slab.c 108.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
I
Ingo Molnar 已提交
110
#include	<linux/rtmutex.h>
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
177 178
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
180
#else
181
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
L
Linus Torvalds 已提交
182 183
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

206
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
207 208
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
209 210
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
211 212 213 214 215 216 217 218 219

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
220 221 222 223 224 225
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
245
	struct rcu_head head;
246
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
247
	void *addr;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
267
	spinlock_t lock;
A
Andrew Morton 已提交
268 269 270 271 272 273
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
274 275
};

A
Andrew Morton 已提交
276 277 278
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
279 280 281 282
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
284 285 286
};

/*
287
 * The slab lists for all objects.
L
Linus Torvalds 已提交
288 289
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
290 291 292 293 294
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
295
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
296 297 298
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
299 300
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
301 302
};

303 304 305 306 307 308 309 310 311
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

312 313 314 315
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
316
static int enable_cpucache(struct kmem_cache *cachep);
317 318
static void cache_reap(void *unused);

319
/*
A
Andrew Morton 已提交
320 321
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
322
 */
323
static __always_inline int index_of(const size_t size)
324
{
325 326
	extern void __bad_size(void);

327 328 329 330 331 332 333 334 335 336
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
337
		__bad_size();
338
	} else
339
		__bad_size();
340 341 342
	return 0;
}

343 344
static int slab_early_init = 1;

345 346
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
347

P
Pekka Enberg 已提交
348
static void kmem_list3_init(struct kmem_list3 *parent)
349 350 351 352 353 354
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
355
	parent->colour_next = 0;
356 357 358 359 360
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
361 362 363 364
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
365 366
	} while (0)

A
Andrew Morton 已提交
367 368
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
369 370 371 372
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
373 374

/*
375
 * struct kmem_cache
L
Linus Torvalds 已提交
376 377 378
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
379

380
struct kmem_cache {
L
Linus Torvalds 已提交
381
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
382
	struct array_cache *array[NR_CPUS];
383
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
384 385 386
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
387

388
	unsigned int buffer_size;
389
/* 3) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
390
	struct kmem_list3 *nodelists[MAX_NUMNODES];
391

A
Andrew Morton 已提交
392 393
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
394

395
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
396
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
397
	unsigned int gfporder;
L
Linus Torvalds 已提交
398 399

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
400
	gfp_t gfpflags;
L
Linus Torvalds 已提交
401

A
Andrew Morton 已提交
402
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
403
	unsigned int colour_off;	/* colour offset */
404
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
405
	unsigned int slab_size;
A
Andrew Morton 已提交
406
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
407 408

	/* constructor func */
409
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
410 411

	/* de-constructor func */
412
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
413

414
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
415 416
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
417

418
/* 6) statistics */
L
Linus Torvalds 已提交
419
#if STATS
P
Pekka Enberg 已提交
420 421 422 423 424 425 426 427 428
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
429
	unsigned long node_overflow;
P
Pekka Enberg 已提交
430 431 432 433
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
434 435
#endif
#if DEBUG
436 437 438 439 440 441 442 443
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
444 445 446 447 448 449 450
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
451 452 453
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
454
 *
A
Adrian Bunk 已提交
455
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
456 457 458 459 460 461 462 463 464 465
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
466
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
467 468 469 470 471
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
472 473
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
474
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
475
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
476 477 478 479 480
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488 489
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
490
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
491 492 493
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
494
#define	STATS_INC_NODEFREES(x)	do { } while (0)
495
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
496
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
497 498 499 500 501 502 503 504
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
505 506
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
507
 * 0		: objp
508
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
509 510
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
511
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
512
 * 		redzone word.
513 514
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
515 516
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
517
 */
518
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
519
{
520
	return cachep->obj_offset;
L
Linus Torvalds 已提交
521 522
}

523
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
524
{
525
	return cachep->obj_size;
L
Linus Torvalds 已提交
526 527
}

528
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
529 530
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
532 533
}

534
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
535 536 537
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
538
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
539
					 2 * BYTES_PER_WORD);
540
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
541 542
}

543
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
544 545
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
547 548 549 550
}

#else

551 552
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
553 554 555 556 557 558 559
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
560 561
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
581 582 583 584
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
585
 */
586 587 588 589 590 591 592
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
593 594
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
595
	BUG_ON(!PageSlab(page));
596 597 598 599 600 601 602 603 604 605
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
606 607
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
608
	BUG_ON(!PageSlab(page));
609 610
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
611

612 613 614 615 616 617 618 619 620 621 622 623
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

624 625 626 627 628 629 630 631 632 633 634 635
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

A
Andrew Morton 已提交
636 637 638
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
656
	{NULL,}
L
Linus Torvalds 已提交
657 658 659 660
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
661
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
662
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
663
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
664 665

/* internal cache of cache description objs */
666
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
667 668 669
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
670
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
671
	.name = "kmem_cache",
L
Linus Torvalds 已提交
672
#if DEBUG
673
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
674 675 676
#endif
};

677 678
#define BAD_ALIEN_MAGIC 0x01020304ul

679 680 681 682 683 684 685 686
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
687 688 689 690
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
691
 */
692 693 694 695
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
696 697 698

{
	int q;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
726 727 728
	}
}
#else
729
static inline void init_lock_keys(void)
730 731 732 733
{
}
#endif

L
Linus Torvalds 已提交
734
/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
735
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
736 737 738 739 740 741 742 743
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
744 745
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
746 747 748
	FULL
} g_cpucache_up;

749 750 751 752 753 754 755 756
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

L
Linus Torvalds 已提交
757 758
static DEFINE_PER_CPU(struct work_struct, reap_work);

759
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
760 761 762 763
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
764 765
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
766 767 768 769 770
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
771 772 773
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
774
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
775 776 777 778 779
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
780
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
781 782 783 784 785 786 787 788
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
789
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
790 791 792 793
{
	return __find_general_cachep(size, gfpflags);
}

794
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
795
{
796 797
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
798

A
Andrew Morton 已提交
799 800 801
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
802 803 804 805 806 807 808
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
809

