slab.c 99.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
 * The c_cpuarray may not be read with enabled local interrupts - 
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
104
#include	<linux/string.h>
105
#include	<linux/nodemask.h>
106
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
107
#include	<linux/mutex.h>
L
Linus Torvalds 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
			 SLAB_NO_REAP | SLAB_CACHE_DMA | \
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#else
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

203
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-2)

/* Max number of objs-per-slab for caches which use off-slab slabs.
 * Needed to avoid a possible looping condition in cache_grow().
 */
static unsigned long offslab_limit;

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268 269 270 271 272 273 274
	spinlock_t lock;
	void *entry[0];		/*
				 * Must have this definition in here for the proper
				 * alignment of array_cache. Also simplifies accessing
				 * the entries.
				 * [0] is for gcc 2.95. It should really be [].
				 */
L
Linus Torvalds 已提交
275 276 277 278 279 280 281 282
};

/* bootstrap: The caches do not work without cpuarrays anymore,
 * but the cpuarrays are allocated from the generic caches...
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
284 285 286
};

/*
287
 * The slab lists for all objects.
L
Linus Torvalds 已提交
288 289
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
290 291 292 293 294 295 296
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned long next_reap;
	int free_touched;
	unsigned int free_limit;
297
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
298 299 300
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
L
Linus Torvalds 已提交
301 302
};

303 304 305 306 307 308 309 310 311 312
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

/*
313
 * This function must be completely optimized away if
314 315 316 317
 * a constant is passed to it. Mostly the same as
 * what is in linux/slab.h except it returns an
 * index.
 */
318
static __always_inline int index_of(const size_t size)
319
{
320 321
	extern void __bad_size(void);

322 323 324 325 326 327 328 329 330 331
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
332
		__bad_size();
333
	} else
334
		__bad_size();
335 336 337 338 339
	return 0;
}

#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
340

P
Pekka Enberg 已提交
341
static void kmem_list3_init(struct kmem_list3 *parent)
342 343 344 345 346 347
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
348
	parent->colour_next = 0;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

#define MAKE_LIST(cachep, listp, slab, nodeid)	\
	do {	\
		INIT_LIST_HEAD(listp);		\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
	} while (0)

#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)			\
	do {					\
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
366 367

/*
368
 * struct kmem_cache
L
Linus Torvalds 已提交
369 370 371
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
372

373
struct kmem_cache {
L
Linus Torvalds 已提交
374
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
375 376 377 378
	struct array_cache *array[NR_CPUS];
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
379
	unsigned int buffer_size;
380
/* 2) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
381 382 383 384
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	unsigned int flags;	/* constant flags */
	unsigned int num;	/* # of objs per slab */
	spinlock_t spinlock;
L
Linus Torvalds 已提交
385 386 387

/* 3) cache_grow/shrink */
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
388
	unsigned int gfporder;
L
Linus Torvalds 已提交
389 390

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
391
	gfp_t gfpflags;
L
Linus Torvalds 已提交
392

P
Pekka Enberg 已提交
393 394
	size_t colour;		/* cache colouring range */
	unsigned int colour_off;	/* colour offset */
395
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
396 397
	unsigned int slab_size;
	unsigned int dflags;	/* dynamic flags */
L
Linus Torvalds 已提交
398 399

	/* constructor func */
400
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
401 402

	/* de-constructor func */
403
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
404 405

/* 4) cache creation/removal */
P
Pekka Enberg 已提交
406 407
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
408 409 410

/* 5) statistics */
#if STATS
P
Pekka Enberg 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
424 425
#endif
#if DEBUG
426 427 428 429 430 431 432 433
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
434 435 436 437 438 439 440 441 442 443
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
/* Optimization question: fewer reaps means less 
 * probability for unnessary cpucache drain/refill cycles.
 *
A
Adrian Bunk 已提交
444
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
#define	STATS_INC_REAPED(x)	((x)->reaped++)
#define	STATS_SET_HIGH(x)	do { if ((x)->num_active > (x)->high_mark) \
					(x)->high_mark = (x)->num_active; \
				} while (0)
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
461
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
L
Linus Torvalds 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
#define	STATS_SET_FREEABLE(x, i) \
				do { if ((x)->max_freeable < i) \
					(x)->max_freeable = i; \
				} while (0)

#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
#define	STATS_INC_REAPED(x)	do { } while (0)
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
480
#define	STATS_INC_NODEFREES(x)	do { } while (0)
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
#define	STATS_SET_FREEABLE(x, i) \
				do { } while (0)

#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG
/* Magic nums for obj red zoning.
 * Placed in the first word before and the first word after an obj.
 */
#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */

/* ...and for poisoning */
#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
#define POISON_FREE	0x6b	/* for use-after-free poisoning */
#define	POISON_END	0xa5	/* end-byte of poisoning */

/* memory layout of objects:
 * 0		: objp
504
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
505 506
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
507
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
508
 * 		redzone word.
509 510 511
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
L
Linus Torvalds 已提交
512
 */
513
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
514
{
515
	return cachep->obj_offset;
L
Linus Torvalds 已提交
516 517
}

518
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
519
{
520
	return cachep->obj_size;
L
Linus Torvalds 已提交
521 522
}

523
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
524 525
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
526
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
527 528
}

529
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
530 531 532
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
533
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
534
					 2 * BYTES_PER_WORD);
535
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
536 537
}

538
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
539 540
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
541
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
542 543 544 545
}

#else

546 547
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
 * Maximum size of an obj (in 2^order pages)
 * and absolute limit for the gfp order.
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

576
/* Functions for storing/retrieving the cachep and or slab from the
L
Linus Torvalds 已提交
577 578 579
 * global 'mem_map'. These are used to find the slab an obj belongs to.
 * With kfree(), these are used to find the cache which an obj belongs to.
 */
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
599

600 601 602 603 604 605 606 607 608 609 610 611
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

L
Linus Torvalds 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/* These are the default caches for kmalloc. Custom caches can have other sizes. */
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
630
	{NULL,}
L
Linus Torvalds 已提交
631 632 633 634
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
635
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
636
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
637
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
638 639

/* internal cache of cache description objs */
640
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
641 642 643
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
644
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
645 646 647
	.flags = SLAB_NO_REAP,
	.spinlock = SPIN_LOCK_UNLOCKED,
	.name = "kmem_cache",
L
Linus Torvalds 已提交
648
#if DEBUG
649
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
650 651 652 653
#endif
};

/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
654
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
static struct list_head cache_chain;

/*
 * vm_enough_memory() looks at this to determine how many
 * slab-allocated pages are possibly freeable under pressure
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
671 672
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
673 674 675 676 677
	FULL
} g_cpucache_up;

static DEFINE_PER_CPU(struct work_struct, reap_work);

678 679
static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
static void enable_cpucache(struct kmem_cache *cachep);
P
Pekka Enberg 已提交
680
static void cache_reap(void *unused);
681
static int __node_shrink(struct kmem_cache *cachep, int node);
L
Linus Torvalds 已提交
682

683
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
684 685 686 687
{
	return cachep->array[smp_processor_id()];
}

688
static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
L
Linus Torvalds 已提交
689 690 691 692 693
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
694 695 696
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
697
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
698 699 700 701 702
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
703
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
704 705 706 707 708 709 710 711
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

712
struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
713 714 715 716 717
{
	return __find_general_cachep(size, gfpflags);
}
EXPORT_SYMBOL(kmem_find_general_cachep);

718
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
719
{
720 721
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
722

723 724 725 726 727 728 729 730 731
/* Calculate the number of objects and left-over bytes for a given
   buffer size. */
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
781 782 783 784
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

785
static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
L
Linus Torvalds 已提交
786 787
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
788
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	dump_stack();
}

/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

814
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
815
					    int batchcount)
L
Linus Torvalds 已提交
816
{
P
Pekka Enberg 已提交
817
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
818 819
	struct array_cache *nc = NULL;

820
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
821 822 823 824 825
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
826
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
827 828 829 830
	}
	return nc;
}

831
#ifdef CONFIG_NUMA
832
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
833

