g1CollectorPolicy.cpp 107.5 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32 33 34 35 36 37
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "runtime/arguments.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/debug.hpp"
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

// Different defaults for different number of GC threads
// They were chosen by running GCOld and SPECjbb on debris with different
//   numbers of GC threads and choosing them based on the results

// all the same
static double rs_length_diff_defaults[] = {
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

static double cost_per_card_ms_defaults[] = {
  0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
};

// all the same
53
static double young_cards_per_entry_ratio_defaults[] = {
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

static double cost_per_entry_ms_defaults[] = {
  0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
};

static double cost_per_byte_ms_defaults[] = {
  0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
};

// these should be pretty consistent
static double constant_other_time_ms_defaults[] = {
  5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
};


static double young_other_cost_per_region_ms_defaults[] = {
  0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
};

static double non_young_other_cost_per_region_ms_defaults[] = {
  1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
};

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
// Help class for avoiding interleaved logging
class LineBuffer: public StackObj {

private:
  static const int BUFFER_LEN = 1024;
  static const int INDENT_CHARS = 3;
  char _buffer[BUFFER_LEN];
  int _indent_level;
  int _cur;

  void vappend(const char* format, va_list ap) {
    int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
    if (res != -1) {
      _cur += res;
    } else {
      DEBUG_ONLY(warning("buffer too small in LineBuffer");)
      _buffer[BUFFER_LEN -1] = 0;
      _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
    }
  }

public:
  explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
    for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
      _buffer[_cur] = ' ';
    }
  }

#ifndef PRODUCT
  ~LineBuffer() {
    assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
  }
#endif

  void append(const char* format, ...) {
    va_list ap;
    va_start(ap, format);
    vappend(format, ap);
    va_end(ap);
  }

  void append_and_print_cr(const char* format, ...) {
    va_list ap;
    va_start(ap, format);
    vappend(format, ap);
    va_end(ap);
    gclog_or_tty->print_cr("%s", _buffer);
    _cur = _indent_level * INDENT_CHARS;
  }
};

130
G1CollectorPolicy::G1CollectorPolicy() :
131
  _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
132
                        ? ParallelGCThreads : 1),
133

134 135 136 137 138 139
  _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _all_pause_times_ms(new NumberSeq()),
  _stop_world_start(0.0),
  _all_stop_world_times_ms(new NumberSeq()),
  _all_yield_times_ms(new NumberSeq()),

140
  _summary(new Summary()),
141 142

  _cur_clear_ct_time_ms(0.0),
143
  _mark_closure_time_ms(0.0),
144 145 146 147 148

  _cur_ref_proc_time_ms(0.0),
  _cur_ref_enq_time_ms(0.0),

#ifndef PRODUCT
149 150 151 152 153 154
  _min_clear_cc_time_ms(-1.0),
  _max_clear_cc_time_ms(-1.0),
  _cur_clear_cc_time_ms(0.0),
  _cum_clear_cc_time_ms(0.0),
  _num_cc_clears(0L),
#endif
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

  _aux_num(10),
  _all_aux_times_ms(new NumberSeq[_aux_num]),
  _cur_aux_start_times_ms(new double[_aux_num]),
  _cur_aux_times_ms(new double[_aux_num]),
  _cur_aux_times_set(new bool[_aux_num]),

  _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _prev_collection_pause_end_ms(0.0),
  _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
170 171
  _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
172
  _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
173
  _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
174 175 176 177 178 179 180 181 182 183
  _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
  _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _non_young_other_cost_per_region_ms_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),

  _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),

J
johnc 已提交
184
  _pause_time_target_ms((double) MaxGCPauseMillis),
185

186 187 188
  _gcs_are_young(true),
  _young_pause_num(0),
  _mixed_pause_num(0),
189 190 191 192 193 194 195 196 197 198

  _during_marking(false),
  _in_marking_window(false),
  _in_marking_window_im(false),

  _known_garbage_ratio(0.0),
  _known_garbage_bytes(0),

  _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),

199 200
  _recent_prev_end_times_for_all_gcs_sec(
                                new TruncatedSeq(NumPrevPausesForHeuristics)),
201 202 203 204 205

  _recent_avg_pause_time_ratio(0.0),

  _all_full_gc_times_ms(new NumberSeq()),

206 207
  _initiate_conc_mark_if_possible(false),
  _during_initial_mark_pause(false),
208 209 210
  _should_revert_to_young_gcs(false),
  _last_young_gc(false),
  _last_gc_was_young(false),
211

212 213 214 215
  _eden_bytes_before_gc(0),
  _survivor_bytes_before_gc(0),
  _capacity_before_gc(0),

216 217
  _prev_collection_pause_used_at_end_bytes(0),

218 219 220 221
  _eden_cset_region_length(0),
  _survivor_cset_region_length(0),
  _old_cset_region_length(0),

222
  _collection_set(NULL),
223 224 225 226 227 228 229 230 231
  _collection_set_bytes_used_before(0),

  // Incremental CSet attributes
  _inc_cset_build_state(Inactive),
  _inc_cset_head(NULL),
  _inc_cset_tail(NULL),
  _inc_cset_bytes_used_before(0),
  _inc_cset_max_finger(NULL),
  _inc_cset_recorded_rs_lengths(0),
232
  _inc_cset_recorded_rs_lengths_diffs(0),
233
  _inc_cset_predicted_elapsed_time_ms(0.0),
234
  _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
235

236 237 238 239 240 241 242
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

  _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
                                                 G1YoungSurvRateNumRegionsSummary)),
  _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
243
                                              G1YoungSurvRateNumRegionsSummary)),
244
  // add here any more surv rate groups
245 246 247
  _recorded_survivor_regions(0),
  _recorded_survivor_head(NULL),
  _recorded_survivor_tail(NULL),
T
tonyp 已提交
248 249
  _survivors_age_table(true),

250
  _gc_overhead_perc(0.0) {
251

252 253 254 255
  // Set up the region size and associated fields. Given that the
  // policy is created before the heap, we have to set this up here,
  // so it's done as soon as possible.
  HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
256
  HeapRegionRemSet::setup_remset_size();
257

258 259 260 261 262 263 264 265 266 267 268 269
  G1ErgoVerbose::initialize();
  if (PrintAdaptiveSizePolicy) {
    // Currently, we only use a single switch for all the heuristics.
    G1ErgoVerbose::set_enabled(true);
    // Given that we don't currently have a verboseness level
    // parameter, we'll hardcode this to high. This can be easily
    // changed in the future.
    G1ErgoVerbose::set_level(ErgoHigh);
  } else {
    G1ErgoVerbose::set_enabled(false);
  }

270
  // Verify PLAB sizes
271
  const size_t region_size = HeapRegion::GrainWords;
272 273
  if (YoungPLABSize > region_size || OldPLABSize > region_size) {
    char buffer[128];
274
    jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
275 276 277 278
                 OldPLABSize > region_size ? "Old" : "Young", region_size);
    vm_exit_during_initialization(buffer);
  }

279 280 281
  _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
  _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;

282
  _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
283
  _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
284
  _par_last_satb_filtering_times_ms = new double[_parallel_gc_threads];
285 286 287 288 289 290 291 292 293

  _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
  _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];

  _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];

  _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];

  _par_last_termination_times_ms = new double[_parallel_gc_threads];
294 295
  _par_last_termination_attempts = new double[_parallel_gc_threads];
  _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
296
  _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
J
johnc 已提交
297
  _par_last_gc_worker_other_times_ms = new double[_parallel_gc_threads];
298 299

  // start conservatively
J
johnc 已提交
300
  _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
301 302 303 304 305 306 307 308 309 310 311 312

  int index;
  if (ParallelGCThreads == 0)
    index = 0;
  else if (ParallelGCThreads > 8)
    index = 7;
  else
    index = ParallelGCThreads - 1;

  _pending_card_diff_seq->add(0.0);
  _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
  _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
313 314
  _young_cards_per_entry_ratio_seq->add(
                                  young_cards_per_entry_ratio_defaults[index]);
315 316 317 318 319 320 321 322
  _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
  _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
  _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
  _young_other_cost_per_region_ms_seq->add(
                               young_other_cost_per_region_ms_defaults[index]);
  _non_young_other_cost_per_region_ms_seq->add(
                           non_young_other_cost_per_region_ms_defaults[index]);

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
  // Below, we might need to calculate the pause time target based on
  // the pause interval. When we do so we are going to give G1 maximum
  // flexibility and allow it to do pauses when it needs to. So, we'll
  // arrange that the pause interval to be pause time target + 1 to
  // ensure that a) the pause time target is maximized with respect to
  // the pause interval and b) we maintain the invariant that pause
  // time target < pause interval. If the user does not want this
  // maximum flexibility, they will have to set the pause interval
  // explicitly.

  // First make sure that, if either parameter is set, its value is
  // reasonable.
  if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (MaxGCPauseMillis < 1) {
      vm_exit_during_initialization("MaxGCPauseMillis should be "
                                    "greater than 0");
    }
  }
  if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    if (GCPauseIntervalMillis < 1) {
      vm_exit_during_initialization("GCPauseIntervalMillis should be "
                                    "greater than 0");
    }
  }

  // Then, if the pause time target parameter was not set, set it to
  // the default value.
  if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
      // The default pause time target in G1 is 200ms
      FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
    } else {
      // We do not allow the pause interval to be set without the
      // pause time target
      vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
                                    "without setting MaxGCPauseMillis");
    }
  }

  // Then, if the interval parameter was not set, set it according to
  // the pause time target (this will also deal with the case when the
  // pause time target is the default value).
  if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
  }

  // Finally, make sure that the two parameters are consistent.
  if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
    char buffer[256];
    jio_snprintf(buffer, 256,
                 "MaxGCPauseMillis (%u) should be less than "
                 "GCPauseIntervalMillis (%u)",
                 MaxGCPauseMillis, GCPauseIntervalMillis);
    vm_exit_during_initialization(buffer);
  }

J
johnc 已提交
379
  double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
380
  double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
381
  _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
J
johnc 已提交
382
  _sigma = (double) G1ConfidencePercent / 100.0;
383 384 385 386 387

  // start conservatively (around 50ms is about right)
  _concurrent_mark_remark_times_ms->add(0.05);
  _concurrent_mark_cleanup_times_ms->add(0.20);
  _tenuring_threshold = MaxTenuringThreshold;
388
  // _max_survivor_regions will be calculated by
389
  // update_young_list_target_length() during initialization.
390
  _max_survivor_regions = 0;
391

T
tonyp 已提交
392 393 394 395 396
  assert(GCTimeRatio > 0,
         "we should have set it to a default value set_g1_gc_flags() "
         "if a user set it to 0");
  _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));

397 398 399 400 401 402 403 404
  uintx reserve_perc = G1ReservePercent;
  // Put an artificial ceiling on this so that it's not set to a silly value.
  if (reserve_perc > 50) {
    reserve_perc = 50;
    warning("G1ReservePercent is set to a value that is too large, "
            "it's been updated to %u", reserve_perc);
  }
  _reserve_factor = (double) reserve_perc / 100.0;
405
  // This will be set when the heap is expanded
406 407 408
  // for the first time during initialization.
  _reserve_regions = 0;

409
  initialize_all();
410
  _collectionSetChooser = new CollectionSetChooser();
411
  _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
412 413 414 415 416
}

void G1CollectorPolicy::initialize_flags() {
  set_min_alignment(HeapRegion::GrainBytes);
  set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
417 418 419
  if (SurvivorRatio < 1) {
    vm_exit_during_initialization("Invalid survivor ratio specified");
  }
420 421 422
  CollectorPolicy::initialize_flags();
}

423 424 425 426
G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true) {
  assert(G1DefaultMinNewGenPercent <= G1DefaultMaxNewGenPercent, "Min larger than max");
  assert(G1DefaultMinNewGenPercent > 0 && G1DefaultMinNewGenPercent < 100, "Min out of bounds");
  assert(G1DefaultMaxNewGenPercent > 0 && G1DefaultMaxNewGenPercent < 100, "Max out of bounds");
427

