slab.c 118.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119 120 121 122 123 124

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
125
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
146
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
147 148 149 150 151 152 153

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
154
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
155
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
156
			 SLAB_CACHE_DMA | \
157
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
158
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
159
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
160
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
161
#else
162
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
163
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
164
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
165
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
166
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

188
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
189 190
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
191 192
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
209
	struct rcu_head head;
210
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
211
	void *addr;
L
Linus Torvalds 已提交
212 213
};

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
252
	spinlock_t lock;
253
	void *entry[];	/*
A
Andrew Morton 已提交
254 255 256 257
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
258 259
};

A
Andrew Morton 已提交
260 261 262
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
263 264 265 266
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
267
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
268 269 270
};

/*
271
 * The slab lists for all objects.
L
Linus Torvalds 已提交
272 273
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
274 275 276 277 278
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
279
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
280 281 282
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
283 284
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
285 286
};

287 288 289
/*
 * Need this for bootstrapping a per node allocator.
 */
290
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
291
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
292
#define	CACHE_CACHE 0
293 294
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
295

296 297 298 299
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
300
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
301
static void cache_reap(struct work_struct *unused);
302

303
/*
A
Andrew Morton 已提交
304 305
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
306
 */
307
static __always_inline int index_of(const size_t size)
308
{
309 310
	extern void __bad_size(void);

311 312 313 314 315 316 317 318
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
319
#include <linux/kmalloc_sizes.h>
320
#undef CACHE
321
		__bad_size();
322
	} else
323
		__bad_size();
324 325 326
	return 0;
}

327 328
static int slab_early_init = 1;

329 330
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
331

P
Pekka Enberg 已提交
332
static void kmem_list3_init(struct kmem_list3 *parent)
333 334 335 336 337 338
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
339
	parent->colour_next = 0;
340 341 342 343 344
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
345 346 347 348
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
349 350
	} while (0)

A
Andrew Morton 已提交
351 352
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
353 354 355 356
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
357 358 359 360 361

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
362 363 364
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
365
 *
A
Adrian Bunk 已提交
366
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
367 368 369 370 371 372 373 374 375 376
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
377
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
378 379 380 381 382
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
383 384
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
385
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
386
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
387 388 389 390 391
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
392 393 394 395 396 397 398 399 400
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
401
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
402 403 404
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
405
#define	STATS_INC_NODEFREES(x)	do { } while (0)
406
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
407
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
408 409 410 411 412 413 414 415
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
416 417
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
418
 * 0		: objp
419
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
420 421
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
422
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
423
 * 		redzone word.
424 425
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
426 427
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
428
 */
429
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
430
{
431
	return cachep->obj_offset;
L
Linus Torvalds 已提交
432 433
}

434
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
435
{
436
	return cachep->obj_size;
L
Linus Torvalds 已提交
437 438
}

439
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
440 441
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
442 443
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
444 445
}

446
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
447 448 449
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
450 451
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
452
					      REDZONE_ALIGN);
453 454
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
455 456
}

457
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
458 459
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
460
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
461 462 463 464
}

#else

465 466
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
467 468
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
469 470 471 472
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

473
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
474 475 476 477 478 479 480
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
481 482 483 484 485 486 487
/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
488 489 490 491
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
492
 */
493 494 495 496 497 498 499
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
500
	page = compound_head(page);
501
	BUG_ON(!PageSlab(page));
502 503 504 505 506 507 508 509 510 511
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
512
	BUG_ON(!PageSlab(page));
513 514
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
515

516 517
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
518
	struct page *page = virt_to_head_page(obj);
519 520 521 522 523
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
524
	struct page *page = virt_to_head_page(obj);
525 526 527
	return page_get_slab(page);
}

528 529 530 531 532 533
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

534 535 536 537 538 539 540 541
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
542
{
543 544
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
545 546
}

A
Andrew Morton 已提交
547 548 549
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
567
	{NULL,}
L
Linus Torvalds 已提交
568 569 570 571
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
572
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
573
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
574
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
575 576

/* internal cache of cache description objs */
577
static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
578
static struct kmem_cache cache_cache = {
579
	.nodelists = cache_cache_nodelists,
P
Pekka Enberg 已提交
580 581 582
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
583
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
584
	.name = "kmem_cache",
L
Linus Torvalds 已提交
585 586
};

587 588
#define BAD_ALIEN_MAGIC 0x01020304ul

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
	PARTIAL_AC,
	PARTIAL_L3,
	EARLY,
	FULL
} g_cpucache_up;

/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up >= EARLY;
}

609 610 611 612 613 614 615 616
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
617 618 619 620
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
621
 */
622 623 624
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
	struct kmem_list3 *l3;
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

670
static void init_node_lock_keys(int q)
671
{
672 673
	struct cache_sizes *s = malloc_sizes;

674 675 676 677 678 679 680 681
	if (g_cpucache_up != FULL)
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct kmem_list3 *l3;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
682
			continue;
683 684 685

		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
				&on_slab_alc_key, q);
686 687
	}
}
688 689 690 691 692 693 694 695

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
696
#else
697 698 699 700
static void init_node_lock_keys(int q)
{
}

701
static inline void init_lock_keys(void)
702 703
{
}
704 705 706 707 708 709 710 711

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
712 713
#endif

714
/*
715
 * Guard access to the cache-chain.
716
 */
I
Ingo Molnar 已提交
717
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
718 719
static struct list_head cache_chain;

720
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
721

722
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
723 724 725 726
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
727 728
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
729 730 731 732 733
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
734 735 736
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
737
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
738
#endif
739 740 741
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
742 743 744 745
	while (size > csizep->cs_size)
		csizep++;

	/*
746
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
747 748 749
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
750
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
751 752
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
753
#endif
L
Linus Torvalds 已提交
754 755 756
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
757
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
758 759 760 761
{
	return __find_general_cachep(size, gfpflags);
}

762
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
763
{
764 765
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
766

A
Andrew Morton 已提交
767 768 769
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
770 771 772 773 774 775 776
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
777

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
826 827
}

828
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
829

A
Andrew Morton 已提交
830 831
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
832 833
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
834
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
835 836 837
	dump_stack();
}

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

854 855 856 857 858 859 860
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
861
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
862 863 864 865 866

static void init_reap_node(int cpu)
{
	int node;

867
	node = next_node(cpu_to_mem(cpu), node_online_map);
868
	if (node == MAX_NUMNODES)
869
		node = first_node(node_online_map);
870

871
	per_cpu(slab_reap_node, cpu) = node;
872 873 874 875
}

static void next_reap_node(void)
{
876
	int node = __this_cpu_read(slab_reap_node);
877 878 879 880

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
881
	__this_cpu_write(slab_reap_node, node);
882 883 884 885 886 887 888
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
889 890 891 892 893 894 895
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
896
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
897
{
898
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
899 900 901 902 903 904

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
905
	if (keventd_up() && reap_work->work.func == NULL) {
906
		init_reap_node(cpu);
907
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
908 909
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
910 911 912
	}
}

913
static struct array_cache *alloc_arraycache(int node, int entries,
914
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
915
{
P
Pekka Enberg 已提交
916
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
917 918
	struct array_cache *nc = NULL;