P
Pekka Enberg 已提交
834
static struct array_cache **alloc_alien_cache(int node, int limit)
835 836
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
837
	int memsize = sizeof(void *) * MAX_NUMNODES;
838 839 840 841 842 843 844 845 846 847 848 849 850
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
851
				for (i--; i <= 0; i--)
852 853 854 855 856 857 858 859 860
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
861
static void free_alien_cache(struct array_cache **ac_ptr)
862 863 864 865 866 867 868
{
	int i;

	if (!ac_ptr)
		return;

	for_each_node(i)
P
Pekka Enberg 已提交
869
	    kfree(ac_ptr[i]);
870 871 872 873

	kfree(ac_ptr);
}

874
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
875
				struct array_cache *ac, int node)
876 877 878 879 880
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
881
		free_block(cachep, ac->entry, ac->avail, node);
882 883 884 885 886
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

887
static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien)
888
{
P
Pekka Enberg 已提交
889
	int i = 0;
890 891 892 893
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
894
		ac = alien[i];
895 896 897 898 899 900 901 902
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
#else
903

904 905
#define drain_alien_cache(cachep, alien) do { } while (0)

906 907 908 909 910
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **) 0x01020304ul;
}

911 912 913
static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
914

915 916
#endif

L
Linus Torvalds 已提交
917
static int __devinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
918
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
919 920
{
	long cpu = (long)hcpu;
921
	struct kmem_cache *cachep;
922 923 924
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
925 926 927

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
928
		mutex_lock(&cache_chain_mutex);
929 930 931 932 933 934
		/* we need to do this right in the beginning since
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
935
		list_for_each_entry(cachep, &cache_chain, next) {
936 937 938 939 940 941
			/* setup the size64 kmemlist for cpu before we can
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
				if (!(l3 = kmalloc_node(memsize,
P
Pekka Enberg 已提交
942
							GFP_KERNEL, node)))
943 944 945
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
946
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
947

948 949 950 951 952
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
953 954
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
955

956 957
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
P
Pekka Enberg 已提交
958 959
			    (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
960 961 962 963
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

		/* Now we can go ahead with allocating the shared array's
P
Pekka Enberg 已提交
964
		   & array cache's */
965
		list_for_each_entry(cachep, &cache_chain, next) {
966
			struct array_cache *nc;
967 968
			struct array_cache *shared;
			struct array_cache **alien;
969

970
			nc = alloc_arraycache(node, cachep->limit,
971
						cachep->batchcount);
L
Linus Torvalds 已提交
972 973
			if (!nc)
				goto bad;
974 975 976 977 978
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
979

980 981 982
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
L
Linus Torvalds 已提交
983 984
			cachep->array[cpu] = nc;

985 986 987
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

988 989 990 991 992 993 994 995
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
996
			}
997 998 999 1000 1001 1002 1003 1004 1005 1006
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1007
		}
I
Ingo Molnar 已提交
1008
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1009 1010 1011 1012 1013 1014
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1015 1016 1017 1018 1019 1020 1021 1022
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1023 1024
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
1025
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1026 1027 1028

		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1029 1030
			struct array_cache *shared;
			struct array_cache **alien;
1031
			cpumask_t mask;
L
Linus Torvalds 已提交
1032

1033
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1034 1035 1036
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1037 1038 1039
			l3 = cachep->nodelists[node];

			if (!l3)
1040
				goto free_array_cache;
1041

1042
			spin_lock_irq(&l3->list_lock);
1043 1044 1045 1046

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1047
				free_block(cachep, nc->entry, nc->avail, node);
1048 1049

			if (!cpus_empty(mask)) {
1050
				spin_unlock_irq(&l3->list_lock);
1051
				goto free_array_cache;
P
Pekka Enberg 已提交
1052
			}
1053

1054 1055
			shared = l3->shared;
			if (shared) {
1056
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1057
					   l3->shared->avail, node);
1058 1059 1060
				l3->shared = NULL;
			}

1061 1062 1063 1064 1065 1066 1067 1068 1069
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1070
			}
1071
free_array_cache:
L
Linus Torvalds 已提交
1072 1073
			kfree(nc);
		}
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
			spin_lock_irq(&l3->list_lock);
			/* free slabs belonging to this node */
			__node_shrink(cachep, node);
			spin_unlock_irq(&l3->list_lock);
		}
I
Ingo Molnar 已提交
1088
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1089 1090 1091 1092
		break;
#endif
	}
	return NOTIFY_OK;
P
Pekka Enberg 已提交
1093
      bad:
I
Ingo Molnar 已提交
1094
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1095 1096 1097 1098 1099
	return NOTIFY_BAD;
}

static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };

1100 1101 1102
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1103
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

L
Linus Torvalds 已提交
1118 1119 1120 1121 1122 1123 1124 1125
/* Initialisation.
 * Called after the gfp() functions have been enabled, and before smp_init().
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1126 1127 1128 1129 1130 1131 1132
	int i;

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1143
	 * 1) initialize the cache_cache cache: it contains the struct kmem_cache
L
Linus Torvalds 已提交
1144 1145
	 *    structures of all caches, except cache_cache itself: cache_cache
	 *    is statically allocated.
1146 1147 1148
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1149
	 * 2) Create the first kmalloc cache.
1150
	 *    The struct kmem_cache for the new cache is allocated normally.
1151 1152 1153
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1154 1155
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1156 1157 1158
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1159 1160 1161 1162 1163 1164 1165
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1166
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1167

1168
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
L
Linus Torvalds 已提交
1169

1170
	cache_estimate(0, cache_cache.buffer_size, cache_line_size(), 0,
P
Pekka Enberg 已提交
1171
		       &left_over, &cache_cache.num);
L
Linus Torvalds 已提交
1172 1173 1174
	if (!cache_cache.num)
		BUG();

P
Pekka Enberg 已提交
1175 1176 1177
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1178 1179 1180 1181 1182

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

1183 1184 1185 1186 1187 1188
	/* Initialize the caches that provide memory for the array cache
	 * and the kmem_list3 structures first.
	 * Without this, further allocations will bug
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
P
Pekka Enberg 已提交
1189 1190 1191 1192
						      sizes[INDEX_AC].cs_size,
						      ARCH_KMALLOC_MINALIGN,
						      (ARCH_KMALLOC_FLAGS |
						       SLAB_PANIC), NULL, NULL);
1193 1194 1195

	if (INDEX_AC != INDEX_L3)
		sizes[INDEX_L3].cs_cachep =
P
Pekka Enberg 已提交
1196 1197 1198 1199 1200
		    kmem_cache_create(names[INDEX_L3].name,
				      sizes[INDEX_L3].cs_size,
				      ARCH_KMALLOC_MINALIGN,
				      (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
				      NULL);
1201

L
Linus Torvalds 已提交
1202
	while (sizes->cs_size != ULONG_MAX) {
1203 1204
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1205 1206 1207
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1208 1209
		 * allow tighter packing of the smaller caches.
		 */
P
Pekka Enberg 已提交
1210
		if (!sizes->cs_cachep)
1211
			sizes->cs_cachep = kmem_cache_create(names->name,
P
Pekka Enberg 已提交
1212 1213 1214 1215 1216
							     sizes->cs_size,
							     ARCH_KMALLOC_MINALIGN,
							     (ARCH_KMALLOC_FLAGS
							      | SLAB_PANIC),
							     NULL, NULL);
L
Linus Torvalds 已提交
1217 1218 1219

		/* Inc off-slab bufctl limit until the ceiling is hit. */
		if (!(OFF_SLAB(sizes->cs_cachep))) {
P
Pekka Enberg 已提交
1220
			offslab_limit = sizes->cs_size - sizeof(struct slab);
L
Linus Torvalds 已提交
1221 1222 1223 1224
			offslab_limit /= sizeof(kmem_bufctl_t);
		}

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
P
Pekka Enberg 已提交
1225 1226 1227 1228 1229 1230
							sizes->cs_size,
							ARCH_KMALLOC_MINALIGN,
							(ARCH_KMALLOC_FLAGS |
							 SLAB_CACHE_DMA |
							 SLAB_PANIC), NULL,
							NULL);
L
Linus Torvalds 已提交
1231 1232 1233 1234 1235 1236

		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
P
Pekka Enberg 已提交
1237
		void *ptr;
1238

L
Linus Torvalds 已提交
1239
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1240

L
Linus Torvalds 已提交
1241
		local_irq_disable();
1242 1243
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1244
		       sizeof(struct arraycache_init));
L
Linus Torvalds 已提交
1245 1246
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1247

L
Linus Torvalds 已提交
1248
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1249

