edma.c 65.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * TI EDMA DMA engine driver
 *
 * Copyright 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
18
#include <linux/edma.h>
19 20 21 22 23 24 25 26
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
27
#include <linux/of.h>
28
#include <linux/of_dma.h>
29 30 31 32
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
33

34
#include <linux/platform_data/edma.h>
35 36 37 38

#include "dmaengine.h"
#include "virt-dma.h"

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
/* Offsets matching "struct edmacc_param" */
#define PARM_OPT		0x00
#define PARM_SRC		0x04
#define PARM_A_B_CNT		0x08
#define PARM_DST		0x0c
#define PARM_SRC_DST_BIDX	0x10
#define PARM_LINK_BCNTRLD	0x14
#define PARM_SRC_DST_CIDX	0x18
#define PARM_CCNT		0x1c

#define PARM_SIZE		0x20

/* Offsets for EDMA CC global channel registers and their shadows */
#define SH_ER			0x00	/* 64 bits */
#define SH_ECR			0x08	/* 64 bits */
#define SH_ESR			0x10	/* 64 bits */
#define SH_CER			0x18	/* 64 bits */
#define SH_EER			0x20	/* 64 bits */
#define SH_EECR			0x28	/* 64 bits */
#define SH_EESR			0x30	/* 64 bits */
#define SH_SER			0x38	/* 64 bits */
#define SH_SECR			0x40	/* 64 bits */
#define SH_IER			0x50	/* 64 bits */
#define SH_IECR			0x58	/* 64 bits */
#define SH_IESR			0x60	/* 64 bits */
#define SH_IPR			0x68	/* 64 bits */
#define SH_ICR			0x70	/* 64 bits */
#define SH_IEVAL		0x78
#define SH_QER			0x80
#define SH_QEER			0x84
#define SH_QEECR		0x88
#define SH_QEESR		0x8c
#define SH_QSER			0x90
#define SH_QSECR		0x94
#define SH_SIZE			0x200

/* Offsets for EDMA CC global registers */
#define EDMA_REV		0x0000
#define EDMA_CCCFG		0x0004
#define EDMA_QCHMAP		0x0200	/* 8 registers */
#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
#define EDMA_QDMAQNUM		0x0260
#define EDMA_QUETCMAP		0x0280
#define EDMA_QUEPRI		0x0284
#define EDMA_EMR		0x0300	/* 64 bits */
#define EDMA_EMCR		0x0308	/* 64 bits */
#define EDMA_QEMR		0x0310
#define EDMA_QEMCR		0x0314
#define EDMA_CCERR		0x0318
#define EDMA_CCERRCLR		0x031c
#define EDMA_EEVAL		0x0320
#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
#define EDMA_QRAE		0x0380	/* 4 registers */
#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
#define EDMA_QSTAT		0x0600	/* 2 registers */
#define EDMA_QWMTHRA		0x0620
#define EDMA_QWMTHRB		0x0624
#define EDMA_CCSTAT		0x0640

#define EDMA_M			0x1000	/* global channel registers */
#define EDMA_ECR		0x1008
#define EDMA_ECRH		0x100C
#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
#define EDMA_PARM		0x4000	/* PaRAM entries */

#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))

#define EDMA_DCHMAP		0x0100  /* 64 registers */

/* CCCFG register */
#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
110
#define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
111 112 113 114 115
#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
#define CHMAP_EXIST		BIT(24)

116 117 118
/* CCSTAT register */
#define EDMA_CCSTAT_ACTV	BIT(4)

119 120 121 122 123 124 125 126
/*
 * Max of 20 segments per channel to conserve PaRAM slots
 * Also note that MAX_NR_SG should be atleast the no.of periods
 * that are required for ASoC, otherwise DMA prep calls will
 * fail. Today davinci-pcm is the only user of this driver and
 * requires atleast 17 slots, so we setup the default to 20.
 */
#define MAX_NR_SG		20
127 128 129
#define EDMA_MAX_SLOTS		MAX_NR_SG
#define EDMA_DESCRIPTORS	16

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
#define EDMA_CONT_PARAMS_ANY		 1001
#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003

/* PaRAM slots are laid out like this */
struct edmacc_param {
	u32 opt;
	u32 src;
	u32 a_b_cnt;
	u32 dst;
	u32 src_dst_bidx;
	u32 link_bcntrld;
	u32 src_dst_cidx;
	u32 ccnt;
} __packed;

/* fields in edmacc_param.opt */
#define SAM		BIT(0)
#define DAM		BIT(1)
#define SYNCDIM		BIT(2)
#define STATIC		BIT(3)
#define EDMA_FWID	(0x07 << 8)
#define TCCMODE		BIT(11)
#define EDMA_TCC(t)	((t) << 12)
#define TCINTEN		BIT(20)
#define ITCINTEN	BIT(21)
#define TCCHEN		BIT(22)
#define ITCCHEN		BIT(23)

161
struct edma_pset {
162 163
	u32				len;
	dma_addr_t			addr;
164 165 166
	struct edmacc_param		param;
};

167 168 169
struct edma_desc {
	struct virt_dma_desc		vdesc;
	struct list_head		node;
170
	enum dma_transfer_direction	direction;
171
	int				cyclic;
172 173
	int				absync;
	int				pset_nr;
174
	struct edma_chan		*echan;
175
	int				processed;
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

	/*
	 * The following 4 elements are used for residue accounting.
	 *
	 * - processed_stat: the number of SG elements we have traversed
	 * so far to cover accounting. This is updated directly to processed
	 * during edma_callback and is always <= processed, because processed
	 * refers to the number of pending transfer (programmed to EDMA
	 * controller), where as processed_stat tracks number of transfers
	 * accounted for so far.
	 *
	 * - residue: The amount of bytes we have left to transfer for this desc
	 *
	 * - residue_stat: The residue in bytes of data we have covered
	 * so far for accounting. This is updated directly to residue
	 * during callbacks to keep it current.
	 *
	 * - sg_len: Tracks the length of the current intermediate transfer,
	 * this is required to update the residue during intermediate transfer
	 * completion callback.
	 */
197 198
	int				processed_stat;
	u32				sg_len;
199
	u32				residue;
200
	u32				residue_stat;
201

202
	struct edma_pset		pset[0];
203 204 205 206
};

struct edma_cc;

207 208 209 210 211
struct edma_tc {
	struct device_node		*node;
	u16				id;
};

212 213 214 215 216
struct edma_chan {
	struct virt_dma_chan		vchan;
	struct list_head		node;
	struct edma_desc		*edesc;
	struct edma_cc			*ecc;
217
	struct edma_tc			*tc;
218 219
	int				ch_num;
	bool				alloced;
220
	bool				hw_triggered;
221
	int				slot[EDMA_MAX_SLOTS];
222
	int				missed;
223
	struct dma_slave_config		cfg;
224 225 226
};

struct edma_cc {
227 228 229 230
	struct device			*dev;
	struct edma_soc_info		*info;
	void __iomem			*base;
	int				id;
231
	bool				legacy_mode;
232 233 234

	/* eDMA3 resource information */
	unsigned			num_channels;
235
	unsigned			num_qchannels;
236 237 238
	unsigned			num_region;
	unsigned			num_slots;
	unsigned			num_tc;
239
	bool				chmap_exist;
240 241
	enum dma_event_q		default_queue;

242 243 244
	unsigned int			ccint;
	unsigned int			ccerrint;

245 246 247
	/*
	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
	 * in use by Linux or if it is allocated to be used by DSP.
248
	 */
249
	unsigned long *slot_inuse;
250

251
	struct dma_device		dma_slave;
252
	struct dma_device		*dma_memcpy;
253
	struct edma_chan		*slave_chans;
254
	struct edma_tc			*tc_list;
255 256 257
	int				dummy_slot;
};

258 259 260 261 262 263
/* dummy param set used to (re)initialize parameter RAM slots */
static const struct edmacc_param dummy_paramset = {
	.link_bcntrld = 0xffff,
	.ccnt = 1,
};

264 265
#define EDMA_BINDING_LEGACY	0
#define EDMA_BINDING_TPCC	1
266 267 268 269 270
static const u32 edma_binding_type[] = {
	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
};

271
static const struct of_device_id edma_of_ids[] = {
272 273
	{
		.compatible = "ti,edma3",
274
		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
275 276 277
	},
	{
		.compatible = "ti,edma3-tpcc",
278
		.data = &edma_binding_type[EDMA_BINDING_TPCC],
279
	},
280 281
	{}
};
282
MODULE_DEVICE_TABLE(of, edma_of_ids);
283