428 429 430 431 432 433 434 435
  if (FLAG_IS_CMDLINE(NewRatio)) {
    if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
      warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
    } else {
      _sizer_kind = SizerNewRatio;
      _adaptive_size = false;
      return;
    }
436
  }
437 438 439 440 441 442 443 444 445 446 447 448 449

  if (FLAG_IS_CMDLINE(NewSize)) {
     _min_desired_young_length = MAX2((size_t) 1, NewSize / HeapRegion::GrainBytes);
    if (FLAG_IS_CMDLINE(MaxNewSize)) {
      _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes);
      _sizer_kind = SizerMaxAndNewSize;
      _adaptive_size = _min_desired_young_length == _max_desired_young_length;
    } else {
      _sizer_kind = SizerNewSizeOnly;
    }
  } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
    _max_desired_young_length = MAX2((size_t) 1, MaxNewSize / HeapRegion::GrainBytes);
    _sizer_kind = SizerMaxNewSizeOnly;
450
  }
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
}

size_t G1YoungGenSizer::calculate_default_min_length(size_t new_number_of_heap_regions) {
  size_t default_value = (new_number_of_heap_regions * G1DefaultMinNewGenPercent) / 100;
  return MAX2((size_t)1, default_value);
}

size_t G1YoungGenSizer::calculate_default_max_length(size_t new_number_of_heap_regions) {
  size_t default_value = (new_number_of_heap_regions * G1DefaultMaxNewGenPercent) / 100;
  return MAX2((size_t)1, default_value);
}

void G1YoungGenSizer::heap_size_changed(size_t new_number_of_heap_regions) {
  assert(new_number_of_heap_regions > 0, "Heap must be initialized");

  switch (_sizer_kind) {
    case SizerDefaults:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      break;
    case SizerNewSizeOnly:
      _max_desired_young_length = calculate_default_max_length(new_number_of_heap_regions);
      _max_desired_young_length = MAX2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxNewSizeOnly:
      _min_desired_young_length = calculate_default_min_length(new_number_of_heap_regions);
      _min_desired_young_length = MIN2(_min_desired_young_length, _max_desired_young_length);
      break;
    case SizerMaxAndNewSize:
      // Do nothing. Values set on the command line, don't update them at runtime.
      break;
    case SizerNewRatio:
      _min_desired_young_length = new_number_of_heap_regions / (NewRatio + 1);
      _max_desired_young_length = _min_desired_young_length;
      break;
    default:
      ShouldNotReachHere();
488 489
  }

490
  assert(_min_desired_young_length <= _max_desired_young_length, "Invalid min/max young gen size values");
491 492
}

493 494 495 496 497 498
void G1CollectorPolicy::init() {
  // Set aside an initial future to_space.
  _g1 = G1CollectedHeap::heap();

  assert(Heap_lock->owned_by_self(), "Locking discipline.");

499 500
  initialize_gc_policy_counters();

501
  if (adaptive_young_list_length()) {
502
    _young_list_fixed_length = 0;
503
  } else {
504
    _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
505
  }
506
  _free_regions_at_end_of_collection = _g1->free_regions();
507
  update_young_list_target_length();
508
  _prev_eden_capacity = _young_list_target_length * HeapRegion::GrainBytes;
509 510 511 512

  // We may immediately start allocating regions and placing them on the
  // collection set list. Initialize the per-collection set info
  start_incremental_cset_building();
513 514
}

515
// Create the jstat counters for the policy.
516
void G1CollectorPolicy::initialize_gc_policy_counters() {
517
  _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
518 519
}

520 521 522 523 524 525 526 527
bool G1CollectorPolicy::predict_will_fit(size_t young_length,
                                         double base_time_ms,
                                         size_t base_free_regions,
                                         double target_pause_time_ms) {
  if (young_length >= base_free_regions) {
    // end condition 1: not enough space for the young regions
    return false;
  }
528

529 530 531 532 533 534 535 536 537 538
  double accum_surv_rate = accum_yg_surv_rate_pred((int)(young_length - 1));
  size_t bytes_to_copy =
               (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
  double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
  double young_other_time_ms = predict_young_other_time_ms(young_length);
  double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
  if (pause_time_ms > target_pause_time_ms) {
    // end condition 2: prediction is over the target pause time
    return false;
  }
539

540 541 542 543 544
  size_t free_bytes =
                  (base_free_regions - young_length) * HeapRegion::GrainBytes;
  if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
    // end condition 3: out-of-space (conservatively!)
    return false;
545
  }
546 547 548 549 550

  // success!
  return true;
}

551 552 553
void G1CollectorPolicy::record_new_heap_size(size_t new_number_of_regions) {
  // re-calculate the necessary reserve
  double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
554 555 556
  // We use ceiling so that if reserve_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
  _reserve_regions = (size_t) ceil(reserve_regions_d);
557

558
  _young_gen_sizer->heap_size_changed(new_number_of_regions);
559 560
}

561 562 563
size_t G1CollectorPolicy::calculate_young_list_desired_min_length(
                                                     size_t base_min_length) {
  size_t desired_min_length = 0;
564
  if (adaptive_young_list_length()) {
565 566 567 568 569 570 571
    if (_alloc_rate_ms_seq->num() > 3) {
      double now_sec = os::elapsedTime();
      double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
      double alloc_rate_ms = predict_alloc_rate_ms();
      desired_min_length = (size_t) ceil(alloc_rate_ms * when_ms);
    } else {
      // otherwise we don't have enough info to make the prediction
572 573
    }
  }
574 575
  desired_min_length += base_min_length;
  // make sure we don't go below any user-defined minimum bound
576
  return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
577 578
}

579 580 581 582
size_t G1CollectorPolicy::calculate_young_list_desired_max_length() {
  // Here, we might want to also take into account any additional
  // constraints (i.e., user-defined minimum bound). Currently, we
  // effectively don't set this bound.
583
  return _young_gen_sizer->max_desired_young_length();
584
}
585

586 587 588 589 590 591
void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
  if (rs_lengths == (size_t) -1) {
    // if it's set to the default value (-1), we should predict it;
    // otherwise, use the given value.
    rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
  }
592

593
  // Calculate the absolute and desired min bounds.
594

595 596 597 598 599 600 601 602 603 604
  // This is how many young regions we already have (currently: the survivors).
  size_t base_min_length = recorded_survivor_regions();
  // This is the absolute minimum young length, which ensures that we
  // can allocate one eden region in the worst-case.
  size_t absolute_min_length = base_min_length + 1;
  size_t desired_min_length =
                     calculate_young_list_desired_min_length(base_min_length);
  if (desired_min_length < absolute_min_length) {
    desired_min_length = absolute_min_length;
  }
605

606
  // Calculate the absolute and desired max bounds.
607

608 609 610 611 612 613 614 615 616
  // We will try our best not to "eat" into the reserve.
  size_t absolute_max_length = 0;
  if (_free_regions_at_end_of_collection > _reserve_regions) {
    absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
  }
  size_t desired_max_length = calculate_young_list_desired_max_length();
  if (desired_max_length > absolute_max_length) {
    desired_max_length = absolute_max_length;
  }
617

618 619
  size_t young_list_target_length = 0;
  if (adaptive_young_list_length()) {
620
    if (gcs_are_young()) {
621 622 623 624 625 626 627 628 629 630 631 632
      young_list_target_length =
                        calculate_young_list_target_length(rs_lengths,
                                                           base_min_length,
                                                           desired_min_length,
                                                           desired_max_length);
      _rs_lengths_prediction = rs_lengths;
    } else {
      // Don't calculate anything and let the code below bound it to
      // the desired_min_length, i.e., do the next GC as soon as
      // possible to maximize how many old regions we can add to it.
    }
  } else {
633
    if (gcs_are_young()) {
634 635
      young_list_target_length = _young_list_fixed_length;
    } else {
636
      // A bit arbitrary: during mixed GCs we allocate half
637 638 639 640 641 642 643
      // the young regions to try to add old regions to the CSet.
      young_list_target_length = _young_list_fixed_length / 2;
      // We choose to accept that we might go under the desired min
      // length given that we intentionally ask for a smaller young gen.
      desired_min_length = absolute_min_length;
    }
  }
644

645 646 647 648 649 650 651 652 653
  // Make sure we don't go over the desired max length, nor under the
  // desired min length. In case they clash, desired_min_length wins
  // which is why that test is second.
  if (young_list_target_length > desired_max_length) {
    young_list_target_length = desired_max_length;
  }
  if (young_list_target_length < desired_min_length) {
    young_list_target_length = desired_min_length;
  }
654

655 656 657 658
  assert(young_list_target_length > recorded_survivor_regions(),
         "we should be able to allocate at least one eden region");
  assert(young_list_target_length >= absolute_min_length, "post-condition");
  _young_list_target_length = young_list_target_length;
659

660 661
  update_max_gc_locker_expansion();
}
662

663 664 665 666 667 668
size_t
G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
                                                   size_t base_min_length,
                                                   size_t desired_min_length,
                                                   size_t desired_max_length) {
  assert(adaptive_young_list_length(), "pre-condition");
669
  assert(gcs_are_young(), "only call this for young GCs");
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764

  // In case some edge-condition makes the desired max length too small...
  if (desired_max_length <= desired_min_length) {
    return desired_min_length;
  }

  // We'll adjust min_young_length and max_young_length not to include
  // the already allocated young regions (i.e., so they reflect the
  // min and max eden regions we'll allocate). The base_min_length
  // will be reflected in the predictions by the
  // survivor_regions_evac_time prediction.
  assert(desired_min_length > base_min_length, "invariant");
  size_t min_young_length = desired_min_length - base_min_length;
  assert(desired_max_length > base_min_length, "invariant");
  size_t max_young_length = desired_max_length - base_min_length;

  double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
  double survivor_regions_evac_time = predict_survivor_regions_evac_time();
  size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
  size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
  size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
  double base_time_ms =
    predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
    survivor_regions_evac_time;
  size_t available_free_regions = _free_regions_at_end_of_collection;
  size_t base_free_regions = 0;
  if (available_free_regions > _reserve_regions) {
    base_free_regions = available_free_regions - _reserve_regions;
  }

  // Here, we will make sure that the shortest young length that
  // makes sense fits within the target pause time.

  if (predict_will_fit(min_young_length, base_time_ms,
                       base_free_regions, target_pause_time_ms)) {
    // The shortest young length will fit into the target pause time;
    // we'll now check whether the absolute maximum number of young
    // regions will fit in the target pause time. If not, we'll do
    // a binary search between min_young_length and max_young_length.
    if (predict_will_fit(max_young_length, base_time_ms,
                         base_free_regions, target_pause_time_ms)) {
      // The maximum young length will fit into the target pause time.
      // We are done so set min young length to the maximum length (as
      // the result is assumed to be returned in min_young_length).
      min_young_length = max_young_length;
    } else {
      // The maximum possible number of young regions will not fit within
      // the target pause time so we'll search for the optimal
      // length. The loop invariants are:
      //
      // min_young_length < max_young_length
      // min_young_length is known to fit into the target pause time
      // max_young_length is known not to fit into the target pause time
      //
      // Going into the loop we know the above hold as we've just
      // checked them. Every time around the loop we check whether
      // the middle value between min_young_length and
      // max_young_length fits into the target pause time. If it
      // does, it becomes the new min. If it doesn't, it becomes
      // the new max. This way we maintain the loop invariants.

      assert(min_young_length < max_young_length, "invariant");
      size_t diff = (max_young_length - min_young_length) / 2;
      while (diff > 0) {
        size_t young_length = min_young_length + diff;
        if (predict_will_fit(young_length, base_time_ms,
                             base_free_regions, target_pause_time_ms)) {
          min_young_length = young_length;
        } else {
          max_young_length = young_length;
        }
        assert(min_young_length <  max_young_length, "invariant");
        diff = (max_young_length - min_young_length) / 2;
      }
      // The results is min_young_length which, according to the
      // loop invariants, should fit within the target pause time.