L
Linus Torvalds 已提交
1250
		local_irq_disable();
1251
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1252
		       != &initarray_generic.cache);
1253
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1254
		       sizeof(struct arraycache_init));
1255
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1256
		    ptr;
L
Linus Torvalds 已提交
1257 1258
		local_irq_enable();
	}
1259 1260 1261 1262 1263
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1264
			  numa_node_id());
1265 1266 1267

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1268
				  &initkmem_list3[SIZE_AC + node], node);
1269 1270 1271

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1272 1273
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1274 1275 1276
			}
		}
	}
L
Linus Torvalds 已提交
1277

1278
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1279
	{
1280
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1281
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1282
		list_for_each_entry(cachep, &cache_chain, next)
P
Pekka Enberg 已提交
1283
		    enable_cpucache(cachep);
I
Ingo Molnar 已提交
1284
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1285 1286 1287 1288 1289 1290
	}

	/* Done! */
	g_cpucache_up = FULL;

	/* Register a cpu startup notifier callback
1291
	 * that initializes cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	 */
	register_cpu_notifier(&cpucache_notifier);

	/* The reap timers are started later, with a module init call:
	 * That part of the kernel is not yet operational.
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

	/* 
	 * Register the timers that return unneeded
	 * pages to gfp.
	 */
1308
	for_each_online_cpu(cpu)
P
Pekka Enberg 已提交
1309
	    start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

	return 0;
}

__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1323
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1324 1325 1326 1327 1328 1329
{
	struct page *page;
	void *addr;
	int i;

	flags |= cachep->gfpflags;
1330
	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	if (!page)
		return NULL;
	addr = page_address(page);

	i = (1 << cachep->gfporder);
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_add(i, &slab_reclaim_pages);
	add_page_state(nr_slab, i);
	while (i--) {
		SetPageSlab(page);
		page++;
	}
	return addr;
}

/*
 * Interface to system's page release.
 */
1349
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1350
{
P
Pekka Enberg 已提交
1351
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

	while (i--) {
		if (!TestClearPageSlab(page))
			BUG();
		page++;
	}
	sub_page_state(nr_slab, nr_freed);
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
P
Pekka Enberg 已提交
1364 1365
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
L
Linus Torvalds 已提交
1366 1367 1368 1369
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1370
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1371
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1381
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1382
			    unsigned long caller)
L
Linus Torvalds 已提交
1383
{
1384
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1385

1386
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1387

P
Pekka Enberg 已提交
1388
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1389 1390
		return;

P
Pekka Enberg 已提交
1391 1392 1393 1394
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1395 1396 1397 1398 1399 1400 1401
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1402
				*addr++ = svalue;
L
Linus Torvalds 已提交
1403 1404 1405 1406 1407 1408 1409
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1410
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1411 1412 1413
}
#endif

1414
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1415
{
1416 1417
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1418 1419

	memset(addr, val, size);
P
Pekka Enberg 已提交
1420
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1421 1422 1423 1424 1425 1426
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
P
Pekka Enberg 已提交
1427 1428
	for (i = 0; i < limit; i++) {
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1429 1430 1431 1432 1433 1434 1435
	}
	printk("\n");
}
#endif

#if DEBUG

1436
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1437 1438 1439 1440 1441 1442
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
P
Pekka Enberg 已提交
1443 1444
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1445 1446 1447 1448
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
P
Pekka Enberg 已提交
1449
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1450
		print_symbol("(%s)",
P
Pekka Enberg 已提交
1451
			     (unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1452 1453
		printk("\n");
	}
1454 1455
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1456
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1457 1458
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1459 1460
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1461 1462 1463 1464
		dump_line(realobj, i, limit);
	}
}

1465
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1466 1467 1468 1469 1470
{
	char *realobj;
	int size, i;
	int lines = 0;

1471 1472
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1473

P
Pekka Enberg 已提交
1474
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1475
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1476
		if (i == size - 1)
L
Linus Torvalds 已提交
1477 1478 1479 1480 1481 1482
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1483 1484 1485
				printk(KERN_ERR
				       "Slab corruption: start=%p, len=%d\n",
				       realobj, size);
L
Linus Torvalds 已提交
1486 1487 1488
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1489
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1490
			limit = 16;
P
Pekka Enberg 已提交
1491 1492
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1505
		struct slab *slabp = virt_to_slab(objp);
L
Linus Torvalds 已提交
1506 1507
		int objnr;

1508
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
L
Linus Torvalds 已提交
1509
		if (objnr) {
1510 1511
			objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1512
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1513
			       realobj, size);
L
Linus Torvalds 已提交
1514 1515
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1516
		if (objnr + 1 < cachep->num) {
1517 1518
			objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1519
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1520
			       realobj, size);
L
Linus Torvalds 已提交
1521 1522 1523 1524 1525 1526
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1527 1528 1529 1530
#if DEBUG
/**
 * slab_destroy_objs - call the registered destructor for each object in
 *      a slab that is to be destroyed.
L
Linus Torvalds 已提交
1531
 */
1532
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1533 1534 1535
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1536
		void *objp = slabp->s_mem + cachep->buffer_size * i;
L
Linus Torvalds 已提交
1537 1538 1539

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1540
			if ((cachep->buffer_size % PAGE_SIZE) == 0
P
Pekka Enberg 已提交
1541 1542
			    && OFF_SLAB(cachep))
				kernel_map_pages(virt_to_page(objp),
1543
						 cachep->buffer_size / PAGE_SIZE,
P
Pekka Enberg 已提交
1544
						 1);
L
Linus Torvalds 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1554
					   "was overwritten");
L
Linus Torvalds 已提交
1555 1556
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1557
					   "was overwritten");
L
Linus Torvalds 已提交
1558 1559
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1560
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1561
	}
1562
}
L
Linus Torvalds 已提交
1563
#else
1564
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1565
{
L
Linus Torvalds 已提交
1566 1567 1568
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1569
			void *objp = slabp->s_mem + cachep->buffer_size * i;
P
Pekka Enberg 已提交
1570
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1571 1572
		}
	}
1573
}
L
Linus Torvalds 已提交
1574 1575
#endif

1576 1577 1578 1579 1580
/**
 * Destroy all the objs in a slab, and release the mem back to the system.
 * Before calling the slab must have been unlinked from the cache.
 * The cache-lock is not held/needed.
 */
1581
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1582 1583 1584 1585
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1586 1587 1588
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1589
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
	}
}

1600
/* For setting up all the kmem_list3s for cache whose buffer_size is same
1601
   as size of kmem_list3. */
1602
static void set_up_list3s(struct kmem_cache *cachep, int index)
1603 1604 1605 1606
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1607
		cachep->nodelists[node] = &initkmem_list3[index + node];
1608
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1609 1610
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1611 1612 1613
	}
}

1614
/**
1615 1616 1617 1618 1619 1620 1621
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1622 1623 1624 1625 1626
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
R
Randy Dunlap 已提交
1627 1628
static inline size_t calculate_slab_order(struct kmem_cache *cachep,
			size_t size, size_t align, unsigned long flags)
1629 1630
{
	size_t left_over = 0;
1631
	int gfporder;
1632

1633
	for (gfporder = 0 ; gfporder <= MAX_GFP_ORDER; gfporder++) {
1634 1635 1636
		unsigned int num;
		size_t remainder;

1637
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1638 1639
		if (!num)
			continue;
1640

1641
		/* More than offslab_limit objects will cause problems */
1642
		if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1643 1644
			break;

1645
		/* Found something acceptable - save it away */
1646
		cachep->num = num;
1647
		cachep->gfporder = gfporder;
1648 1649
		left_over = remainder;

1650 1651 1652 1653 1654 1655 1656 1657
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1658 1659 1660 1661
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1662
		if (gfporder >= slab_break_gfp_order)
1663 1664
			break;

1665 1666 1667 1668
		/*
		 * Acceptable internal fragmentation?
		 */
		if ((left_over * 8) <= (PAGE_SIZE << gfporder))
1669 1670 1671 1672 1673
			break;
	}
	return left_over;
}

L
Linus Torvalds 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
 * the module calling this has to destroy the cache before getting 
 * unloaded.
 * 
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
 * memory pressure.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
1707
struct kmem_cache *
L
Linus Torvalds 已提交
1708
kmem_cache_create (const char *name, size_t size, size_t align,
1709 1710
	unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
1711 1712
{
	size_t left_over, slab_size, ralign;
1713
	struct kmem_cache *cachep = NULL;
1714
	struct list_head *p;
L
Linus Torvalds 已提交
1715 1716 1717 1718 1719