284 285 286 287
static const struct of_device_id edma_tptc_of_ids[] = {
	{ .compatible = "ti,edma3-tptc", },
	{}
};
288
MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
{
	return (unsigned int)__raw_readl(ecc->base + offset);
}

static inline void edma_write(struct edma_cc *ecc, int offset, int val)
{
	__raw_writel(val, ecc->base + offset);
}

static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
			       unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	val |= or;
	edma_write(ecc, offset, val);
}

static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	edma_write(ecc, offset, val);
}

static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val |= or;
	edma_write(ecc, offset, val);
}

static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
					   int i)
{
	return edma_read(ecc, offset + (i << 2));
}

static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
				    unsigned val)
{
	edma_write(ecc, offset + (i << 2), val);
}

static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
				     unsigned and, unsigned or)
{
	edma_modify(ecc, offset + (i << 2), and, or);
}

static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
				 unsigned or)
{
	edma_or(ecc, offset + (i << 2), or);
}

static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
				  unsigned or)
{
	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
}

static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
				     int j, unsigned val)
{
	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
}

static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset);
}

static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
						   int offset, int i)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
}

static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
				      unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset, val);
}

static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
					    int i, unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
}

385 386
static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
					   int param_no)
387 388 389 390
{
	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
}

391 392
static inline void edma_param_write(struct edma_cc *ecc, int offset,
				    int param_no, unsigned val)
393 394 395 396
{
	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
}

397 398
static inline void edma_param_modify(struct edma_cc *ecc, int offset,
				     int param_no, unsigned and, unsigned or)
399 400 401 402
{
	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
}

403 404
static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
				  unsigned and)
405 406 407 408
{
	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
}

409 410
static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
				 unsigned or)
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
{
	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
}

static inline void set_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		set_bit(offset + (len - 1), p);
}

static inline void clear_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		clear_bit(offset + (len - 1), p);
}

static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
					  int priority)
{
	int bit = queue_no * 4;

	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
}

435
static void edma_set_chmap(struct edma_chan *echan, int slot)
436
{
437 438 439
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);

440 441 442 443
	if (ecc->chmap_exist) {
		slot = EDMA_CHAN_SLOT(slot);
		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
	}
444 445
}

446
static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
447
{
448 449
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
450

451
	if (enable) {
452 453 454 455
		edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
					 BIT(channel & 0x1f));
		edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
					 BIT(channel & 0x1f));
456
	} else {
457 458
		edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
					 BIT(channel & 0x1f));
459 460 461 462
	}
}

/*
463
 * paRAM slot management functions
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
 */
static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
			    const struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
}

static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
			   struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
}

/**
 * edma_alloc_slot - allocate DMA parameter RAM
 * @ecc: pointer to edma_cc struct
 * @slot: specific slot to allocate; negative for "any unused slot"
 *
 * This allocates a parameter RAM slot, initializing it to hold a
 * dummy transfer.  Slots allocated using this routine have not been
 * mapped to a hardware DMA channel, and will normally be used by
 * linking to them from a slot associated with a DMA channel.
 *
 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 * slots may be allocated on behalf of DSP firmware.
 *
 * Returns the number of the slot, else negative errno.
 */
static int edma_alloc_slot(struct edma_cc *ecc, int slot)
{
500
	if (slot >= 0) {
501
		slot = EDMA_CHAN_SLOT(slot);
502 503 504 505 506
		/* Requesting entry paRAM slot for a HW triggered channel. */
		if (ecc->chmap_exist && slot < ecc->num_channels)
			slot = EDMA_SLOT_ANY;
	}

507
	if (slot < 0) {
508 509 510 511
		if (ecc->chmap_exist)
			slot = 0;
		else
			slot = ecc->num_channels;
512
		for (;;) {
513
			slot = find_next_zero_bit(ecc->slot_inuse,
514 515 516 517
						  ecc->num_slots,
						  slot);
			if (slot == ecc->num_slots)
				return -ENOMEM;
518
			if (!test_and_set_bit(slot, ecc->slot_inuse))
519 520
				break;
		}
521
	} else if (slot >= ecc->num_slots) {
522
		return -EINVAL;
523
	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
524 525 526 527 528 529 530 531 532 533 534
		return -EBUSY;
	}

	edma_write_slot(ecc, slot, &dummy_paramset);

	return EDMA_CTLR_CHAN(ecc->id, slot);
}

static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
{
	slot = EDMA_CHAN_SLOT(slot);
535
	if (slot >= ecc->num_slots)
536 537 538
		return;

	edma_write_slot(ecc, slot, &dummy_paramset);
539
	clear_bit(slot, ecc->slot_inuse);
540 541 542 543 544 545 546 547 548 549 550 551
}

/**
 * edma_link - link one parameter RAM slot to another
 * @ecc: pointer to edma_cc struct
 * @from: parameter RAM slot originating the link
 * @to: parameter RAM slot which is the link target
 *
 * The originating slot should not be part of any active DMA transfer.
 */
static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
{
552 553 554
	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");

555 556 557 558 559
	from = EDMA_CHAN_SLOT(from);
	to = EDMA_CHAN_SLOT(to);
	if (from >= ecc->num_slots || to >= ecc->num_slots)
		return;

560 561
	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
			  PARM_OFFSET(to));
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
}

/**
 * edma_get_position - returns the current transfer point
 * @ecc: pointer to edma_cc struct
 * @slot: parameter RAM slot being examined
 * @dst:  true selects the dest position, false the source
 *
 * Returns the position of the current active slot
 */
static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
				    bool dst)
{
	u32 offs;

	slot = EDMA_CHAN_SLOT(slot);
	offs = PARM_OFFSET(slot);
	offs += dst ? PARM_DST : PARM_SRC;

	return edma_read(ecc, offs);
}

584
/*
585 586 587 588 589
 * Channels with event associations will be triggered by their hardware
 * events, and channels without such associations will be triggered by
 * software.  (At this writing there is no interface for using software
 * triggers except with channels that don't support hardware triggers.)
 */
590
static void edma_start(struct edma_chan *echan)
591
{
592 593 594 595
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
596

597
	if (!echan->hw_triggered) {
598
		/* EDMA channels without event association */
599 600 601 602
		dev_dbg(ecc->dev, "ESR%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ESR, j));
		edma_shadow0_write_array(ecc, SH_ESR, j, mask);
	} else {
603
		/* EDMA channel with event association */
604 605
		dev_dbg(ecc->dev, "ER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ER, j));
606 607 608 609 610 611
		/* Clear any pending event or error */
		edma_write_array(ecc, EDMA_ECR, j, mask);
		edma_write_array(ecc, EDMA_EMCR, j, mask);
		/* Clear any SER */
		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
		edma_shadow0_write_array(ecc, SH_EESR, j, mask);
612 613
		dev_dbg(ecc->dev, "EER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_EER, j));
614 615 616
	}
}

617
static void edma_stop(struct edma_chan *echan)
618
{
619 620 621 622
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
623

624 625 626 627
	edma_shadow0_write_array(ecc, SH_EECR, j, mask);
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write_array(ecc, EDMA_EMCR, j, mask);
628

629 630
	/* clear possibly pending completion interrupt */
	edma_shadow0_write_array(ecc, SH_ICR, j, mask);
631

632 633
	dev_dbg(ecc->dev, "EER%d %08x\n", j,
		edma_shadow0_read_array(ecc, SH_EER, j));
634

635 636 637
	/* REVISIT:  consider guarding against inappropriate event
	 * chaining by overwriting with dummy_paramset.
	 */
638 639
}

640 641 642
/*
 * Temporarily disable EDMA hardware events on the specified channel,
 * preventing them from triggering new transfers
643
 */
644
static void edma_pause(struct edma_chan *echan)
645
{
646 647
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
648

649
	edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
650 651
}

652
/* Re-enable EDMA hardware events on the specified channel.  */
653
static void edma_resume(struct edma_chan *echan)
654
{
655 656
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
657

658
	edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
659 660
}

661
static void edma_trigger_channel(struct edma_chan *echan)
662
{
663 664 665
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
666 667 668

	edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);

669 670
	dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
		edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
671 672
}

673
static void edma_clean_channel(struct edma_chan *echan)
674
{
675 676 677 678
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
679