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
858 859 860 861
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
862 863
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
864 865
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
866
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
867 868 869
	dump_stack();
}

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
885
		node = first_node(node_online_map);
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910

	__get_cpu_var(reap_node) = node;
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
928
		init_reap_node(cpu);
L
Linus Torvalds 已提交
929 930 931 932 933
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

934
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
935
					    int batchcount)
L
Linus Torvalds 已提交
936
{
P
Pekka Enberg 已提交
937
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
938 939
	struct array_cache *nc = NULL;

940
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
941 942 943 944 945
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
946
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
947 948 949 950
	}
	return nc;
}

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

975
#ifdef CONFIG_NUMA
976
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
977
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
978

P
Pekka Enberg 已提交
979
static struct array_cache **alloc_alien_cache(int node, int limit)
980 981
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
982
	int memsize = sizeof(void *) * MAX_NUMNODES;
983 984 985 986 987 988 989 990 991 992 993 994 995
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
996
				for (i--; i <= 0; i--)
997 998 999 1000 1001 1002 1003 1004 1005
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1006
static void free_alien_cache(struct array_cache **ac_ptr)
1007 1008 1009 1010 1011 1012
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1013
	    kfree(ac_ptr[i]);
1014 1015 1016
	kfree(ac_ptr);
}

1017
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1018
				struct array_cache *ac, int node)
1019 1020 1021 1022 1023
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1024 1025 1026 1027 1028
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1029 1030
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1031

1032
		free_block(cachep, ac->entry, ac->avail, node);
1033 1034 1035 1036 1037
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1038 1039 1040 1041 1042 1043 1044 1045 1046
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1047 1048

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1049 1050 1051 1052 1053 1054
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1055 1056
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1057
{
P
Pekka Enberg 已提交
1058
	int i = 0;
1059 1060 1061 1062
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1063
		ac = alien[i];
1064 1065 1066 1067 1068 1069 1070
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1071

1072
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(slabp->nodeid == numa_node_id()))
		return 0;

	l3 = cachep->nodelists[numa_node_id()];
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1090
		spin_lock(&alien->lock);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}

1105
#else
1106

1107
#define drain_alien_cache(cachep, alien) do { } while (0)
1108
#define reap_alien(cachep, l3) do { } while (0)
1109

1110 1111
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
1112
	return (struct array_cache **)BAD_ALIEN_MAGIC;
1113 1114
}

1115 1116 1117
static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
1118

1119
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1120 1121 1122 1123
{
	return 0;
}

1124 1125
#endif

1126
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1127
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1128 1129
{
	long cpu = (long)hcpu;
1130
	struct kmem_cache *cachep;
1131 1132 1133
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1134 1135 1136

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1137
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1138 1139
		/*
		 * We need to do this right in the beginning since
1140 1141 1142 1143 1144
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1145
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1146 1147
			/*
			 * Set up the size64 kmemlist for cpu before we can
1148 1149 1150 1151
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1152 1153
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1154 1155 1156
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1157
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1158

1159 1160 1161 1162 1163
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1164 1165
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1166

1167 1168
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1169 1170
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1171 1172 1173
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1174 1175 1176 1177
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1178
		list_for_each_entry(cachep, &cache_chain, next) {
1179
			struct array_cache *nc;
1180 1181
			struct array_cache *shared;
			struct array_cache **alien;
1182

1183
			nc = alloc_arraycache(node, cachep->limit,
1184
						cachep->batchcount);
L
Linus Torvalds 已提交
1185 1186
			if (!nc)
				goto bad;
1187 1188 1189 1190 1191
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1192

1193 1194 1195
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
L
Linus Torvalds 已提交
1196
			cachep->array[cpu] = nc;
1197 1198 1199
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1200 1201 1202 1203 1204 1205 1206 1207
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1208
			}
1209 1210 1211 1212 1213 1214 1215 1216 1217
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1218
		}
I
Ingo Molnar 已提交
1219
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1220 1221 1222 1223 1224 1225
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1226 1227 1228 1229 1230 1231 1232 1233
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1234 1235
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
1236
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1237 1238
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1239 1240
			struct array_cache *shared;
			struct array_cache **alien;
1241
			cpumask_t mask;
L
Linus Torvalds 已提交
1242

1243
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1244 1245 1246
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1247 1248 1249
			l3 = cachep->nodelists[node];

			if (!l3)
1250
				goto free_array_cache;
1251

1252
			spin_lock_irq(&l3->list_lock);
1253 1254 1255 1256

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1257
				free_block(cachep, nc->entry, nc->avail, node);
1258 1259

			if (!cpus_empty(mask)) {
1260
				spin_unlock_irq(&l3->list_lock);
1261
				goto free_array_cache;
P
Pekka Enberg 已提交
1262
			}
1263

1264 1265
			shared = l3->shared;
			if (shared) {
1266
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1267
					   l3->shared->avail, node);
1268 1269 1270
				l3->shared = NULL;
			}

1271 1272 1273 1274 1275 1276 1277 1278 1279
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1280
			}
1281
free_array_cache:
L
Linus Torvalds 已提交
1282 1283
			kfree(nc);
		}
1284 1285 1286 1287 1288 1289 1290 1291 1292
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1293
			drain_freelist(cachep, l3, l3->free_objects);
1294
		}
I
Ingo Molnar 已提交
1295
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1296 1297 1298 1299
		break;
#endif
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1300
bad:
I
Ingo Molnar 已提交
1301
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1302 1303 1304
	return NOTIFY_BAD;
}

1305 1306 1307
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1308

1309 1310 1311
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1312 1313
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1314 1315 1316 1317 1318 1319 1320 1321 1322
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1323 1324 1325 1326 1327
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1328 1329 1330 1331 1332
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1333 1334 1335
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1336 1337 1338 1339 1340 1341
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1342
	int i;
1343
	int order;
1344 1345 1346 1347 1348 1349

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1360 1361 1362
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1363 1364 1365
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1366
	 * 2) Create the first kmalloc cache.
1367
	 *    The struct kmem_cache for the new cache is allocated normally.
1368 1369 1370
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1371 1372
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1373 1374 1375
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1376 1377 1378 1379 1380 1381 1382
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1383
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1384