919
	nc = kmalloc_node(memsize, gfp, node);
920 921
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
922
	 * However, when such objects are allocated or transferred to another
923 924 925 926 927
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
928 929 930 931 932
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
933
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
934 935 936 937
	}
	return nc;
}

938 939 940 941 942 943 944 945 946 947
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
948
	int nr = min3(from->avail, max, to->limit - to->avail);
949 950 951 952 953 954 955 956 957 958 959 960

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

961 962 963 964 965
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

966
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

986
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
987 988 989 990 991 992 993
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

994
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
995
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
996

997
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
998 999
{
	struct array_cache **ac_ptr;
1000
	int memsize = sizeof(void *) * nr_node_ids;
1001 1002 1003 1004
	int i;

	if (limit > 1)
		limit = 12;
1005
	ac_ptr = kzalloc_node(memsize, gfp, node);
1006 1007
	if (ac_ptr) {
		for_each_node(i) {
1008
			if (i == node || !node_online(i))
1009
				continue;
1010
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1011
			if (!ac_ptr[i]) {
1012
				for (i--; i >= 0; i--)
1013 1014 1015 1016 1017 1018 1019 1020 1021
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1022
static void free_alien_cache(struct array_cache **ac_ptr)
1023 1024 1025 1026 1027 1028
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1029
	    kfree(ac_ptr[i]);
1030 1031 1032
	kfree(ac_ptr);
}

1033
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1034
				struct array_cache *ac, int node)
1035 1036 1037 1038 1039
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1040 1041 1042 1043 1044
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1045 1046
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1047

1048
		free_block(cachep, ac->entry, ac->avail, node);
1049 1050 1051 1052 1053
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1054 1055 1056 1057 1058
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1059
	int node = __this_cpu_read(slab_reap_node);
1060 1061 1062

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1063 1064

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1065 1066 1067 1068 1069 1070
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1071 1072
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1073
{
P
Pekka Enberg 已提交
1074
	int i = 0;
1075 1076 1077 1078
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1079
		ac = alien[i];
1080 1081 1082 1083 1084 1085 1086
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1087

1088
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1089 1090 1091 1092 1093
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1094 1095
	int node;

1096
	node = numa_mem_id();
1097 1098 1099 1100 1101

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1102
	if (likely(slabp->nodeid == node))
1103 1104
		return 0;

P
Pekka Enberg 已提交
1105
	l3 = cachep->nodelists[node];
1106 1107 1108
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1109
		spin_lock(&alien->lock);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1123 1124
#endif

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
 * Must hold cache_chain_mutex.
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

	list_for_each_entry(cachep, &cache_chain, next) {
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1171 1172 1173 1174
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1175
	int node = cpu_to_mem(cpu);
1176
	const struct cpumask *mask = cpumask_of_node(node);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1198
		if (!cpumask_empty(mask)) {
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1237
{
1238
	struct kmem_cache *cachep;
1239
	struct kmem_list3 *l3 = NULL;
1240
	int node = cpu_to_mem(cpu);
1241
	int err;
L
Linus Torvalds 已提交
1242

1243 1244 1245 1246 1247 1248
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1249 1250 1251
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1263
					cachep->batchcount, GFP_KERNEL);
1264 1265 1266 1267 1268
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1269
				0xbaadf00d, GFP_KERNEL);
1270 1271
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1272
				goto bad;
1273
			}
1274 1275
		}
		if (use_alien_caches) {
1276
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1277 1278 1279
			if (!alien) {
				kfree(shared);
				kfree(nc);
1280
				goto bad;
1281
			}
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1296
#ifdef CONFIG_NUMA
1297 1298 1299
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1300
		}
1301 1302 1303 1304
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
1305 1306
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1307
	}
1308 1309
	init_node_lock_keys(node);

1310 1311
	return 0;
bad:
1312
	cpuup_canceled(cpu);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1325
		mutex_lock(&cache_chain_mutex);
1326
		err = cpuup_prepare(cpu);
1327
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1328 1329
		break;
	case CPU_ONLINE:
1330
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1331 1332 1333
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1334
  	case CPU_DOWN_PREPARE:
1335
  	case CPU_DOWN_PREPARE_FROZEN:
1336 1337 1338 1339 1340 1341
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1342
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1343
		/* Now the cache_reaper is guaranteed to be not running. */
1344
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1345 1346
  		break;
  	case CPU_DOWN_FAILED:
1347
  	case CPU_DOWN_FAILED_FROZEN:
1348 1349
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1350
	case CPU_DEAD:
1351
	case CPU_DEAD_FROZEN:
1352 1353 1354 1355 1356 1357 1358 1359
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1360
		/* fall through */
1361
#endif
L
Linus Torvalds 已提交
1362
	case CPU_UP_CANCELED:
1363
	case CPU_UP_CANCELED_FROZEN:
1364
		mutex_lock(&cache_chain_mutex);
1365
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1366
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1367 1368
		break;
	}
1369
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1370 1371
}

1372 1373 1374
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
 * Must hold cache_chain_mutex.
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

	list_for_each_entry(cachep, &cache_chain, next) {
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
		mutex_lock(&cache_chain_mutex);
		ret = init_cache_nodelists_node(nid);
		mutex_unlock(&cache_chain_mutex);
		break;
	case MEM_GOING_OFFLINE:
		mutex_lock(&cache_chain_mutex);
		ret = drain_cache_nodelists_node(nid);
		mutex_unlock(&cache_chain_mutex);
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1436
	return notifier_from_errno(ret);
1437 1438 1439
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1440 1441 1442
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1443 1444
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1445 1446 1447
{
	struct kmem_list3 *ptr;

1448
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1449 1450 1451
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1452 1453 1454 1455 1456
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1457 1458 1459 1460
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1477 1478 1479
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1480 1481 1482 1483 1484 1485
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1486
	int i;
1487
	int order;
P
Pekka Enberg 已提交
1488
	int node;
1489

1490
	if (num_possible_nodes() == 1)
1491 1492
		use_alien_caches = 0;

1493 1494 1495 1496 1497
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1498
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1499 1500 1501 1502 1503

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
1504
	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
L
Linus Torvalds 已提交
1505 1506 1507 1508
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1509 1510 1511
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1512 1513 1514
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1515
	 * 2) Create the first kmalloc cache.
1516
	 *    The struct kmem_cache for the new cache is allocated normally.
1517 1518 1519
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1520 1521
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1522 1523 1524
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1525 1526
	 */

1527
	node = numa_mem_id();
P
Pekka Enberg 已提交
1528

L
Linus Torvalds 已提交
1529 1530 1531 1532 1533
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1534
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1535

E
Eric Dumazet 已提交
1536
	/*
1537
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1538
	 */
1539 1540
	cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
				  nr_node_ids * sizeof(struct kmem_list3 *);
E
Eric Dumazet 已提交
1541 1542 1543
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1544 1545
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1546 1547
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1548

1549 1550 1551 1552 1553 1554
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1555
	BUG_ON(!cache_cache.num);
1556
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1557 1558 1559
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1560 1561 1562 1563 1564