680 681 682 683 684 685 686
	dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	/* Clear the corresponding EMR bits */
	edma_write_array(ecc, EDMA_EMCR, j, mask);
	/* Clear any SER */
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
687 688
}

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
/* Move channel to a specific event queue */
static void edma_assign_channel_eventq(struct edma_chan *echan,
				       enum dma_event_q eventq_no)
{
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int bit = (channel & 0x7) * 4;

	/* default to low priority queue */
	if (eventq_no == EVENTQ_DEFAULT)
		eventq_no = ecc->default_queue;
	if (eventq_no >= ecc->num_tc)
		return;

	eventq_no &= 7;
	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
			  eventq_no << bit);
}

708
static int edma_alloc_channel(struct edma_chan *echan,
709
			      enum dma_event_q eventq_no)
710
{
711 712
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
713 714 715 716 717

	/* ensure access through shadow region 0 */
	edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));

	/* ensure no events are pending */
718
	edma_stop(echan);
719

720
	edma_setup_interrupt(echan, true);
721

722
	edma_assign_channel_eventq(echan, eventq_no);
723

724
	return 0;
725 726
}

727
static void edma_free_channel(struct edma_chan *echan)
728
{
729 730
	/* ensure no events are pending */
	edma_stop(echan);
731
	/* REVISIT should probably take out of shadow region 0 */
732
	edma_setup_interrupt(echan, false);
733 734
}

735 736 737 738 739 740 741 742 743 744
static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
	return container_of(d, struct edma_cc, dma_slave);
}

static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
	return container_of(c, struct edma_chan, vchan.chan);
}

745
static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
746 747 748 749 750 751 752 753 754 755 756 757
{
	return container_of(tx, struct edma_desc, vdesc.tx);
}

static void edma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct edma_desc, vdesc));
}

/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
758
	struct edma_cc *ecc = echan->ecc;
759
	struct virt_dma_desc *vdesc;
760
	struct edma_desc *edesc;
761 762 763
	struct device *dev = echan->vchan.chan.device->dev;
	int i, j, left, nslots;

764 765
	if (!echan->edesc) {
		/* Setup is needed for the first transfer */
766
		vdesc = vchan_next_desc(&echan->vchan);
767
		if (!vdesc)
768 769 770
			return;
		list_del(&vdesc->node);
		echan->edesc = to_edma_desc(&vdesc->tx);
771 772
	}

773
	edesc = echan->edesc;
774

775 776 777
	/* Find out how many left */
	left = edesc->pset_nr - edesc->processed;
	nslots = min(MAX_NR_SG, left);
778
	edesc->sg_len = 0;
779 780

	/* Write descriptor PaRAM set(s) */
781 782
	for (i = 0; i < nslots; i++) {
		j = i + edesc->processed;
783
		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
784
		edesc->sg_len += edesc->pset[j].len;
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
		dev_vdbg(dev,
			 "\n pset[%d]:\n"
			 "  chnum\t%d\n"
			 "  slot\t%d\n"
			 "  opt\t%08x\n"
			 "  src\t%08x\n"
			 "  dst\t%08x\n"
			 "  abcnt\t%08x\n"
			 "  ccnt\t%08x\n"
			 "  bidx\t%08x\n"
			 "  cidx\t%08x\n"
			 "  lkrld\t%08x\n",
			 j, echan->ch_num, echan->slot[i],
			 edesc->pset[j].param.opt,
			 edesc->pset[j].param.src,
			 edesc->pset[j].param.dst,
			 edesc->pset[j].param.a_b_cnt,
			 edesc->pset[j].param.ccnt,
			 edesc->pset[j].param.src_dst_bidx,
			 edesc->pset[j].param.src_dst_cidx,
			 edesc->pset[j].param.link_bcntrld);
806
		/* Link to the previous slot if not the last set */
807
		if (i != (nslots - 1))
808
			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
809 810
	}

811 812
	edesc->processed += nslots;

813 814 815 816 817
	/*
	 * If this is either the last set in a set of SG-list transactions
	 * then setup a link to the dummy slot, this results in all future
	 * events being absorbed and that's OK because we're done
	 */
818 819
	if (edesc->processed == edesc->pset_nr) {
		if (edesc->cyclic)
820
			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
821
		else
822
			edma_link(ecc, echan->slot[nslots - 1],
823 824
				  echan->ecc->dummy_slot);
	}
825

826
	if (echan->missed) {
827 828 829 830 831
		/*
		 * This happens due to setup times between intermediate
		 * transfers in long SG lists which have to be broken up into
		 * transfers of MAX_NR_SG
		 */
832
		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
833 834 835 836
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
837
		echan->missed = 0;
838 839 840
	} else if (edesc->processed <= MAX_NR_SG) {
		dev_dbg(dev, "first transfer starting on channel %d\n",
			echan->ch_num);
841
		edma_start(echan);
842 843 844
	} else {
		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
			echan->ch_num, edesc->processed);
845
		edma_resume(echan);
846
	}
847 848
}

849
static int edma_terminate_all(struct dma_chan *chan)
850
{
851
	struct edma_chan *echan = to_edma_chan(chan);
852 853 854 855 856 857 858 859 860 861 862
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&echan->vchan.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
	 * after edma_dma() returns (even if it does, it will see
	 * echan->edesc is NULL and exit.)
	 */
	if (echan->edesc) {
863
		edma_stop(echan);
864
		/* Move the cyclic channel back to default queue */
865
		if (!echan->tc && echan->edesc->cyclic)
866
			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
867 868 869 870 871
		/*
		 * free the running request descriptor
		 * since it is not in any of the vdesc lists
		 */
		edma_desc_free(&echan->edesc->vdesc);
872 873 874 875 876 877 878 879 880 881
		echan->edesc = NULL;
	}

	vchan_get_all_descriptors(&echan->vchan, &head);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
	vchan_dma_desc_free_list(&echan->vchan, &head);

	return 0;
}

882 883 884 885 886 887 888
static void edma_synchronize(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);

	vchan_synchronize(&echan->vchan);
}

889
static int edma_slave_config(struct dma_chan *chan,
890
	struct dma_slave_config *cfg)
891
{
892 893
	struct edma_chan *echan = to_edma_chan(chan);

894 895
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
896 897
		return -EINVAL;

898
	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
899 900 901 902

	return 0;
}

903
static int edma_dma_pause(struct dma_chan *chan)
904
{
905 906
	struct edma_chan *echan = to_edma_chan(chan);

907
	if (!echan->edesc)
908 909
		return -EINVAL;

910
	edma_pause(echan);
911 912 913
	return 0;
}

914
static int edma_dma_resume(struct dma_chan *chan)
915
{
916 917
	struct edma_chan *echan = to_edma_chan(chan);

918
	edma_resume(echan);
919 920 921
	return 0;
}

922 923 924 925 926 927 928 929 930 931 932
/*
 * A PaRAM set configuration abstraction used by other modes
 * @chan: Channel who's PaRAM set we're configuring
 * @pset: PaRAM set to initialize and setup.
 * @src_addr: Source address of the DMA
 * @dst_addr: Destination address of the DMA
 * @burst: In units of dev_width, how much to send
 * @dev_width: How much is the dev_width
 * @dma_length: Total length of the DMA transfer
 * @direction: Direction of the transfer
 */
933
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
934
			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
935
			    unsigned int acnt, unsigned int dma_length,
936
			    enum dma_transfer_direction direction)
937 938 939
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
940
	struct edmacc_param *param = &epset->param;
941
	int bcnt, ccnt, cidx;
942 943 944
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
	int absync;

