1200 1201 1202 1203
void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
                                                     double update_rs_processed_buffers,
                                                     double goal_ms) {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();

1204
  if (G1UseAdaptiveConcRefinement) {
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
    const int k_gy = 3, k_gr = 6;
    const double inc_k = 1.1, dec_k = 0.9;

    int g = cg1r->green_zone();
    if (update_rs_time > goal_ms) {
      g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
    } else {
      if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
        g = (int)MAX2(g * inc_k, g + 1.0);
      }
    }
    // Change the refinement threads params
    cg1r->set_green_zone(g);
    cg1r->set_yellow_zone(g * k_gy);
    cg1r->set_red_zone(g * k_gr);
    cg1r->reinitialize_threads();

    int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
    int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
                                    cg1r->yellow_zone());
    // Change the barrier params
    dcqs.set_process_completed_threshold(processing_threshold);
    dcqs.set_max_completed_queue(cg1r->red_zone());
  }

  int curr_queue_size = dcqs.completed_buffers_num();
  if (curr_queue_size >= cg1r->yellow_zone()) {
    dcqs.set_completed_queue_padding(curr_queue_size);
  } else {
    dcqs.set_completed_queue_padding(0);
  }
  dcqs.notify_if_necessary();
}

1239 1240 1241 1242 1243 1244 1245 1246 1247
double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
                                                size_t scanned_cards) {
  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(scanned_cards) +
    predict_constant_other_time_ms();
}

1248 1249 1250 1251
double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  size_t rs_length = predict_rs_length_diff();
  size_t card_num;
1252
  if (gcs_are_young()) {
1253
    card_num = predict_young_card_num(rs_length);
1254
  } else {
1255
    card_num = predict_non_young_card_num(rs_length);
1256
  }
1257 1258 1259
  return predict_base_elapsed_time_ms(pending_cards, card_num);
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  size_t bytes_to_copy;
  if (hr->is_marked())
    bytes_to_copy = hr->max_live_bytes();
  else {
    assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
    int age = hr->age_in_surv_rate_group();
    double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
    bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  }
  return bytes_to_copy;
1271 1272 1273 1274
}

double
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1275
                                                  bool for_young_gc) {
1276 1277
  size_t rs_length = hr->rem_set()->occupied();
  size_t card_num;
1278 1279 1280 1281

  // Predicting the number of cards is based on which type of GC
  // we're predicting for.
  if (for_young_gc) {
1282
    card_num = predict_young_card_num(rs_length);
1283
  } else {
1284
    card_num = predict_non_young_card_num(rs_length);
1285
  }
1286 1287 1288 1289 1290 1291
  size_t bytes_to_copy = predict_bytes_to_copy(hr);

  double region_elapsed_time_ms =
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy);

1292 1293 1294
  // The prediction of the "other" time for this region is based
  // upon the region type and NOT the GC type.
  if (hr->is_young()) {
1295
    region_elapsed_time_ms += predict_young_other_time_ms(1);
1296
  } else {
1297 1298
    region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  }
1299
  return region_elapsed_time_ms;
1300 1301 1302
}

void
1303 1304
G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
                                            uint survivor_cset_region_length) {
1305 1306 1307
  _eden_cset_region_length     = eden_cset_region_length;
  _survivor_cset_region_length = survivor_cset_region_length;
  _old_cset_region_length      = 0;
1308 1309 1310 1311 1312 1313
}

void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  _recorded_rs_lengths = rs_lengths;
}

1314 1315 1316 1317 1318 1319 1320 1321
void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
                                               double elapsed_ms) {
  _recent_gc_times_ms->add(elapsed_ms);
  _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  _prev_collection_pause_end_ms = end_time_sec * 1000.0;
}

size_t G1CollectorPolicy::expansion_amount() {
1322 1323 1324
  double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  double threshold = _gc_overhead_perc;
  if (recent_gc_overhead > threshold) {
J
johnc 已提交
1325 1326 1327 1328
    // We will double the existing space, or take
    // G1ExpandByPercentOfAvailable % of the available expansion
    // space, whichever is smaller, bounded below by a minimum
    // expansion (unless that's all that's left.)
1329
    const size_t min_expand_bytes = 1*M;
1330
    size_t reserved_bytes = _g1->max_capacity();
1331 1332 1333 1334
    size_t committed_bytes = _g1->capacity();
    size_t uncommitted_bytes = reserved_bytes - committed_bytes;
    size_t expand_bytes;
    size_t expand_bytes_via_pct =
J
johnc 已提交
1335
      uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1336 1337 1338
    expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
    expand_bytes = MAX2(expand_bytes, min_expand_bytes);
    expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