      // These are the post-conditions of the binary search above:
      assert(min_young_length < max_young_length,
             "otherwise we should have discovered that max_young_length "
             "fits into the pause target and not done the binary search");
      assert(predict_will_fit(min_young_length, base_time_ms,
                              base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should "
             "fit into the pause target");
      assert(!predict_will_fit(min_young_length + 1, base_time_ms,
                               base_free_regions, target_pause_time_ms),
             "min_young_length, the result of the binary search, should be "
             "optimal, so no larger length should fit into the pause target");
    }
  } else {
    // Even the minimum length doesn't fit into the pause time
    // target, return it as the result nevertheless.
  }
  return base_min_length + min_young_length;
765 766
}

767 768 769 770 771 772 773 774 775 776
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
  double survivor_regions_evac_time = 0.0;
  for (HeapRegion * r = _recorded_survivor_head;
       r != NULL && r != _recorded_survivor_tail->get_next_young_region();
       r = r->get_next_young_region()) {
    survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
  }
  return survivor_regions_evac_time;
}

777
void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
778 779
  guarantee( adaptive_young_list_length(), "should not call this otherwise" );

780
  size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
781 782 783
  if (rs_lengths > _rs_lengths_prediction) {
    // add 10% to avoid having to recalculate often
    size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
784
    update_young_list_target_length(rs_lengths_prediction);
785 786 787
  }
}

788 789


790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
                                               bool is_tlab,
                                               bool* gc_overhead_limit_was_exceeded) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}

// This method controls how a collector handles one or more
// of its generations being fully allocated.
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
                                                       bool is_tlab) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}


#ifndef PRODUCT
bool G1CollectorPolicy::verify_young_ages() {
808
  HeapRegion* head = _g1->young_list()->first_region();
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
  return
    verify_young_ages(head, _short_lived_surv_rate_group);
  // also call verify_young_ages on any additional surv rate groups
}

bool
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
                                     SurvRateGroup *surv_rate_group) {
  guarantee( surv_rate_group != NULL, "pre-condition" );

  const char* name = surv_rate_group->name();
  bool ret = true;
  int prev_age = -1;

  for (HeapRegion* curr = head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    SurvRateGroup* group = curr->surv_rate_group();
    if (group == NULL && !curr->is_survivor()) {
      gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
      ret = false;
    }

    if (surv_rate_group == group) {
      int age = curr->age_in_surv_rate_group();

      if (age < 0) {
        gclog_or_tty->print_cr("## %s: encountered negative age", name);
        ret = false;
      }

      if (age <= prev_age) {
        gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
                               "(%d, %d)", name, age, prev_age);
        ret = false;
      }
      prev_age = age;
    }
  }

  return ret;
}
#endif // PRODUCT

void G1CollectorPolicy::record_full_collection_start() {
  _cur_collection_start_sec = os::elapsedTime();
  // Release the future to-space so that it is available for compaction into.
  _g1->set_full_collection();
}

void G1CollectorPolicy::record_full_collection_end() {
  // Consider this like a collection pause for the purposes of allocation
  // since last pause.
  double end_sec = os::elapsedTime();
  double full_gc_time_sec = end_sec - _cur_collection_start_sec;
  double full_gc_time_ms = full_gc_time_sec * 1000.0;

  _all_full_gc_times_ms->add(full_gc_time_ms);

868
  update_recent_gc_times(end_sec, full_gc_time_ms);
869 870 871

  _g1->clear_full_collection();

872 873 874 875 876
  // "Nuke" the heuristics that control the young/mixed GC
  // transitions and make sure we start with young GCs after the Full GC.
  set_gcs_are_young(true);
  _last_young_gc = false;
  _should_revert_to_young_gcs = false;
877 878
  clear_initiate_conc_mark_if_possible();
  clear_during_initial_mark_pause();
879 880 881 882 883 884 885 886
  _known_garbage_bytes = 0;
  _known_garbage_ratio = 0.0;
  _in_marking_window = false;
  _in_marking_window_im = false;

  _short_lived_surv_rate_group->start_adding_regions();
  // also call this on any additional surv rate groups

887 888
  record_survivor_regions(0, NULL, NULL);

889
  _free_regions_at_end_of_collection = _g1->free_regions();
890 891
  // Reset survivors SurvRateGroup.
  _survivor_surv_rate_group->reset();
892
  update_young_list_target_length();
893
  _collectionSetChooser->updateAfterFullCollection();
894
}
895 896 897 898 899 900 901 902 903 904

void G1CollectorPolicy::record_stop_world_start() {
  _stop_world_start = os::elapsedTime();
}

void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
                                                      size_t start_used) {
  if (PrintGCDetails) {
    gclog_or_tty->stamp(PrintGCTimeStamps);
    gclog_or_tty->print("[GC pause");
905
    gclog_or_tty->print(" (%s)", gcs_are_young() ? "young" : "mixed");
906 907
  }

908 909 910 911 912 913 914 915 916 917 918 919 920
  if (!during_initial_mark_pause()) {
    // We only need to do this here as the policy will only be applied
    // to the GC we're about to start. so, no point is calculating this
    // every time we calculate / recalculate the target young length.
    update_survivors_policy();
  } else {
    // The marking phase has a "we only copy implicitly live
    // objects during marking" invariant. The easiest way to ensure it
    // holds is not to allocate any survivor regions and tenure all
    // objects. In the future we might change this and handle survivor
    // regions specially during marking.
    tenure_all_objects();
  }
921

922 923 924
  assert(_g1->used() == _g1->recalculate_used(),
         err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
                 _g1->used(), _g1->recalculate_used()));
925 926 927 928 929 930 931 932 933 934 935 936

  double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
  _all_stop_world_times_ms->add(s_w_t_ms);
  _stop_world_start = 0.0;

  _cur_collection_start_sec = start_time_sec;
  _cur_collection_pause_used_at_start_bytes = start_used;
  _cur_collection_pause_used_regions_at_start = _g1->used_regions();
  _pending_cards = _g1->pending_card_num();
  _max_pending_cards = _g1->max_pending_card_num();

  _bytes_in_collection_set_before_gc = 0;
937
  _bytes_copied_during_gc = 0;
938

939 940 941 942 943
  YoungList* young_list = _g1->young_list();
  _eden_bytes_before_gc = young_list->eden_used_bytes();
  _survivor_bytes_before_gc = young_list->survivor_used_bytes();
  _capacity_before_gc = _g1->capacity();

944 945 946 947 948
#ifdef DEBUG
  // initialise these to something well known so that we can spot
  // if they are not set properly

  for (int i = 0; i < _parallel_gc_threads; ++i) {
949 950
    _par_last_gc_worker_start_times_ms[i] = -1234.0;
    _par_last_ext_root_scan_times_ms[i] = -1234.0;
951
    _par_last_satb_filtering_times_ms[i] = -1234.0;
952 953 954 955 956 957 958
    _par_last_update_rs_times_ms[i] = -1234.0;
    _par_last_update_rs_processed_buffers[i] = -1234.0;
    _par_last_scan_rs_times_ms[i] = -1234.0;
    _par_last_obj_copy_times_ms[i] = -1234.0;
    _par_last_termination_times_ms[i] = -1234.0;
    _par_last_termination_attempts[i] = -1234.0;
    _par_last_gc_worker_end_times_ms[i] = -1234.0;
959
    _par_last_gc_worker_times_ms[i] = -1234.0;
J
johnc 已提交
960
    _par_last_gc_worker_other_times_ms[i] = -1234.0;
961 962 963 964 965 966 967 968
  }
#endif

  for (int i = 0; i < _aux_num; ++i) {
    _cur_aux_times_ms[i] = 0.0;
    _cur_aux_times_set[i] = false;
  }

969
  // This is initialized to zero here and is set during
J
johnc 已提交
970 971
  // the evacuation pause if marking is in progress.
  _cur_satb_drain_time_ms = 0.0;
972

973
  _last_gc_was_young = false;
974 975 976

  // do that for any other surv rate groups
  _short_lived_surv_rate_group->stop_adding_regions();
977
  _survivors_age_table.clear();
978

979 980 981
  assert( verify_young_ages(), "region age verification" );
}

982
void G1CollectorPolicy::record_concurrent_mark_init_end(double
983 984
                                                   mark_init_elapsed_time_ms) {
  _during_marking = true;
985 986
  assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
  clear_during_initial_mark_pause();
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
  _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_remark_start() {
  _mark_remark_start_sec = os::elapsedTime();
  _during_marking = false;
}

void G1CollectorPolicy::record_concurrent_mark_remark_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
  _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  _mark_cleanup_start_sec = os::elapsedTime();
}

1009
void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
1010 1011
  _should_revert_to_young_gcs = false;
  _last_young_gc = true;
1012
  _in_marking_window = false;
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
}

void G1CollectorPolicy::record_concurrent_pause() {
  if (_stop_world_start > 0.0) {
    double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
    _all_yield_times_ms->add(yield_ms);
  }
}

void G1CollectorPolicy::record_concurrent_pause_end() {
}

template<class T>
T sum_of(T* sum_arr, int start, int n, int N) {
  T sum = (T)0;
  for (int i = 0; i < n; i++) {
    int j = (start + i) % N;
    sum += sum_arr[j];
  }
  return sum;
}

1035 1036
void G1CollectorPolicy::print_par_stats(int level,
                                        const char* str,
1037
                                        double* data) {
1038 1039
  double min = data[0], max = data[0];
  double total = 0.0;
1040 1041
  LineBuffer buf(level);
  buf.append("[%s (ms):", str);
1042
  for (uint i = 0; i < no_of_gc_threads(); ++i) {
1043 1044 1045 1046 1047 1048
    double val = data[i];
    if (val < min)
      min = val;
    if (val > max)
      max = val;
    total += val;
1049
    buf.append("  %3.1lf", val);
1050
  }
1051
  buf.append_and_print_cr("");
1052
  double avg = total / (double) no_of_gc_threads();
1053 1054
  buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
    avg, min, max, max - min);
1055 1056
}

1057 1058
void G1CollectorPolicy::print_par_sizes(int level,
                                        const char* str,
1059
                                        double* data) {
1060 1061
  double min = data[0], max = data[0];
  double total = 0.0;
1062 1063
  LineBuffer buf(level);
  buf.append("[%s :", str);
1064
  for (uint i = 0; i < no_of_gc_threads(); ++i) {
1065 1066 1067 1068 1069 1070
    double val = data[i];
    if (val < min)
      min = val;
    if (val > max)
      max = val;
    total += val;
1071
    buf.append(" %d", (int) val);
1072
  }
1073
  buf.append_and_print_cr("");
1074
  double avg = total / (double) no_of_gc_threads();
1075 1076
  buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
    (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
1077 1078
}

J
johnc 已提交
1079 1080 1081
void G1CollectorPolicy::print_stats(int level,
                                    const char* str,
                                    double value) {
1082
  LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
1083 1084
}

J
johnc 已提交
1085 1086 1087
void G1CollectorPolicy::print_stats(int level,
                                    const char* str,
                                    int value) {
1088
  LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
1089 1090
}

J
johnc 已提交
1091
double G1CollectorPolicy::avg_value(double* data) {
1092
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1093
    double ret = 0.0;
1094
    for (uint i = 0; i < no_of_gc_threads(); ++i) {
1095
      ret += data[i];
J
johnc 已提交
1096
    }
1097
    return ret / (double) no_of_gc_threads();
1098 1099 1100 1101 1102
  } else {
    return data[0];
  }
}

J
johnc 已提交
1103
double G1CollectorPolicy::max_value(double* data) {
1104
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1105
    double ret = data[0];
1106
    for (uint i = 1; i < no_of_gc_threads(); ++i) {
J
johnc 已提交
1107
      if (data[i] > ret) {
1108
        ret = data[i];
J
johnc 已提交
1109 1110
      }
    }
1111 1112 1113 1114 1115 1116
    return ret;
  } else {
    return data[0];
  }
}

J
johnc 已提交
1117
double G1CollectorPolicy::sum_of_values(double* data) {
1118
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1119
    double sum = 0.0;
1120
    for (uint i = 0; i < no_of_gc_threads(); i++) {
1121
      sum += data[i];
J
johnc 已提交
1122
    }
1123 1124 1125 1126 1127 1128
    return sum;
  } else {
    return data[0];
  }
}

J
johnc 已提交
1129
double G1CollectorPolicy::max_sum(double* data1, double* data2) {
1130 1131
  double ret = data1[0] + data2[0];

1132
  if (G1CollectedHeap::use_parallel_gc_threads()) {
1133
    for (uint i = 1; i < no_of_gc_threads(); ++i) {
1134
      double data = data1[i] + data2[i];
J
johnc 已提交
1135
      if (data > ret) {
1136
        ret = data;
J
johnc 已提交
1137
      }
1138 1139 1140 1141 1142 1143 1144 1145
    }
  }
  return ret;
}