945 946 947
	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
	if (!burst)
		burst = 1;
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
	/*
	 * If the maxburst is equal to the fifo width, use
	 * A-synced transfers. This allows for large contiguous
	 * buffer transfers using only one PaRAM set.
	 */
	if (burst == 1) {
		/*
		 * For the A-sync case, bcnt and ccnt are the remainder
		 * and quotient respectively of the division of:
		 * (dma_length / acnt) by (SZ_64K -1). This is so
		 * that in case bcnt over flows, we have ccnt to use.
		 * Note: In A-sync tranfer only, bcntrld is used, but it
		 * only applies for sg_dma_len(sg) >= SZ_64K.
		 * In this case, the best way adopted is- bccnt for the
		 * first frame will be the remainder below. Then for
		 * every successive frame, bcnt will be SZ_64K-1. This
		 * is assured as bcntrld = 0xffff in end of function.
		 */
		absync = false;
		ccnt = dma_length / acnt / (SZ_64K - 1);
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
		/*
		 * If bcnt is non-zero, we have a remainder and hence an
		 * extra frame to transfer, so increment ccnt.
		 */
		if (bcnt)
			ccnt++;
		else
			bcnt = SZ_64K - 1;
		cidx = acnt;
	} else {
		/*
		 * If maxburst is greater than the fifo address_width,
		 * use AB-synced transfers where A count is the fifo
		 * address_width and B count is the maxburst. In this
		 * case, we are limited to transfers of C count frames
		 * of (address_width * maxburst) where C count is limited
		 * to SZ_64K-1. This places an upper bound on the length
		 * of an SG segment that can be handled.
		 */
		absync = true;
		bcnt = burst;
		ccnt = dma_length / (acnt * bcnt);
		if (ccnt > (SZ_64K - 1)) {
			dev_err(dev, "Exceeded max SG segment size\n");
			return -EINVAL;
		}
		cidx = acnt * bcnt;
	}

998 999
	epset->len = dma_length;

1000 1001 1002 1003 1004
	if (direction == DMA_MEM_TO_DEV) {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = 0;
		dst_cidx = 0;
1005
		epset->addr = src_addr;
1006 1007 1008 1009 1010
	} else if (direction == DMA_DEV_TO_MEM)  {
		src_bidx = 0;
		src_cidx = 0;
		dst_bidx = acnt;
		dst_cidx = cidx;
1011
		epset->addr = dst_addr;
1012 1013 1014 1015 1016
	} else if (direction == DMA_MEM_TO_MEM)  {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = acnt;
		dst_cidx = cidx;
1017 1018 1019 1020 1021
	} else {
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
		return -EINVAL;
	}

1022
	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1023 1024
	/* Configure A or AB synchronized transfers */
	if (absync)
1025
		param->opt |= SYNCDIM;
1026

1027 1028
	param->src = src_addr;
	param->dst = dst_addr;
1029

1030 1031
	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1032

1033 1034
	param->a_b_cnt = bcnt << 16 | acnt;
	param->ccnt = ccnt;
1035 1036 1037 1038 1039 1040
	/*
	 * Only time when (bcntrld) auto reload is required is for
	 * A-sync case, and in this case, a requirement of reload value
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
	 * and then later will be populated by edma_execute.
	 */
1041
	param->link_bcntrld = 0xffffffff;
1042 1043 1044
	return absync;
}

1045 1046 1047 1048 1049 1050 1051 1052
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
1053
	dma_addr_t src_addr = 0, dst_addr = 0;
1054 1055
	enum dma_slave_buswidth dev_width;
	u32 burst;
1056
	struct scatterlist *sg;
1057
	int i, nslots, ret;
1058 1059 1060 1061

	if (unlikely(!echan || !sgl || !sg_len))
		return NULL;

1062
	if (direction == DMA_DEV_TO_MEM) {
1063
		src_addr = echan->cfg.src_addr;
1064 1065 1066
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
1067
		dst_addr = echan->cfg.dst_addr;
1068 1069 1070
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1071
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1072 1073 1074 1075
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1076
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1077 1078 1079
		return NULL;
	}

1080 1081
	edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1082
	if (!edesc)
1083 1084 1085
		return NULL;

	edesc->pset_nr = sg_len;
1086
	edesc->residue = 0;
1087
	edesc->direction = direction;
1088
	edesc->echan = echan;
1089

1090 1091 1092 1093
	/* Allocate a PaRAM slot, if needed */
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);

	for (i = 0; i < nslots; i++) {
1094 1095
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1096
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1097
			if (echan->slot[i] < 0) {
V
Valentin Ilie 已提交
1098
				kfree(edesc);
1099 1100
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1101 1102 1103
				return NULL;
			}
		}
1104 1105 1106 1107
	}

	/* Configure PaRAM sets for each SG */
	for_each_sg(sgl, sg, sg_len, i) {
1108 1109 1110 1111 1112
		/* Get address for each SG */
		if (direction == DMA_DEV_TO_MEM)
			dst_addr = sg_dma_address(sg);
		else
			src_addr = sg_dma_address(sg);
1113

1114 1115 1116
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width,
				       sg_dma_len(sg), direction);
V
Vinod Koul 已提交
1117 1118
		if (ret < 0) {
			kfree(edesc);
1119
			return NULL;
1120 1121
		}

1122
		edesc->absync = ret;
1123
		edesc->residue += sg_dma_len(sg);
1124

1125
		if (i == sg_len - 1)
1126
			/* Enable completion interrupt */
1127
			edesc->pset[i].param.opt |= TCINTEN;
1128 1129 1130 1131 1132 1133 1134 1135
		else if (!((i+1) % MAX_NR_SG))
			/*
			 * Enable early completion interrupt for the
			 * intermediateset. In this case the driver will be
			 * notified when the paRAM set is submitted to TC. This
			 * will allow more time to set up the next set of slots.
			 */
			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1136
	}
1137
	edesc->residue_stat = edesc->residue;
1138 1139 1140 1141

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1142
static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1143 1144 1145
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
1146
	int ret, nslots;
1147 1148 1149
	struct edma_desc *edesc;
	struct device *dev = chan->device->dev;
	struct edma_chan *echan = to_edma_chan(chan);
1150
	unsigned int width, pset_len;
1151 1152 1153 1154

	if (unlikely(!echan || !len))
		return NULL;

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	if (len < SZ_64K) {
		/*
		 * Transfer size less than 64K can be handled with one paRAM
		 * slot and with one burst.
		 * ACNT = length
		 */
		width = len;
		pset_len = len;
		nslots = 1;
	} else {
		/*
		 * Transfer size bigger than 64K will be handled with maximum of
		 * two paRAM slots.
		 * slot1: (full_length / 32767) times 32767 bytes bursts.
		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
		 * slot2: the remaining amount of data after slot1.
		 *	  ACNT = full_length - length1, length2 = ACNT
		 *
		 * When the full_length is multibple of 32767 one slot can be
		 * used to complete the transfer.
		 */
		width = SZ_32K - 1;
		pset_len = rounddown(len, width);
		/* One slot is enough for lengths multiple of (SZ_32K -1) */
		if (unlikely(pset_len == len))
			nslots = 1;
		else
			nslots = 2;
	}

	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1187
	if (!edesc)
1188 1189
		return NULL;

1190 1191 1192 1193
	edesc->pset_nr = nslots;
	edesc->residue = edesc->residue_stat = len;
	edesc->direction = DMA_MEM_TO_MEM;
	edesc->echan = echan;
1194

1195
	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1196 1197 1198
			       width, pset_len, DMA_MEM_TO_MEM);
	if (ret < 0) {
		kfree(edesc);
1199
		return NULL;
1200
	}
1201 1202 1203

	edesc->absync = ret;

1204
	edesc->pset[0].param.opt |= ITCCHEN;
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	if (nslots == 1) {
		/* Enable transfer complete interrupt */
		edesc->pset[0].param.opt |= TCINTEN;
	} else {
		/* Enable transfer complete chaining for the first slot */
		edesc->pset[0].param.opt |= TCCHEN;

		if (echan->slot[1] < 0) {
			echan->slot[1] = edma_alloc_slot(echan->ecc,
							 EDMA_SLOT_ANY);
			if (echan->slot[1] < 0) {
				kfree(edesc);
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
				return NULL;
			}
		}
		dest += pset_len;
		src += pset_len;
		pset_len = width = len % (SZ_32K - 1);

		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
				       width, pset_len, DMA_MEM_TO_MEM);
		if (ret < 0) {
			kfree(edesc);
			return NULL;
		}

		edesc->pset[1].param.opt |= ITCCHEN;
		edesc->pset[1].param.opt |= TCINTEN;
	}
1236 1237 1238 1239

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1240 1241 1242
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
1243
	unsigned long tx_flags)
1244 1245 1246 1247 1248 1249
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr, dst_addr;
	enum dma_slave_buswidth dev_width;
1250
	bool use_intermediate = false;
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	u32 burst;
	int i, ret, nslots;

	if (unlikely(!echan || !buf_len || !period_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dst_addr = buf_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		src_addr = buf_addr;
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1268
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1269 1270 1271 1272
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1273
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
		return NULL;
	}

	if (unlikely(buf_len % period_len)) {
		dev_err(dev, "Period should be multiple of Buffer length\n");
		return NULL;
	}

	nslots = (buf_len / period_len) + 1;