    ergo_verbose5(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("recent GC overhead higher than "
                                     "threshold after GC")
                  ergo_format_perc("recent GC overhead")
                  ergo_format_perc("threshold")
                  ergo_format_byte("uncommitted")
                  ergo_format_byte_perc("calculated expansion amount"),
                  recent_gc_overhead, threshold,
                  uncommitted_bytes,
                  expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);

1352 1353 1354 1355 1356 1357 1358
    return expand_bytes;
  } else {
    return 0;
  }
}

void G1CollectorPolicy::print_tracing_info() const {
1359 1360
  _trace_gen0_time_data.print();
  _trace_gen1_time_data.print();
1361 1362 1363 1364 1365 1366 1367 1368 1369
}

void G1CollectorPolicy::print_yg_surv_rate_info() const {
#ifndef PRODUCT
  _short_lived_surv_rate_group->print_surv_rate_summary();
  // add this call for any other surv rate groups
#endif // PRODUCT
}

1370
uint G1CollectorPolicy::max_regions(int purpose) {
1371 1372
  switch (purpose) {
    case GCAllocForSurvived:
1373
      return _max_survivor_regions;
1374
    case GCAllocForTenured:
1375
      return REGIONS_UNLIMITED;
1376
    default:
1377 1378
      ShouldNotReachHere();
      return REGIONS_UNLIMITED;
1379 1380 1381
  };
}

1382
void G1CollectorPolicy::update_max_gc_locker_expansion() {
1383
  uint expansion_region_num = 0;
1384 1385 1386 1387 1388
  if (GCLockerEdenExpansionPercent > 0) {
    double perc = (double) GCLockerEdenExpansionPercent / 100.0;
    double expansion_region_num_d = perc * (double) _young_list_target_length;
    // We use ceiling so that if expansion_region_num_d is > 0.0 (but
    // less than 1.0) we'll get 1.
1389
    expansion_region_num = (uint) ceil(expansion_region_num_d);
1390 1391 1392 1393 1394 1395 1396
  } else {
    assert(expansion_region_num == 0, "sanity");
  }
  _young_list_max_length = _young_list_target_length + expansion_region_num;
  assert(_young_list_target_length <= _young_list_max_length, "post-condition");
}

1397
// Calculates survivor space parameters.
1398 1399 1400 1401 1402
void G1CollectorPolicy::update_survivors_policy() {
  double max_survivor_regions_d =
                 (double) _young_list_target_length / (double) SurvivorRatio;
  // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
1403
  _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1404

1405
  _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1406 1407 1408
        HeapRegion::GrainWords * _max_survivor_regions);
}

1409 1410
bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
                                                     GCCause::Cause gc_cause) {
1411 1412
  bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  if (!during_cycle) {
1413 1414 1415 1416 1417
    ergo_verbose1(ErgoConcCycles,
                  "request concurrent cycle initiation",
                  ergo_format_reason("requested by GC cause")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1418 1419 1420
    set_initiate_conc_mark_if_possible();
    return true;
  } else {
1421 1422 1423 1424 1425
    ergo_verbose1(ErgoConcCycles,
                  "do not request concurrent cycle initiation",
                  ergo_format_reason("concurrent cycle already in progress")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
1426 1427 1428 1429
    return false;
  }
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
void
G1CollectorPolicy::decide_on_conc_mark_initiation() {
  // We are about to decide on whether this pause will be an
  // initial-mark pause.