A
Andrew Morton 已提交
1385 1386
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
L
Linus Torvalds 已提交
1387

1388 1389 1390 1391 1392 1393
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1394
	BUG_ON(!cache_cache.num);
1395
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1396 1397 1398
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1399 1400 1401 1402 1403

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1404 1405 1406 1407
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1408 1409 1410
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1411 1412 1413 1414
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1415

A
Andrew Morton 已提交
1416
	if (INDEX_AC != INDEX_L3) {
1417
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1418 1419 1420 1421 1422 1423
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1424

1425 1426
	slab_early_init = 0;

L
Linus Torvalds 已提交
1427
	while (sizes->cs_size != ULONG_MAX) {
1428 1429
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1430 1431 1432
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1433 1434
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1435
		if (!sizes->cs_cachep) {
1436
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1437 1438 1439 1440 1441
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
L
Linus Torvalds 已提交
1442 1443

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
A
Andrew Morton 已提交
1444 1445 1446 1447 1448
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
L
Linus Torvalds 已提交
1449 1450 1451 1452 1453
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1454
		struct array_cache *ptr;
1455

L
Linus Torvalds 已提交
1456
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1457

L
Linus Torvalds 已提交
1458
		local_irq_disable();
1459 1460
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1461
		       sizeof(struct arraycache_init));
1462 1463 1464 1465 1466
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1467 1468
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1469

L
Linus Torvalds 已提交
1470
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1471

L
Linus Torvalds 已提交
1472
		local_irq_disable();
1473
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1474
		       != &initarray_generic.cache);
1475
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1476
		       sizeof(struct arraycache_init));
1477 1478 1479 1480 1481
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1482
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1483
		    ptr;
L
Linus Torvalds 已提交
1484 1485
		local_irq_enable();
	}
1486 1487 1488 1489 1490
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1491
			  numa_node_id());
1492 1493 1494

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1495
				  &initkmem_list3[SIZE_AC + node], node);
1496 1497 1498

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1499 1500
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1501 1502 1503
			}
		}
	}
L
Linus Torvalds 已提交
1504

1505
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1506
	{
1507
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1508
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1509
		list_for_each_entry(cachep, &cache_chain, next)
1510 1511
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1512
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1513 1514
	}

1515 1516 1517 1518
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1519 1520 1521
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1522 1523 1524
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1525 1526 1527
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1528 1529 1530
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1531 1532 1533 1534 1535 1536 1537
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1538 1539
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1540
	 */
1541
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1542
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1554
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1555 1556
{
	struct page *page;
1557
	int nr_pages;
L
Linus Torvalds 已提交
1558 1559
	int i;

1560
#ifndef CONFIG_MMU
1561 1562 1563
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1564
	 */
1565
	flags |= __GFP_COMP;
1566
#endif
1567 1568 1569
	flags |= cachep->gfpflags;

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1570 1571 1572
	if (!page)
		return NULL;

1573
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1574
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1575 1576 1577 1578 1579
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1580 1581 1582
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1583 1584 1585 1586 1587
}

/*
 * Interface to system's page release.
 */
1588
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1589
{
P
Pekka Enberg 已提交
1590
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1591 1592 1593
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1594 1595 1596 1597 1598 1599
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1600
	while (i--) {
N
Nick Piggin 已提交
1601 1602
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1612
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1613
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1623
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1624
			    unsigned long caller)
L
Linus Torvalds 已提交
1625
{
1626
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1627

1628
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1629

P
Pekka Enberg 已提交
1630
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1631 1632
		return;

P
Pekka Enberg 已提交
1633 1634 1635 1636
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1637 1638 1639 1640 1641 1642 1643
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1644
				*addr++ = svalue;
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649 1650 1651
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1652
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1653 1654 1655
}
#endif

1656
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1657
{
1658 1659
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1660 1661

	memset(addr, val, size);
P
Pekka Enberg 已提交
1662
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1663 1664 1665 1666 1667 1668
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
A
Andrew Morton 已提交
1669
	for (i = 0; i < limit; i++)
P
Pekka Enberg 已提交
1670
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1671 1672 1673 1674 1675 1676
	printk("\n");
}
#endif

#if DEBUG

1677
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1678 1679 1680 1681 1682 1683
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1684 1685
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1686 1687 1688 1689
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1690
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1691
		print_symbol("(%s)",
A
Andrew Morton 已提交
1692
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1693 1694
		printk("\n");
	}
1695 1696
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1697
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1698 1699
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1700 1701
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1702 1703 1704 1705
		dump_line(realobj, i, limit);
	}
}

1706
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1707 1708 1709 1710 1711
{
	char *realobj;
	int size, i;
	int lines = 0;

1712 1713
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1714

P
Pekka Enberg 已提交
1715
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1716
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1717
		if (i == size - 1)
L
Linus Torvalds 已提交
1718 1719 1720 1721 1722 1723
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1724
				printk(KERN_ERR
A
Andrew Morton 已提交
1725 1726
					"Slab corruption: start=%p, len=%d\n",
					realobj, size);
L
Linus Torvalds 已提交
1727 1728 1729
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1730
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1731
			limit = 16;
P
Pekka Enberg 已提交
1732 1733
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1746
		struct slab *slabp = virt_to_slab(objp);
1747
		unsigned int objnr;
L
Linus Torvalds 已提交
1748

1749
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1750
		if (objnr) {
1751
			objp = index_to_obj(cachep, slabp, objnr - 1);
1752
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1753
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1754
			       realobj, size);
L
Linus Torvalds 已提交
1755 1756
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1757
		if (objnr + 1 < cachep->num) {
1758
			objp = index_to_obj(cachep, slabp, objnr + 1);
1759
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1760
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1761
			       realobj, size);
L
Linus Torvalds 已提交
1762 1763 1764 1765 1766 1767
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1768 1769
#if DEBUG
/**
1770 1771 1772 1773 1774 1775
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1776
 */
1777
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1778 1779 1780
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1781
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1782 1783 1784