	/*
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
	 * by cases where the number of periods is more than the maximum
	 * number of SGs the EDMA driver can handle at a time. For DMA types
	 * such as Slave SGs, such delays are tolerable and synchronized,
	 * but the synchronization is difficult to achieve with Cyclic and
	 * cannot be guaranteed, so we error out early.
	 */
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	if (nslots > MAX_NR_SG) {
		/*
		 * If the burst and period sizes are the same, we can put
		 * the full buffer into a single period and activate
		 * intermediate interrupts. This will produce interrupts
		 * after each burst, which is also after each desired period.
		 */
		if (burst == period_len) {
			period_len = buf_len;
			nslots = 2;
			use_intermediate = true;
		} else {
			return NULL;
		}
	}
1307

1308 1309
	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1310
	if (!edesc)
1311 1312 1313 1314
		return NULL;

	edesc->cyclic = 1;
	edesc->pset_nr = nslots;
1315
	edesc->residue = edesc->residue_stat = buf_len;
1316
	edesc->direction = direction;
1317
	edesc->echan = echan;
1318

1319 1320
	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
		__func__, echan->ch_num, nslots, period_len, buf_len);
1321 1322 1323 1324 1325

	for (i = 0; i < nslots; i++) {
		/* Allocate a PaRAM slot, if needed */
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1326
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1327
			if (echan->slot[i] < 0) {
1328
				kfree(edesc);
1329 1330
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
				return NULL;
			}
		}

		if (i == nslots - 1) {
			memcpy(&edesc->pset[i], &edesc->pset[0],
			       sizeof(edesc->pset[0]));
			break;
		}

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width, period_len,
				       direction);
1344 1345
		if (ret < 0) {
			kfree(edesc);
1346
			return NULL;
1347
		}
1348

1349 1350 1351 1352
		if (direction == DMA_DEV_TO_MEM)
			dst_addr += period_len;
		else
			src_addr += period_len;
1353

1354 1355
		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
		dev_vdbg(dev,
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
			i, echan->ch_num, echan->slot[i],
1368 1369 1370 1371 1372 1373 1374 1375
			edesc->pset[i].param.opt,
			edesc->pset[i].param.src,
			edesc->pset[i].param.dst,
			edesc->pset[i].param.a_b_cnt,
			edesc->pset[i].param.ccnt,
			edesc->pset[i].param.src_dst_bidx,
			edesc->pset[i].param.src_dst_cidx,
			edesc->pset[i].param.link_bcntrld);
1376 1377 1378 1379

		edesc->absync = ret;

		/*
1380
		 * Enable period interrupt only if it is requested
1381
		 */
1382
		if (tx_flags & DMA_PREP_INTERRUPT) {
1383
			edesc->pset[i].param.opt |= TCINTEN;
1384 1385 1386 1387 1388

			/* Also enable intermediate interrupts if necessary */
			if (use_intermediate)
				edesc->pset[i].param.opt |= ITCINTEN;
		}
1389 1390
	}

1391
	/* Place the cyclic channel to highest priority queue */
1392 1393
	if (!echan->tc)
		edma_assign_channel_eventq(echan, EVENTQ_0);
1394

1395 1396 1397
	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1398
static void edma_completion_handler(struct edma_chan *echan)
1399 1400
{
	struct device *dev = echan->vchan.chan.device->dev;
1401
	struct edma_desc *edesc;
1402

1403
	spin_lock(&echan->vchan.lock);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	edesc = echan->edesc;
	if (edesc) {
		if (edesc->cyclic) {
			vchan_cyclic_callback(&edesc->vdesc);
			spin_unlock(&echan->vchan.lock);
			return;
		} else if (edesc->processed == edesc->pset_nr) {
			edesc->residue = 0;
			edma_stop(echan);
			vchan_cookie_complete(&edesc->vdesc);
			echan->edesc = NULL;

			dev_dbg(dev, "Transfer completed on channel %d\n",
				echan->ch_num);
		} else {
			dev_dbg(dev, "Sub transfer completed on channel %d\n",
				echan->ch_num);

			edma_pause(echan);

			/* Update statistics for tx_status */
			edesc->residue -= edesc->sg_len;
			edesc->residue_stat = edesc->residue;
			edesc->processed_stat = edesc->processed;
		}
		edma_execute(echan);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	}

	spin_unlock(&echan->vchan.lock);
}

/* eDMA interrupt handler */
static irqreturn_t dma_irq_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
	int ctlr;
	u32 sh_ier;
	u32 sh_ipr;
	u32 bank;

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_irq_handler\n");

	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
	if (!sh_ipr) {
		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
		if (!sh_ipr)
			return IRQ_NONE;
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
		bank = 1;
	} else {
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
		bank = 0;
	}

	do {
		u32 slot;
		u32 channel;

		slot = __ffs(sh_ipr);
		sh_ipr &= ~(BIT(slot));

		if (sh_ier & BIT(slot)) {
			channel = (bank << 5) | slot;
			/* Clear the corresponding IPR bits */
			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
			edma_completion_handler(&ecc->slave_chans[channel]);
1474
		}
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	} while (sh_ipr);

	edma_shadow0_write(ecc, SH_IEVAL, 1);
	return IRQ_HANDLED;
}

static void edma_error_handler(struct edma_chan *echan)
{
	struct edma_cc *ecc = echan->ecc;
	struct device *dev = echan->vchan.chan.device->dev;
	struct edmacc_param p;

	if (!echan->edesc)
		return;

	spin_lock(&echan->vchan.lock);
1491

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	edma_read_slot(ecc, echan->slot[0], &p);
	/*
	 * Issue later based on missed flag which will be sure
	 * to happen as:
	 * (1) we finished transmitting an intermediate slot and
	 *     edma_execute is coming up.
	 * (2) or we finished current transfer and issue will
	 *     call edma_execute.
	 *
	 * Important note: issuing can be dangerous here and
	 * lead to some nasty recursion when we are in a NULL
	 * slot. So we avoid doing so and set the missed flag.
	 */
	if (p.a_b_cnt == 0 && p.ccnt == 0) {
		dev_dbg(dev, "Error on null slot, setting miss\n");
		echan->missed = 1;
	} else {
1509
		/*
1510 1511
		 * The slot is already programmed but the event got
		 * missed, so its safe to issue it here.
1512
		 */
1513
		dev_dbg(dev, "Missed event, TRIGGERING\n");
1514 1515 1516 1517
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
1518 1519 1520 1521
	}
	spin_unlock(&echan->vchan.lock);
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static inline bool edma_error_pending(struct edma_cc *ecc)
{
	if (edma_read_array(ecc, EDMA_EMR, 0) ||
	    edma_read_array(ecc, EDMA_EMR, 1) ||
	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
		return true;

	return false;
}

1532 1533 1534 1535
/* eDMA error interrupt handler */
static irqreturn_t dma_ccerr_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
1536
	int i, j;
1537 1538
	int ctlr;
	unsigned int cnt = 0;
1539
	unsigned int val;
1540 1541 1542 1543 1544 1545 1546

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");

1547 1548 1549 1550 1551 1552 1553 1554 1555
	if (!edma_error_pending(ecc)) {
		/*
		 * The registers indicate no pending error event but the irq
		 * handler has been called.
		 * Ask eDMA to re-evaluate the error registers.
		 */
		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
			__func__);
		edma_write(ecc, EDMA_EEVAL, 1);
1556
		return IRQ_NONE;
1557
	}
1558 1559

	while (1) {
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
		/* Event missed register(s) */
		for (j = 0; j < 2; j++) {
			unsigned long emr;

			val = edma_read_array(ecc, EDMA_EMR, j);
			if (!val)
				continue;

			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
			emr = val;
			for (i = find_next_bit(&emr, 32, 0); i < 32;
			     i = find_next_bit(&emr, 32, i + 1)) {
1572 1573
				int k = (j << 5) + i;

1574 1575 1576 1577
				/* Clear the corresponding EMR bits */
				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
				/* Clear any SER */
				edma_shadow0_write_array(ecc, SH_SECR, j,
1578
							 BIT(i));
1579
				edma_error_handler(&ecc->slave_chans[k]);
1580
			}
1581
		}
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

		val = edma_read(ecc, EDMA_QEMR);
		if (val) {
			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_QEMCR, val);
			edma_shadow0_write(ecc, SH_QSECR, val);
		}

		val = edma_read(ecc, EDMA_CCERR);
		if (val) {
			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_CCERRCLR, val);
		}