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
	if ((!name) ||
P
Pekka Enberg 已提交
1720 1721 1722 1723 1724 1725 1726
	    in_interrupt() ||
	    (size < BYTES_PER_WORD) ||
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
		printk(KERN_ERR "%s: Early error in slab %s\n",
		       __FUNCTION__, name);
		BUG();
	}
L
Linus Torvalds 已提交
1727

1728 1729 1730 1731 1732 1733
	/*
	 * Prevent CPUs from coming and going.
	 * lock_cpu_hotplug() nests outside cache_chain_mutex
	 */
	lock_cpu_hotplug();

I
Ingo Molnar 已提交
1734
	mutex_lock(&cache_chain_mutex);
1735 1736

	list_for_each(p, &cache_chain) {
1737
		struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
1752
			       pc->buffer_size);
1753 1754 1755
			continue;
		}

P
Pekka Enberg 已提交
1756
		if (!strcmp(pc->name, name)) {
1757 1758 1759 1760 1761 1762
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
1763 1764 1765 1766 1767
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
1768
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
P
Pekka Enberg 已提交
1778 1779 1780
	if ((size < 4096
	     || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
	 * Always checks flags, a caller might be expecting debug
	 * support which isn't available.
	 */
	if (flags & ~CREATE_MASK)
		BUG();

	/* Check that size is in terms of words.  This is needed to avoid
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
1801 1802 1803
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	}

	/* calculate out the final buffer alignment: */
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
		/* Default alignment: as specified by the arch code.
		 * Except if an object is really small, then squeeze multiple
		 * objects into one cacheline.
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
1814
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819 1820 1821 1822
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1823
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1824 1825 1826 1827 1828
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1829
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1830 1831 1832 1833 1834 1835 1836
	}
	/* 4) Store it. Note that the debug code below can reduce
	 *    the alignment to BYTES_PER_WORD.
	 */
	align = ralign;

	/* Get cache's description obj. */
1837
	cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
1838
	if (!cachep)
1839
		goto oops;
1840
	memset(cachep, 0, sizeof(struct kmem_cache));
L
Linus Torvalds 已提交
1841 1842

#if DEBUG
1843
	cachep->obj_size = size;
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848 1849

	if (flags & SLAB_RED_ZONE) {
		/* redzoning only works with word aligned caches */
		align = BYTES_PER_WORD;

		/* add space for red zone words */
1850
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
1851
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires word alignment and
		 * one word storage behind the end of the real
		 * object.
		 */
		align = BYTES_PER_WORD;
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
1862
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1863 1864
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
1865 1866 1867 1868 1869 1870
		size = PAGE_SIZE;
	}
#endif
#endif

	/* Determine if the slab management is 'on' or 'off' slab. */
P
Pekka Enberg 已提交
1871
	if (size >= (PAGE_SIZE >> 3))
L
Linus Torvalds 已提交
1872 1873 1874 1875 1876 1877 1878 1879
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

1880
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
1881 1882 1883 1884 1885

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
1886
		goto oops;
L
Linus Torvalds 已提交
1887
	}
P
Pekka Enberg 已提交
1888 1889
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
1902 1903
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
1904 1905 1906 1907 1908 1909
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
1910
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
1911 1912 1913 1914 1915 1916
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
	spin_lock_init(&cachep->spinlock);
1917
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
1918 1919

	if (flags & CFLGS_OFF_SLAB)
1920
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
L
Linus Torvalds 已提交
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;


	if (g_cpucache_up == FULL) {
		enable_cpucache(cachep);
	} else {
		if (g_cpucache_up == NONE) {
			/* Note: the first kmem_cache_create must create
			 * the cache that's used by kmalloc(24), otherwise
			 * the creation of further caches will BUG().
			 */
1934
			cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1935
			    &initarray_generic.cache;
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946

			/* If the cache that's used by
			 * kmalloc(sizeof(kmem_list3)) is the first cache,
			 * then we need to set up all its list3s, otherwise
			 * the creation of further caches will BUG().
			 */
			set_up_list3s(cachep, SIZE_AC);
			if (INDEX_AC == INDEX_L3)
				g_cpucache_up = PARTIAL_L3;
			else
				g_cpucache_up = PARTIAL_AC;
L
Linus Torvalds 已提交
1947
		} else {
1948
			cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1949
			    kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1950 1951 1952 1953 1954 1955 1956 1957 1958

			if (g_cpucache_up == PARTIAL_AC) {
				set_up_list3s(cachep, SIZE_L3);
				g_cpucache_up = PARTIAL_L3;
			} else {
				int node;
				for_each_online_node(node) {

					cachep->nodelists[node] =
P
Pekka Enberg 已提交
1959 1960 1961
					    kmalloc_node(sizeof
							 (struct kmem_list3),
							 GFP_KERNEL, node);
1962
					BUG_ON(!cachep->nodelists[node]);
P
Pekka Enberg 已提交
1963 1964
					kmem_list3_init(cachep->
							nodelists[node]);
1965 1966
				}
			}
L
Linus Torvalds 已提交
1967
		}
1968
		cachep->nodelists[numa_node_id()]->next_reap =
P
Pekka Enberg 已提交
1969 1970
		    jiffies + REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1971

1972 1973 1974 1975 1976
		BUG_ON(!cpu_cache_get(cachep));
		cpu_cache_get(cachep)->avail = 0;
		cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
		cpu_cache_get(cachep)->batchcount = 1;
		cpu_cache_get(cachep)->touched = 0;
L
Linus Torvalds 已提交
1977 1978
		cachep->batchcount = 1;
		cachep->limit = BOOT_CPUCACHE_ENTRIES;
P
Pekka Enberg 已提交
1979
	}
L
Linus Torvalds 已提交
1980 1981 1982

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
P
Pekka Enberg 已提交
1983
      oops:
L
Linus Torvalds 已提交
1984 1985
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
1986
		      name);
I
Ingo Molnar 已提交
1987
	mutex_unlock(&cache_chain_mutex);
1988
	unlock_cpu_hotplug();
L
Linus Torvalds 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2004
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2005 2006 2007
{
#ifdef CONFIG_SMP
	check_irq_off();
2008
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2009 2010
#endif
}
2011

2012
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2013 2014 2015 2016 2017 2018 2019
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2020 2021 2022 2023
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2024
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2025 2026 2027 2028 2029
#endif

/*
 * Waits for all CPUs to execute func().
 */
P
Pekka Enberg 已提交
2030
static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
L
Linus Torvalds 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
{
	check_irq_on();
	preempt_disable();

	local_irq_disable();
	func(arg);
	local_irq_enable();

	if (smp_call_function(func, arg, 1, 1))
		BUG();

	preempt_enable();
}

2045
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
P
Pekka Enberg 已提交
2046
				int force, int node);
L
Linus Torvalds 已提交
2047 2048 2049

static void do_drain(void *arg)
{
2050
	struct kmem_cache *cachep = (struct kmem_cache *) arg;
L
Linus Torvalds 已提交
2051
	struct array_cache *ac;
2052
	int node = numa_node_id();
L
Linus Torvalds 已提交
2053 2054

	check_irq_off();
2055
	ac = cpu_cache_get(cachep);
2056 2057 2058
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2059 2060 2061
	ac->avail = 0;
}

2062
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2063
{
2064 2065 2066
	struct kmem_list3 *l3;
	int node;

L
Linus Torvalds 已提交
2067 2068
	smp_call_function_all_cpus(do_drain, cachep);
	check_irq_on();
P
Pekka Enberg 已提交
2069
	for_each_online_node(node) {
2070 2071
		l3 = cachep->nodelists[node];
		if (l3) {
2072
			spin_lock_irq(&l3->list_lock);
2073
			drain_array_locked(cachep, l3->shared, 1, node);
2074
			spin_unlock_irq(&l3->list_lock);
2075
			if (l3->alien)
2076
				drain_alien_cache(cachep, l3->alien);
2077 2078
		}
	}
L
Linus Torvalds 已提交
2079 2080
}

2081
static int __node_shrink(struct kmem_cache *cachep, int node)
L
Linus Torvalds 已提交
2082 2083
{
	struct slab *slabp;
2084
	struct kmem_list3 *l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2085 2086
	int ret;