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1785 1786
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1787
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1788
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1798
					   "was overwritten");
L
Linus Torvalds 已提交
1799 1800
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1801
					   "was overwritten");
L
Linus Torvalds 已提交
1802 1803
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1804
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1805
	}
1806
}
L
Linus Torvalds 已提交
1807
#else
1808
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1809
{
L
Linus Torvalds 已提交
1810 1811 1812
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1813
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1814
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1815 1816
		}
	}
1817
}
L
Linus Torvalds 已提交
1818 1819
#endif

1820 1821 1822 1823 1824
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1825
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1826 1827
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1828
 */
1829
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1830 1831 1832 1833
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1834 1835 1836
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1837
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1843 1844
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1845 1846 1847
	}
}

A
Andrew Morton 已提交
1848 1849 1850 1851
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1852
static void set_up_list3s(struct kmem_cache *cachep, int index)
1853 1854 1855 1856
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1857
		cachep->nodelists[node] = &initkmem_list3[index + node];
1858
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1859 1860
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1861 1862 1863
	}
}

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1885
/**
1886 1887 1888 1889 1890 1891 1892
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1893 1894 1895 1896 1897
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1898
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1899
			size_t size, size_t align, unsigned long flags)
1900
{
1901
	unsigned long offslab_limit;
1902
	size_t left_over = 0;
1903
	int gfporder;
1904

A
Andrew Morton 已提交
1905
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1906 1907 1908
		unsigned int num;
		size_t remainder;

1909
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1910 1911
		if (!num)
			continue;
1912

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1925

1926
		/* Found something acceptable - save it away */
1927
		cachep->num = num;
1928
		cachep->gfporder = gfporder;
1929 1930
		left_over = remainder;

1931 1932 1933 1934 1935 1936 1937 1938
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1939 1940 1941 1942
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1943
		if (gfporder >= slab_break_gfp_order)
1944 1945
			break;

1946 1947 1948
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1949
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1950 1951 1952 1953 1954
			break;
	}
	return left_over;
}

1955
static int setup_cpu_cache(struct kmem_cache *cachep)
1956
{
1957 1958 1959
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2006
	return 0;
2007 2008
}

L
Linus Torvalds 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2024 2025
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2038
struct kmem_cache *
L
Linus Torvalds 已提交
2039
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2040 2041
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2042
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2043 2044
{
	size_t left_over, slab_size, ralign;
2045
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2046 2047 2048 2049

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2050
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
2051
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
2052 2053
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2054 2055
		BUG();
	}
L
Linus Torvalds 已提交
2056

2057 2058 2059 2060 2061 2062
	/*
	 * Prevent CPUs from coming and going.
	 * lock_cpu_hotplug() nests outside cache_chain_mutex
	 */
	lock_cpu_hotplug();

I
Ingo Molnar 已提交
2063
	mutex_lock(&cache_chain_mutex);
2064

2065
	list_for_each_entry(pc, &cache_chain, next) {
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
2080
			       pc->buffer_size);
2081 2082 2083
			continue;
		}

P
Pekka Enberg 已提交
2084
		if (!strcmp(pc->name, name)) {
2085 2086 2087 2088 2089 2090
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2091 2092 2093 2094 2095
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
2096
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2106
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2107
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2118 2119
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2120
	 */
2121
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2122

A
Andrew Morton 已提交
2123 2124
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2125 2126 2127
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2128 2129 2130
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2131 2132
	}

A
Andrew Morton 已提交
2133 2134
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2135 2136
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2137 2138 2139 2140
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2141 2142
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2143
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2144 2145 2146 2147
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2148 2149 2150 2151 2152 2153 2154 2155 2156

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

L
Linus Torvalds 已提交
2157 2158 2159 2160
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2161
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2162 2163 2164 2165 2166
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2167
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2168
	}
A
Andrew Morton 已提交
2169
	/*
2170
	 * 4) Store it.
L
Linus Torvalds 已提交
2171 2172 2173 2174
	 */
	align = ralign;

	/* Get cache's description obj. */
P
Pekka Enberg 已提交
2175
	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
2176
	if (!cachep)
2177
		goto oops;
L
Linus Torvalds 已提交
2178 2179

#if DEBUG
2180
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2181

2182 2183 2184 2185
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2186 2187
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2188
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2189
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2190 2191
	}
	if (flags & SLAB_STORE_USER) {
2192 2193
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2194 2195 2196 2197
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2198
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2199 2200
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2201 2202 2203 2204 2205
		size = PAGE_SIZE;
	}
#endif
#endif

2206 2207 2208 2209 2210 2211
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2212 2213 2214 2215 2216 2217 2218 2219
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2220
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2221 2222 2223 2224 2225

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2226
		goto oops;
L
Linus Torvalds 已提交
2227
	}
P
Pekka Enberg 已提交
2228 2229
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2242 2243
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2244 2245 2246 2247 2248 2249
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2250
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2251 2252 2253 2254 2255
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
2256
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
2257

2258
	if (flags & CFLGS_OFF_SLAB) {
2259
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2260 2261 2262 2263 2264 2265 2266 2267 2268
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2269 2270 2271 2272
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

2273 2274 2275 2276 2277
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2278 2279 2280

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2281
oops:
L
Linus Torvalds 已提交
2282 2283
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2284
		      name);
I
Ingo Molnar 已提交
2285
	mutex_unlock(&cache_chain_mutex);
2286
	unlock_cpu_hotplug();
L
Linus Torvalds 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2302
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2303 2304 2305
{
#ifdef CONFIG_SMP
	check_irq_off();
2306
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2307 2308
#endif
}
2309

2310
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2311 2312 2313 2314 2315 2316 2317
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2318 2319 2320 2321
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2322
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2323 2324
#endif

2325 2326 2327 2328
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2329 2330
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2331
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2332
	struct array_cache *ac;
2333
	int node = numa_node_id();
L
Linus Torvalds 已提交
2334 2335

	check_irq_off();
2336
	ac = cpu_cache_get(cachep);
2337 2338 2339
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2340 2341 2342
	ac->avail = 0;
}