1598
		if (!edma_error_pending(ecc))
1599 1600 1601 1602
			break;
		cnt++;
		if (cnt > 10)
			break;
1603
	}
1604 1605
	edma_write(ecc, EDMA_EEVAL, 1);
	return IRQ_HANDLED;
1606 1607 1608 1609 1610 1611
}

/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
1612 1613 1614
	struct edma_cc *ecc = echan->ecc;
	struct device *dev = ecc->dev;
	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1615 1616
	int ret;

1617 1618 1619 1620 1621 1622 1623 1624 1625
	if (echan->tc) {
		eventq_no = echan->tc->id;
	} else if (ecc->tc_list) {
		/* memcpy channel */
		echan->tc = &ecc->tc_list[ecc->info->default_queue];
		eventq_no = echan->tc->id;
	}

	ret = edma_alloc_channel(echan, eventq_no);
1626 1627
	if (ret)
		return ret;
1628

1629
	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1630 1631 1632
	if (echan->slot[0] < 0) {
		dev_err(dev, "Entry slot allocation failed for channel %u\n",
			EDMA_CHAN_SLOT(echan->ch_num));
1633
		goto err_slot;
1634 1635 1636
	}

	/* Set up channel -> slot mapping for the entry slot */
1637 1638
	edma_set_chmap(echan, echan->slot[0]);
	echan->alloced = true;
1639

1640 1641 1642 1643
	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
		echan->hw_triggered ? "HW" : "SW");

1644 1645
	return 0;

1646 1647
err_slot:
	edma_free_channel(echan);
1648 1649 1650 1651 1652 1653 1654
	return ret;
}

/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
1655
	struct device *dev = echan->ecc->dev;
1656 1657 1658
	int i;

	/* Terminate transfers */
1659
	edma_stop(echan);
1660 1661 1662 1663

	vchan_free_chan_resources(&echan->vchan);

	/* Free EDMA PaRAM slots */
1664
	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1665
		if (echan->slot[i] >= 0) {
1666
			edma_free_slot(echan->ecc, echan->slot[i]);
1667 1668 1669 1670
			echan->slot[i] = -1;
		}
	}

1671
	/* Set entry slot to the dummy slot */
1672
	edma_set_chmap(echan, echan->ecc->dummy_slot);
1673

1674 1675
	/* Free EDMA channel */
	if (echan->alloced) {
1676
		edma_free_channel(echan);
1677 1678 1679
		echan->alloced = false;
	}

1680 1681 1682 1683 1684
	echan->tc = NULL;
	echan->hw_triggered = false;

	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
}

/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
		edma_execute(echan);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
}

1699 1700 1701 1702 1703 1704 1705 1706 1707
/*
 * This limit exists to avoid a possible infinite loop when waiting for proof
 * that a particular transfer is completed. This limit can be hit if there
 * are large bursts to/from slow devices or the CPU is never able to catch
 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
 * RX-FIFO, as many as 55 loops have been seen.
 */
#define EDMA_MAX_TR_WAIT_LOOPS 1000

1708 1709 1710
static u32 edma_residue(struct edma_desc *edesc)
{
	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1711 1712
	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
	struct edma_chan *echan = edesc->echan;
1713 1714 1715 1716 1717 1718 1719 1720
	struct edma_pset *pset = edesc->pset;
	dma_addr_t done, pos;
	int i;

	/*
	 * We always read the dst/src position from the first RamPar
	 * pset. That's the one which is active now.
	 */
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	pos = edma_get_position(echan->ecc, echan->slot[0], dst);

	/*
	 * "pos" may represent a transfer request that is still being
	 * processed by the EDMACC or EDMATC. We will busy wait until
	 * any one of the situations occurs:
	 *   1. the DMA hardware is idle
	 *   2. a new transfer request is setup
	 *   3. we hit the loop limit
	 */
	while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
		/* check if a new transfer request is setup */
		if (edma_get_position(echan->ecc,
				      echan->slot[0], dst) != pos) {
			break;
		}

		if (!--loop_count) {
			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
				"%s: timeout waiting for PaRAM update\n",
				__func__);
			break;
		}

		cpu_relax();
	}
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782

	/*
	 * Cyclic is simple. Just subtract pset[0].addr from pos.
	 *
	 * We never update edesc->residue in the cyclic case, so we
	 * can tell the remaining room to the end of the circular
	 * buffer.
	 */
	if (edesc->cyclic) {
		done = pos - pset->addr;
		edesc->residue_stat = edesc->residue - done;
		return edesc->residue_stat;
	}

	/*
	 * For SG operation we catch up with the last processed
	 * status.
	 */
	pset += edesc->processed_stat;

	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
		/*
		 * If we are inside this pset address range, we know
		 * this is the active one. Get the current delta and
		 * stop walking the psets.
		 */
		if (pos >= pset->addr && pos < pset->addr + pset->len)
			return edesc->residue_stat - (pos - pset->addr);

		/* Otherwise mark it done and update residue_stat. */
		edesc->processed_stat++;
		edesc->residue_stat -= pset->len;
	}
	return edesc->residue_stat;
}

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
1794
	if (ret == DMA_COMPLETE || !txstate)
1795 1796 1797
		return ret;

	spin_lock_irqsave(&echan->vchan.lock, flags);
1798
	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1799
		txstate->residue = edma_residue(echan->edesc);
1800 1801
	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1802 1803 1804 1805 1806
	spin_unlock_irqrestore(&echan->vchan.lock, flags);

	return ret;
}

1807
static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1808 1809 1810
{
	if (!memcpy_channels)
		return false;
1811 1812
	while (*memcpy_channels != -1) {
		if (*memcpy_channels == ch_num)
1813
			return true;
1814
		memcpy_channels++;
1815 1816 1817 1818
	}
	return false;
}

1819 1820 1821 1822 1823
#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

1824
static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1825
{
1826 1827
	struct dma_device *s_ddev = &ecc->dma_slave;
	struct dma_device *m_ddev = NULL;
1828
	s32 *memcpy_channels = ecc->info->memcpy_channels;
1829 1830
	int i, j;

1831 1832 1833 1834 1835 1836
	dma_cap_zero(s_ddev->cap_mask);
	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
	if (ecc->legacy_mode && !memcpy_channels) {
		dev_warn(ecc->dev,
			 "Legacy memcpy is enabled, things might not work\n");
1837

1838 1839 1840 1841
		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
	}
1842

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
	s_ddev->device_free_chan_resources = edma_free_chan_resources;
	s_ddev->device_issue_pending = edma_issue_pending;
	s_ddev->device_tx_status = edma_tx_status;
	s_ddev->device_config = edma_slave_config;
	s_ddev->device_pause = edma_dma_pause;
	s_ddev->device_resume = edma_dma_resume;
	s_ddev->device_terminate_all = edma_terminate_all;
1853
	s_ddev->device_synchronize = edma_synchronize;
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878

	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

	s_ddev->dev = ecc->dev;
	INIT_LIST_HEAD(&s_ddev->channels);

	if (memcpy_channels) {
		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
		ecc->dma_memcpy = m_ddev;

		dma_cap_zero(m_ddev->cap_mask);
		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);

		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
		m_ddev->device_free_chan_resources = edma_free_chan_resources;
		m_ddev->device_issue_pending = edma_issue_pending;
		m_ddev->device_tx_status = edma_tx_status;
		m_ddev->device_config = edma_slave_config;
		m_ddev->device_pause = edma_dma_pause;
		m_ddev->device_resume = edma_dma_resume;
		m_ddev->device_terminate_all = edma_terminate_all;
1879
		m_ddev->device_synchronize = edma_synchronize;
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

		m_ddev->dev = ecc->dev;
		INIT_LIST_HEAD(&m_ddev->channels);
	} else if (!ecc->legacy_mode) {
		dev_info(ecc->dev, "memcpy is disabled\n");
	}
1891

1892
	for (i = 0; i < ecc->num_channels; i++) {
1893
		struct edma_chan *echan = &ecc->slave_chans[i];
1894
		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1895 1896 1897
		echan->ecc = ecc;
		echan->vchan.desc_free = edma_desc_free;

1898 1899 1900 1901
		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
			vchan_init(&echan->vchan, m_ddev);
		else
			vchan_init(&echan->vchan, s_ddev);
1902 1903 1904 1905 1906 1907 1908