2087
	for (;;) {
L
Linus Torvalds 已提交
2088 2089
		struct list_head *p;

2090 2091
		p = l3->slabs_free.prev;
		if (p == &l3->slabs_free)
L
Linus Torvalds 已提交
2092 2093
			break;

2094
		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
L
Linus Torvalds 已提交
2095 2096 2097 2098 2099 2100
#if DEBUG
		if (slabp->inuse)
			BUG();
#endif
		list_del(&slabp->list);

2101 2102
		l3->free_objects -= cachep->num;
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2103
		slab_destroy(cachep, slabp);
2104
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2105
	}
P
Pekka Enberg 已提交
2106
	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
L
Linus Torvalds 已提交
2107 2108 2109
	return ret;
}

2110
static int __cache_shrink(struct kmem_cache *cachep)
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			spin_lock_irq(&l3->list_lock);
			ret += __node_shrink(cachep, i);
			spin_unlock_irq(&l3->list_lock);
		}
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2129 2130 2131 2132 2133 2134 2135
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2136
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
{
	if (!cachep || in_interrupt())
		BUG();

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2149
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2162
int kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2163 2164
{
	int i;
2165
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2166 2167 2168 2169 2170 2171 2172 2173

	if (!cachep || in_interrupt())
		BUG();

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2174
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2175 2176 2177 2178
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2179
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2180 2181 2182

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2183
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2184
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2185
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2186 2187 2188 2189 2190
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2191
		synchronize_rcu();
L
Linus Torvalds 已提交
2192

2193
	for_each_online_cpu(i)
P
Pekka Enberg 已提交
2194
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2195 2196

	/* NUMA: free the list3 structures */
2197 2198 2199 2200 2201 2202 2203
	for_each_online_node(i) {
		if ((l3 = cachep->nodelists[i])) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
L
Linus Torvalds 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212
	kmem_cache_free(&cache_cache, cachep);

	unlock_cpu_hotplug();

	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

/* Get the memory for a slab management obj. */
2213
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2214
				   int colour_off, gfp_t local_flags)
L
Linus Torvalds 已提交
2215 2216
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2217

L
Linus Torvalds 已提交
2218 2219 2220 2221 2222 2223
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
		slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2224
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2225 2226 2227 2228
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2229
	slabp->s_mem = objp + colour_off;
L
Linus Torvalds 已提交
2230 2231 2232 2233 2234 2235

	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2236
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2237 2238
}

2239
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2240
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2241 2242 2243 2244
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2245
		void *objp = slabp->s_mem + cachep->buffer_size * i;
L
Linus Torvalds 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
		 * Constructors are not allowed to allocate memory from
		 * the same cache which they are a constructor for.
		 * Otherwise, deadlock. They must also be threaded.
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2263
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2264
				     ctor_flags);
L
Linus Torvalds 已提交
2265 2266 2267 2268

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2269
					   " end of an object");
L
Linus Torvalds 已提交
2270 2271
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2272
					   " start of an object");
L
Linus Torvalds 已提交
2273
		}
2274
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
P
Pekka Enberg 已提交
2275 2276
		    && cachep->flags & SLAB_POISON)
			kernel_map_pages(virt_to_page(objp),
2277
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2278 2279 2280 2281
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2282
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2283
	}
P
Pekka Enberg 已提交
2284
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2285 2286 2287
	slabp->free = 0;
}

2288
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
{
	if (flags & SLAB_DMA) {
		if (!(cachep->gfpflags & GFP_DMA))
			BUG();
	} else {
		if (cachep->gfpflags & GFP_DMA)
			BUG();
	}
}

2299
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
{
	void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size);
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

2315
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
			  int nodeid)
{
	unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size;

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

	if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
		printk(KERN_ERR "slab: double free detected in cache "
		       "'%s', objp %p\n", cachep->name, objp);
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2335
static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
L
Linus Torvalds 已提交
2336 2337 2338 2339 2340 2341 2342 2343
{
	int i;
	struct page *page;

	/* Nasty!!!!!! I hope this is OK. */
	i = 1 << cachep->gfporder;
	page = virt_to_page(objp);
	do {
2344 2345
		page_set_cache(page, cachep);
		page_set_slab(page, slabp);
L
Linus Torvalds 已提交
2346 2347 2348 2349 2350 2351 2352 2353
		page++;
	} while (--i);
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2354
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2355
{
P
Pekka Enberg 已提交
2356 2357 2358 2359 2360
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2361
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2362 2363

	/* Be lazy and only check for valid flags here,
P
Pekka Enberg 已提交
2364
	 * keeping it out of the critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2365
	 */
P
Pekka Enberg 已提交
2366
	if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
L
Linus Torvalds 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
		BUG();
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2380
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2381
	check_irq_off();
2382 2383
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2384 2385

	/* Get colour for the slab, and cal the next value. */
2386 2387 2388 2389 2390
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2391

2392
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

2405 2406 2407
	/* Get mem for the objs.
	 * Attempt to allocate a physical page from 'nodeid',
	 */
L
Linus Torvalds 已提交
2408 2409 2410 2411 2412 2413 2414
	if (!(objp = kmem_getpages(cachep, flags, nodeid)))
		goto failed;

	/* Get slab management. */
	if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
		goto opps1;

2415
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2416 2417 2418 2419 2420 2421 2422
	set_slab_attr(cachep, slabp, objp);

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2423
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2424 2425

	/* Make slab active. */
2426
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2427
	STATS_INC_GROWN(cachep);
2428 2429
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2430
	return 1;
P
Pekka Enberg 已提交
2431
      opps1:
L
Linus Torvalds 已提交
2432
	kmem_freepages(cachep, objp);
P
Pekka Enberg 已提交
2433
      failed:
L
Linus Torvalds 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2453 2454
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2455 2456 2457
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2458 2459
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2460 2461 2462 2463
		BUG();
	}
}

2464
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2465
				   void *caller)
L
Linus Torvalds 已提交
2466 2467 2468 2469 2470
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2471
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2472 2473 2474
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2475
	if (page_get_cache(page) != cachep) {
P
Pekka Enberg 已提交
2476 2477 2478
		printk(KERN_ERR
		       "mismatch in kmem_cache_free: expected cache %p, got %p\n",
		       page_get_cache(page), cachep);
L
Linus Torvalds 已提交
2479
		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
P
Pekka Enberg 已提交
2480 2481
		printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
		       page_get_cache(page)->name);
L
Linus Torvalds 已提交
2482 2483
		WARN_ON(1);
	}
2484
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2485 2486

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495
		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2496 2497 2498 2499 2500 2501 2502
		}
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2503
	objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
L
Linus Torvalds 已提交
2504 2505

	BUG_ON(objnr >= cachep->num);
2506
	BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
L
Linus Torvalds 已提交
2507 2508 2509 2510 2511 2512

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
		/* Need to call the slab's constructor so the
		 * caller can perform a verify of its state (debugging).
		 * Called without the cache-lock held.
		 */
2513
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2514
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2515 2516 2517 2518 2519
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2520
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2521 2522 2523
	}
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2524
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2525
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2526
			kernel_map_pages(virt_to_page(objp),
2527
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2538
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2539 2540 2541
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2542

L
Linus Torvalds 已提交
2543 2544 2545 2546 2547 2548 2549
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
P
Pekka Enberg 已提交
2550 2551 2552 2553 2554
	      bad:
		printk(KERN_ERR
		       "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
		       cachep->name, cachep->num, slabp, slabp->inuse);
		for (i = 0;
2555
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2556 2557
		     i++) {
			if ((i % 16) == 0)
L
Linus Torvalds 已提交
2558
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2559
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2571
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2572 2573 2574 2575 2576 2577
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
2578
	ac = cpu_cache_get(cachep);
P
Pekka Enberg 已提交
2579
      retry:
L
Linus Torvalds 已提交
2580 2581 2582 2583 2584 2585 2586 2587
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
		/* if there was little recent activity on this
		 * cache, then perform only a partial refill.
		 * Otherwise we could generate refill bouncing.
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2588 2589 2590 2591
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2592 2593 2594 2595 2596 2597 2598 2599