  // First, during_initial_mark_pause() should not be already set. We
  // will set it here if we have to. However, it should be cleared by
  // the end of the pause (it's only set for the duration of an
  // initial-mark pause).
  assert(!during_initial_mark_pause(), "pre-condition");

  if (initiate_conc_mark_if_possible()) {
    // We had noticed on a previous pause that the heap occupancy has
    // gone over the initiating threshold and we should start a
    // concurrent marking cycle. So we might initiate one.

    bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
    if (!during_cycle) {
      // The concurrent marking thread is not "during a cycle", i.e.,
      // it has completed the last one. So we can go ahead and
      // initiate a new cycle.

      set_during_initial_mark_pause();
1453 1454 1455 1456 1457
      // We do not allow mixed GCs during marking.
      if (!gcs_are_young()) {
        set_gcs_are_young(true);
        ergo_verbose0(ErgoMixedGCs,
                      "end mixed GCs",
1458 1459
                      ergo_format_reason("concurrent cycle is about to start"));
      }
1460 1461 1462 1463

      // And we can now clear initiate_conc_mark_if_possible() as
      // we've already acted on it.
      clear_initiate_conc_mark_if_possible();
1464 1465 1466 1467

      ergo_verbose0(ErgoConcCycles,
                  "initiate concurrent cycle",
                  ergo_format_reason("concurrent cycle initiation requested"));
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
    } else {
      // The concurrent marking thread is still finishing up the
      // previous cycle. If we start one right now the two cycles
      // overlap. In particular, the concurrent marking thread might
      // be in the process of clearing the next marking bitmap (which
      // we will use for the next cycle if we start one). Starting a
      // cycle now will be bad given that parts of the marking
      // information might get cleared by the marking thread. And we
      // cannot wait for the marking thread to finish the cycle as it
      // periodically yields while clearing the next marking bitmap
      // and, if it's in a yield point, it's waiting for us to
      // finish. So, at this point we will not start a cycle and we'll
      // let the concurrent marking thread complete the last one.
1481 1482 1483
      ergo_verbose0(ErgoConcCycles,
                    "do not initiate concurrent cycle",
                    ergo_format_reason("concurrent cycle already in progress"));
1484 1485 1486 1487
    }
  }
}

1488
class KnownGarbageClosure: public HeapRegionClosure {
1489
  G1CollectedHeap* _g1h;
1490 1491 1492 1493
  CollectionSetChooser* _hrSorted;

public:
  KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1494
    _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1495 1496 1497 1498 1499 1500 1501 1502

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.

    // Do we have any marking information for this region?
    if (r->is_marked()) {
1503 1504 1505
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1506 1507
      if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _hrSorted->add_region(r);
1508 1509 1510 1511 1512 1513 1514
      }
    }
    return false;
  }
};

class ParKnownGarbageHRClosure: public HeapRegionClosure {
1515
  G1CollectedHeap* _g1h;
1516
  CSetChooserParUpdater _cset_updater;
1517 1518 1519

public:
  ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1520
                           uint chunk_size) :
1521 1522
    _g1h(G1CollectedHeap::heap()),
    _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1523 1524 1525 1526

  bool doHeapRegion(HeapRegion* r) {
    // Do we have any marking information for this region?
    if (r->is_marked()) {
1527 1528 1529
      // We will skip any region that's currently used as an old GC
      // alloc region (we should not consider those for collection
      // before we fill them up).
1530 1531
      if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
        _cset_updater.add_region(r);
1532 1533 1534 1535 1536 1537 1538 1539
      }
    }
    return false;
  }
};

class ParKnownGarbageTask: public AbstractGangTask {
  CollectionSetChooser* _hrSorted;
1540
  uint _chunk_size;
1541 1542
  G1CollectedHeap* _g1;
public:
1543
  ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1544 1545
    AbstractGangTask("ParKnownGarbageTask"),
    _hrSorted(hrSorted), _chunk_size(chunk_size),
1546
    _g1(G1CollectedHeap::heap()) { }
1547

1548
  void work(uint worker_id) {
1549 1550
    ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);

1551
    // Back to zero for the claim value.
1552
    _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1553
                                         _g1->workers()->active_workers(),
1554
                                         HeapRegion::InitialClaimValue);
1555 1556 1557 1558
  }
};

void
1559
G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1560
  _collectionSetChooser->clear();
1561