// Anything below that is considered to be zero
#define MIN_TIMER_GRANULARITY 0.0000001

1146
void G1CollectorPolicy::record_collection_pause_end(int no_of_gc_threads) {
1147 1148
  double end_time_sec = os::elapsedTime();
  double elapsed_ms = _last_pause_time_ms;
1149
  bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1150 1151
  assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
         "otherwise, the subtraction below does not make sense");
1152
  size_t rs_size =
1153
            _cur_collection_pause_used_regions_at_start - cset_region_length();
1154 1155 1156
  size_t cur_used_bytes = _g1->used();
  assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  bool last_pause_included_initial_mark = false;
1157
  bool update_stats = !_g1->evacuation_failed();
1158
  set_no_of_gc_threads(no_of_gc_threads);
1159 1160 1161 1162 1163 1164 1165 1166 1167

#ifndef PRODUCT
  if (G1YoungSurvRateVerbose) {
    gclog_or_tty->print_cr("");
    _short_lived_surv_rate_group->print();
    // do that for any other surv rate groups too
  }
#endif // PRODUCT

1168 1169 1170
  last_pause_included_initial_mark = during_initial_mark_pause();
  if (last_pause_included_initial_mark)
    record_concurrent_mark_init_end(0.0);
1171

1172
  size_t marking_initiating_used_threshold =
1173
    (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
1174

1175
  if (!_g1->mark_in_progress() && !_last_young_gc) {
1176
    assert(!last_pause_included_initial_mark, "invariant");
1177 1178
    if (cur_used_bytes > marking_initiating_used_threshold) {
      if (cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
1179 1180
        assert(!during_initial_mark_pause(), "we should not see this here");

1181 1182 1183 1184 1185 1186 1187 1188 1189
        ergo_verbose3(ErgoConcCycles,
                      "request concurrent cycle initiation",
                      ergo_format_reason("occupancy higher than threshold")
                      ergo_format_byte("occupancy")
                      ergo_format_byte_perc("threshold"),
                      cur_used_bytes,
                      marking_initiating_used_threshold,
                      (double) InitiatingHeapOccupancyPercent);

1190 1191 1192 1193
        // Note: this might have already been set, if during the last
        // pause we decided to start a cycle but at the beginning of
        // this pause we decided to postpone it. That's OK.
        set_initiate_conc_mark_if_possible();
1194 1195 1196 1197 1198 1199 1200 1201 1202
      } else {
        ergo_verbose2(ErgoConcCycles,
                  "do not request concurrent cycle initiation",
                  ergo_format_reason("occupancy lower than previous occupancy")
                  ergo_format_byte("occupancy")
                  ergo_format_byte("previous occupancy"),
                  cur_used_bytes,
                  _prev_collection_pause_used_at_end_bytes);
      }
1203 1204 1205
    }
  }

1206 1207
  _prev_collection_pause_used_at_end_bytes = cur_used_bytes;

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
  _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
                          end_time_sec, false);

  // This assert is exempted when we're doing parallel collection pauses,
  // because the fragmentation caused by the parallel GC allocation buffers
  // can lead to more memory being used during collection than was used
  // before. Best leave this out until the fragmentation problem is fixed.
  // Pauses in which evacuation failed can also lead to negative
  // collections, since no space is reclaimed from a region containing an
  // object whose evacuation failed.
  // Further, we're now always doing parallel collection.  But I'm still
  // leaving this here as a placeholder for a more precise assertion later.
  // (DLD, 10/05.)
  assert((true || parallel) // Always using GC LABs now.
         || _g1->evacuation_failed()
         || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
         "Negative collection");

  size_t freed_bytes =
    _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
1229

1230 1231 1232 1233
  double survival_fraction =
    (double)surviving_bytes/
    (double)_collection_set_bytes_used_before;

J
johnc 已提交
1234 1235 1236 1237
  // These values are used to update the summary information that is
  // displayed when TraceGen0Time is enabled, and are output as part
  // of the PrintGCDetails output, in the non-parallel case.

1238
  double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
1239
  double satb_filtering_time = avg_value(_par_last_satb_filtering_times_ms);
1240 1241 1242 1243 1244 1245 1246
  double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  double update_rs_processed_buffers =
    sum_of_values(_par_last_update_rs_processed_buffers);
  double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  double termination_time = avg_value(_par_last_termination_times_ms);

J
johnc 已提交
1247
  double known_time = ext_root_scan_time +
1248
                      satb_filtering_time +
J
johnc 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
                      update_rs_time +
                      scan_rs_time +
                      obj_copy_time;

  double other_time_ms = elapsed_ms;

  // Subtract the SATB drain time. It's initialized to zero at the
  // start of the pause and is updated during the pause if marking
  // is in progress.
  other_time_ms -= _cur_satb_drain_time_ms;

  if (parallel) {
    other_time_ms -= _cur_collection_par_time_ms;
  } else {
    other_time_ms -= known_time;
  }
1265

J
johnc 已提交
1266 1267 1268
  // Subtract the time taken to clean the card table from the
  // current value of "other time"
  other_time_ms -= _cur_clear_ct_time_ms;
1269

1270 1271 1272 1273 1274
  // Subtract the time spent completing marking in the collection
  // set. Note if marking is not in progress during the pause
  // the value of _mark_closure_time_ms will be zero.
  other_time_ms -= _mark_closure_time_ms;

J
johnc 已提交
1275 1276
  // TraceGen0Time and TraceGen1Time summary info updating.
  _all_pause_times_ms->add(elapsed_ms);
1277

1278
  if (update_stats) {
J
johnc 已提交
1279 1280 1281 1282 1283
    _summary->record_total_time_ms(elapsed_ms);
    _summary->record_other_time_ms(other_time_ms);

    MainBodySummary* body_summary = _summary->main_body_summary();
    assert(body_summary != NULL, "should not be null!");
1284

J
johnc 已提交
1285 1286 1287 1288 1289 1290 1291
    // This will be non-zero iff marking is currently in progress (i.e.
    // _g1->mark_in_progress() == true) and the currrent pause was not
    // an initial mark pause. Since the body_summary items are NumberSeqs,
    // however, they have to be consistent and updated in lock-step with
    // each other. Therefore we unconditionally record the SATB drain
    // time - even if it's zero.
    body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
1292 1293

    body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
1294
    body_summary->record_satb_filtering_time_ms(satb_filtering_time);
1295 1296 1297
    body_summary->record_update_rs_time_ms(update_rs_time);
    body_summary->record_scan_rs_time_ms(scan_rs_time);
    body_summary->record_obj_copy_time_ms(obj_copy_time);
J
johnc 已提交
1298

1299 1300 1301
    if (parallel) {
      body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
      body_summary->record_termination_time_ms(termination_time);
J
johnc 已提交
1302 1303 1304

      double parallel_known_time = known_time + termination_time;
      double parallel_other_time = _cur_collection_par_time_ms - parallel_known_time;
1305 1306
      body_summary->record_parallel_other_time_ms(parallel_other_time);
    }
J
johnc 已提交
1307

1308
    body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
J
johnc 已提交
1309
    body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
1310

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
    // We exempt parallel collection from this check because Alloc Buffer
    // fragmentation can produce negative collections.  Same with evac
    // failure.
    // Further, we're now always doing parallel collection.  But I'm still
    // leaving this here as a placeholder for a more precise assertion later.
    // (DLD, 10/05.
    assert((true || parallel)
           || _g1->evacuation_failed()
           || surviving_bytes <= _collection_set_bytes_used_before,
           "Or else negative collection!");
J
johnc 已提交
1321

1322 1323 1324 1325 1326 1327 1328 1329 1330
    // this is where we update the allocation rate of the application
    double app_time_ms =
      (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
    if (app_time_ms < MIN_TIMER_GRANULARITY) {
      // This usually happens due to the timer not having the required
      // granularity. Some Linuxes are the usual culprits.
      // We'll just set it to something (arbitrarily) small.
      app_time_ms = 1.0;
    }
1331 1332 1333 1334 1335 1336 1337 1338 1339
    // We maintain the invariant that all objects allocated by mutator
    // threads will be allocated out of eden regions. So, we can use
    // the eden region number allocated since the previous GC to
    // calculate the application's allocate rate. The only exception
    // to that is humongous objects that are allocated separately. But
    // given that humongous object allocations do not really affect
    // either the pause's duration nor when the next pause will take
    // place we can safely ignore them here.
    size_t regions_allocated = eden_cset_region_length();
1340 1341 1342 1343 1344 1345 1346
    double alloc_rate_ms = (double) regions_allocated / app_time_ms;
    _alloc_rate_ms_seq->add(alloc_rate_ms);

    double interval_ms =
      (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
    update_recent_gc_times(end_time_sec, elapsed_ms);
    _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
    if (recent_avg_pause_time_ratio() < 0.0 ||
        (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
#ifndef PRODUCT
      // Dump info to allow post-facto debugging
      gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
      gclog_or_tty->print_cr("-------------------------------------------");
      gclog_or_tty->print_cr("Recent GC Times (ms):");
      _recent_gc_times_ms->dump();
      gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
      _recent_prev_end_times_for_all_gcs_sec->dump();
      gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
                             _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1359 1360 1361 1362 1363
      // In debug mode, terminate the JVM if the user wants to debug at this point.
      assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
#endif  // !PRODUCT
      // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
      // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1364 1365 1366 1367 1368 1369 1370
      if (_recent_avg_pause_time_ratio < 0.0) {
        _recent_avg_pause_time_ratio = 0.0;
      } else {
        assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
        _recent_avg_pause_time_ratio = 1.0;
      }
    }
1371 1372
  }

J
johnc 已提交
1373 1374 1375 1376 1377 1378 1379
  for (int i = 0; i < _aux_num; ++i) {
    if (_cur_aux_times_set[i]) {
      _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
    }
  }

  // PrintGCDetails output
1380
  if (PrintGCDetails) {
J
johnc 已提交
1381 1382 1383
    bool print_marking_info =
      _g1->mark_in_progress() && !last_pause_included_initial_mark;

1384
    gclog_or_tty->print_cr("%s, %1.8lf secs]",
1385 1386 1387
                           (last_pause_included_initial_mark) ? " (initial-mark)" : "",
                           elapsed_ms / 1000.0);

1388 1389
    if (parallel) {
      print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
J
johnc 已提交
1390 1391 1392
      print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms);
      print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
      if (print_marking_info) {
1393
        print_par_stats(2, "SATB Filtering", _par_last_satb_filtering_times_ms);
J
johnc 已提交
1394
      }
1395
      print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
1396
      print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
1397 1398 1399
      print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
      print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
      print_par_stats(2, "Termination", _par_last_termination_times_ms);
1400
      print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
J
johnc 已提交
1401
      print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms);
1402 1403 1404 1405

      for (int i = 0; i < _parallel_gc_threads; i++) {
        _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i];

J
johnc 已提交
1406
        double worker_known_time = _par_last_ext_root_scan_times_ms[i] +
1407
                                   _par_last_satb_filtering_times_ms[i] +
J
johnc 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416
                                   _par_last_update_rs_times_ms[i] +
                                   _par_last_scan_rs_times_ms[i] +
                                   _par_last_obj_copy_times_ms[i] +
                                   _par_last_termination_times_ms[i];