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1565 1566 1567 1568
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1569 1570 1571
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1572 1573 1574
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1575
					NULL);
1576

A
Andrew Morton 已提交
1577
	if (INDEX_AC != INDEX_L3) {
1578
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1579 1580 1581 1582
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1583
				NULL);
A
Andrew Morton 已提交
1584
	}
1585

1586 1587
	slab_early_init = 0;

L
Linus Torvalds 已提交
1588
	while (sizes->cs_size != ULONG_MAX) {
1589 1590
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1591 1592 1593
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1594 1595
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1596
		if (!sizes->cs_cachep) {
1597
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1598 1599 1600
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1601
					NULL);
A
Andrew Morton 已提交
1602
		}
1603 1604 1605
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1606 1607 1608 1609
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1610
					NULL);
1611
#endif
L
Linus Torvalds 已提交
1612 1613 1614 1615 1616
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1617
		struct array_cache *ptr;
1618

1619
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1620

1621 1622
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1623
		       sizeof(struct arraycache_init));
1624 1625 1626 1627 1628
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1629
		cache_cache.array[smp_processor_id()] = ptr;
1630

1631
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1632

1633
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1634
		       != &initarray_generic.cache);
1635
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1636
		       sizeof(struct arraycache_init));
1637 1638 1639 1640 1641
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1642
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1643
		    ptr;
L
Linus Torvalds 已提交
1644
	}
1645 1646
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1647 1648
		int nid;

1649
		for_each_online_node(nid) {
1650
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1651

1652
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1653
				  &initkmem_list3[SIZE_AC + nid], nid);
1654 1655 1656

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1657
					  &initkmem_list3[SIZE_L3 + nid], nid);
1658 1659 1660
			}
		}
	}
L
Linus Torvalds 已提交
1661

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	g_cpucache_up = EARLY;
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
	mutex_lock(&cache_chain_mutex);
	list_for_each_entry(cachep, &cache_chain, next)
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
	mutex_unlock(&cache_chain_mutex);
1675

L
Linus Torvalds 已提交
1676 1677 1678
	/* Done! */
	g_cpucache_up = FULL;

P
Pekka Enberg 已提交
1679 1680 1681
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

A
Andrew Morton 已提交
1682 1683 1684
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1685 1686 1687
	 */
	register_cpu_notifier(&cpucache_notifier);

1688 1689 1690 1691 1692 1693 1694 1695
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1696 1697 1698
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1699 1700 1701 1702 1703 1704 1705
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1706 1707
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1708
	 */
1709
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1710
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1722
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1723 1724
{
	struct page *page;
1725
	int nr_pages;
L
Linus Torvalds 已提交
1726 1727
	int i;

1728
#ifndef CONFIG_MMU
1729 1730 1731
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1732
	 */
1733
	flags |= __GFP_COMP;
1734
#endif
1735

1736
	flags |= cachep->gfpflags;
1737 1738
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1739

L
Linus Torvalds 已提交
1740
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
L
Linus Torvalds 已提交
1741 1742 1743
	if (!page)
		return NULL;

1744
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1745
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1746 1747 1748 1749 1750
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1751 1752
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1753

1754 1755 1756 1757 1758 1759 1760 1761
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1762

1763
	return page_address(page);
L
Linus Torvalds 已提交
1764 1765 1766 1767 1768
}

/*
 * Interface to system's page release.
 */
1769
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1770
{
P
Pekka Enberg 已提交
1771
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1772 1773 1774
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1775
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1776

1777 1778 1779 1780 1781 1782
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1783
	while (i--) {
N
Nick Piggin 已提交
1784 1785
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1795
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1796
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1806
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1807
			    unsigned long caller)
L
Linus Torvalds 已提交
1808
{
1809
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1810

1811
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1812

P
Pekka Enberg 已提交
1813
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1814 1815
		return;

P
Pekka Enberg 已提交
1816 1817 1818 1819
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1820 1821 1822 1823 1824 1825 1826
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1827
				*addr++ = svalue;
L
Linus Torvalds 已提交
1828 1829 1830 1831 1832 1833 1834
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1835
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1836 1837 1838
}
#endif

1839
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1840
{
1841 1842
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1843 1844

	memset(addr, val, size);
P
Pekka Enberg 已提交
1845
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1851 1852 1853
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1854
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1855 1856 1857 1858 1859
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1860
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1861
	}
L
Linus Torvalds 已提交
1862
	printk("\n");
D
Dave Jones 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1877 1878 1879 1880 1881
}
#endif

#if DEBUG

1882
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1883 1884 1885 1886 1887
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1888
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1889 1890
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1891 1892 1893 1894
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1895
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1896
		print_symbol("(%s)",
A
Andrew Morton 已提交
1897
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1898 1899
		printk("\n");
	}
1900 1901
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1902
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1903 1904
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1905 1906
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1907 1908 1909 1910
		dump_line(realobj, i, limit);
	}
}

1911
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1912 1913 1914 1915 1916
{
	char *realobj;
	int size, i;
	int lines = 0;

1917 1918
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1919

P
Pekka Enberg 已提交
1920
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1921
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1922
		if (i == size - 1)
L
Linus Torvalds 已提交
1923 1924 1925 1926 1927 1928
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1929
				printk(KERN_ERR
1930 1931
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1932 1933 1934
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1935
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1936
			limit = 16;
P
Pekka Enberg 已提交
1937 1938
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1951
		struct slab *slabp = virt_to_slab(objp);
1952
		unsigned int objnr;
L
Linus Torvalds 已提交
1953

1954
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1955
		if (objnr) {
1956
			objp = index_to_obj(cachep, slabp, objnr - 1);
1957
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1958
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1959
			       realobj, size);
L
Linus Torvalds 已提交
1960 1961
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1962
		if (objnr + 1 < cachep->num) {
1963
			objp = index_to_obj(cachep, slabp, objnr + 1);
1964
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1965
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1966
			       realobj, size);
L
Linus Torvalds 已提交
1967 1968 1969 1970 1971 1972
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1973
#if DEBUG
R
Rabin Vincent 已提交
1974
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1975 1976 1977
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1978
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1979 1980 1981

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1982 1983
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1984
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1985
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1995
					   "was overwritten");
L
Linus Torvalds 已提交
1996 1997
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1998
					   "was overwritten");
L
Linus Torvalds 已提交
1999 2000
		}
	}
2001
}
L
Linus Torvalds 已提交
2002
#else
R
Rabin Vincent 已提交
2003
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2004 2005
{
}
L
Linus Torvalds 已提交
2006 2007
#endif

2008 2009 2010 2011 2012
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2013
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2014 2015
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2016
 */
2017
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2018 2019 2020
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2021
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2022 2023 2024
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2025
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2026 2027 2028 2029 2030
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2031 2032
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2033 2034 2035
	}
}

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


2057
/**
2058 2059 2060 2061 2062 2063 2064
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2065 2066 2067 2068 2069
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2070
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2071
			size_t size, size_t align, unsigned long flags)
2072
{
2073
	unsigned long offslab_limit;
2074
	size_t left_over = 0;
2075
	int gfporder;
2076

2077
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2078 2079 2080
		unsigned int num;
		size_t remainder;