2343
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2344
{
2345 2346 2347
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2348
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2349
	check_irq_on();
P
Pekka Enberg 已提交
2350
	for_each_online_node(node) {
2351
		l3 = cachep->nodelists[node];
2352 2353 2354 2355 2356 2357 2358
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2359
			drain_array(cachep, l3, l3->shared, 1, node);
2360
	}
L
Linus Torvalds 已提交
2361 2362
}

2363 2364 2365 2366 2367 2368 2369 2370
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2371
{
2372 2373
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2374 2375
	struct slab *slabp;

2376 2377
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2378

2379
		spin_lock_irq(&l3->list_lock);
2380
		p = l3->slabs_free.prev;
2381 2382 2383 2384
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2385

2386
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2387
#if DEBUG
2388
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2389 2390
#endif
		list_del(&slabp->list);
2391 2392 2393 2394 2395
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2396
		spin_unlock_irq(&l3->list_lock);
2397 2398
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2399
	}
2400 2401
out:
	return nr_freed;
L
Linus Torvalds 已提交
2402 2403
}

2404
static int __cache_shrink(struct kmem_cache *cachep)
2405 2406 2407 2408 2409 2410 2411 2412 2413
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2414 2415 2416 2417 2418 2419 2420
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2421 2422 2423 2424
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2425 2426 2427 2428 2429 2430 2431
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2432
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2433
{
2434
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2435 2436 2437 2438 2439 2440 2441 2442 2443

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2444
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2457
int kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2458
{
2459
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2460 2461 2462 2463 2464

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2465
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2466 2467 2468 2469
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2470
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2471 2472 2473

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2474
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2475
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2476
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2477 2478 2479 2480 2481
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2482
		synchronize_rcu();
L
Linus Torvalds 已提交
2483

2484
	__kmem_cache_destroy(cachep);
L
Linus Torvalds 已提交
2485 2486 2487 2488 2489
	unlock_cpu_hotplug();
	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2501
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2502 2503
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2504 2505
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2506

L
Linus Torvalds 已提交
2507 2508
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2509 2510
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
					      local_flags, nodeid);
L
Linus Torvalds 已提交
2511 2512 2513
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2514
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2515 2516 2517 2518
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2519
	slabp->s_mem = objp + colour_off;
2520
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2521 2522 2523 2524 2525
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2526
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2527 2528
}

2529
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2530
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2531 2532 2533 2534
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2535
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2548 2549 2550
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2551 2552
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2553
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2554
				     ctor_flags);
L
Linus Torvalds 已提交
2555 2556 2557 2558

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2559
					   " end of an object");
L
Linus Torvalds 已提交
2560 2561
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2562
					   " start of an object");
L
Linus Torvalds 已提交
2563
		}
A
Andrew Morton 已提交
2564 2565
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2566
			kernel_map_pages(virt_to_page(objp),
2567
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2568 2569 2570 2571
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2572
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2573
	}
P
Pekka Enberg 已提交
2574
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2575 2576 2577
	slabp->free = 0;
}

2578
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2579
{
A
Andrew Morton 已提交
2580 2581 2582 2583
	if (flags & SLAB_DMA)
		BUG_ON(!(cachep->gfpflags & GFP_DMA));
	else
		BUG_ON(cachep->gfpflags & GFP_DMA);
L
Linus Torvalds 已提交
2584 2585
}

A
Andrew Morton 已提交
2586 2587
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2588
{
2589
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2603 2604
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2605
{
2606
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2607 2608 2609 2610 2611

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2612
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2613
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2614
				"'%s', objp %p\n", cachep->name, objp);
2615 2616 2617 2618 2619 2620 2621 2622
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2623 2624 2625 2626 2627 2628 2629
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2630
{
2631
	int nr_pages;
L
Linus Torvalds 已提交
2632 2633
	struct page *page;

2634
	page = virt_to_page(addr);
2635

2636
	nr_pages = 1;
2637
	if (likely(!PageCompound(page)))
2638 2639
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2640
	do {
2641 2642
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2643
		page++;
2644
	} while (--nr_pages);
L
Linus Torvalds 已提交
2645 2646 2647 2648 2649 2650
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2651
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2652
{
P
Pekka Enberg 已提交
2653 2654 2655 2656 2657
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2658
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2659

A
Andrew Morton 已提交
2660 2661 2662
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2663
	 */
2664
	BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
L
Linus Torvalds 已提交
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2677
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2678
	check_irq_off();
2679 2680
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2681 2682

	/* Get colour for the slab, and cal the next value. */
2683 2684 2685 2686 2687
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2688

2689
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2702 2703 2704
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2705
	 */
A
Andrew Morton 已提交
2706 2707
	objp = kmem_getpages(cachep, flags, nodeid);
	if (!objp)
L
Linus Torvalds 已提交
2708 2709 2710
		goto failed;

	/* Get slab management. */
2711
	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
A
Andrew Morton 已提交
2712
	if (!slabp)
L
Linus Torvalds 已提交
2713 2714
		goto opps1;

2715
	slabp->nodeid = nodeid;
2716
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2717 2718 2719 2720 2721 2722

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2723
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2724 2725

	/* Make slab active. */
2726
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2727
	STATS_INC_GROWN(cachep);
2728 2729
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2730
	return 1;
A
Andrew Morton 已提交
2731
opps1:
L
Linus Torvalds 已提交
2732
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2733
failed:
L
Linus Torvalds 已提交
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2753 2754
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2755 2756 2757
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2758 2759
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2760 2761 2762 2763
		BUG();
	}
}

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
	unsigned long redzone1, redzone2;

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
			obj, redzone1, redzone2);
}

2786
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2787
				   void *caller)
L
Linus Torvalds 已提交
2788 2789 2790 2791 2792
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2793
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2794 2795 2796
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2797
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2798 2799

	if (cachep->flags & SLAB_RED_ZONE) {
2800
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2801 2802 2803 2804 2805 2806
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2807
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2808 2809

	BUG_ON(objnr >= cachep->num);
2810
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2811 2812