        _par_last_gc_worker_other_times_ms[i] = _cur_collection_par_time_ms - worker_known_time;
      }
      print_par_stats(2, "GC Worker", _par_last_gc_worker_times_ms);
      print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms);
1417 1418
    } else {
      print_stats(1, "Ext Root Scanning", ext_root_scan_time);
J
johnc 已提交
1419
      if (print_marking_info) {
1420
        print_stats(1, "SATB Filtering", satb_filtering_time);
J
johnc 已提交
1421 1422 1423
      }
      print_stats(1, "Update RS", update_rs_time);
      print_stats(2, "Processed Buffers", (int)update_rs_processed_buffers);
1424 1425
      print_stats(1, "Scan RS", scan_rs_time);
      print_stats(1, "Object Copying", obj_copy_time);
1426
    }
1427 1428 1429
    if (print_marking_info) {
      print_stats(1, "Complete CSet Marking", _mark_closure_time_ms);
    }
J
johnc 已提交
1430
    print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
1431 1432 1433 1434 1435 1436 1437 1438 1439
#ifndef PRODUCT
    print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
    print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
    print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
    print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
    if (_num_cc_clears > 0) {
      print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
    }
#endif
1440
    print_stats(1, "Other", other_time_ms);
1441 1442 1443
    print_stats(2, "Choose CSet",
                   (_recorded_young_cset_choice_time_ms +
                    _recorded_non_young_cset_choice_time_ms));
1444 1445
    print_stats(2, "Ref Proc", _cur_ref_proc_time_ms);
    print_stats(2, "Ref Enq", _cur_ref_enq_time_ms);
1446 1447 1448
    print_stats(2, "Free CSet",
                   (_recorded_young_free_cset_time_ms +
                    _recorded_non_young_free_cset_time_ms));
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
    for (int i = 0; i < _aux_num; ++i) {
      if (_cur_aux_times_set[i]) {
        char buffer[96];
        sprintf(buffer, "Aux%d", i);
        print_stats(1, buffer, _cur_aux_times_ms[i]);
      }
    }
  }

  // Update the efficiency-since-mark vars.
  double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  if (elapsed_ms < MIN_TIMER_GRANULARITY) {
    // This usually happens due to the timer not having the required
    // granularity. Some Linuxes are the usual culprits.
    // We'll just set it to something (arbitrarily) small.
    proc_ms = 1.0;
  }
  double cur_efficiency = (double) freed_bytes / proc_ms;

  bool new_in_marking_window = _in_marking_window;
  bool new_in_marking_window_im = false;
1471
  if (during_initial_mark_pause()) {
1472 1473 1474 1475
    new_in_marking_window = true;
    new_in_marking_window_im = true;
  }

1476
  if (_last_young_gc) {
1477
    if (!last_pause_included_initial_mark) {
1478 1479
      ergo_verbose2(ErgoMixedGCs,
                    "start mixed GCs",
1480 1481
                    ergo_format_byte_perc("known garbage"),
                    _known_garbage_bytes, _known_garbage_ratio * 100.0);
1482
      set_gcs_are_young(false);
1483
    } else {
1484 1485
      ergo_verbose0(ErgoMixedGCs,
                    "do not start mixed GCs",
1486 1487
                    ergo_format_reason("concurrent cycle is about to start"));
    }
1488
    _last_young_gc = false;
1489
  }
1490

1491 1492 1493 1494 1495
  if (!_last_gc_was_young) {
    if (_should_revert_to_young_gcs) {
      ergo_verbose2(ErgoMixedGCs,
                    "end mixed GCs",
                    ergo_format_reason("mixed GCs end requested")
1496 1497
                    ergo_format_byte_perc("known garbage"),
                    _known_garbage_bytes, _known_garbage_ratio * 100.0);
1498
      set_gcs_are_young(true);
1499
    } else if (_known_garbage_ratio < 0.05) {
1500 1501
      ergo_verbose3(ErgoMixedGCs,
               "end mixed GCs",
1502 1503 1504 1505 1506
               ergo_format_reason("known garbage percent lower than threshold")
               ergo_format_byte_perc("known garbage")
               ergo_format_perc("threshold"),
               _known_garbage_bytes, _known_garbage_ratio * 100.0,
               0.05 * 100.0);
1507
      set_gcs_are_young(true);
1508 1509
    } else if (adaptive_young_list_length() &&
              (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) {
1510 1511
      ergo_verbose5(ErgoMixedGCs,
                    "end mixed GCs",
1512
                    ergo_format_reason("current GC efficiency lower than "
1513
                                       "predicted young GC efficiency")
1514 1515
                    ergo_format_double("GC efficiency factor")
                    ergo_format_double("current GC efficiency")
1516
                    ergo_format_double("predicted young GC efficiency")
1517 1518 1519 1520
                    ergo_format_byte_perc("known garbage"),
                    get_gc_eff_factor(), cur_efficiency,
                    predict_young_gc_eff(),
                    _known_garbage_bytes, _known_garbage_ratio * 100.0);
1521
      set_gcs_are_young(true);
1522
    }
1523
  }
1524
  _should_revert_to_young_gcs = false;
1525

1526
  if (_last_gc_was_young && !_during_marking) {
1527
    _young_gc_eff_seq->add(cur_efficiency);
1528 1529 1530 1531 1532
  }

  _short_lived_surv_rate_group->start_adding_regions();
  // do that for any other surv rate groupsx

1533
  if (update_stats) {
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
    double pause_time_ms = elapsed_ms;

    size_t diff = 0;
    if (_max_pending_cards >= _pending_cards)
      diff = _max_pending_cards - _pending_cards;
    _pending_card_diff_seq->add((double) diff);

    double cost_per_card_ms = 0.0;
    if (_pending_cards > 0) {
      cost_per_card_ms = update_rs_time / (double) _pending_cards;
      _cost_per_card_ms_seq->add(cost_per_card_ms);
    }

    size_t cards_scanned = _g1->cards_scanned();

    double cost_per_entry_ms = 0.0;
    if (cards_scanned > 10) {
      cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
1552
      if (_last_gc_was_young) {
1553
        _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1554 1555 1556
      } else {
        _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
      }
1557 1558 1559 1560 1561
    }

    if (_max_rs_lengths > 0) {
      double cards_per_entry_ratio =
        (double) cards_scanned / (double) _max_rs_lengths;
1562 1563 1564 1565 1566
      if (_last_gc_was_young) {
        _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      } else {
        _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      }
1567 1568
    }

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
    // This is defensive. For a while _max_rs_lengths could get
    // smaller than _recorded_rs_lengths which was causing
    // rs_length_diff to get very large and mess up the RSet length
    // predictions. The reason was unsafe concurrent updates to the
    // _inc_cset_recorded_rs_lengths field which the code below guards
    // against (see CR 7118202). This bug has now been fixed (see CR
    // 7119027). However, I'm still worried that
    // _inc_cset_recorded_rs_lengths might still end up somewhat
    // inaccurate. The concurrent refinement thread calculates an
    // RSet's length concurrently with other CR threads updating it
    // which might cause it to calculate the length incorrectly (if,
    // say, it's in mid-coarsening). So I'll leave in the defensive
    // conditional below just in case.
1582 1583 1584 1585 1586
    size_t rs_length_diff = 0;
    if (_max_rs_lengths > _recorded_rs_lengths) {
      rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
    }
    _rs_length_diff_seq->add((double) rs_length_diff);
1587 1588 1589 1590 1591

    size_t copied_bytes = surviving_bytes;
    double cost_per_byte_ms = 0.0;
    if (copied_bytes > 0) {
      cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
1592
      if (_in_marking_window) {
1593
        _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1594
      } else {
1595
        _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1596
      }
1597 1598 1599
    }

    double all_other_time_ms = pause_time_ms -
1600
      (update_rs_time + scan_rs_time + obj_copy_time +
1601 1602 1603
       _mark_closure_time_ms + termination_time);

    double young_other_time_ms = 0.0;
1604
    if (young_cset_region_length() > 0) {
1605 1606 1607 1608
      young_other_time_ms =
        _recorded_young_cset_choice_time_ms +
        _recorded_young_free_cset_time_ms;
      _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1609
                                          (double) young_cset_region_length());
1610 1611
    }
    double non_young_other_time_ms = 0.0;
1612
    if (old_cset_region_length() > 0) {
1613 1614 1615 1616 1617
      non_young_other_time_ms =
        _recorded_non_young_cset_choice_time_ms +
        _recorded_non_young_free_cset_time_ms;

      _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1618
                                            (double) old_cset_region_length());
1619 1620 1621 1622 1623 1624 1625 1626
    }

    double constant_other_time_ms = all_other_time_ms -
      (young_other_time_ms + non_young_other_time_ms);
    _constant_other_time_ms_seq->add(constant_other_time_ms);

    double survival_ratio = 0.0;
    if (_bytes_in_collection_set_before_gc > 0) {
1627 1628
      survival_ratio = (double) _bytes_copied_during_gc /
                                   (double) _bytes_in_collection_set_before_gc;
1629 1630 1631 1632 1633 1634
    }

    _pending_cards_seq->add((double) _pending_cards);
    _rs_lengths_seq->add((double) _max_rs_lengths);

    double expensive_region_limit_ms =
J
johnc 已提交
1635
      (double) MaxGCPauseMillis - predict_constant_other_time_ms();
1636 1637 1638
    if (expensive_region_limit_ms < 0.0) {
      // this means that the other time was predicted to be longer than
      // than the max pause time
J
johnc 已提交
1639
      expensive_region_limit_ms = (double) MaxGCPauseMillis;
1640 1641 1642 1643 1644 1645 1646
    }
    _expensive_region_limit_ms = expensive_region_limit_ms;
  }

  _in_marking_window = new_in_marking_window;
  _in_marking_window_im = new_in_marking_window_im;
  _free_regions_at_end_of_collection = _g1->free_regions();
1647
  update_young_list_target_length();
1648

1649
  // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1650
  double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1651
  adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
1652 1653

  assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
1654 1655
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
#define EXT_SIZE_FORMAT "%d%s"
#define EXT_SIZE_PARAMS(bytes)                                  \
  byte_size_in_proper_unit((bytes)),                            \
  proper_unit_for_byte_size((bytes))

void G1CollectorPolicy::print_heap_transition() {
  if (PrintGCDetails) {
    YoungList* young_list = _g1->young_list();
    size_t eden_bytes = young_list->eden_used_bytes();
    size_t survivor_bytes = young_list->survivor_used_bytes();
    size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
    size_t used = _g1->used();
    size_t capacity = _g1->capacity();
1669 1670
    size_t eden_capacity =
      (_young_list_target_length * HeapRegion::GrainBytes) - survivor_bytes;
1671 1672

    gclog_or_tty->print_cr(
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
      "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
      "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
      "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
      EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
      EXT_SIZE_PARAMS(_eden_bytes_before_gc),
      EXT_SIZE_PARAMS(_prev_eden_capacity),
      EXT_SIZE_PARAMS(eden_bytes),
      EXT_SIZE_PARAMS(eden_capacity),
      EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
      EXT_SIZE_PARAMS(survivor_bytes),
      EXT_SIZE_PARAMS(used_before_gc),
      EXT_SIZE_PARAMS(_capacity_before_gc),
      EXT_SIZE_PARAMS(used),
      EXT_SIZE_PARAMS(capacity));

    _prev_eden_capacity = eden_capacity;
1689 1690 1691 1692 1693 1694 1695
  } else if (PrintGC) {
    _g1->print_size_transition(gclog_or_tty,
                               _cur_collection_pause_used_at_start_bytes,
                               _g1->used(), _g1->capacity());
  }
}

1696 1697 1698 1699 1700 1701
void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
                                                     double update_rs_processed_buffers,
                                                     double goal_ms) {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();

1702
  if (G1UseAdaptiveConcRefinement) {
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
    const int k_gy = 3, k_gr = 6;
    const double inc_k = 1.1, dec_k = 0.9;

    int g = cg1r->green_zone();
    if (update_rs_time > goal_ms) {
      g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
    } else {
      if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
        g = (int)MAX2(g * inc_k, g + 1.0);
      }
    }
    // Change the refinement threads params
    cg1r->set_green_zone(g);
    cg1r->set_yellow_zone(g * k_gy);
    cg1r->set_red_zone(g * k_gr);
    cg1r->reinitialize_threads();

    int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
    int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
                                    cg1r->yellow_zone());
    // Change the barrier params
    dcqs.set_process_completed_threshold(processing_threshold);
    dcqs.set_max_completed_queue(cg1r->red_zone());
  }

  int curr_queue_size = dcqs.completed_buffers_num();
  if (curr_queue_size >= cg1r->yellow_zone()) {
    dcqs.set_completed_queue_padding(curr_queue_size);
  } else {
    dcqs.set_completed_queue_padding(0);
  }
  dcqs.notify_if_necessary();
}

1737 1738 1739 1740 1741 1742
double
G1CollectorPolicy::
predict_young_collection_elapsed_time_ms(size_t adjustment) {
  guarantee( adjustment == 0 || adjustment == 1, "invariant" );