2081
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2082 2083
		if (!num)
			continue;
2084

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2097

2098
		/* Found something acceptable - save it away */
2099
		cachep->num = num;
2100
		cachep->gfporder = gfporder;
2101 2102
		left_over = remainder;

2103 2104 2105 2106 2107 2108 2109 2110
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2111 2112 2113 2114
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2115
		if (gfporder >= slab_break_gfp_order)
2116 2117
			break;

2118 2119 2120
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2121
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2122 2123 2124 2125 2126
			break;
	}
	return left_over;
}

2127
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2128
{
2129
	if (g_cpucache_up == FULL)
2130
		return enable_cpucache(cachep, gfp);
2131

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
2152
			kmalloc(sizeof(struct arraycache_init), gfp);
2153 2154 2155 2156 2157 2158

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2159
			for_each_online_node(node) {
2160 2161
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2162
						gfp, node);
2163 2164 2165 2166 2167
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2168
	cachep->nodelists[numa_mem_id()]->next_reap =
2169 2170 2171 2172 2173 2174 2175 2176 2177
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2178
	return 0;
2179 2180
}

L
Linus Torvalds 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2191
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2192 2193
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2194 2195
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2208
struct kmem_cache *
L
Linus Torvalds 已提交
2209
kmem_cache_create (const char *name, size_t size, size_t align,
2210
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2211 2212
{
	size_t left_over, slab_size, ralign;
2213
	struct kmem_cache *cachep = NULL, *pc;
2214
	gfp_t gfp;
L
Linus Torvalds 已提交
2215 2216 2217 2218

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2219
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2220
	    size > KMALLOC_MAX_SIZE) {
2221
		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
A
Andrew Morton 已提交
2222
				name);
P
Pekka Enberg 已提交
2223 2224
		BUG();
	}
L
Linus Torvalds 已提交
2225

2226
	/*
2227
	 * We use cache_chain_mutex to ensure a consistent view of
R
Rusty Russell 已提交
2228
	 * cpu_online_mask as well.  Please see cpuup_callback
2229
	 */
2230 2231 2232 2233
	if (slab_is_available()) {
		get_online_cpus();
		mutex_lock(&cache_chain_mutex);
	}
2234

2235
	list_for_each_entry(pc, &cache_chain, next) {
2236 2237 2238 2239 2240 2241 2242 2243
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2244
		res = probe_kernel_address(pc->name, tmp);
2245
		if (res) {
2246 2247
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2248
			       pc->buffer_size);
2249 2250 2251
			continue;
		}

P
Pekka Enberg 已提交
2252
		if (!strcmp(pc->name, name)) {
2253 2254
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2255 2256 2257 2258 2259
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2269 2270
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2271
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2272 2273 2274 2275 2276 2277 2278
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2279 2280
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2281
	 */
2282
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2283

A
Andrew Morton 已提交
2284 2285
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2286 2287 2288
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2289 2290 2291
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2292 2293
	}

A
Andrew Morton 已提交
2294 2295
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2296 2297
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2298 2299 2300 2301
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2302 2303
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2304
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2305 2306 2307 2308
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2309 2310

	/*
D
David Woodhouse 已提交
2311 2312 2313
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2314
	 */
D
David Woodhouse 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2325

2326
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2327 2328 2329
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2330
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2331 2332 2333
	if (ralign < align) {
		ralign = align;
	}
2334 2335
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2336
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2337
	/*
2338
	 * 4) Store it.
L
Linus Torvalds 已提交
2339 2340 2341
	 */
	align = ralign;

2342 2343 2344 2345 2346
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2347
	/* Get cache's description obj. */
2348
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2349
	if (!cachep)
2350
		goto oops;
L
Linus Torvalds 已提交
2351

2352
	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
L
Linus Torvalds 已提交
2353
#if DEBUG
2354
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2355

2356 2357 2358 2359
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2360 2361
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2362 2363
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2364 2365
	}
	if (flags & SLAB_STORE_USER) {
2366
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2367 2368
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2369
		 */
D
David Woodhouse 已提交
2370 2371 2372 2373
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2374 2375
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2376
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
C
Carsten Otte 已提交
2377 2378
	    && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
L
Linus Torvalds 已提交
2379 2380 2381 2382 2383
		size = PAGE_SIZE;
	}
#endif
#endif

2384 2385 2386
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2387 2388
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2389
	 */
2390 2391
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2392 2393 2394 2395 2396 2397 2398 2399
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2400
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2401 2402

	if (!cachep->num) {
2403 2404
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2405 2406
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2407
		goto oops;
L
Linus Torvalds 已提交
2408
	}
P
Pekka Enberg 已提交
2409 2410
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2423 2424
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2425 2426 2427 2428 2429 2430 2431 2432 2433

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2434 2435 2436 2437 2438 2439
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2440
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2441 2442 2443
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2444
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2445
		cachep->gfpflags |= GFP_DMA;
2446
	cachep->buffer_size = size;
2447
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2448

2449
	if (flags & CFLGS_OFF_SLAB) {
2450
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2451 2452 2453 2454 2455 2456 2457
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2458
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2459
	}
L
Linus Torvalds 已提交
2460 2461 2462
	cachep->ctor = ctor;
	cachep->name = name;

2463
	if (setup_cpu_cache(cachep, gfp)) {
2464 2465 2466 2467
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2468

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
	}

L
Linus Torvalds 已提交
2479 2480
	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2481
oops:
L
Linus Torvalds 已提交
2482 2483
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2484
		      name);
2485 2486 2487 2488
	if (slab_is_available()) {
		mutex_unlock(&cache_chain_mutex);
		put_online_cpus();
	}
L
Linus Torvalds 已提交
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2504
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2505 2506 2507
{
#ifdef CONFIG_SMP
	check_irq_off();
2508
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2509 2510
#endif
}
2511

2512
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2513 2514 2515 2516 2517 2518 2519
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2520 2521 2522 2523
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2524
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2525 2526
#endif

2527 2528 2529 2530
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2531 2532
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2533
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2534
	struct array_cache *ac;
2535
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2536 2537

	check_irq_off();
2538
	ac = cpu_cache_get(cachep);
2539 2540 2541
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2542 2543 2544
	ac->avail = 0;
}

2545
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2546
{
2547 2548 2549
	struct kmem_list3 *l3;
	int node;

2550
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2551
	check_irq_on();
P
Pekka Enberg 已提交
2552
	for_each_online_node(node) {
2553
		l3 = cachep->nodelists[node];
2554 2555 2556 2557 2558 2559 2560
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2561
			drain_array(cachep, l3, l3->shared, 1, node);
2562
	}
L
Linus Torvalds 已提交
2563 2564
}

2565 2566 2567 2568 2569 2570 2571 2572
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2573
{
2574 2575
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2576 2577
	struct slab *slabp;

2578 2579
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2580

2581
		spin_lock_irq(&l3->list_lock);
2582
		p = l3->slabs_free.prev;
2583 2584 2585 2586
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2587

2588
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2589
#if DEBUG
2590
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2591 2592
#endif
		list_del(&slabp->list);
2593 2594 2595 2596 2597
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2598
		spin_unlock_irq(&l3->list_lock);
2599 2600
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2601
	}
2602 2603
out:
	return nr_freed;
L
Linus Torvalds 已提交
2604 2605
}