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
A
Andrew Morton 已提交
2813 2814 2815 2816
		/*
		 * Need to call the slab's constructor so the caller can
		 * perform a verify of its state (debugging).  Called without
		 * the cache-lock held.
L
Linus Torvalds 已提交
2817
		 */
2818
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2819
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2820 2821 2822 2823 2824
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2825
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2826
	}
2827 2828 2829
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2830 2831
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2832
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2833
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2834
			kernel_map_pages(virt_to_page(objp),
2835
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2846
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2847 2848 2849
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2850

L
Linus Torvalds 已提交
2851 2852 2853 2854 2855 2856 2857
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2858 2859 2860 2861
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2862
		for (i = 0;
2863
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2864
		     i++) {
A
Andrew Morton 已提交
2865
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2866
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2867
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2879
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2880 2881 2882 2883 2884 2885
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
2886
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2887
retry:
L
Linus Torvalds 已提交
2888 2889
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2890 2891 2892 2893
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2894 2895 2896
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2897 2898 2899 2900
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2901

2902 2903 2904 2905
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2926 2927
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
							    numa_node_id());
L
Linus Torvalds 已提交
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2939
must_grow:
L
Linus Torvalds 已提交
2940
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2941
alloc_done:
2942
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2943 2944 2945

	if (unlikely(!ac->avail)) {
		int x;
2946 2947
		x = cache_grow(cachep, flags, numa_node_id());

A
Andrew Morton 已提交
2948
		/* cache_grow can reenable interrupts, then ac could change. */
2949
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2950
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
2951 2952
			return NULL;

A
Andrew Morton 已提交
2953
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2954 2955 2956
			goto retry;
	}
	ac->touched = 1;
2957
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2958 2959
}

A
Andrew Morton 已提交
2960 2961
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2962 2963 2964 2965 2966 2967 2968 2969
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2970 2971
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
2972
{
P
Pekka Enberg 已提交
2973
	if (!objp)
L
Linus Torvalds 已提交
2974
		return objp;
P
Pekka Enberg 已提交
2975
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2976
#ifdef CONFIG_DEBUG_PAGEALLOC
2977
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2978
			kernel_map_pages(virt_to_page(objp),
2979
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2991 2992 2993 2994
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2995
			printk(KERN_ERR
A
Andrew Morton 已提交
2996 2997 2998
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2999 3000 3001 3002
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

		slabp = page_get_slab(virt_to_page(objp));
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3013
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
3014
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
3015
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
3016 3017 3018 3019 3020

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
3021
	}
L
Linus Torvalds 已提交
3022 3023 3024 3025 3026 3027
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3028
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3029
{
P
Pekka Enberg 已提交
3030
	void *objp;
L
Linus Torvalds 已提交
3031 3032
	struct array_cache *ac;

3033
#ifdef CONFIG_NUMA
3034
	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3035 3036 3037
		objp = alternate_node_alloc(cachep, flags);
		if (objp != NULL)
			return objp;
3038 3039 3040
	}
#endif

3041
	check_irq_off();
3042
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3043 3044 3045
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3046
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3047 3048 3049 3050
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3051 3052 3053
	return objp;
}

A
Andrew Morton 已提交
3054 3055
static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
						gfp_t flags, void *caller)
3056 3057
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
3058
	void *objp;
3059 3060 3061 3062 3063

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
3064
	local_irq_restore(save_flags);
3065
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3066
					    caller);
3067
	prefetchw(objp);
L
Linus Torvalds 已提交
3068 3069 3070
	return objp;
}

3071
#ifdef CONFIG_NUMA
3072
/*
3073
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

	if (in_interrupt())
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
		return __cache_alloc_node(cachep, flags, nid_alloc);
	return NULL;
}

3094 3095
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3096
 */
A
Andrew Morton 已提交
3097 3098
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
				int nodeid)
3099 3100
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3101 3102 3103 3104 3105 3106 3107 3108
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3109
retry:
3110
	check_irq_off();
P
Pekka Enberg 已提交
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3130
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3131 3132 3133 3134 3135
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3136
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3137
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3138
	else
P
Pekka Enberg 已提交
3139
		list_add(&slabp->list, &l3->slabs_partial);
3140

P
Pekka Enberg 已提交
3141 3142
	spin_unlock(&l3->list_lock);
	goto done;
3143

A
Andrew Morton 已提交
3144
must_grow:
P
Pekka Enberg 已提交
3145 3146
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
3147

P
Pekka Enberg 已提交
3148 3149
	if (!x)
		return NULL;
3150

P
Pekka Enberg 已提交
3151
	goto retry;
A
Andrew Morton 已提交
3152
done:
P
Pekka Enberg 已提交
3153
	return obj;
3154 3155 3156 3157 3158 3159
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3160
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3161
		       int node)
L
Linus Torvalds 已提交
3162 3163
{
	int i;
3164
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3165 3166 3167 3168 3169

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3170
		slabp = virt_to_slab(objp);
3171
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3172
		list_del(&slabp->list);
3173
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3174
		check_slabp(cachep, slabp);
3175
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3176
		STATS_DEC_ACTIVE(cachep);
3177
		l3->free_objects++;
L
Linus Torvalds 已提交
3178 3179 3180 3181
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3182 3183
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3184 3185 3186 3187 3188 3189
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3190 3191
				slab_destroy(cachep, slabp);
			} else {
3192
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3193 3194 3195 3196 3197 3198
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3199
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3200 3201 3202 3203
		}
	}
}

3204
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3205 3206
{
	int batchcount;
3207
	struct kmem_list3 *l3;
3208
	int node = numa_node_id();
L
Linus Torvalds 已提交
3209 3210 3211 3212 3213 3214

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3215
	l3 = cachep->nodelists[node];
3216
	spin_lock(&l3->list_lock);
3217 3218
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3219
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3220 3221 3222
		if (max) {
			if (batchcount > max)
				batchcount = max;
3223
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3224
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3225 3226 3227 3228 3229
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3230
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3231
free_done:
L
Linus Torvalds 已提交
3232 3233 3234 3235 3236
#if STATS
	{
		int i = 0;
		struct list_head *p;

3237 3238
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3250
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3251
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3252
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3253 3254 3255
}

/*
A
Andrew Morton 已提交
3256 3257
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3258
 */
3259
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3260
{
3261
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3262 3263 3264 3265