  G1CollectedHeap* g1h = G1CollectedHeap::heap();
1743
  size_t young_num = g1h->young_list()->length();
1744 1745 1746 1747 1748
  if (young_num == 0)
    return 0.0;

  young_num += adjustment;
  size_t pending_cards = predict_pending_cards();
1749
  size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
1750 1751
                      predict_rs_length_diff();
  size_t card_num;
1752
  if (gcs_are_young()) {
1753
    card_num = predict_young_card_num(rs_lengths);
1754
  } else {
1755
    card_num = predict_non_young_card_num(rs_lengths);
1756
  }
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
  size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  double accum_yg_surv_rate =
    _short_lived_surv_rate_group->accum_surv_rate(adjustment);

  size_t bytes_to_copy =
    (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);

  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy) +
    predict_young_other_time_ms(young_num) +
    predict_constant_other_time_ms();
}

double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  size_t rs_length = predict_rs_length_diff();
  size_t card_num;
1776
  if (gcs_are_young()) {
1777
    card_num = predict_young_card_num(rs_length);
1778
  } else {
1779
    card_num = predict_non_young_card_num(rs_length);
1780
  }
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
  return predict_base_elapsed_time_ms(pending_cards, card_num);
}

double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
                                                size_t scanned_cards) {
  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(scanned_cards) +
    predict_constant_other_time_ms();
}

double
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
                                                  bool young) {
  size_t rs_length = hr->rem_set()->occupied();
  size_t card_num;
1798
  if (gcs_are_young()) {
1799
    card_num = predict_young_card_num(rs_length);
1800
  } else {
1801
    card_num = predict_non_young_card_num(rs_length);
1802
  }
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
  size_t bytes_to_copy = predict_bytes_to_copy(hr);

  double region_elapsed_time_ms =
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy);

  if (young)
    region_elapsed_time_ms += predict_young_other_time_ms(1);
  else
    region_elapsed_time_ms += predict_non_young_other_time_ms(1);

  return region_elapsed_time_ms;
}

size_t
G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  size_t bytes_to_copy;
  if (hr->is_marked())
    bytes_to_copy = hr->max_live_bytes();
  else {
    guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
               "invariant" );
    int age = hr->age_in_surv_rate_group();
1826
    double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1827 1828 1829 1830 1831 1832 1833
    bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  }

  return bytes_to_copy;
}

void
1834 1835 1836 1837 1838
G1CollectorPolicy::init_cset_region_lengths(size_t eden_cset_region_length,
                                          size_t survivor_cset_region_length) {
  _eden_cset_region_length     = eden_cset_region_length;
  _survivor_cset_region_length = survivor_cset_region_length;
  _old_cset_region_length      = 0;
1839 1840 1841 1842 1843 1844
}

void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  _recorded_rs_lengths = rs_lengths;
}

1845 1846 1847 1848 1849
void G1CollectorPolicy::check_if_region_is_too_expensive(double
                                                           predicted_time_ms) {
  // I don't think we need to do this when in young GC mode since
  // marking will be initiated next time we hit the soft limit anyway...
  if (predicted_time_ms > _expensive_region_limit_ms) {
1850 1851
    ergo_verbose2(ErgoMixedGCs,
              "request mixed GCs end",
1852 1853 1854 1855
              ergo_format_reason("predicted region time higher than threshold")
              ergo_format_ms("predicted region time")
              ergo_format_ms("threshold"),
              predicted_time_ms, _expensive_region_limit_ms);
1856 1857
    // no point in doing another mixed GC
    _should_revert_to_young_gcs = true;
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
  }
}

void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
                                               double elapsed_ms) {
  _recent_gc_times_ms->add(elapsed_ms);
  _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  _prev_collection_pause_end_ms = end_time_sec * 1000.0;
}

size_t G1CollectorPolicy::expansion_amount() {
1869 1870 1871
  double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  double threshold = _gc_overhead_perc;
  if (recent_gc_overhead > threshold) {
J
johnc 已提交
1872 1873 1874 1875
    // We will double the existing space, or take
    // G1ExpandByPercentOfAvailable % of the available expansion
    // space, whichever is smaller, bounded below by a minimum
    // expansion (unless that's all that's left.)
1876
    const size_t min_expand_bytes = 1*M;
1877
    size_t reserved_bytes = _g1->max_capacity();
1878 1879 1880 1881
    size_t committed_bytes = _g1->capacity();
    size_t uncommitted_bytes = reserved_bytes - committed_bytes;
    size_t expand_bytes;
    size_t expand_bytes_via_pct =
J
johnc 已提交
1882
      uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1883 1884 1885
    expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
    expand_bytes = MAX2(expand_bytes, min_expand_bytes);
    expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

    ergo_verbose5(ErgoHeapSizing,
                  "attempt heap expansion",
                  ergo_format_reason("recent GC overhead higher than "
                                     "threshold after GC")
                  ergo_format_perc("recent GC overhead")
                  ergo_format_perc("threshold")
                  ergo_format_byte("uncommitted")
                  ergo_format_byte_perc("calculated expansion amount"),
                  recent_gc_overhead, threshold,
                  uncommitted_bytes,
                  expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
    return expand_bytes;
  } else {
    return 0;
  }
}

class CountCSClosure: public HeapRegionClosure {
  G1CollectorPolicy* _g1_policy;
public:
  CountCSClosure(G1CollectorPolicy* g1_policy) :
    _g1_policy(g1_policy) {}
  bool doHeapRegion(HeapRegion* r) {
    _g1_policy->_bytes_in_collection_set_before_gc += r->used();
    return false;
  }
};

void G1CollectorPolicy::count_CS_bytes_used() {
  CountCSClosure cs_closure(this);
  _g1->collection_set_iterate(&cs_closure);
}

J
johnc 已提交
1921 1922 1923
void G1CollectorPolicy::print_summary(int level,
                                      const char* str,
                                      NumberSeq* seq) const {
1924
  double sum = seq->sum();
1925
  LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
1926 1927 1928
                str, sum / 1000.0, seq->avg());
}

J
johnc 已提交
1929 1930 1931
void G1CollectorPolicy::print_summary_sd(int level,
                                         const char* str,
                                         NumberSeq* seq) const {
1932
  print_summary(level, str, seq);
1933
  LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
1934 1935 1936 1937 1938 1939 1940
                seq->num(), seq->sd(), seq->maximum());
}

void G1CollectorPolicy::check_other_times(int level,
                                        NumberSeq* other_times_ms,
                                        NumberSeq* calc_other_times_ms) const {
  bool should_print = false;
1941
  LineBuffer buf(level + 2);
1942 1943 1944 1945 1946 1947 1948 1949

  double max_sum = MAX2(fabs(other_times_ms->sum()),
                        fabs(calc_other_times_ms->sum()));
  double min_sum = MIN2(fabs(other_times_ms->sum()),
                        fabs(calc_other_times_ms->sum()));
  double sum_ratio = max_sum / min_sum;
  if (sum_ratio > 1.1) {
    should_print = true;
1950
    buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
1951 1952 1953 1954 1955 1956 1957 1958 1959
  }

  double max_avg = MAX2(fabs(other_times_ms->avg()),
                        fabs(calc_other_times_ms->avg()));
  double min_avg = MIN2(fabs(other_times_ms->avg()),
                        fabs(calc_other_times_ms->avg()));
  double avg_ratio = max_avg / min_avg;
  if (avg_ratio > 1.1) {
    should_print = true;
1960
    buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
1961 1962 1963
  }

  if (other_times_ms->sum() < -0.01) {
1964
    buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
1965 1966 1967
  }

  if (other_times_ms->avg() < -0.01) {
1968
    buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
1969 1970 1971 1972
  }

  if (calc_other_times_ms->sum() < -0.01) {
    should_print = true;
1973
    buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
1974 1975 1976 1977
  }

  if (calc_other_times_ms->avg() < -0.01) {
    should_print = true;
1978
    buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
1979 1980 1981 1982 1983 1984 1985
  }

  if (should_print)
    print_summary(level, "Other(Calc)", calc_other_times_ms);
}

void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
1986
  bool parallel = G1CollectedHeap::use_parallel_gc_threads();
1987 1988
  MainBodySummary*    body_summary = summary->main_body_summary();
  if (summary->get_total_seq()->num() > 0) {
1989
    print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
1990 1991 1992
    if (body_summary != NULL) {
      if (parallel) {
        print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
J
johnc 已提交
1993
        print_summary(2, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
1994
        print_summary(2, "SATB Filtering", body_summary->get_satb_filtering_seq());
1995 1996 1997 1998
        print_summary(2, "Update RS", body_summary->get_update_rs_seq());
        print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
        print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
        print_summary(2, "Termination", body_summary->get_termination_seq());
J
johnc 已提交
1999
        print_summary(2, "Parallel Other", body_summary->get_parallel_other_seq());
2000 2001 2002
        {
          NumberSeq* other_parts[] = {
            body_summary->get_ext_root_scan_seq(),
2003
            body_summary->get_satb_filtering_seq(),
J
johnc 已提交
2004
            body_summary->get_update_rs_seq(),
2005 2006 2007 2008 2009
            body_summary->get_scan_rs_seq(),
            body_summary->get_obj_copy_seq(),
            body_summary->get_termination_seq()
          };
          NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
2010
                                        6, other_parts);
2011 2012 2013 2014
          check_other_times(2, body_summary->get_parallel_other_seq(),
                            &calc_other_times_ms);
        }
      } else {
J
johnc 已提交
2015
        print_summary(1, "Ext Root Scanning", body_summary->get_ext_root_scan_seq());
2016
        print_summary(1, "SATB Filtering", body_summary->get_satb_filtering_seq());
2017 2018 2019 2020 2021
        print_summary(1, "Update RS", body_summary->get_update_rs_seq());
        print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
        print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
      }
    }
J
johnc 已提交
2022 2023
    print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
    print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
2024 2025
    print_summary(1, "Other", summary->get_other_seq());
    {
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
      if (body_summary != NULL) {
        NumberSeq calc_other_times_ms;
        if (parallel) {
          // parallel
          NumberSeq* other_parts[] = {
            body_summary->get_satb_drain_seq(),
            body_summary->get_parallel_seq(),
            body_summary->get_clear_ct_seq()
          };
          calc_other_times_ms = NumberSeq(summary->get_total_seq(),
                                                3, other_parts);
        } else {
          // serial
          NumberSeq* other_parts[] = {
            body_summary->get_satb_drain_seq(),
            body_summary->get_update_rs_seq(),
            body_summary->get_ext_root_scan_seq(),
2043
            body_summary->get_satb_filtering_seq(),
2044 2045 2046 2047 2048 2049 2050
            body_summary->get_scan_rs_seq(),
            body_summary->get_obj_copy_seq()
          };
          calc_other_times_ms = NumberSeq(summary->get_total_seq(),
                                                6, other_parts);
        }
        check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
2051 2052 2053
      }
    }
  } else {
2054
    LineBuffer(1).append_and_print_cr("none");
2055
  }
2056
  LineBuffer(0).append_and_print_cr("");
2057 2058 2059 2060 2061 2062 2063 2064
}

void G1CollectorPolicy::print_tracing_info() const {
  if (TraceGen0Time) {
    gclog_or_tty->print_cr("ALL PAUSES");
    print_summary_sd(0, "Total", _all_pause_times_ms);
    gclog_or_tty->print_cr("");
    gclog_or_tty->print_cr("");
2065 2066
    gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
    gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2067 2068
    gclog_or_tty->print_cr("");

2069 2070
    gclog_or_tty->print_cr("EVACUATION PAUSES");
    print_summary(_summary);
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

    gclog_or_tty->print_cr("MISC");
    print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
    print_summary_sd(0, "Yields", _all_yield_times_ms);
    for (int i = 0; i < _aux_num; ++i) {
      if (_all_aux_times_ms[i].num() > 0) {
        char buffer[96];
        sprintf(buffer, "Aux%d", i);
        print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
      }
    }
  }
  if (TraceGen1Time) {
    if (_all_full_gc_times_ms->num() > 0) {
      gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
                 _all_full_gc_times_ms->num(),
                 _all_full_gc_times_ms->sum() / 1000.0);
      gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
      gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
                    _all_full_gc_times_ms->sd(),
                    _all_full_gc_times_ms->maximum());
    }
  }
}

void G1CollectorPolicy::print_yg_surv_rate_info() const {
#ifndef PRODUCT
  _short_lived_surv_rate_group->print_surv_rate_summary();
  // add this call for any other surv rate groups
#endif // PRODUCT
}