2606
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2607
static int __cache_shrink(struct kmem_cache *cachep)
2608 2609 2610 2611 2612 2613 2614 2615 2616
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2617 2618 2619 2620 2621 2622 2623
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2624 2625 2626 2627
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2628 2629 2630 2631 2632 2633 2634
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2635
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2636
{
2637
	int ret;
2638
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2639

2640
	get_online_cpus();
2641 2642 2643
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2644
	put_online_cpus();
2645
	return ret;
L
Linus Torvalds 已提交
2646 2647 2648 2649 2650 2651 2652
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2653
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2654 2655 2656 2657 2658 2659 2660 2661
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
L
Lucas De Marchi 已提交
2662
 * The caller must guarantee that no one will allocate memory from the cache
L
Linus Torvalds 已提交
2663 2664
 * during the kmem_cache_destroy().
 */
2665
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2666
{
2667
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2668 2669

	/* Find the cache in the chain of caches. */
2670
	get_online_cpus();
I
Ingo Molnar 已提交
2671
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2672 2673 2674 2675 2676 2677
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2678
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2679
		mutex_unlock(&cache_chain_mutex);
2680
		put_online_cpus();
2681
		return;
L
Linus Torvalds 已提交
2682 2683 2684
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2685
		rcu_barrier();
L
Linus Torvalds 已提交
2686

2687
	__kmem_cache_destroy(cachep);
2688
	mutex_unlock(&cache_chain_mutex);
2689
	put_online_cpus();
L
Linus Torvalds 已提交
2690 2691 2692
}
EXPORT_SYMBOL(kmem_cache_destroy);

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2704
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2705 2706
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2707 2708
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2709

L
Linus Torvalds 已提交
2710 2711
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2712
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2713
					      local_flags, nodeid);
2714 2715 2716 2717 2718 2719
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2720 2721
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2722 2723 2724
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2725
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2726 2727 2728 2729
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2730
	slabp->s_mem = objp + colour_off;
2731
	slabp->nodeid = nodeid;
2732
	slabp->free = 0;
L
Linus Torvalds 已提交
2733 2734 2735 2736 2737
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2738
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2739 2740
}

2741
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2742
			    struct slab *slabp)
L
Linus Torvalds 已提交
2743 2744 2745 2746
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2747
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2760 2761 2762
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2763 2764
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2765
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2766 2767 2768 2769

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2770
					   " end of an object");
L
Linus Torvalds 已提交
2771 2772
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2773
					   " start of an object");
L
Linus Torvalds 已提交
2774
		}
A
Andrew Morton 已提交
2775 2776
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2777
			kernel_map_pages(virt_to_page(objp),
2778
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2779 2780
#else
		if (cachep->ctor)
2781
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2782
#endif
P
Pekka Enberg 已提交
2783
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2784
	}
P
Pekka Enberg 已提交
2785
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2786 2787
}

2788
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2789
{
2790 2791 2792 2793 2794 2795
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2796 2797
}

A
Andrew Morton 已提交
2798 2799
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2800
{
2801
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2815 2816
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2817
{
2818
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2819 2820 2821 2822 2823

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2824
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2825
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2826
				"'%s', objp %p\n", cachep->name, objp);
2827 2828 2829 2830 2831 2832 2833 2834
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2835 2836 2837
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2838
 * virtual address for kfree, ksize, and slab debugging.
2839 2840 2841
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2842
{
2843
	int nr_pages;
L
Linus Torvalds 已提交
2844 2845
	struct page *page;

2846
	page = virt_to_page(addr);
2847

2848
	nr_pages = 1;
2849
	if (likely(!PageCompound(page)))
2850 2851
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2852
	do {
2853 2854
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2855
		page++;
2856
	} while (--nr_pages);
L
Linus Torvalds 已提交
2857 2858 2859 2860 2861 2862
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2863 2864
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2865
{
P
Pekka Enberg 已提交
2866 2867 2868
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2869
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2870

A
Andrew Morton 已提交
2871 2872 2873
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2874
	 */
C
Christoph Lameter 已提交
2875 2876
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2877

2878
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2879
	check_irq_off();
2880 2881
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2882 2883

	/* Get colour for the slab, and cal the next value. */
2884 2885 2886 2887 2888
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2889

2890
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2903 2904 2905
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2906
	 */
2907
	if (!objp)
2908
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2909
	if (!objp)
L
Linus Torvalds 已提交
2910 2911 2912
		goto failed;

	/* Get slab management. */
2913
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2914
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2915
	if (!slabp)
L
Linus Torvalds 已提交
2916 2917
		goto opps1;

2918
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2919

C
Christoph Lameter 已提交
2920
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2921 2922 2923 2924

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2925
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2926 2927

	/* Make slab active. */
2928
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2929
	STATS_INC_GROWN(cachep);
2930 2931
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2932
	return 1;
A
Andrew Morton 已提交
2933
opps1:
L
Linus Torvalds 已提交
2934
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2935
failed:
L
Linus Torvalds 已提交
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2952 2953
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2954 2955 2956
	}
}

2957 2958
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2959
	unsigned long long redzone1, redzone2;
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2975
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2976 2977 2978
			obj, redzone1, redzone2);
}

2979
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2980
				   void *caller)
L
Linus Torvalds 已提交
2981 2982 2983 2984 2985
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2986 2987
	BUG_ON(virt_to_cache(objp) != cachep);

2988
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2989
	kfree_debugcheck(objp);
2990
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2991

2992
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2993 2994

	if (cachep->flags & SLAB_RED_ZONE) {
2995
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2996 2997 2998 2999 3000 3001
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

3002
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
3003 3004

	BUG_ON(objnr >= cachep->num);
3005
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
3006

3007 3008 3009
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
3010 3011
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
3012
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
3013
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
3014
			kernel_map_pages(virt_to_page(objp),
3015
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

3026
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
3027 3028 3029
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
3030

L
Linus Torvalds 已提交
3031 3032 3033 3034 3035 3036 3037
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
3038 3039 3040 3041
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
3042
		for (i = 0;
3043
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
3044
		     i++) {
A
Andrew Morton 已提交
3045
			if (i % 16 == 0)
L
Linus Torvalds 已提交
3046
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
3047
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3059
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3060 3061 3062 3063
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3064 3065
	int node;

3066
retry:
L
Linus Torvalds 已提交
3067
	check_irq_off();
3068
	node = numa_mem_id();
3069
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3070 3071
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3072 3073 3074 3075
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3076 3077 3078
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3079
	l3 = cachep->nodelists[node];
3080 3081 3082

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3083

3084
	/* See if we can refill from the shared array */
3085 3086
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3087
		goto alloc_done;
3088
	}
3089

L
Linus Torvalds 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3105 3106 3107 3108 3109 3110

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3111
		BUG_ON(slabp->inuse >= cachep->num);
3112

L
Linus Torvalds 已提交
3113 3114 3115 3116 3117
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3118
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3119
							    node);
L
Linus Torvalds 已提交
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3131
must_grow:
L
Linus Torvalds 已提交
3132
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3133
alloc_done:
3134
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3135 3136 3137

	if (unlikely(!ac->avail)) {
		int x;
3138
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3139