		INIT_LIST_HEAD(&echan->node);
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
			echan->slot[j] = -1;
	}
}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
			      struct edma_cc *ecc)
{
	int i;
	u32 value, cccfg;
	s8 (*queue_priority_map)[2];

	/* Decode the eDMA3 configuration from CCCFG register */
	cccfg = edma_read(ecc, EDMA_CCCFG);

	value = GET_NUM_REGN(cccfg);
	ecc->num_region = BIT(value);

	value = GET_NUM_DMACH(cccfg);
	ecc->num_channels = BIT(value + 1);

1925 1926 1927
	value = GET_NUM_QDMACH(cccfg);
	ecc->num_qchannels = value * 2;

1928 1929 1930 1931 1932 1933
	value = GET_NUM_PAENTRY(cccfg);
	ecc->num_slots = BIT(value + 4);

	value = GET_NUM_EVQUE(cccfg);
	ecc->num_tc = value + 1;

1934 1935
	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;

1936 1937 1938
	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1939
	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1940 1941
	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1942
	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957

	/* Nothing need to be done if queue priority is provided */
	if (pdata->queue_priority_mapping)
		return 0;

	/*
	 * Configure TC/queue priority as follows:
	 * Q0 - priority 0
	 * Q1 - priority 1
	 * Q2 - priority 2
	 * ...
	 * The meaning of priority numbers: 0 highest priority, 7 lowest
	 * priority. So Q0 is the highest priority queue and the last queue has
	 * the lowest priority.
	 */
1958
	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
					  GFP_KERNEL);
	if (!queue_priority_map)
		return -ENOMEM;

	for (i = 0; i < ecc->num_tc; i++) {
		queue_priority_map[i][0] = i;
		queue_priority_map[i][1] = i;
	}
	queue_priority_map[i][0] = -1;
	queue_priority_map[i][1] = -1;

	pdata->queue_priority_mapping = queue_priority_map;
	/* Default queue has the lowest priority */
	pdata->default_queue = i - 1;

	return 0;
}

#if IS_ENABLED(CONFIG_OF)
static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
			       size_t sz)
{
	const char pname[] = "ti,edma-xbar-event-map";
	struct resource res;
	void __iomem *xbar;
	s16 (*xbar_chans)[2];
	size_t nelm = sz / sizeof(s16);
	u32 shift, offset, mux;
	int ret, i;

1989
	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	if (!xbar_chans)
		return -ENOMEM;

	ret = of_address_to_resource(dev->of_node, 1, &res);
	if (ret)
		return -ENOMEM;

	xbar = devm_ioremap(dev, res.start, resource_size(&res));
	if (!xbar)
		return -ENOMEM;

	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
					 nelm);
	if (ret)
		return -EIO;

	/* Invalidate last entry for the other user of this mess */
	nelm >>= 1;
	xbar_chans[nelm][0] = -1;
	xbar_chans[nelm][1] = -1;

	for (i = 0; i < nelm; i++) {
		shift = (xbar_chans[i][1] & 0x03) << 3;
		offset = xbar_chans[i][1] & 0xfffffffc;
		mux = readl(xbar + offset);
		mux &= ~(0xff << shift);
		mux |= xbar_chans[i][0] << shift;
		writel(mux, (xbar + offset));
	}

	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
	return 0;
}

2024 2025
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
						     bool legacy_mode)
2026 2027
{
	struct edma_soc_info *info;
2028
	struct property *prop;
2029
	int sz, ret;
2030 2031 2032 2033 2034

	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
	if (!info)
		return ERR_PTR(-ENOMEM);

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	if (legacy_mode) {
		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
					&sz);
		if (prop) {
			ret = edma_xbar_event_map(dev, info, sz);
			if (ret)
				return ERR_PTR(ret);
		}
		return info;
	}

	/* Get the list of channels allocated to be used for memcpy */
	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
	if (prop) {
		const char pname[] = "ti,edma-memcpy-channels";
2050 2051
		size_t nelm = sz / sizeof(s32);
		s32 *memcpy_ch;
2052

2053
		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2054 2055 2056 2057
					 GFP_KERNEL);
		if (!memcpy_ch)
			return ERR_PTR(-ENOMEM);

2058 2059
		ret = of_property_read_u32_array(dev->of_node, pname,
						 (u32 *)memcpy_ch, nelm);
2060 2061 2062 2063 2064 2065 2066 2067 2068
		if (ret)
			return ERR_PTR(ret);

		memcpy_ch[nelm] = -1;
		info->memcpy_channels = memcpy_ch;
	}

	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
				&sz);
2069
	if (prop) {
2070
		const char pname[] = "ti,edma-reserved-slot-ranges";
2071
		u32 (*tmp)[2];
2072
		s16 (*rsv_slots)[2];
2073
		size_t nelm = sz / sizeof(*tmp);
2074
		struct edma_rsv_info *rsv_info;
2075
		int i;
2076 2077 2078 2079

		if (!nelm)
			return info;

2080 2081 2082 2083
		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
		if (!tmp)
			return ERR_PTR(-ENOMEM);

2084
		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2085 2086
		if (!rsv_info) {
			kfree(tmp);
2087
			return ERR_PTR(-ENOMEM);
2088
		}
2089 2090 2091

		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
					 GFP_KERNEL);
2092 2093
		if (!rsv_slots) {
			kfree(tmp);
2094
			return ERR_PTR(-ENOMEM);
2095
		}
2096

2097 2098 2099 2100
		ret = of_property_read_u32_array(dev->of_node, pname,
						 (u32 *)tmp, nelm * 2);
		if (ret) {
			kfree(tmp);
2101
			return ERR_PTR(ret);
2102
		}
2103

2104 2105 2106 2107
		for (i = 0; i < nelm; i++) {
			rsv_slots[i][0] = tmp[i][0];
			rsv_slots[i][1] = tmp[i][1];
		}
2108 2109
		rsv_slots[nelm][0] = -1;
		rsv_slots[nelm][1] = -1;
2110

2111 2112
		info->rsv = rsv_info;
		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2113 2114

		kfree(tmp);
2115
	}
2116 2117 2118

	return info;
}
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
				      struct of_dma *ofdma)
{
	struct edma_cc *ecc = ofdma->of_dma_data;
	struct dma_chan *chan = NULL;
	struct edma_chan *echan;
	int i;

	if (!ecc || dma_spec->args_count < 1)
		return NULL;

	for (i = 0; i < ecc->num_channels; i++) {
		echan = &ecc->slave_chans[i];
		if (echan->ch_num == dma_spec->args[0]) {
			chan = &echan->vchan.chan;
			break;
		}
	}

	if (!chan)
		return NULL;

	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
		goto out;

	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
	    dma_spec->args[1] < echan->ecc->num_tc) {
		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
		goto out;
	}

	return NULL;
out:
	/* The channel is going to be used as HW synchronized */
	echan->hw_triggered = true;
	return dma_get_slave_channel(chan);
}
2157
#else
2158 2159
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
						     bool legacy_mode)
2160 2161 2162
{
	return ERR_PTR(-EINVAL);
}
2163 2164 2165 2166 2167 2168

static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
				      struct of_dma *ofdma)
{
	return NULL;
}
2169 2170
#endif

B
Bill Pemberton 已提交
2171
static int edma_probe(struct platform_device *pdev)
2172
{
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	struct edma_soc_info	*info = pdev->dev.platform_data;
	s8			(*queue_priority_mapping)[2];
	int			i, off, ln;
	const s16		(*rsv_slots)[2];
	const s16		(*xbar_chans)[2];
	int			irq;
	char			*irq_name;
	struct resource		*mem;
	struct device_node	*node = pdev->dev.of_node;
	struct device		*dev = &pdev->dev;
	struct edma_cc		*ecc;
2184
	bool			legacy_mode = true;
2185 2186
	int ret;

2187
	if (node) {
2188 2189 2190
		const struct of_device_id *match;

		match = of_match_node(edma_of_ids, node);
2191
		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2192 2193 2194
			legacy_mode = false;

		info = edma_setup_info_from_dt(dev, legacy_mode);
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
		if (IS_ERR(info)) {
			dev_err(dev, "failed to get DT data\n");
			return PTR_ERR(info);
		}
	}

	if (!info)
		return -ENODEV;

	pm_runtime_enable(dev);
	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		dev_err(dev, "pm_runtime_get_sync() failed\n");
		return ret;
	}

2211
	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2212 2213 2214
	if (ret)
		return ret;