#ifndef PRODUCT
// for debugging, bit of a hack...
static char*
region_num_to_mbs(int length) {
  static char buffer[64];
  double bytes = (double) (length * HeapRegion::GrainBytes);
  double mbs = bytes / (double) (1024 * 1024);
  sprintf(buffer, "%7.2lfMB", mbs);
  return buffer;
}
#endif // PRODUCT

2115
size_t G1CollectorPolicy::max_regions(int purpose) {
2116 2117
  switch (purpose) {
    case GCAllocForSurvived:
2118
      return _max_survivor_regions;
2119
    case GCAllocForTenured:
2120
      return REGIONS_UNLIMITED;
2121
    default:
2122 2123
      ShouldNotReachHere();
      return REGIONS_UNLIMITED;
2124 2125 2126
  };
}

2127
void G1CollectorPolicy::update_max_gc_locker_expansion() {
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
  size_t expansion_region_num = 0;
  if (GCLockerEdenExpansionPercent > 0) {
    double perc = (double) GCLockerEdenExpansionPercent / 100.0;
    double expansion_region_num_d = perc * (double) _young_list_target_length;
    // We use ceiling so that if expansion_region_num_d is > 0.0 (but
    // less than 1.0) we'll get 1.
    expansion_region_num = (size_t) ceil(expansion_region_num_d);
  } else {
    assert(expansion_region_num == 0, "sanity");
  }
  _young_list_max_length = _young_list_target_length + expansion_region_num;
  assert(_young_list_target_length <= _young_list_max_length, "post-condition");
}

2142
// Calculates survivor space parameters.
2143 2144 2145 2146 2147 2148 2149
void G1CollectorPolicy::update_survivors_policy() {
  double max_survivor_regions_d =
                 (double) _young_list_target_length / (double) SurvivorRatio;
  // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  // smaller than 1.0) we'll get 1.
  _max_survivor_regions = (size_t) ceil(max_survivor_regions_d);

2150
  _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
2151 2152 2153
        HeapRegion::GrainWords * _max_survivor_regions);
}

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
#ifndef PRODUCT
class HRSortIndexIsOKClosure: public HeapRegionClosure {
  CollectionSetChooser* _chooser;
public:
  HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
    _chooser(chooser) {}

  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
    }
    return false;
  }
};

2169
bool G1CollectorPolicy::assertMarkedBytesDataOK() {
2170 2171 2172 2173 2174 2175
  HRSortIndexIsOKClosure cl(_collectionSetChooser);
  _g1->heap_region_iterate(&cl);
  return true;
}
#endif

2176 2177
bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
                                                     GCCause::Cause gc_cause) {
2178 2179
  bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  if (!during_cycle) {
2180 2181 2182 2183 2184
    ergo_verbose1(ErgoConcCycles,
                  "request concurrent cycle initiation",
                  ergo_format_reason("requested by GC cause")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
2185 2186 2187
    set_initiate_conc_mark_if_possible();
    return true;
  } else {
2188 2189 2190 2191 2192
    ergo_verbose1(ErgoConcCycles,
                  "do not request concurrent cycle initiation",
                  ergo_format_reason("concurrent cycle already in progress")
                  ergo_format_str("GC cause"),
                  GCCause::to_string(gc_cause));
2193 2194 2195 2196
    return false;
  }
}

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
void
G1CollectorPolicy::decide_on_conc_mark_initiation() {
  // We are about to decide on whether this pause will be an
  // initial-mark pause.

  // First, during_initial_mark_pause() should not be already set. We
  // will set it here if we have to. However, it should be cleared by
  // the end of the pause (it's only set for the duration of an
  // initial-mark pause).
  assert(!during_initial_mark_pause(), "pre-condition");

  if (initiate_conc_mark_if_possible()) {
    // We had noticed on a previous pause that the heap occupancy has
    // gone over the initiating threshold and we should start a
    // concurrent marking cycle. So we might initiate one.

    bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
    if (!during_cycle) {
      // The concurrent marking thread is not "during a cycle", i.e.,
      // it has completed the last one. So we can go ahead and
      // initiate a new cycle.

      set_during_initial_mark_pause();
2220 2221 2222 2223 2224
      // We do not allow mixed GCs during marking.
      if (!gcs_are_young()) {
        set_gcs_are_young(true);
        ergo_verbose0(ErgoMixedGCs,
                      "end mixed GCs",
2225 2226
                      ergo_format_reason("concurrent cycle is about to start"));
      }
2227 2228 2229 2230

      // And we can now clear initiate_conc_mark_if_possible() as
      // we've already acted on it.
      clear_initiate_conc_mark_if_possible();
2231 2232 2233 2234

      ergo_verbose0(ErgoConcCycles,
                  "initiate concurrent cycle",
                  ergo_format_reason("concurrent cycle initiation requested"));
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
    } else {
      // The concurrent marking thread is still finishing up the
      // previous cycle. If we start one right now the two cycles
      // overlap. In particular, the concurrent marking thread might
      // be in the process of clearing the next marking bitmap (which
      // we will use for the next cycle if we start one). Starting a
      // cycle now will be bad given that parts of the marking
      // information might get cleared by the marking thread. And we
      // cannot wait for the marking thread to finish the cycle as it
      // periodically yields while clearing the next marking bitmap
      // and, if it's in a yield point, it's waiting for us to
      // finish. So, at this point we will not start a cycle and we'll
      // let the concurrent marking thread complete the last one.
2248 2249 2250
      ergo_verbose0(ErgoConcCycles,
                    "do not initiate concurrent cycle",
                    ergo_format_reason("concurrent cycle already in progress"));
2251 2252 2253 2254
    }
  }
}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
class KnownGarbageClosure: public HeapRegionClosure {
  CollectionSetChooser* _hrSorted;

public:
  KnownGarbageClosure(CollectionSetChooser* hrSorted) :
    _hrSorted(hrSorted)
  {}

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.

    // Do we have any marking information for this region?
    if (r->is_marked()) {
      // We don't include humongous regions in collection
      // sets because we collect them immediately at the end of a marking
      // cycle.  We also don't include young regions because we *must*
      // include them in the next collection pause.
      if (!r->isHumongous() && !r->is_young()) {
        _hrSorted->addMarkedHeapRegion(r);
      }
    }
    return false;
  }
};

class ParKnownGarbageHRClosure: public HeapRegionClosure {
  CollectionSetChooser* _hrSorted;
  jint _marked_regions_added;
  jint _chunk_size;
  jint _cur_chunk_idx;
  jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  int _worker;
  int _invokes;

  void get_new_chunk() {
    _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
    _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  }
  void add_region(HeapRegion* r) {
    if (_cur_chunk_idx == _cur_chunk_end) {
      get_new_chunk();
    }
    assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
    _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
    _marked_regions_added++;
    _cur_chunk_idx++;
  }

public:
  ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
                           jint chunk_size,
                           int worker) :
    _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
    _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
    _invokes(0)
  {}

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.
    _invokes++;

    // Do we have any marking information for this region?
    if (r->is_marked()) {
      // We don't include humongous regions in collection
      // sets because we collect them immediately at the end of a marking
      // cycle.
      // We also do not include young regions in collection sets
      if (!r->isHumongous() && !r->is_young()) {
        add_region(r);
      }
    }
    return false;
  }
  jint marked_regions_added() { return _marked_regions_added; }
  int invokes() { return _invokes; }
};

class ParKnownGarbageTask: public AbstractGangTask {
  CollectionSetChooser* _hrSorted;
  jint _chunk_size;
  G1CollectedHeap* _g1;
public:
  ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
    AbstractGangTask("ParKnownGarbageTask"),
    _hrSorted(hrSorted), _chunk_size(chunk_size),
    _g1(G1CollectedHeap::heap())
  {}

2347 2348 2349 2350
  void work(uint worker_id) {
    ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted,
                                               _chunk_size,
                                               worker_id);
2351
    // Back to zero for the claim value.
2352
    _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
2353
                                         _g1->workers()->active_workers(),
2354
                                         HeapRegion::InitialClaimValue);
2355 2356 2357
    jint regions_added = parKnownGarbageCl.marked_regions_added();
    _hrSorted->incNumMarkedHeapRegions(regions_added);
    if (G1PrintParCleanupStats) {
2358
      gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
2359
                 worker_id, parKnownGarbageCl.invokes(), regions_added);
2360 2361 2362 2363 2364
    }
  }
};

void
2365
G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
2366 2367 2368 2369
  double start_sec;
  if (G1PrintParCleanupStats) {
    start_sec = os::elapsedTime();
  }
2370 2371

  _collectionSetChooser->clearMarkedHeapRegions();
2372
  double clear_marked_end_sec;
2373
  if (G1PrintParCleanupStats) {
2374 2375 2376
    clear_marked_end_sec = os::elapsedTime();
    gclog_or_tty->print_cr("  clear marked regions: %8.3f ms.",
                           (clear_marked_end_sec - start_sec) * 1000.0);
2377
  }
2378

2379
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2380
    const size_t OverpartitionFactor = 4;
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
    size_t WorkUnit;
    // The use of MinChunkSize = 8 in the original code
    // causes some assertion failures when the total number of
    // region is less than 8.  The code here tries to fix that.
    // Should the original code also be fixed?
    if (no_of_gc_threads > 0) {
      const size_t MinWorkUnit =
        MAX2(_g1->n_regions() / no_of_gc_threads, (size_t) 1U);
      WorkUnit =
        MAX2(_g1->n_regions() / (no_of_gc_threads * OverpartitionFactor),
             MinWorkUnit);
    } else {
      assert(no_of_gc_threads > 0,
        "The active gc workers should be greater than 0");
      // In a product build do something reasonable to avoid a crash.
      const size_t MinWorkUnit =
        MAX2(_g1->n_regions() / ParallelGCThreads, (size_t) 1U);
      WorkUnit =
        MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
             MinWorkUnit);
    }
2402
    _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
2403
                                                             WorkUnit);
2404
    ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
2405
                                            (int) WorkUnit);
2406
    _g1->workers()->run_task(&parKnownGarbageTask);
2407 2408 2409

    assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
2410 2411 2412 2413
  } else {
    KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
    _g1->heap_region_iterate(&knownGarbagecl);
  }
2414
  double known_garbage_end_sec;
2415
  if (G1PrintParCleanupStats) {
2416
    known_garbage_end_sec = os::elapsedTime();
2417
    gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
2418
                      (known_garbage_end_sec - clear_marked_end_sec) * 1000.0);
2419
  }
2420

2421
  _collectionSetChooser->sortMarkedHeapRegions();
2422
  double end_sec = os::elapsedTime();
2423 2424
  if (G1PrintParCleanupStats) {
    gclog_or_tty->print_cr("  sorting: %8.3f ms.",
2425
                           (end_sec - known_garbage_end_sec) * 1000.0);
2426 2427
  }

2428 2429 2430 2431 2432
  double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;
  _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
2433 2434
}

2435
// Add the heap region at the head of the non-incremental collection set
2436
void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
2437 2438 2439 2440
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(!hr->is_young(), "non-incremental add of young region");

  assert(!hr->in_collection_set(), "should not already be in the CSet");
2441 2442 2443 2444
  hr->set_in_collection_set(true);
  hr->set_next_in_collection_set(_collection_set);
  _collection_set = hr;
  _collection_set_bytes_used_before += hr->used();
2445
  _g1->register_region_with_in_cset_fast_test(hr);
2446 2447 2448
  size_t rs_length = hr->rem_set()->occupied();
  _recorded_rs_lengths += rs_length;
  _old_cset_region_length += 1;
2449 2450
}

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
// Initialize the per-collection-set information
void G1CollectorPolicy::start_incremental_cset_building() {
  assert(_inc_cset_build_state == Inactive, "Precondition");

  _inc_cset_head = NULL;
  _inc_cset_tail = NULL;
  _inc_cset_bytes_used_before = 0;

  _inc_cset_max_finger = 0;
  _inc_cset_recorded_rs_lengths = 0;
2461 2462 2463
  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms = 0.0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
2464 2465 2466
  _inc_cset_build_state = Active;
}

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
void G1CollectorPolicy::finalize_incremental_cset_building() {
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");