	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
		if (shared_array->avail) {
			if (batchcount > shared_array->avail)
				batchcount = shared_array->avail;
			shared_array->avail -= batchcount;
			ac->avail = batchcount;
2600
			memcpy(ac->entry,
P
Pekka Enberg 已提交
2601 2602
			       &(shared_array->entry[shared_array->avail]),
			       sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
			shared_array->touched = 1;
			goto alloc_done;
		}
	}
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2627 2628
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
							    numa_node_id());
L
Linus Torvalds 已提交
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

P
Pekka Enberg 已提交
2640
      must_grow:
L
Linus Torvalds 已提交
2641
	l3->free_objects -= ac->avail;
P
Pekka Enberg 已提交
2642
      alloc_done:
2643
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2644 2645 2646

	if (unlikely(!ac->avail)) {
		int x;
2647 2648
		x = cache_grow(cachep, flags, numa_node_id());

L
Linus Torvalds 已提交
2649
		// cache_grow can reenable interrupts, then ac could change.
2650
		ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2651 2652 2653
		if (!x && ac->avail == 0)	// no objects in sight? abort
			return NULL;

P
Pekka Enberg 已提交
2654
		if (!ac->avail)	// objects refilled by interrupt?
L
Linus Torvalds 已提交
2655 2656 2657
			goto retry;
	}
	ac->touched = 1;
2658
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2659 2660 2661
}

static inline void
2662
cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2663 2664 2665 2666 2667 2668 2669 2670
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
2671
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
P
Pekka Enberg 已提交
2672
					void *objp, void *caller)
L
Linus Torvalds 已提交
2673
{
P
Pekka Enberg 已提交
2674
	if (!objp)
L
Linus Torvalds 已提交
2675
		return objp;
P
Pekka Enberg 已提交
2676
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2677
#ifdef CONFIG_DEBUG_PAGEALLOC
2678
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2679
			kernel_map_pages(virt_to_page(objp),
2680
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2701 2702 2703 2704
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2705
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
2706
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
2707
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
2708 2709 2710 2711 2712

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
2713
	}
L
Linus Torvalds 已提交
2714 2715 2716 2717 2718 2719
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2720
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2721
{
P
Pekka Enberg 已提交
2722
	void *objp;
L
Linus Torvalds 已提交
2723 2724
	struct array_cache *ac;

2725
#ifdef CONFIG_NUMA
2726
	if (unlikely(current->mempolicy && !in_interrupt())) {
2727 2728 2729 2730 2731 2732 2733
		int nid = slab_node(current->mempolicy);

		if (nid != numa_node_id())
			return __cache_alloc_node(cachep, flags, nid);
	}
#endif

2734
	check_irq_off();
2735
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2736 2737 2738
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
2739
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2740 2741 2742 2743
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
2744 2745 2746
	return objp;
}

2747 2748
static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
2749 2750
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
2751
	void *objp;
2752 2753 2754 2755 2756

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
2757
	local_irq_restore(save_flags);
2758
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2759
					    caller);
2760
	prefetchw(objp);
L
Linus Torvalds 已提交
2761 2762 2763
	return objp;
}

2764 2765 2766
#ifdef CONFIG_NUMA
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
2767
 */
2768
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2769 2770
{
	struct list_head *entry;
P
Pekka Enberg 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

      retry:
2780
	check_irq_off();
P
Pekka Enberg 已提交
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

2800
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

	if (slabp->free == BUFCTL_END) {
		list_add(&slabp->list, &l3->slabs_full);
	} else {
		list_add(&slabp->list, &l3->slabs_partial);
	}
2811

P
Pekka Enberg 已提交
2812 2813
	spin_unlock(&l3->list_lock);
	goto done;
2814

P
Pekka Enberg 已提交
2815 2816 2817
      must_grow:
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
2818

P
Pekka Enberg 已提交
2819 2820
	if (!x)
		return NULL;
2821

P
Pekka Enberg 已提交
2822 2823 2824
	goto retry;
      done:
	return obj;
2825 2826 2827 2828 2829 2830
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
2831
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
2832
		       int node)
L
Linus Torvalds 已提交
2833 2834
{
	int i;
2835
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2836 2837 2838 2839 2840

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

2841
		slabp = virt_to_slab(objp);
2842
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2843
		list_del(&slabp->list);
2844
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
2845
		check_slabp(cachep, slabp);
2846
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
2847
		STATS_DEC_ACTIVE(cachep);
2848
		l3->free_objects++;
L
Linus Torvalds 已提交
2849 2850 2851 2852
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
2853 2854
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
L
Linus Torvalds 已提交
2855 2856
				slab_destroy(cachep, slabp);
			} else {
2857
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
2858 2859 2860 2861 2862 2863
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
2864
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
2865 2866 2867 2868
		}
	}
}

2869
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
2870 2871
{
	int batchcount;
2872
	struct kmem_list3 *l3;
2873
	int node = numa_node_id();
L
Linus Torvalds 已提交
2874 2875 2876 2877 2878 2879

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
2880
	l3 = cachep->nodelists[node];
2881 2882 2883
	spin_lock(&l3->list_lock);
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
2884
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
2885 2886 2887
		if (max) {
			if (batchcount > max)
				batchcount = max;
2888
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
2889
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

2895
	free_block(cachep, ac->entry, batchcount, node);
P
Pekka Enberg 已提交
2896
      free_done:
L
Linus Torvalds 已提交
2897 2898 2899 2900 2901
#if STATS
	{
		int i = 0;
		struct list_head *p;

2902 2903
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
2915
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2916
	ac->avail -= batchcount;
2917
	memmove(ac->entry, &(ac->entry[batchcount]),
P
Pekka Enberg 已提交
2918
		sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
2919 2920 2921 2922 2923 2924 2925 2926 2927
}

/*
 * __cache_free
 * Release an obj back to its cache. If the obj has a constructed
 * state, it must be in this state _before_ it is released.
 *
 * Called with disabled ints.
 */
2928
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2929
{
2930
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2931 2932 2933 2934

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

2935 2936 2937 2938 2939 2940
	/* Make sure we are not freeing a object from another
	 * node to the array cache on this cpu.
	 */
#ifdef CONFIG_NUMA
	{
		struct slab *slabp;
2941
		slabp = virt_to_slab(objp);
2942 2943 2944
		if (unlikely(slabp->nodeid != numa_node_id())) {
			struct array_cache *alien = NULL;
			int nodeid = slabp->nodeid;
P
Pekka Enberg 已提交
2945 2946
			struct kmem_list3 *l3 =
			    cachep->nodelists[numa_node_id()];
2947 2948 2949 2950 2951 2952 2953

			STATS_INC_NODEFREES(cachep);
			if (l3->alien && l3->alien[nodeid]) {
				alien = l3->alien[nodeid];
				spin_lock(&alien->lock);
				if (unlikely(alien->avail == alien->limit))
					__drain_alien_cache(cachep,
P
Pekka Enberg 已提交
2954
							    alien, nodeid);
2955 2956 2957 2958
				alien->entry[alien->avail++] = objp;
				spin_unlock(&alien->lock);
			} else {
				spin_lock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
2959
					  list_lock);
2960
				free_block(cachep, &objp, 1, nodeid);
2961
				spin_unlock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
2962
					    list_lock);
2963 2964 2965 2966 2967
			}
			return;
		}
	}
#endif
L
Linus Torvalds 已提交
2968 2969
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
2970
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
2971 2972 2973 2974
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
2975
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
2987
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2988
{
2989
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
}
EXPORT_SYMBOL(kmem_cache_alloc);

/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3007
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3008
{
P
Pekka Enberg 已提交
3009
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3010
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3011
	unsigned long align_mask = BYTES_PER_WORD - 1;
3012
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3028
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3029 3030
		goto out;
	return 1;
P
Pekka Enberg 已提交
3031
      out:
L
Linus Torvalds 已提交
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
3045 3046
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
3047
 */
3048
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
3049
{
3050 3051
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
3052

3053 3054
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3055 3056 3057

	if (nodeid == -1 || nodeid == numa_node_id() ||
	    !cachep->nodelists[nodeid])
3058 3059 3060
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3061
	local_irq_restore(save_flags);
3062 3063 3064

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3065

3066
	return ptr;
L
Linus Torvalds 已提交
3067 3068 3069
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

A
Al Viro 已提交
3070
void *kmalloc_node(size_t size, gfp_t flags, int node)
3071
{
3072
	struct kmem_cache *cachep;
3073 3074 3075 3076 3077 3078 3079

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
EXPORT_SYMBOL(kmalloc_node);
L
Linus Torvalds 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
#endif