A
Andrew Morton 已提交
3140
		/* cache_grow can reenable interrupts, then ac could change. */
3141
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3142
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3143 3144
			return NULL;

A
Andrew Morton 已提交
3145
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3146 3147 3148
			goto retry;
	}
	ac->touched = 1;
3149
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3150 3151
}

A
Andrew Morton 已提交
3152 3153
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3154 3155 3156 3157 3158 3159 3160 3161
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3162 3163
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3164
{
P
Pekka Enberg 已提交
3165
	if (!objp)
L
Linus Torvalds 已提交
3166
		return objp;
P
Pekka Enberg 已提交
3167
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3168
#ifdef CONFIG_DEBUG_PAGEALLOC
3169
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3170
			kernel_map_pages(virt_to_page(objp),
3171
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3183 3184 3185 3186
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3187
			printk(KERN_ERR
3188
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3189 3190
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3191 3192 3193 3194
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3195 3196 3197 3198 3199
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3200
		slabp = page_get_slab(virt_to_head_page(objp));
3201 3202 3203 3204
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3205
	objp += obj_offset(cachep);
3206
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3207
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3208 3209
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3210
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3211
		       objp, (int)ARCH_SLAB_MINALIGN);
3212
	}
L
Linus Torvalds 已提交
3213 3214 3215 3216 3217 3218
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3219
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3220 3221
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3222
		return false;
3223

3224
	return should_failslab(obj_size(cachep), flags, cachep->flags);
3225 3226
}

3227
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3228
{
P
Pekka Enberg 已提交
3229
	void *objp;
L
Linus Torvalds 已提交
3230 3231
	struct array_cache *ac;

3232
	check_irq_off();
3233

3234
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3235 3236 3237
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3238
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3239 3240 3241
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
3242 3243 3244 3245 3246
		/*
		 * the 'ac' may be updated by cache_alloc_refill(),
		 * and kmemleak_erase() requires its correct value.
		 */
		ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3247
	}
3248 3249 3250 3251 3252
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3253 3254
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3255 3256 3257
	return objp;
}

3258
#ifdef CONFIG_NUMA
3259
/*
3260
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3261 3262 3263 3264 3265 3266 3267 3268
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3269
	if (in_interrupt() || (flags & __GFP_THISNODE))
3270
		return NULL;
3271
	nid_alloc = nid_here = numa_mem_id();
3272
	get_mems_allowed();
3273
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3274
		nid_alloc = cpuset_slab_spread_node();
3275 3276
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
3277
	put_mems_allowed();
3278
	if (nid_alloc != nid_here)
3279
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3280 3281 3282
	return NULL;
}

3283 3284
/*
 * Fallback function if there was no memory available and no objects on a
3285 3286 3287 3288 3289
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3290
 */
3291
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3292
{
3293 3294
	struct zonelist *zonelist;
	gfp_t local_flags;
3295
	struct zoneref *z;
3296 3297
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3298
	void *obj = NULL;
3299
	int nid;
3300 3301 3302 3303

	if (flags & __GFP_THISNODE)
		return NULL;

3304
	get_mems_allowed();
3305
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
C
Christoph Lameter 已提交
3306
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3307

3308 3309 3310 3311 3312
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3313 3314
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3315

3316
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3317
			cache->nodelists[nid] &&
3318
			cache->nodelists[nid]->free_objects) {
3319 3320
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3321 3322 3323
				if (obj)
					break;
		}
3324 3325
	}

3326
	if (!obj) {
3327 3328 3329 3330 3331 3332
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3333 3334 3335
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3336
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3337 3338
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3355
				/* cache_grow already freed obj */
3356 3357 3358
				obj = NULL;
			}
		}
3359
	}
3360
	put_mems_allowed();
3361 3362 3363
	return obj;
}

3364 3365
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3366
 */
3367
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3368
				int nodeid)
3369 3370
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3371 3372 3373 3374 3375 3376 3377 3378
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3379
retry:
3380
	check_irq_off();
P
Pekka Enberg 已提交
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3400
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3401 3402 3403 3404 3405
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3406
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3407
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3408
	else
P
Pekka Enberg 已提交
3409
		list_add(&slabp->list, &l3->slabs_partial);
3410

P
Pekka Enberg 已提交
3411 3412
	spin_unlock(&l3->list_lock);
	goto done;
3413

A
Andrew Morton 已提交
3414
must_grow:
P
Pekka Enberg 已提交
3415
	spin_unlock(&l3->list_lock);
3416
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3417 3418
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3419

3420
	return fallback_alloc(cachep, flags);
3421

A
Andrew Morton 已提交
3422
done:
P
Pekka Enberg 已提交
3423
	return obj;
3424
}
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;
3444
	int slab_node = numa_mem_id();
3445

3446
	flags &= gfp_allowed_mask;
3447

3448 3449
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3450
	if (slab_should_failslab(cachep, flags))
3451 3452
		return NULL;

3453 3454 3455
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3456
	if (nodeid == NUMA_NO_NODE)
3457
		nodeid = slab_node;
3458 3459 3460 3461 3462 3463 3464

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3465
	if (nodeid == slab_node) {
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3481 3482
	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
				 flags);
3483

P
Pekka Enberg 已提交
3484 3485 3486
	if (likely(ptr))
		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));

3487 3488 3489
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3509 3510
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3531
	flags &= gfp_allowed_mask;
3532

3533 3534
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3535
	if (slab_should_failslab(cachep, flags))
3536 3537
		return NULL;

3538 3539 3540 3541 3542
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3543 3544
	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
				 flags);
3545 3546
	prefetchw(objp);

P
Pekka Enberg 已提交
3547 3548 3549
	if (likely(objp))
		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));

3550 3551 3552
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3553 3554
	return objp;
}
3555 3556 3557 3558

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3559
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3560
		       int node)
L
Linus Torvalds 已提交
3561 3562
{
	int i;
3563
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3564 3565 3566 3567 3568

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3569
		slabp = virt_to_slab(objp);
3570
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3571
		list_del(&slabp->list);
3572
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3573
		check_slabp(cachep, slabp);
3574
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3575
		STATS_DEC_ACTIVE(cachep);
3576
		l3->free_objects++;
L
Linus Torvalds 已提交
3577 3578 3579 3580
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3581 3582
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3583 3584 3585 3586 3587 3588
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3589 3590
				slab_destroy(cachep, slabp);
			} else {
3591
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3592 3593 3594 3595 3596 3597
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3598
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3599 3600 3601 3602
		}
	}
}

3603
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3604 3605
{
	int batchcount;
3606
	struct kmem_list3 *l3;
3607
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3608 3609 3610 3611 3612 3613

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3614
	l3 = cachep->nodelists[node];
3615
	spin_lock(&l3->list_lock);
3616 3617
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3618
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3619 3620 3621
		if (max) {
			if (batchcount > max)
				batchcount = max;
3622
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3623
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3624 3625 3626 3627 3628
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3629
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3630
free_done:
L
Linus Torvalds 已提交
3631 3632 3633 3634 3635
#if STATS
	{
		int i = 0;
		struct list_head *p;