  // The two "main" fields, _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  // that adds a new region to the CSet. Further updates by the
  // concurrent refinement thread that samples the young RSet lengths
  // are accumulated in the *_diffs fields. Here we add the diffs to
  // the "main" fields.

  if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
    _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  } else {
    // This is defensive. The diff should in theory be always positive
    // as RSets can only grow between GCs. However, given that we
    // sample their size concurrently with other threads updating them
    // it's possible that we might get the wrong size back, which
    // could make the calculations somewhat inaccurate.
    size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
    if (_inc_cset_recorded_rs_lengths >= diffs) {
      _inc_cset_recorded_rs_lengths -= diffs;
    } else {
      _inc_cset_recorded_rs_lengths = 0;
    }
  }
  _inc_cset_predicted_elapsed_time_ms +=
                                     _inc_cset_predicted_elapsed_time_ms_diffs;

  _inc_cset_recorded_rs_lengths_diffs = 0;
  _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
}

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  // This routine is used when:
  // * adding survivor regions to the incremental cset at the end of an
  //   evacuation pause,
  // * adding the current allocation region to the incremental cset
  //   when it is retired, and
  // * updating existing policy information for a region in the
  //   incremental cset via young list RSet sampling.
  // Therefore this routine may be called at a safepoint by the
  // VM thread, or in-between safepoints by mutator threads (when
  // retiring the current allocation region) or a concurrent
  // refine thread (RSet sampling).

  double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  size_t used_bytes = hr->used();
  _inc_cset_recorded_rs_lengths += rs_length;
  _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  _inc_cset_bytes_used_before += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_recorded_rs_length(rs_length);
  hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
                                                     size_t new_rs_length) {
  // Update the CSet information that is dependent on the new RS length
  assert(hr->is_young(), "Precondition");
  assert(!SafepointSynchronize::is_at_safepoint(),
                                               "should not be at a safepoint");

  // We could have updated _inc_cset_recorded_rs_lengths and
  // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  // that atomically, as this code is executed by a concurrent
  // refinement thread, potentially concurrently with a mutator thread
  // allocating a new region and also updating the same fields. To
  // avoid the atomic operations we accumulate these updates on two
  // separate fields (*_diffs) and we'll just add them to the "main"
  // fields at the start of a GC.

  ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
2546 2547

  double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
2548 2549 2550
  double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
2551

2552 2553
  hr->set_recorded_rs_length(new_rs_length);
  hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
2554 2555 2556
}

void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
2557 2558
  assert(hr->is_young(), "invariant");
  assert(hr->young_index_in_cset() > -1, "should have already been set");
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
  assert(_inc_cset_build_state == Active, "Precondition");

  // We need to clear and set the cached recorded/cached collection set
  // information in the heap region here (before the region gets added
  // to the collection set). An individual heap region's cached values
  // are calculated, aggregated with the policy collection set info,
  // and cached in the heap region here (initially) and (subsequently)
  // by the Young List sampling code.

  size_t rs_length = hr->rem_set()->occupied();
  add_to_incremental_cset_info(hr, rs_length);

  HeapWord* hr_end = hr->end();
  _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);

  assert(!hr->in_collection_set(), "invariant");
  hr->set_in_collection_set(true);
  assert( hr->next_in_collection_set() == NULL, "invariant");

  _g1->register_region_with_in_cset_fast_test(hr);
}

// Add the region at the RHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  // We should only ever be appending survivors at the end of a pause
  assert( hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Now add the region at the right hand side
  if (_inc_cset_tail == NULL) {
    assert(_inc_cset_head == NULL, "invariant");
    _inc_cset_head = hr;
  } else {
    _inc_cset_tail->set_next_in_collection_set(hr);
  }
  _inc_cset_tail = hr;
}

// Add the region to the LHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  // Survivors should be added to the RHS at the end of a pause
  assert(!hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Add the region at the left hand side
  hr->set_next_in_collection_set(_inc_cset_head);
  if (_inc_cset_head == NULL) {
    assert(_inc_cset_tail == NULL, "Invariant");
    _inc_cset_tail = hr;
  }
  _inc_cset_head = hr;
}

#ifndef PRODUCT
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");

  st->print_cr("\nCollection_set:");
  HeapRegion* csr = list_head;
  while (csr != NULL) {
    HeapRegion* next = csr->next_in_collection_set();
    assert(csr->in_collection_set(), "bad CS");
    st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
                 "age: %4d, y: %d, surv: %d",
                        csr->bottom(), csr->end(),
                        csr->top(),
                        csr->prev_top_at_mark_start(),
                        csr->next_top_at_mark_start(),
                        csr->top_at_conc_mark_count(),
                        csr->age_in_surv_rate_group_cond(),
                        csr->is_young(),
                        csr->is_survivor());
    csr = next;
  }
}
#endif // !PRODUCT

2640
void G1CollectorPolicy::choose_collection_set(double target_pause_time_ms) {
2641 2642 2643
  // Set this here - in case we're not doing young collections.
  double non_young_start_time_sec = os::elapsedTime();

2644
  YoungList* young_list = _g1->young_list();
2645
  finalize_incremental_cset_building();
2646

2647 2648 2649 2650
  guarantee(target_pause_time_ms > 0.0,
            err_msg("target_pause_time_ms = %1.6lf should be positive",
                    target_pause_time_ms));
  guarantee(_collection_set == NULL, "Precondition");
2651 2652 2653 2654

  double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  double predicted_pause_time_ms = base_time_ms;

2655
  double time_remaining_ms = target_pause_time_ms - base_time_ms;
2656

2657 2658 2659 2660 2661 2662 2663
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "start choosing CSet",
                ergo_format_ms("predicted base time")
                ergo_format_ms("remaining time")
                ergo_format_ms("target pause time"),
                base_time_ms, time_remaining_ms, target_pause_time_ms);

2664
  // the 10% and 50% values are arbitrary...
2665 2666 2667
  double threshold = 0.10 * target_pause_time_ms;
  if (time_remaining_ms < threshold) {
    double prev_time_remaining_ms = time_remaining_ms;
2668
    time_remaining_ms = 0.50 * target_pause_time_ms;
2669 2670 2671 2672 2673 2674 2675
    ergo_verbose3(ErgoCSetConstruction,
                  "adjust remaining time",
                  ergo_format_reason("remaining time lower than threshold")
                  ergo_format_ms("remaining time")
                  ergo_format_ms("threshold")
                  ergo_format_ms("adjusted remaining time"),
                  prev_time_remaining_ms, threshold, time_remaining_ms);
2676 2677
  }

2678
  size_t expansion_bytes = _g1->expansion_regions() * HeapRegion::GrainBytes;
2679 2680

  HeapRegion* hr;
2681
  double young_start_time_sec = os::elapsedTime();
2682

2683
  _collection_set_bytes_used_before = 0;
2684
  _last_gc_was_young = gcs_are_young() ? true : false;
2685

2686 2687
  if (_last_gc_was_young) {
    ++_young_pause_num;
2688
  } else {
2689
    ++_mixed_pause_num;
2690
  }
2691

2692 2693 2694
  // The young list is laid with the survivor regions from the previous
  // pause are appended to the RHS of the young list, i.e.
  //   [Newly Young Regions ++ Survivors from last pause].
2695

2696 2697 2698
  size_t survivor_region_length = young_list->survivor_length();
  size_t eden_region_length = young_list->length() - survivor_region_length;
  init_cset_region_lengths(eden_region_length, survivor_region_length);
2699
  hr = young_list->first_survivor_region();
2700 2701 2702 2703 2704
  while (hr != NULL) {
    assert(hr->is_survivor(), "badly formed young list");
    hr->set_young();
    hr = hr->get_next_young_region();
  }
2705

2706 2707
  // Clear the fields that point to the survivor list - they are all young now.
  young_list->clear_survivors();
2708

2709 2710 2711 2712
  _collection_set = _inc_cset_head;
  _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
2713

2714 2715 2716 2717 2718
  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
                "add young regions to CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_ms("predicted young region time"),
2719
                eden_region_length, survivor_region_length,
2720 2721
                _inc_cset_predicted_elapsed_time_ms);

2722 2723 2724
  // The number of recorded young regions is the incremental
  // collection set's current size
  set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2725

2726 2727 2728
  double young_end_time_sec = os::elapsedTime();
  _recorded_young_cset_choice_time_ms =
    (young_end_time_sec - young_start_time_sec) * 1000.0;
2729

2730 2731
  // We are doing young collections so reset this.
  non_young_start_time_sec = young_end_time_sec;
2732

2733
  if (!gcs_are_young()) {
2734 2735 2736
    bool should_continue = true;
    NumberSeq seq;
    double avg_prediction = 100000000000000000.0; // something very large
2737

2738
    double prev_predicted_pause_time_ms = predicted_pause_time_ms;
2739
    do {
2740 2741 2742 2743 2744 2745 2746 2747
      // Note that add_old_region_to_cset() increments the
      // _old_cset_region_length field and cset_region_length() returns the
      // sum of _eden_cset_region_length, _survivor_cset_region_length, and
      // _old_cset_region_length. So, as old regions are added to the
      // CSet, _old_cset_region_length will be incremented and
      // cset_region_length(), which is used below, will always reflect
      // the the total number of regions added up to this point to the CSet.

2748 2749
      hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
                                                      avg_prediction);
2750
      if (hr != NULL) {
T
tonyp 已提交
2751
        _g1->old_set_remove(hr);
2752 2753 2754
        double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
        time_remaining_ms -= predicted_time_ms;
        predicted_pause_time_ms += predicted_time_ms;
2755
        add_old_region_to_cset(hr);
2756 2757 2758
        seq.add(predicted_time_ms);
        avg_prediction = seq.avg() + seq.sd();
      }
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775

      should_continue = true;
      if (hr == NULL) {
        // No need for an ergo verbose message here,
        // getNextMarkRegion() does this when it returns NULL.
        should_continue = false;
      } else {
        if (adaptive_young_list_length()) {
          if (time_remaining_ms < 0.0) {
            ergo_verbose1(ErgoCSetConstruction,
                          "stop adding old regions to CSet",
                          ergo_format_reason("remaining time is lower than 0")
                          ergo_format_ms("remaining time"),
                          time_remaining_ms);
            should_continue = false;
          }
        } else {
2776
          if (cset_region_length() >= _young_list_fixed_length) {
2777 2778
            ergo_verbose2(ErgoCSetConstruction,
                          "stop adding old regions to CSet",
2779
                          ergo_format_reason("CSet length reached target")
2780 2781
                          ergo_format_region("CSet")
                          ergo_format_region("young target"),
2782
                          cset_region_length(), _young_list_fixed_length);
2783 2784 2785 2786
            should_continue = false;
          }
        }
      }
2787 2788 2789
    } while (should_continue);

    if (!adaptive_young_list_length() &&
2790
        cset_region_length() < _young_list_fixed_length) {
2791
      ergo_verbose2(ErgoCSetConstruction,
2792
                    "request mixed GCs end",
2793 2794 2795
                    ergo_format_reason("CSet length lower than target")
                    ergo_format_region("CSet")
                    ergo_format_region("young target"),
2796
                    cset_region_length(), _young_list_fixed_length);
2797
      _should_revert_to_young_gcs  = true;
2798 2799 2800 2801 2802 2803
    }

    ergo_verbose2(ErgoCSetConstruction | ErgoHigh,
                  "add old regions to CSet",
                  ergo_format_region("old")
                  ergo_format_ms("predicted old region time"),
2804
                  old_cset_region_length(),
2805
                  predicted_pause_time_ms - prev_predicted_pause_time_ms);
2806 2807
  }

2808 2809
  stop_incremental_cset_building();

2810 2811
  count_CS_bytes_used();

2812 2813 2814 2815 2816 2817 2818
  ergo_verbose5(ErgoCSetConstruction,
                "finish choosing CSet",
                ergo_format_region("eden")
                ergo_format_region("survivors")
                ergo_format_region("old")
                ergo_format_ms("predicted pause time")
                ergo_format_ms("target pause time"),
2819 2820
                eden_region_length, survivor_region_length,
                old_cset_region_length(),
2821 2822
                predicted_pause_time_ms, target_pause_time_ms);

2823 2824 2825 2826
  double non_young_end_time_sec = os::elapsedTime();
  _recorded_non_young_cset_choice_time_ms =
    (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
}