1562
  uint region_num = _g1->n_regions();
1563
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1564 1565
    const uint OverpartitionFactor = 4;
    uint WorkUnit;
1566 1567 1568 1569 1570
    // The use of MinChunkSize = 8 in the original code
    // causes some assertion failures when the total number of
    // region is less than 8.  The code here tries to fix that.
    // Should the original code also be fixed?
    if (no_of_gc_threads > 0) {
1571 1572 1573
      const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
      WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
                      MinWorkUnit);
1574 1575 1576 1577
    } else {
      assert(no_of_gc_threads > 0,
        "The active gc workers should be greater than 0");
      // In a product build do something reasonable to avoid a crash.
1578
      const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1579
      WorkUnit =
1580
        MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1581 1582
             MinWorkUnit);
    }
1583 1584
    _collectionSetChooser->prepare_for_par_region_addition(_g1->n_regions(),
                                                           WorkUnit);
1585
    ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1586
                                            (int) WorkUnit);
1587
    _g1->workers()->run_task(&parKnownGarbageTask);
1588 1589 1590

    assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
1591 1592 1593 1594
  } else {
    KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
    _g1->heap_region_iterate(&knownGarbagecl);
  }
1595

1596
  _collectionSetChooser->sort_regions();
1597

1598
  double end_sec = os::elapsedTime();
1599 1600 1601 1602 1603
  double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;
  _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1604 1605
}

1606
// Add the heap region at the head of the non-incremental collection set
1607
void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1608 1609 1610 1611
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(!hr->is_young(), "non-incremental add of young region");

  assert(!hr->in_collection_set(), "should not already be in the CSet");
1612 1613 1614 1615
  hr->set_in_collection_set(true);
  hr->set_next_in_collection_set(_collection_set);
  _collection_set = hr;
  _collection_set_bytes_used_before += hr->used();
1616
  _g1->register_region_with_in_cset_fast_test(hr);
1617 1618 1619
  size_t rs_length = hr->rem_set()->occupied();
  _recorded_rs_lengths += rs_length;
  _old_cset_region_length += 1;
1620 1621
}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
// Initialize the per-collection-set information
void G1CollectorPolicy::start_incremental_cset_building() {
  assert(_inc_cset_build_state == Inactive, "Precondition");

  _inc_cset_head = NULL;
  _inc_cset_tail = NULL;
  _inc_cset_bytes_used_before = 0;

  _inc_cset_max_finger = 0;
  _inc_cset_recorded_rs_lengths = 0;
1632 1633 1634
  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms = 0.0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1635 1636 1637
  _inc_cset_build_state = Active;
}

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
void G1CollectorPolicy::finalize_incremental_cset_building() {
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");

  // The two "main" fields, _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  // that adds a new region to the CSet. Further updates by the
  // concurrent refinement thread that samples the young RSet lengths
  // are accumulated in the *_diffs fields. Here we add the diffs to
  // the "main" fields.

  if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
    _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  } else {
    // This is defensive. The diff should in theory be always positive
    // as RSets can only grow between GCs. However, given that we
    // sample their size concurrently with other threads updating them
    // it's possible that we might get the wrong size back, which
    // could make the calculations somewhat inaccurate.
    size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
    if (_inc_cset_recorded_rs_lengths >= diffs) {
      _inc_cset_recorded_rs_lengths -= diffs;
    } else {
      _inc_cset_recorded_rs_lengths = 0;
    }
  }
  _inc_cset_predicted_elapsed_time_ms +=
                                     _inc_cset_predicted_elapsed_time_ms_diffs;

  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
}

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  // This routine is used when:
  // * adding survivor regions to the incremental cset at the end of an
  //   evacuation pause,
  // * adding the current allocation region to the incremental cset
  //   when it is retired, and
  // * updating existing policy information for a region in the
  //   incremental cset via young list RSet sampling.
  // Therefore this routine may be called at a safepoint by the
  // VM thread, or in-between safepoints by mutator threads (when
  // retiring the current allocation region) or a concurrent
  // refine thread (RSet sampling).

1684
  double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
  size_t used_bytes = hr->used();
  _inc_cset_recorded_rs_lengths += rs_length;
  _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  _inc_cset_bytes_used_before += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_recorded_rs_length(rs_length);
  hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
                                                     size_t new_rs_length) {
  // Update the CSet information that is dependent on the new RS length
  assert(hr->is_young(), "Precondition");
  assert(!SafepointSynchronize::is_at_safepoint(),
                                               "should not be at a safepoint");

  // We could have updated _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  // that atomically, as this code is executed by a concurrent
  // refinement thread, potentially concurrently with a mutator thread
  // allocating a new region and also updating the same fields. To
  // avoid the atomic operations we accumulate these updates on two
  // separate fields (*_diffs) and we'll just add them to the "main"
  // fields at the start of a GC.

  ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1717 1718

  double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1719
  double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1720 1721
  double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1722

1723 1724
  hr->set_recorded_rs_length(new_rs_length);
  hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1725 1726 1727
}

void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1728 1729
  assert(hr->is_young(), "invariant");
  assert(hr->young_index_in_cset() > -1, "should have already been set");
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
  assert(_inc_cset_build_state == Active, "Precondition");

  // We need to clear and set the cached recorded/cached collection set
  // information in the heap region here (before the region gets added
  // to the collection set). An individual heap region's cached values
  // are calculated, aggregated with the policy collection set info,
  // and cached in the heap region here (initially) and (subsequently)
  // by the Young List sampling code.

  size_t rs_length = hr->rem_set()->occupied();
  add_to_incremental_cset_info(hr, rs_length);

  HeapWord* hr_end = hr->end();
  _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);

  assert(!hr->in_collection_set(), "invariant");
  hr->set_in_collection_set(true);
  assert( hr->next_in_collection_set() == NULL, "invariant");

  _g1->register_region_with_in_cset_fast_test(hr);
}

// Add the region at the RHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  // We should only ever be appending survivors at the end of a pause
  assert( hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Now add the region at the right hand side
  if (_inc_cset_tail == NULL) {
    assert(_inc_cset_head == NULL, "invariant");
    _inc_cset_head = hr;
  } else {
    _inc_cset_tail->set_next_in_collection_set(hr);
  }
  _inc_cset_tail = hr;
}

// Add the region to the LHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  // Survivors should be added to the RHS at the end of a pause
  assert(!hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Add the region at the left hand side
  hr->set_next_in_collection_set(_inc_cset_head);
  if (_inc_cset_head == NULL) {
    assert(_inc_cset_tail == NULL, "Invariant");
    _inc_cset_tail = hr;
  }
  _inc_cset_head = hr;
}

#ifndef PRODUCT
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");

  st->print_cr("\nCollection_set:");
  HeapRegion* csr = list_head;
  while (csr != NULL) {
    HeapRegion* next = csr->next_in_collection_set();
    assert(csr->in_collection_set(), "bad CS");
1796 1797 1798 1799
    st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
                 HR_FORMAT_PARAMS(csr),
                 csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
                 csr->age_in_surv_rate_group_cond());
1800 1801 1802 1803 1804
    csr = next;
  }
}
#endif // !PRODUCT

1805 1806 1807 1808 1809 1810 1811 1812
double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
  // Returns the given amount of reclaimable bytes (that represents
  // the amount of reclaimable space still to be collected) as a
  // percentage of the current heap capacity.
  size_t capacity_bytes = _g1->capacity();
  return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
}

1813 1814 1815
bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
                                                const char* false_action_str) {
  CollectionSetChooser* cset_chooser = _collectionSetChooser;
1816
  if (cset_chooser->is_empty()) {
1817 1818 1819 1820 1821
    ergo_verbose0(ErgoMixedGCs,
                  false_action_str,
                  ergo_format_reason("candidate old regions not available"));
    return false;
  }
1822 1823

  // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1824
  size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1825
  double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1826
  double threshold = (double) G1HeapWastePercent;
1827
  if (reclaimable_perc <= threshold) {
1828 1829
    ergo_verbose4(ErgoMixedGCs,
              false_action_str,
1830
              ergo_format_reason("reclaimable percentage not over threshold")
1831 1832 1833
              ergo_format_region("candidate old regions")
              ergo_format_byte_perc("reclaimable")
              ergo_format_perc("threshold"),
1834
              cset_chooser->remaining_regions(),
1835 1836
              reclaimable_bytes,
              reclaimable_perc, threshold);
1837 1838 1839 1840 1841 1842 1843 1844 1845
    return false;
  }