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * kmalloc is the normal method of allocating memory
 * in the kernel.
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
 *
 * Additionally, the %GFP_DMA flag may be set to indicate the memory
 * must be suitable for DMA.  This can mean different things on different
 * platforms.  For example, on i386, it means that the memory must come
 * from the first 16MB.
 */
3103 3104
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3105
{
3106
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3107

3108 3109 3110 3111 3112 3113
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3114 3115
	if (unlikely(cachep == NULL))
		return NULL;
3116 3117 3118 3119 3120 3121 3122 3123
	return __cache_alloc(cachep, flags, caller);
}

#ifndef CONFIG_DEBUG_SLAB

void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
L
Linus Torvalds 已提交
3124 3125 3126
}
EXPORT_SYMBOL(__kmalloc);

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
#else

void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);

#endif

L
Linus Torvalds 已提交
3137 3138 3139 3140 3141 3142 3143 3144
#ifdef CONFIG_SMP
/**
 * __alloc_percpu - allocate one copy of the object for every present
 * cpu in the system, zeroing them.
 * Objects should be dereferenced using the per_cpu_ptr macro only.
 *
 * @size: how many bytes of memory are required.
 */
3145
void *__alloc_percpu(size_t size)
L
Linus Torvalds 已提交
3146 3147
{
	int i;
P
Pekka Enberg 已提交
3148
	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
L
Linus Torvalds 已提交
3149 3150 3151 3152

	if (!pdata)
		return NULL;

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	/*
	 * Cannot use for_each_online_cpu since a cpu may come online
	 * and we have no way of figuring out how to fix the array
	 * that we have allocated then....
	 */
	for_each_cpu(i) {
		int node = cpu_to_node(i);

		if (node_online(node))
			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
		else
			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
L
Linus Torvalds 已提交
3165 3166 3167 3168 3169 3170 3171

		if (!pdata->ptrs[i])
			goto unwind_oom;
		memset(pdata->ptrs[i], 0, size);
	}

	/* Catch derefs w/o wrappers */
P
Pekka Enberg 已提交
3172
	return (void *)(~(unsigned long)pdata);
L
Linus Torvalds 已提交
3173

P
Pekka Enberg 已提交
3174
      unwind_oom:
L
Linus Torvalds 已提交
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	while (--i >= 0) {
		if (!cpu_possible(i))
			continue;
		kfree(pdata->ptrs[i]);
	}
	kfree(pdata);
	return NULL;
}
EXPORT_SYMBOL(__alloc_percpu);
#endif

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3194
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
{
	unsigned long flags;

	local_irq_save(flags);
	__cache_free(cachep, objp);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3208 3209
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3210 3211 3212 3213 3214
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3215
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3216 3217 3218 3219 3220 3221
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3222
	c = virt_to_cache(objp);
3223
	mutex_debug_check_no_locks_freed(objp, obj_size(c));
P
Pekka Enberg 已提交
3224
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

#ifdef CONFIG_SMP
/**
 * free_percpu - free previously allocated percpu memory
 * @objp: pointer returned by alloc_percpu.
 *
 * Don't free memory not originally allocated by alloc_percpu()
 * The complemented objp is to check for that.
 */
P
Pekka Enberg 已提交
3237
void free_percpu(const void *objp)
L
Linus Torvalds 已提交
3238 3239
{
	int i;
P
Pekka Enberg 已提交
3240
	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
L
Linus Torvalds 已提交
3241

3242 3243 3244 3245
	/*
	 * We allocate for all cpus so we cannot use for online cpu here.
	 */
	for_each_cpu(i)
P
Pekka Enberg 已提交
3246
	    kfree(p->ptrs[i]);
L
Linus Torvalds 已提交
3247 3248 3249 3250 3251
	kfree(p);
}
EXPORT_SYMBOL(free_percpu);
#endif

3252
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3253
{
3254
	return obj_size(cachep);
L
Linus Torvalds 已提交
3255 3256 3257
}
EXPORT_SYMBOL(kmem_cache_size);

3258
const char *kmem_cache_name(struct kmem_cache *cachep)
3259 3260 3261 3262 3263
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3264 3265 3266
/*
 * This initializes kmem_list3 for all nodes.
 */
3267
static int alloc_kmemlist(struct kmem_cache *cachep)
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
{
	int node;
	struct kmem_list3 *l3;
	int err = 0;

	for_each_online_node(node) {
		struct array_cache *nc = NULL, *new;
		struct array_cache **new_alien = NULL;
#ifdef CONFIG_NUMA
		if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
			goto fail;
#endif
P
Pekka Enberg 已提交
3280 3281 3282
		if (!(new = alloc_arraycache(node, (cachep->shared *
						    cachep->batchcount),
					     0xbaadf00d)))
3283 3284 3285 3286 3287 3288
			goto fail;
		if ((l3 = cachep->nodelists[node])) {

			spin_lock_irq(&l3->list_lock);

			if ((nc = cachep->nodelists[node]->shared))
P
Pekka Enberg 已提交
3289
				free_block(cachep, nc->entry, nc->avail, node);
3290 3291 3292 3293 3294 3295

			l3->shared = new;
			if (!cachep->nodelists[node]->alien) {
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3296 3297
			l3->free_limit = (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
3298 3299 3300 3301 3302 3303
			spin_unlock_irq(&l3->list_lock);
			kfree(nc);
			free_alien_cache(new_alien);
			continue;
		}
		if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
P
Pekka Enberg 已提交
3304
					GFP_KERNEL, node)))
3305 3306 3307 3308
			goto fail;

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
3309
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3310 3311
		l3->shared = new;
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3312 3313
		l3->free_limit = (1 + nr_cpus_node(node)) *
		    cachep->batchcount + cachep->num;
3314 3315 3316
		cachep->nodelists[node] = l3;
	}
	return err;
P
Pekka Enberg 已提交
3317
      fail:
3318 3319 3320 3321
	err = -ENOMEM;
	return err;
}

L
Linus Torvalds 已提交
3322
struct ccupdate_struct {
3323
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3324 3325 3326 3327 3328 3329 3330 3331 3332
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
	struct ccupdate_struct *new = (struct ccupdate_struct *)info;
	struct array_cache *old;

	check_irq_off();
3333
	old = cpu_cache_get(new->cachep);
3334

L
Linus Torvalds 已提交
3335 3336 3337 3338
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3339
static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
P
Pekka Enberg 已提交
3340
			    int shared)
L
Linus Torvalds 已提交
3341 3342
{
	struct ccupdate_struct new;
3343
	int i, err;
L
Linus Torvalds 已提交
3344

P
Pekka Enberg 已提交
3345
	memset(&new.new, 0, sizeof(new.new));
3346
	for_each_online_cpu(i) {
P
Pekka Enberg 已提交
3347 3348
		new.new[i] =
		    alloc_arraycache(cpu_to_node(i), limit, batchcount);
3349
		if (!new.new[i]) {
P
Pekka Enberg 已提交
3350 3351
			for (i--; i >= 0; i--)
				kfree(new.new[i]);
3352
			return -ENOMEM;
L
Linus Torvalds 已提交
3353 3354 3355 3356 3357
		}
	}
	new.cachep = cachep;

	smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3358

L
Linus Torvalds 已提交
3359
	check_irq_on();
3360
	spin_lock(&cachep->spinlock);
L
Linus Torvalds 已提交
3361 3362
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3363
	cachep->shared = shared;
3364
	spin_unlock(&cachep->spinlock);
L
Linus Torvalds 已提交
3365

3366
	for_each_online_cpu(i) {
L
Linus Torvalds 已提交
3367 3368 3369
		struct array_cache *ccold = new.new[i];
		if (!ccold)
			continue;
3370
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3371
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3372
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3373 3374 3375
		kfree(ccold);
	}

3376 3377 3378
	err = alloc_kmemlist(cachep);
	if (err) {
		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3379
		       cachep->name, -err);
3380
		BUG();
L
Linus Torvalds 已提交
3381 3382 3383 3384
	}
	return 0;
}

3385
static void enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
{
	int err;
	int limit, shared;

	/* The head array serves three purposes:
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
	 * - reduce the number of linked list operations on the slab and 
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3398
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3399
		limit = 1;
3400
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3401
		limit = 8;
3402
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3403
		limit = 24;
3404
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
		limit = 54;
	else
		limit = 120;