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3266
	if (cache_free_alien(cachep, objp))
3267 3268
		return;

L
Linus Torvalds 已提交
3269 3270
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3271
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3272 3273 3274 3275
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3276
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3288
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3289
{
3290
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3291 3292 3293
}
EXPORT_SYMBOL(kmem_cache_alloc);

3294
/**
3295
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3325
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3326
{
P
Pekka Enberg 已提交
3327
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3328
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3329
	unsigned long align_mask = BYTES_PER_WORD - 1;
3330
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3346
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3347 3348
		goto out;
	return 1;
A
Andrew Morton 已提交
3349
out:
L
Linus Torvalds 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
3363 3364
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
3365
 */
3366
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
3367
{
3368 3369
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
3370

3371 3372
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3373 3374

	if (nodeid == -1 || nodeid == numa_node_id() ||
A
Andrew Morton 已提交
3375
			!cachep->nodelists[nodeid])
3376 3377 3378
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3379
	local_irq_restore(save_flags);
3380 3381 3382

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3383

3384
	return ptr;
L
Linus Torvalds 已提交
3385 3386 3387
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

3388
void *__kmalloc_node(size_t size, gfp_t flags, int node)
3389
{
3390
	struct kmem_cache *cachep;
3391 3392 3393 3394 3395 3396

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3397
EXPORT_SYMBOL(__kmalloc_node);
L
Linus Torvalds 已提交
3398 3399 3400
#endif

/**
3401
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3402
 * @size: how many bytes of memory are required.
3403
 * @flags: the type of memory to allocate (see kmalloc).
3404
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3405
 */
3406 3407
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3408
{
3409
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3410

3411 3412 3413 3414 3415 3416
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3417 3418
	if (unlikely(cachep == NULL))
		return NULL;
3419 3420 3421 3422 3423 3424
	return __cache_alloc(cachep, flags, caller);
}


void *__kmalloc(size_t size, gfp_t flags)
{
3425
#ifndef CONFIG_DEBUG_SLAB
3426
	return __do_kmalloc(size, flags, NULL);
3427 3428 3429
#else
	return __do_kmalloc(size, flags, __builtin_return_address(0));
#endif
L
Linus Torvalds 已提交
3430 3431 3432
}
EXPORT_SYMBOL(__kmalloc);

3433
#ifdef CONFIG_DEBUG_SLAB
3434 3435 3436 3437 3438 3439 3440
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
#endif

L
Linus Torvalds 已提交
3441 3442 3443 3444 3445 3446 3447 3448
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3449
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3450 3451 3452
{
	unsigned long flags;

3453 3454
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3455
	local_irq_save(flags);
3456
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3457 3458 3459 3460 3461 3462 3463 3464
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3465 3466
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3467 3468 3469 3470 3471
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3472
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3473 3474 3475 3476 3477 3478
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3479
	c = virt_to_cache(objp);
3480
	debug_check_no_locks_freed(objp, obj_size(c));
3481
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3482 3483 3484 3485
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3486
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3487
{
3488
	return obj_size(cachep);
L
Linus Torvalds 已提交
3489 3490 3491
}
EXPORT_SYMBOL(kmem_cache_size);

3492
const char *kmem_cache_name(struct kmem_cache *cachep)
3493 3494 3495 3496 3497
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3498
/*
3499
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3500
 */
3501
static int alloc_kmemlist(struct kmem_cache *cachep)
3502 3503 3504
{
	int node;
	struct kmem_list3 *l3;
3505 3506
	struct array_cache *new_shared;
	struct array_cache **new_alien;
3507 3508

	for_each_online_node(node) {
3509

A
Andrew Morton 已提交
3510 3511
		new_alien = alloc_alien_cache(node, cachep->limit);
		if (!new_alien)
3512
			goto fail;
3513

3514 3515
		new_shared = alloc_arraycache(node,
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3516
					0xbaadf00d);
3517 3518
		if (!new_shared) {
			free_alien_cache(new_alien);
3519
			goto fail;
3520
		}
3521

A
Andrew Morton 已提交
3522 3523
		l3 = cachep->nodelists[node];
		if (l3) {
3524 3525
			struct array_cache *shared = l3->shared;

3526 3527
			spin_lock_irq(&l3->list_lock);

3528
			if (shared)
3529 3530
				free_block(cachep, shared->entry,
						shared->avail, node);
3531

3532 3533
			l3->shared = new_shared;
			if (!l3->alien) {
3534 3535 3536
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3537
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3538
					cachep->batchcount + cachep->num;
3539
			spin_unlock_irq(&l3->list_lock);
3540
			kfree(shared);
3541 3542 3543
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3544
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3545 3546 3547
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3548
			goto fail;
3549
		}
3550 3551 3552

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3553
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3554
		l3->shared = new_shared;
3555
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3556
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3557
					cachep->batchcount + cachep->num;
3558 3559
		cachep->nodelists[node] = l3;
	}
3560
	return 0;
3561

A
Andrew Morton 已提交
3562
fail:
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3578
	return -ENOMEM;
3579 3580
}

L
Linus Torvalds 已提交
3581
struct ccupdate_struct {
3582
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3583 3584 3585 3586 3587
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3588
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3589 3590 3591
	struct array_cache *old;

	check_irq_off();
3592
	old = cpu_cache_get(new->cachep);
3593

L
Linus Torvalds 已提交
3594 3595 3596 3597
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3598
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3599 3600
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3601
{
3602
	struct ccupdate_struct *new;
3603
	int i;
L
Linus Torvalds 已提交
3604

3605 3606 3607 3608
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3609
	for_each_online_cpu(i) {
3610
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3611
						batchcount);
3612
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3613
			for (i--; i >= 0; i--)
3614 3615
				kfree(new->new[i]);
			kfree(new);
3616
			return -ENOMEM;
L
Linus Torvalds 已提交
3617 3618
		}
	}
3619
	new->cachep = cachep;
L
Linus Torvalds 已提交
3620

3621
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3622

L
Linus Torvalds 已提交
3623 3624 3625
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3626
	cachep->shared = shared;
L
Linus Torvalds 已提交
3627