  ergo_verbose4(ErgoMixedGCs,
                true_action_str,
                ergo_format_reason("candidate old regions available")
                ergo_format_region("candidate old regions")
                ergo_format_byte_perc("reclaimable")
                ergo_format_perc("threshold"),
1846
                cset_chooser->remaining_regions(),
1847 1848
                reclaimable_bytes,
                reclaimable_perc, threshold);
1849 1850 1851
  return true;
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
uint G1CollectorPolicy::calc_min_old_cset_length() {
  // The min old CSet region bound is based on the maximum desired
  // number of mixed GCs after a cycle. I.e., even if some old regions
  // look expensive, we should add them to the CSet anyway to make
  // sure we go through the available old regions in no more than the
  // maximum desired number of mixed GCs.
  //
  // The calculation is based on the number of marked regions we added
  // to the CSet chooser in the first place, not how many remain, so
  // that the result is the same during all mixed GCs that follow a cycle.

  const size_t region_num = (size_t) _collectionSetChooser->length();
  const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
  size_t result = region_num / gc_num;
  // emulate ceiling
  if (result * gc_num < region_num) {
    result += 1;
  }
  return (uint) result;
}

uint G1CollectorPolicy::calc_max_old_cset_length() {
  // The max old CSet region bound is based on the threshold expressed
  // as a percentage of the heap size. I.e., it should bound the
  // number of old regions added to the CSet irrespective of how many
  // of them are available.

  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  const size_t region_num = g1h->n_regions();
  const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
  size_t result = region_num * perc / 100;
  // emulate ceiling
  if (100 * result < region_num * perc) {
    result += 1;
  }
  return (uint) result;
}


1891
void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
1892
  double young_start_time_sec = os::elapsedTime();
1893

1894
  YoungList* young_list = _g1->young_list();
1895
  finalize_incremental_cset_building();
1896

1897 1898 1899 1900
  guarantee(target_pause_time_ms > 0.0,
            err_msg("target_pause_time_ms = %1.6lf should be positive",
                    target_pause_time_ms));
  guarantee(_collection_set == NULL, "Precondition");
1901 1902 1903

  double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  double predicted_pause_time_ms = base_time_ms;
1904
  double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1905

1906
  ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1907
                "start choosing CSet",
1908
                ergo_format_size("_pending_cards")
1909 1910 1911
                ergo_format_ms("predicted base time")
                ergo_format_ms("remaining time")
                ergo_format_ms("target pause time"),
1912
                _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1913

1914
  _last_gc_was_young = gcs_are_young() ? true : false;
1915

1916
  if (_last_gc_was_young) {
1917
    _trace_gen0_time_data.increment_young_collection_count();
1918
  } else {
1919
    _trace_gen0_time_data.increment_mixed_collection_count();
1920
  }
1921

1922 1923 1924
  // The young list is laid with the survivor regions from the previous
  // pause are appended to the RHS of the young list, i.e.
  //   [Newly Young Regions ++ Survivors from last pause].
1925

1926 1927
  uint survivor_region_length = young_list->survivor_length();
  uint eden_region_length = young_list->length() - survivor_region_length;
1928
  init_cset_region_lengths(eden_region_length, survivor_region_length);
1929 1930

  HeapRegion* hr = young_list->first_survivor_region();
1931 1932 1933 1934 1935
  while (hr != NULL) {
    assert(hr->is_survivor(), "badly formed young list");
    hr->set_young();
    hr = hr->get_next_young_region();
  }
1936

1937 1938
  // Clear the fields that point to the survivor list - they are all young now.
  young_list->clear_survivors();
1939

1940 1941
  _collection_set = _inc_cset_head;
  _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1942
  time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1943
  predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1944

1945 1946 1947 1948 1949
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "add young regions to CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_ms("predicted young region time"),
1950
                eden_region_length, survivor_region_length,
1951 1952
                _inc_cset_predicted_elapsed_time_ms);

1953 1954 1955
  // The number of recorded young regions is the incremental
  // collection set's current size
  set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1956

1957
  double young_end_time_sec = os::elapsedTime();
1958
  phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1959

1960 1961
  // Set the start of the non-young choice time.
  double non_young_start_time_sec = young_end_time_sec;
1962

1963
  if (!gcs_are_young()) {
1964
    CollectionSetChooser* cset_chooser = _collectionSetChooser;
1965
    cset_chooser->verify();
1966 1967
    const uint min_old_cset_length = calc_min_old_cset_length();
    const uint max_old_cset_length = calc_max_old_cset_length();
1968