3636 3637
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3649
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3650
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3651
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3652 3653 3654
}

/*
A
Andrew Morton 已提交
3655 3656
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3657
 */
3658 3659
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
    void *caller)
L
Linus Torvalds 已提交
3660
{
3661
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3662 3663

	check_irq_off();
3664
	kmemleak_free_recursive(objp, cachep->flags);
3665
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3666

P
Pekka Enberg 已提交
3667 3668
	kmemcheck_slab_free(cachep, objp, obj_size(cachep));

3669 3670 3671 3672 3673 3674 3675
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3676
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3677 3678
		return;

L
Linus Torvalds 已提交
3679 3680
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3681
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3682 3683 3684 3685
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3686
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3698
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3699
{
E
Eduard - Gabriel Munteanu 已提交
3700 3701
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3702 3703
	trace_kmem_cache_alloc(_RET_IP_, ret,
			       obj_size(cachep), cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3704 3705

	return ret;
L
Linus Torvalds 已提交
3706 3707 3708
}
EXPORT_SYMBOL(kmem_cache_alloc);

3709
#ifdef CONFIG_TRACING
3710 3711
void *
kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
E
Eduard - Gabriel Munteanu 已提交
3712
{
3713 3714 3715 3716 3717 3718 3719
	void *ret;

	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

	trace_kmalloc(_RET_IP_, ret,
		      size, slab_buffer_size(cachep), flags);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3720
}
3721
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3722 3723
#endif

L
Linus Torvalds 已提交
3724
#ifdef CONFIG_NUMA
3725 3726
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3727 3728 3729
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3730 3731 3732
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
				    obj_size(cachep), cachep->buffer_size,
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3733 3734

	return ret;
3735
}
L
Linus Torvalds 已提交
3736 3737
EXPORT_SYMBOL(kmem_cache_alloc_node);

3738
#ifdef CONFIG_TRACING
3739 3740 3741 3742
void *kmem_cache_alloc_node_trace(size_t size,
				  struct kmem_cache *cachep,
				  gfp_t flags,
				  int nodeid)
E
Eduard - Gabriel Munteanu 已提交
3743
{
3744 3745 3746
	void *ret;

	ret = __cache_alloc_node(cachep, flags, nodeid,
E
Eduard - Gabriel Munteanu 已提交
3747
				  __builtin_return_address(0));
3748 3749 3750 3751
	trace_kmalloc_node(_RET_IP_, ret,
			   size, slab_buffer_size(cachep),
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3752
}
3753
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3754 3755
#endif

3756 3757
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3758
{
3759
	struct kmem_cache *cachep;
3760 3761

	cachep = kmem_find_general_cachep(size, flags);
3762 3763
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3764
	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3765
}
3766

3767
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3768 3769 3770 3771 3772
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3773
EXPORT_SYMBOL(__kmalloc_node);
3774 3775

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3776
		int node, unsigned long caller)
3777
{
3778
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3779 3780 3781 3782 3783 3784 3785 3786
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
3787
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3788
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3789 3790

/**
3791
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3792
 * @size: how many bytes of memory are required.
3793
 * @flags: the type of memory to allocate (see kmalloc).
3794
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3795
 */
3796 3797
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3798
{
3799
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3800
	void *ret;
L
Linus Torvalds 已提交
3801

3802 3803 3804 3805 3806 3807
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3808 3809
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3810 3811
	ret = __cache_alloc(cachep, flags, caller);

3812 3813
	trace_kmalloc((unsigned long) caller, ret,
		      size, cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3814 3815

	return ret;
3816 3817 3818
}


3819
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3820 3821
void *__kmalloc(size_t size, gfp_t flags)
{
3822
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3823 3824 3825
}
EXPORT_SYMBOL(__kmalloc);

3826
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3827
{
3828
	return __do_kmalloc(size, flags, (void *)caller);
3829 3830
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3831 3832 3833 3834 3835 3836 3837

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3838 3839
#endif

L
Linus Torvalds 已提交
3840 3841 3842 3843 3844 3845 3846 3847
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3848
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3849 3850 3851 3852
{
	unsigned long flags;

	local_irq_save(flags);
3853
	debug_check_no_locks_freed(objp, obj_size(cachep));
3854 3855
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, obj_size(cachep));
3856
	__cache_free(cachep, objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
3857
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3858

3859
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3860 3861 3862 3863 3864 3865 3866
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3867 3868
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3869 3870 3871 3872 3873
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3874
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3875 3876
	unsigned long flags;

3877 3878
	trace_kfree(_RET_IP_, objp);

3879
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3880 3881 3882
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3883
	c = virt_to_cache(objp);
3884
	debug_check_no_locks_freed(objp, obj_size(c));
3885
	debug_check_no_obj_freed(objp, obj_size(c));
3886
	__cache_free(c, (void *)objp, __builtin_return_address(0));
L
Linus Torvalds 已提交
3887 3888 3889 3890
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3891
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3892
{
3893
	return obj_size(cachep);
L
Linus Torvalds 已提交
3894 3895 3896
}
EXPORT_SYMBOL(kmem_cache_size);

3897
/*
S
Simon Arlott 已提交
3898
 * This initializes kmem_list3 or resizes various caches for all nodes.
3899
 */
3900
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3901 3902 3903
{
	int node;
	struct kmem_list3 *l3;
3904
	struct array_cache *new_shared;
3905
	struct array_cache **new_alien = NULL;
3906

3907
	for_each_online_node(node) {
3908

3909
                if (use_alien_caches) {
3910
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3911 3912 3913
                        if (!new_alien)
                                goto fail;
                }
3914

3915 3916 3917
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3918
				cachep->shared*cachep->batchcount,
3919
					0xbaadf00d, gfp);
3920 3921 3922 3923
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3924
		}
3925

A
Andrew Morton 已提交
3926 3927
		l3 = cachep->nodelists[node];
		if (l3) {
3928 3929
			struct array_cache *shared = l3->shared;

3930 3931
			spin_lock_irq(&l3->list_lock);

3932
			if (shared)
3933 3934
				free_block(cachep, shared->entry,
						shared->avail, node);
3935

3936 3937
			l3->shared = new_shared;
			if (!l3->alien) {
3938 3939 3940
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3941
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3942
					cachep->batchcount + cachep->num;
3943
			spin_unlock_irq(&l3->list_lock);
3944
			kfree(shared);
3945 3946 3947
			free_alien_cache(new_alien);
			continue;
		}
3948
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3949 3950 3951
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3952
			goto fail;
3953
		}
3954 3955 3956

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3957
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3958
		l3->shared = new_shared;
3959
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3960
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3961
					cachep->batchcount + cachep->num;
3962 3963
		cachep->nodelists[node] = l3;
	}
3964
	return 0;
3965

A
Andrew Morton 已提交
3966
fail:
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3982
	return -ENOMEM;
3983 3984
}

L
Linus Torvalds 已提交
3985
struct ccupdate_struct {
3986
	struct kmem_cache *cachep;
3987
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3988 3989 3990 3991
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3992
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3993 3994 3995
	struct array_cache *old;

	check_irq_off();
3996
	old = cpu_cache_get(new->cachep);
3997

L
Linus Torvalds 已提交
3998 3999 4000 4001
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