	/* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3419
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
		shared = 8;
#endif

#if DEBUG
	/* With debugging enabled, large batchcount lead to excessively
	 * long periods with disabled local interrupts. Limit the 
	 * batchcount
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3431
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3432 3433
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3434
		       cachep->name, -err);
L
Linus Torvalds 已提交
3435 3436
}

3437
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
P
Pekka Enberg 已提交
3438
				int force, int node)
L
Linus Torvalds 已提交
3439 3440 3441
{
	int tofree;

3442
	check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3443 3444 3445
	if (ac->touched && !force) {
		ac->touched = 0;
	} else if (ac->avail) {
P
Pekka Enberg 已提交
3446
		tofree = force ? ac->avail : (ac->limit + 4) / 5;
L
Linus Torvalds 已提交
3447
		if (tofree > ac->avail) {
P
Pekka Enberg 已提交
3448
			tofree = (ac->avail + 1) / 2;
L
Linus Torvalds 已提交
3449
		}
3450
		free_block(cachep, ac->entry, tofree, node);
L
Linus Torvalds 已提交
3451
		ac->avail -= tofree;
3452
		memmove(ac->entry, &(ac->entry[tofree]),
P
Pekka Enberg 已提交
3453
			sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
3454 3455 3456 3457 3458
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3459
 * @unused: unused parameter
L
Linus Torvalds 已提交
3460 3461 3462 3463 3464 3465
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
I
Ingo Molnar 已提交
3466
 * If we cannot acquire the cache chain mutex then just give up - we'll
L
Linus Torvalds 已提交
3467 3468 3469 3470 3471
 * try again on the next iteration.
 */
static void cache_reap(void *unused)
{
	struct list_head *walk;
3472
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3473

I
Ingo Molnar 已提交
3474
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3475
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3476 3477
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3478 3479 3480 3481
		return;
	}

	list_for_each(walk, &cache_chain) {
3482
		struct kmem_cache *searchp;
P
Pekka Enberg 已提交
3483
		struct list_head *p;
L
Linus Torvalds 已提交
3484 3485 3486
		int tofree;
		struct slab *slabp;

3487
		searchp = list_entry(walk, struct kmem_cache, next);
L
Linus Torvalds 已提交
3488 3489 3490 3491 3492 3493

		if (searchp->flags & SLAB_NO_REAP)
			goto next;

		check_irq_on();

3494 3495
		l3 = searchp->nodelists[numa_node_id()];
		if (l3->alien)
3496
			drain_alien_cache(searchp, l3->alien);
3497
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3498

3499
		drain_array_locked(searchp, cpu_cache_get(searchp), 0,
P
Pekka Enberg 已提交
3500
				   numa_node_id());
L
Linus Torvalds 已提交
3501

3502
		if (time_after(l3->next_reap, jiffies))
L
Linus Torvalds 已提交
3503 3504
			goto next_unlock;

3505
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3506

3507 3508
		if (l3->shared)
			drain_array_locked(searchp, l3->shared, 0,
P
Pekka Enberg 已提交
3509
					   numa_node_id());
L
Linus Torvalds 已提交
3510

3511 3512
		if (l3->free_touched) {
			l3->free_touched = 0;
L
Linus Torvalds 已提交
3513 3514 3515
			goto next_unlock;
		}

P
Pekka Enberg 已提交
3516 3517 3518
		tofree =
		    (l3->free_limit + 5 * searchp->num -
		     1) / (5 * searchp->num);
L
Linus Torvalds 已提交
3519
		do {
3520 3521
			p = l3->slabs_free.next;
			if (p == &(l3->slabs_free))
L
Linus Torvalds 已提交
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
				break;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);
			list_del(&slabp->list);
			STATS_INC_REAPED(searchp);

			/* Safe to drop the lock. The slab is no longer
			 * linked to the cache.
			 * searchp cannot disappear, we hold
			 * cache_chain_lock
			 */
3534 3535
			l3->free_objects -= searchp->num;
			spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3536
			slab_destroy(searchp, slabp);
3537
			spin_lock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3538 3539
		} while (--tofree > 0);
	      next_unlock:
3540
		spin_unlock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3541
	      next:
L
Linus Torvalds 已提交
3542 3543 3544
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3545
	mutex_unlock(&cache_chain_mutex);
3546
	drain_remote_pages();
L
Linus Torvalds 已提交
3547
	/* Setup the next iteration */
3548
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3549 3550 3551 3552
}

#ifdef CONFIG_PROC_FS

3553
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3554
{
3555 3556 3557 3558
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3559
#if STATS
3560
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3561
#else
3562
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3563
#endif
3564 3565 3566 3567
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3568
#if STATS
3569 3570 3571
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3572
#endif
3573 3574 3575 3576 3577 3578 3579 3580
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3581
	mutex_lock(&cache_chain_mutex);
3582 3583
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3584 3585 3586 3587 3588 3589
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3590
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3591 3592 3593 3594
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3595
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3596 3597
	++*pos;
	return cachep->next.next == &cache_chain ? NULL
3598
	    : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3599 3600 3601 3602
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3603
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3604 3605 3606 3607
}

static int s_show(struct seq_file *m, void *p)
{
3608
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3609
	struct list_head *q;
P
Pekka Enberg 已提交
3610 3611 3612 3613 3614
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3615
	const char *name;
L
Linus Torvalds 已提交
3616
	char *error = NULL;
3617 3618
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3619

3620
	spin_lock(&cachep->spinlock);
L
Linus Torvalds 已提交
3621 3622
	active_objs = 0;
	num_slabs = 0;
3623 3624 3625 3626 3627
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

3628 3629
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
3630

P
Pekka Enberg 已提交
3631
		list_for_each(q, &l3->slabs_full) {
3632 3633 3634 3635 3636 3637
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3638
		list_for_each(q, &l3->slabs_partial) {
3639 3640 3641 3642 3643 3644 3645 3646
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3647
		list_for_each(q, &l3->slabs_free) {
3648 3649 3650 3651 3652 3653
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
3654 3655
		if (l3->shared)
			shared_avail += l3->shared->avail;
3656

3657
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3658
	}
P
Pekka Enberg 已提交
3659 3660
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3661
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3662 3663
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3664
	name = cachep->name;
L
Linus Torvalds 已提交
3665 3666 3667 3668
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3669
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
3670
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
3671
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
3672
		   cachep->limit, cachep->batchcount, cachep->shared);
3673
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3674
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
3675
#if STATS
P
Pekka Enberg 已提交
3676
	{			/* list3 stats */
L
Linus Torvalds 已提交
3677 3678 3679 3680 3681 3682 3683
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3684
		unsigned long node_frees = cachep->node_frees;
L
Linus Torvalds 已提交
3685

3686
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
P
Pekka Enberg 已提交
3687
				%4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
L
Linus Torvalds 已提交
3688 3689 3690 3691 3692 3693 3694 3695 3696
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3697
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
3698 3699 3700
	}
#endif
	seq_putc(m, '\n');
3701
	spin_unlock(&cachep->spinlock);
L
Linus Torvalds 已提交
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
3720 3721 3722 3723
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
3734 3735
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
3736
{
P
Pekka Enberg 已提交
3737
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
3738 3739
	int limit, batchcount, shared, res;
	struct list_head *p;
P
Pekka Enberg 已提交
3740

L
Linus Torvalds 已提交
3741 3742 3743 3744
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
3745
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
3756
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3757
	res = -EINVAL;
P
Pekka Enberg 已提交
3758
	list_for_each(p, &cache_chain) {
3759 3760
		struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
						       next);
L
Linus Torvalds 已提交
3761 3762 3763 3764

		if (!strcmp(cachep->name, kbuf)) {
			if (limit < 1 ||
			    batchcount < 1 ||
P
Pekka Enberg 已提交
3765
			    batchcount > limit || shared < 0) {
3766
				res = 0;
L
Linus Torvalds 已提交
3767
			} else {
3768
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
3769
						       batchcount, shared);
L
Linus Torvalds 已提交
3770 3771 3772 3773
			}
			break;
		}
	}
I
Ingo Molnar 已提交
3774
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3775 3776 3777 3778 3779 3780
	if (res >= 0)
		res = count;
	return res;
}
#endif

3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
3793 3794
unsigned int ksize(const void *objp)
{
3795 3796
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
3797

3798
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
3799
}