1969
    uint expensive_region_num = 0;
1970
    bool check_time_remaining = adaptive_young_list_length();
1971

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
    HeapRegion* hr = cset_chooser->peek();
    while (hr != NULL) {
      if (old_cset_region_length() >= max_old_cset_length) {
        // Added maximum number of old regions to the CSet.
        ergo_verbose2(ErgoCSetConstruction,
                      "finish adding old regions to CSet",
                      ergo_format_reason("old CSet region num reached max")
                      ergo_format_region("old")
                      ergo_format_region("max"),
                      old_cset_region_length(), max_old_cset_length);
        break;
1983
      }
1984

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

      // Stop adding regions if the remaining reclaimable space is
      // not above G1HeapWastePercent.
      size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
      double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
      double threshold = (double) G1HeapWastePercent;
      if (reclaimable_perc <= threshold) {
        // We've added enough old regions that the amount of uncollected
        // reclaimable space is at or below the waste threshold. Stop
        // adding old regions to the CSet.
        ergo_verbose5(ErgoCSetConstruction,
                      "finish adding old regions to CSet",
                      ergo_format_reason("reclaimable percentage not over threshold")
                      ergo_format_region("old")
                      ergo_format_region("max")
                      ergo_format_byte_perc("reclaimable")
                      ergo_format_perc("threshold"),
                      old_cset_region_length(),
                      max_old_cset_length,
                      reclaimable_bytes,
                      reclaimable_perc, threshold);
        break;
      }

2009
      double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
      if (check_time_remaining) {
        if (predicted_time_ms > time_remaining_ms) {
          // Too expensive for the current CSet.

          if (old_cset_region_length() >= min_old_cset_length) {
            // We have added the minimum number of old regions to the CSet,
            // we are done with this CSet.
            ergo_verbose4(ErgoCSetConstruction,
                          "finish adding old regions to CSet",
                          ergo_format_reason("predicted time is too high")
                          ergo_format_ms("predicted time")
                          ergo_format_ms("remaining time")
                          ergo_format_region("old")
                          ergo_format_region("min"),
                          predicted_time_ms, time_remaining_ms,
                          old_cset_region_length(), min_old_cset_length);
            break;
2027
          }
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

          // We'll add it anyway given that we haven't reached the
          // minimum number of old regions.
          expensive_region_num += 1;
        }
      } else {
        if (old_cset_region_length() >= min_old_cset_length) {
          // In the non-auto-tuning case, we'll finish adding regions
          // to the CSet if we reach the minimum.
          ergo_verbose2(ErgoCSetConstruction,
                        "finish adding old regions to CSet",
                        ergo_format_reason("old CSet region num reached min")
                        ergo_format_region("old")
                        ergo_format_region("min"),
                        old_cset_region_length(), min_old_cset_length);
          break;
2044 2045
        }
      }
2046 2047

      // We will add this region to the CSet.
2048
      time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
      predicted_pause_time_ms += predicted_time_ms;
      cset_chooser->remove_and_move_to_next(hr);
      _g1->old_set_remove(hr);
      add_old_region_to_cset(hr);

      hr = cset_chooser->peek();
    }
    if (hr == NULL) {
      ergo_verbose0(ErgoCSetConstruction,
                    "finish adding old regions to CSet",
                    ergo_format_reason("candidate old regions not available"));
    }

    if (expensive_region_num > 0) {
      // We print the information once here at the end, predicated on
      // whether we added any apparently expensive regions or not, to
      // avoid generating output per region.
      ergo_verbose4(ErgoCSetConstruction,
                    "added expensive regions to CSet",
                    ergo_format_reason("old CSet region num not reached min")
                    ergo_format_region("old")
                    ergo_format_region("expensive")
                    ergo_format_region("min")
                    ergo_format_ms("remaining time"),
                    old_cset_region_length(),
                    expensive_region_num,
                    min_old_cset_length,
                    time_remaining_ms);
2077 2078
    }

2079
    cset_chooser->verify();
2080 2081
  }

2082 2083
  stop_incremental_cset_building();