4002
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
4003
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4004
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
4005
{
4006
	struct ccupdate_struct *new;
4007
	int i;
L
Linus Torvalds 已提交
4008

4009 4010
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
4011 4012 4013
	if (!new)
		return -ENOMEM;

4014
	for_each_online_cpu(i) {
4015
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4016
						batchcount, gfp);
4017
		if (!new->new[i]) {
P
Pekka Enberg 已提交
4018
			for (i--; i >= 0; i--)
4019 4020
				kfree(new->new[i]);
			kfree(new);
4021
			return -ENOMEM;
L
Linus Torvalds 已提交
4022 4023
		}
	}
4024
	new->cachep = cachep;
L
Linus Torvalds 已提交
4025

4026
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4027

L
Linus Torvalds 已提交
4028 4029 4030
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4031
	cachep->shared = shared;
L
Linus Torvalds 已提交
4032

4033
	for_each_online_cpu(i) {
4034
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4035 4036
		if (!ccold)
			continue;
4037 4038 4039
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
4040 4041
		kfree(ccold);
	}
4042
	kfree(new);
4043
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
4044 4045
}

4046
/* Called with cache_chain_mutex held always */
4047
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4048 4049 4050 4051
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4052 4053
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4054 4055
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4056
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4057 4058 4059 4060
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4061
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
4062
		limit = 1;
4063
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
4064
		limit = 8;
4065
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
4066
		limit = 24;
4067
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
4068 4069 4070 4071
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4072 4073
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4074 4075 4076 4077 4078 4079 4080 4081
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4082
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4083 4084 4085
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4086 4087 4088
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4089 4090 4091 4092
	 */
	if (limit > 32)
		limit = 32;
#endif
4093
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4094 4095
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4096
		       cachep->name, -err);
4097
	return err;
L
Linus Torvalds 已提交
4098 4099
}

4100 4101
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4102 4103
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4104
 */
4105
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4106
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4107 4108 4109
{
	int tofree;

4110 4111
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4112 4113
	if (ac->touched && !force) {
		ac->touched = 0;
4114
	} else {
4115
		spin_lock_irq(&l3->list_lock);
4116 4117 4118 4119 4120 4121 4122 4123 4124
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4125
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4126 4127 4128 4129 4130
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4131
 * @w: work descriptor
L
Linus Torvalds 已提交
4132 4133 4134 4135 4136 4137
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4138 4139
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4140
 */
4141
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4142
{
4143
	struct kmem_cache *searchp;
4144
	struct kmem_list3 *l3;
4145
	int node = numa_mem_id();
4146
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4147

4148
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4149
		/* Give up. Setup the next iteration. */
4150
		goto out;
L
Linus Torvalds 已提交
4151

4152
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4153 4154
		check_irq_on();

4155 4156 4157 4158 4159
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4160
		l3 = searchp->nodelists[node];
4161

4162
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4163

4164
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4165

4166 4167 4168 4169
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4170
		if (time_after(l3->next_reap, jiffies))
4171
			goto next;
L
Linus Torvalds 已提交
4172

4173
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4174

4175
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4176

4177
		if (l3->free_touched)
4178
			l3->free_touched = 0;
4179 4180
		else {
			int freed;
L
Linus Torvalds 已提交
4181

4182 4183 4184 4185
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4186
next:
L
Linus Torvalds 已提交
4187 4188 4189
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4190
	mutex_unlock(&cache_chain_mutex);
4191
	next_reap_node();
4192
out:
A
Andrew Morton 已提交
4193
	/* Set up the next iteration */
4194
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4195 4196
}

4197
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4198

4199
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4200
{
4201 4202 4203 4204
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4205
#if STATS
4206
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4207
#else
4208
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4209
#endif
4210 4211 4212 4213
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4214
#if STATS
4215
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4216
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4217
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4218
#endif
4219 4220 4221 4222 4223 4224 4225
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4226
	mutex_lock(&cache_chain_mutex);
4227 4228
	if (!n)
		print_slabinfo_header(m);
4229 4230

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4231 4232 4233 4234
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4235
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4236 4237 4238 4239
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4240
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4241 4242 4243 4244
}

static int s_show(struct seq_file *m, void *p)
{
4245
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4246 4247 4248 4249 4250
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4251
	const char *name;
L
Linus Torvalds 已提交
4252
	char *error = NULL;
4253 4254
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4255 4256 4257

	active_objs = 0;
	num_slabs = 0;
4258 4259 4260 4261 4262
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4263 4264
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4265

4266
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4267 4268 4269 4270 4271
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4272
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4273 4274 4275 4276 4277 4278 4279
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4280
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4281 4282 4283 4284 4285
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4286 4287
		if (l3->shared)
			shared_avail += l3->shared->avail;
4288

4289
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4290
	}
P
Pekka Enberg 已提交
4291 4292
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4293
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4294 4295
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4296
	name = cachep->name;
L
Linus Torvalds 已提交
4297 4298 4299 4300
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4301
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4302
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4303
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4304
		   cachep->limit, cachep->batchcount, cachep->shared);
4305
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4306
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4307
#if STATS
P
Pekka Enberg 已提交
4308
	{			/* list3 stats */
L
Linus Torvalds 已提交
4309 4310 4311 4312 4313 4314 4315
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4316
		unsigned long node_frees = cachep->node_frees;
4317
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4318

J
Joe Perches 已提交
4319 4320 4321 4322 4323
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4324 4325 4326 4327 4328 4329 4330 4331 4332
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4333
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4354
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4355 4356 4357 4358
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4369
static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4370
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4371
{
P
Pekka Enberg 已提交
4372
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4373
	int limit, batchcount, shared, res;
4374
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4375

L
Linus Torvalds 已提交
4376 4377 4378 4379
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4380
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4391
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4392
	res = -EINVAL;
4393
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4394
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4395 4396
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4397
				res = 0;
L
Linus Torvalds 已提交
4398
			} else {
4399
				res = do_tune_cpucache(cachep, limit,
4400 4401
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4402 4403 4404 4405
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4406
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4407 4408 4409 4410
	if (res >= 0)
		res = count;
	return res;
}
4411

4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4425 4426 4427 4428 4429
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4430
	return seq_list_start(&cache_chain, *pos);
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4481
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4482

4483
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4484
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4485
		if (modname[0])
4486 4487 4488 4489 4490 4491 4492 4493 4494
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4495
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4520
		list_for_each_entry(slabp, &l3->slabs_full, list)
4521
			handle_slab(n, cachep, slabp);
4522
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4549

4550 4551 4552
	return 0;
}

4553
static const struct seq_operations slabstats_op = {
4554 4555 4556 4557 4558
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4587
	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4588 4589
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4590
#endif
4591 4592 4593
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4594 4595
#endif

4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4608
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4609
{
4610 4611
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4612
		return 0;
L
Linus Torvalds 已提交
4613

4614
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4615
}
K
Kirill A. Shutemov 已提交
4616
EXPORT_SYMBOL(ksize);