3628
	for_each_online_cpu(i) {
3629
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3630 3631
		if (!ccold)
			continue;
3632
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3633
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3634
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3635 3636
		kfree(ccold);
	}
3637
	kfree(new);
3638
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3639 3640
}

3641
/* Called with cache_chain_mutex held always */
3642
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3643 3644 3645 3646
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3647 3648
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3649 3650
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3651
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3652 3653 3654 3655
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3656
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3657
		limit = 1;
3658
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3659
		limit = 8;
3660
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3661
		limit = 24;
3662
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3663 3664 3665 3666
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3667 3668
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3678
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3679 3680 3681 3682
		shared = 8;
#endif

#if DEBUG
A
Andrew Morton 已提交
3683 3684 3685
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3686 3687 3688 3689
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3690
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3691 3692
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3693
		       cachep->name, -err);
3694
	return err;
L
Linus Torvalds 已提交
3695 3696
}

3697 3698
/*
 * Drain an array if it contains any elements taking the l3 lock only if
3699 3700
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
3701 3702 3703
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3704 3705 3706
{
	int tofree;

3707 3708
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3709 3710
	if (ac->touched && !force) {
		ac->touched = 0;
3711
	} else {
3712
		spin_lock_irq(&l3->list_lock);
3713 3714 3715 3716 3717 3718 3719 3720 3721
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3722
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3723 3724 3725 3726 3727
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3728
 * @unused: unused parameter
L
Linus Torvalds 已提交
3729 3730 3731 3732 3733 3734
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3735 3736
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3737 3738 3739
 */
static void cache_reap(void *unused)
{
3740
	struct kmem_cache *searchp;
3741
	struct kmem_list3 *l3;
3742
	int node = numa_node_id();
L
Linus Torvalds 已提交
3743

I
Ingo Molnar 已提交
3744
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3745
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3746 3747
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3748 3749 3750
		return;
	}

3751
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
3752 3753
		check_irq_on();

3754 3755 3756 3757 3758
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3759
		l3 = searchp->nodelists[node];
3760

3761
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
3762

3763
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3764

3765 3766 3767 3768
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3769
		if (time_after(l3->next_reap, jiffies))
3770
			goto next;
L
Linus Torvalds 已提交
3771

3772
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3773

3774
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
3775

3776
		if (l3->free_touched)
3777
			l3->free_touched = 0;
3778 3779
		else {
			int freed;
L
Linus Torvalds 已提交
3780

3781 3782 3783 3784
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3785
next:
L
Linus Torvalds 已提交
3786 3787 3788
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3789
	mutex_unlock(&cache_chain_mutex);
3790
	next_reap_node();
3791
	refresh_cpu_vm_stats(smp_processor_id());
A
Andrew Morton 已提交
3792
	/* Set up the next iteration */
3793
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3794 3795 3796 3797
}

#ifdef CONFIG_PROC_FS

3798
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3799
{
3800 3801 3802 3803
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3804
#if STATS
3805
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3806
#else
3807
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3808
#endif
3809 3810 3811 3812
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3813
#if STATS
3814
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3815
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3816
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3817
#endif
3818 3819 3820 3821 3822 3823 3824 3825
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3826
	mutex_lock(&cache_chain_mutex);
3827 3828
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3829 3830 3831 3832 3833 3834
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3835
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3836 3837 3838 3839
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3840
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3841
	++*pos;
A
Andrew Morton 已提交
3842 3843
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3844 3845 3846 3847
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3848
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3849 3850 3851 3852
}

static int s_show(struct seq_file *m, void *p)
{
3853
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
3854 3855 3856 3857 3858
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3859
	const char *name;
L
Linus Torvalds 已提交
3860
	char *error = NULL;
3861 3862
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3863 3864 3865

	active_objs = 0;
	num_slabs = 0;
3866 3867 3868 3869 3870
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

3871 3872
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
3873

3874
		list_for_each_entry(slabp, &l3->slabs_full, list) {
3875 3876 3877 3878 3879
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
3880
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
3881 3882 3883 3884 3885 3886 3887
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
3888
		list_for_each_entry(slabp, &l3->slabs_free, list) {
3889 3890 3891 3892 3893
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
3894 3895
		if (l3->shared)
			shared_avail += l3->shared->avail;
3896

3897
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3898
	}
P
Pekka Enberg 已提交
3899 3900
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3901
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3902 3903
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3904
	name = cachep->name;
L
Linus Torvalds 已提交
3905 3906 3907 3908
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3909
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
3910
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
3911
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
3912
		   cachep->limit, cachep->batchcount, cachep->shared);
3913
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3914
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
3915
#if STATS
P
Pekka Enberg 已提交
3916
	{			/* list3 stats */
L
Linus Torvalds 已提交
3917 3918 3919 3920 3921 3922 3923
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3924
		unsigned long node_frees = cachep->node_frees;
3925
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
3926

3927
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3928
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
3929
				reaped, errors, max_freeable, node_allocs,
3930
				node_frees, overflows);
L
Linus Torvalds 已提交
3931 3932 3933 3934 3935 3936 3937 3938 3939
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3940
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
3962 3963 3964 3965
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
3976 3977
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
3978
{
P
Pekka Enberg 已提交
3979
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
3980
	int limit, batchcount, shared, res;
3981
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
3982

L
Linus Torvalds 已提交
3983 3984 3985 3986
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
3987
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
3998
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3999
	res = -EINVAL;
4000
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4001
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4002 4003
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4004
				res = 0;
L
Linus Torvalds 已提交
4005
			} else {
4006
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4007
						       batchcount, shared);
L
Linus Torvalds 已提交
4008 4009 4010 4011
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4012
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4013 4014 4015 4016
	if (res >= 0)
		res = count;
	return res;
}
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4126
		list_for_each_entry(slabp, &l3->slabs_full, list)
4127
			handle_slab(n, cachep, slabp);
4128
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4155

4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
	return 0;
}

struct seq_operations slabstats_op = {
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4166 4167
#endif

4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
4180 4181
unsigned int ksize(const void *objp)
{
4182 4183
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4184

4185
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4186
}