2084 2085 2086 2087 2088 2089 2090
  ergo_verbose5(ErgoCSetConstruction,
                "finish choosing CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_region("old")
                ergo_format_ms("predicted pause time")
                ergo_format_ms("target pause time"),
2091 2092
                eden_region_length, survivor_region_length,
                old_cset_region_length(),
2093 2094
                predicted_pause_time_ms, target_pause_time_ms);

2095
  double non_young_end_time_sec = os::elapsedTime();
2096
  phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2097
}
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  if(TraceGen0Time) {
    _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  }
}

void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  if(TraceGen0Time) {
    _all_yield_times_ms.add(yield_time_ms);
  }
}

2111
void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2112
  if(TraceGen0Time) {
2113 2114
    _total.add(pause_time_ms);
    _other.add(pause_time_ms - phase_times->accounted_time_ms());
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
    _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
    _parallel.add(phase_times->cur_collection_par_time_ms());
    _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
    _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
    _update_rs.add(phase_times->average_last_update_rs_time());
    _scan_rs.add(phase_times->average_last_scan_rs_time());
    _obj_copy.add(phase_times->average_last_obj_copy_time());
    _termination.add(phase_times->average_last_termination_time());

    double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
      phase_times->average_last_satb_filtering_times_ms() +
      phase_times->average_last_update_rs_time() +
      phase_times->average_last_scan_rs_time() +
      phase_times->average_last_obj_copy_time() +
      + phase_times->average_last_termination_time();

    double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2132
    _parallel_other.add(parallel_other_time);
2133
    _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
  }
}

void TraceGen0TimeData::increment_young_collection_count() {
  if(TraceGen0Time) {
    ++_young_pause_num;
  }
}

void TraceGen0TimeData::increment_mixed_collection_count() {
  if(TraceGen0Time) {
    ++_mixed_pause_num;
  }
}

2149
void TraceGen0TimeData::print_summary(const char* str,
2150 2151
                                      const NumberSeq* seq) const {
  double sum = seq->sum();
2152
  gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2153 2154 2155
                str, sum / 1000.0, seq->avg());
}

2156
void TraceGen0TimeData::print_summary_sd(const char* str,
2157
                                         const NumberSeq* seq) const {
2158 2159 2160
  print_summary(str, seq);
  gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
                "(num", seq->num(), seq->sd(), seq->maximum());
2161 2162 2163 2164 2165 2166 2167 2168
}

void TraceGen0TimeData::print() const {
  if (!TraceGen0Time) {
    return;
  }

  gclog_or_tty->print_cr("ALL PAUSES");
2169
  print_summary_sd("   Total", &_total);
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
  gclog_or_tty->print_cr("");
  gclog_or_tty->print_cr("");
  gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  gclog_or_tty->print_cr("");

  gclog_or_tty->print_cr("EVACUATION PAUSES");

  if (_young_pause_num == 0 && _mixed_pause_num == 0) {
    gclog_or_tty->print_cr("none");
  } else {
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
    print_summary_sd("   Evacuation Pauses", &_total);
    print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
    print_summary("      Parallel Time", &_parallel);
    print_summary("         Ext Root Scanning", &_ext_root_scan);
    print_summary("         SATB Filtering", &_satb_filtering);
    print_summary("         Update RS", &_update_rs);
    print_summary("         Scan RS", &_scan_rs);
    print_summary("         Object Copy", &_obj_copy);
    print_summary("         Termination", &_termination);
    print_summary("         Parallel Other", &_parallel_other);
    print_summary("      Clear CT", &_clear_ct);
    print_summary("      Other", &_other);
2193 2194 2195 2196
  }
  gclog_or_tty->print_cr("");

  gclog_or_tty->print_cr("MISC");
2197 2198
  print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  print_summary_sd("   Yields", &_all_yield_times_ms);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
}

void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  if (TraceGen1Time) {
    _all_full_gc_times.add(full_gc_time_ms);
  }
}

void TraceGen1TimeData::print() const {
  if (!TraceGen1Time) {
    return;
  }

  if (_all_full_gc_times.num() > 0) {
    gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
      _all_full_gc_times.num(),
      _all_full_gc_times.sum() / 1000.0);
    gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
    gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
      _all_full_gc_times.sd(),
      _all_full_gc_times.maximum());
  }
}