2215
	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2216
	if (!ecc)
2217 2218
		return -ENOMEM;

2219 2220
	ecc->dev = dev;
	ecc->id = pdev->id;
2221
	ecc->legacy_mode = legacy_mode;
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	/* When booting with DT the pdev->id is -1 */
	if (ecc->id < 0)
		ecc->id = 0;

	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
	if (!mem) {
		dev_dbg(dev, "mem resource not found, using index 0\n");
		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
		if (!mem) {
			dev_err(dev, "no mem resource?\n");
			return -ENODEV;
		}
	}
	ecc->base = devm_ioremap_resource(dev, mem);
	if (IS_ERR(ecc->base))
		return PTR_ERR(ecc->base);

	platform_set_drvdata(pdev, ecc);

	/* Get eDMA3 configuration from IP */
	ret = edma_setup_from_hw(dev, info, ecc);
	if (ret)
		return ret;

2246 2247 2248 2249 2250 2251
	/* Allocate memory based on the information we got from the IP */
	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
					sizeof(*ecc->slave_chans), GFP_KERNEL);
	if (!ecc->slave_chans)
		return -ENOMEM;

2252
	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2253
				       sizeof(unsigned long), GFP_KERNEL);
2254
	if (!ecc->slot_inuse)
2255 2256
		return -ENOMEM;

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	ecc->default_queue = info->default_queue;

	for (i = 0; i < ecc->num_slots; i++)
		edma_write_slot(ecc, i, &dummy_paramset);

	if (info->rsv) {
		/* Set the reserved slots in inuse list */
		rsv_slots = info->rsv->rsv_slots;
		if (rsv_slots) {
			for (i = 0; rsv_slots[i][0] != -1; i++) {
				off = rsv_slots[i][0];
				ln = rsv_slots[i][1];
2269
				set_bits(off, ln, ecc->slot_inuse);
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
			}
		}
	}

	/* Clear the xbar mapped channels in unused list */
	xbar_chans = info->xbar_chans;
	if (xbar_chans) {
		for (i = 0; xbar_chans[i][1] != -1; i++) {
			off = xbar_chans[i][1];
		}
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 0);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
2295
		ecc->ccint = irq;
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 2);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
2311
		ecc->ccerrint = irq;
2312 2313
	}

2314 2315 2316 2317 2318 2319
	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
	if (ecc->dummy_slot < 0) {
		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
		return ecc->dummy_slot;
	}

2320 2321
	queue_priority_mapping = info->queue_priority_mapping;

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	if (!ecc->legacy_mode) {
		int lowest_priority = 0;
		struct of_phandle_args tc_args;

		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
					    sizeof(*ecc->tc_list), GFP_KERNEL);
		if (!ecc->tc_list)
			return -ENOMEM;

		for (i = 0;; i++) {
			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
							       1, i, &tc_args);
			if (ret || i == ecc->num_tc)
				break;

			ecc->tc_list[i].node = tc_args.np;
			ecc->tc_list[i].id = i;
			queue_priority_mapping[i][1] = tc_args.args[0];
			if (queue_priority_mapping[i][1] > lowest_priority) {
				lowest_priority = queue_priority_mapping[i][1];
				info->default_queue = i;
			}
		}
	}

2347 2348 2349 2350
	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);
2351

2352 2353 2354 2355 2356 2357 2358
	for (i = 0; i < ecc->num_region; i++) {
		edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
		edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
		edma_write_array(ecc, EDMA_QRAE, i, 0x0);
	}
	ecc->info = info;

2359
	/* Init the dma device and channels */
2360
	edma_dma_init(ecc, legacy_mode);
2361

2362 2363
	for (i = 0; i < ecc->num_channels; i++) {
		/* Assign all channels to the default queue */
2364 2365
		edma_assign_channel_eventq(&ecc->slave_chans[i],
					   info->default_queue);
2366 2367 2368 2369
		/* Set entry slot to the dummy slot */
		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
	}

2370 2371 2372 2373
	ecc->dma_slave.filter.map = info->slave_map;
	ecc->dma_slave.filter.mapcnt = info->slavecnt;
	ecc->dma_slave.filter.fn = edma_filter_fn;

2374
	ret = dma_async_device_register(&ecc->dma_slave);
2375 2376
	if (ret) {
		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2377
		goto err_reg1;
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	}

	if (ecc->dma_memcpy) {
		ret = dma_async_device_register(ecc->dma_memcpy);
		if (ret) {
			dev_err(dev, "memcpy ddev registration failed (%d)\n",
				ret);
			dma_async_device_unregister(&ecc->dma_slave);
			goto err_reg1;
		}
	}
2389

2390
	if (node)
2391
		of_dma_controller_register(node, of_edma_xlate, ecc);
2392

2393
	dev_info(dev, "TI EDMA DMA engine driver\n");
2394 2395 2396 2397

	return 0;

err_reg1:
2398
	edma_free_slot(ecc, ecc->dummy_slot);
2399 2400 2401
	return ret;
}

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
static void edma_cleanupp_vchan(struct dma_device *dmadev)
{
	struct edma_chan *echan, *_echan;

	list_for_each_entry_safe(echan, _echan,
			&dmadev->channels, vchan.chan.device_node) {
		list_del(&echan->vchan.chan.device_node);
		tasklet_kill(&echan->vchan.task);
	}
}

2413
static int edma_remove(struct platform_device *pdev)
2414 2415 2416 2417
{
	struct device *dev = &pdev->dev;
	struct edma_cc *ecc = dev_get_drvdata(dev);

2418 2419 2420
	devm_free_irq(dev, ecc->ccint, ecc);
	devm_free_irq(dev, ecc->ccerrint, ecc);

2421 2422
	edma_cleanupp_vchan(&ecc->dma_slave);

2423 2424
	if (dev->of_node)
		of_dma_controller_free(dev->of_node);
2425
	dma_async_device_unregister(&ecc->dma_slave);
2426 2427
	if (ecc->dma_memcpy)
		dma_async_device_unregister(ecc->dma_memcpy);
2428
	edma_free_slot(ecc, ecc->dummy_slot);
2429 2430 2431 2432

	return 0;
}

2433
#ifdef CONFIG_PM_SLEEP
2434 2435 2436 2437 2438 2439 2440
static int edma_pm_suspend(struct device *dev)
{
	struct edma_cc *ecc = dev_get_drvdata(dev);
	struct edma_chan *echan = ecc->slave_chans;
	int i;

	for (i = 0; i < ecc->num_channels; i++) {
2441
		if (echan[i].alloced)
2442 2443 2444 2445 2446 2447
			edma_setup_interrupt(&echan[i], false);
	}

	return 0;
}

2448 2449 2450
static int edma_pm_resume(struct device *dev)
{
	struct edma_cc *ecc = dev_get_drvdata(dev);
2451
	struct edma_chan *echan = ecc->slave_chans;
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
	int i;
	s8 (*queue_priority_mapping)[2];

	queue_priority_mapping = ecc->info->queue_priority_mapping;

	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);

	for (i = 0; i < ecc->num_channels; i++) {
2463
		if (echan[i].alloced) {
2464 2465 2466 2467
			/* ensure access through shadow region 0 */
			edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
				       BIT(i & 0x1f));

2468
			edma_setup_interrupt(&echan[i], true);
2469 2470

			/* Set up channel -> slot mapping for the entry slot */
2471
			edma_set_chmap(&echan[i], echan[i].slot[0]);
2472 2473 2474 2475 2476 2477 2478 2479
		}
	}

	return 0;
}
#endif

static const struct dev_pm_ops edma_pm_ops = {
2480
	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2481 2482
};

2483 2484
static struct platform_driver edma_driver = {
	.probe		= edma_probe,
B
Bill Pemberton 已提交
2485
	.remove		= edma_remove,
2486
	.driver = {
2487 2488 2489
		.name	= "edma",
		.pm	= &edma_pm_ops,
		.of_match_table = edma_of_ids,
2490 2491 2492
	},
};

2493 2494
static int edma_tptc_probe(struct platform_device *pdev)
{
2495 2496
	pm_runtime_enable(&pdev->dev);
	return pm_runtime_get_sync(&pdev->dev);
2497 2498
}

2499
static struct platform_driver edma_tptc_driver = {
2500
	.probe		= edma_tptc_probe,
2501 2502 2503 2504 2505 2506
	.driver = {
		.name	= "edma3-tptc",
		.of_match_table = edma_tptc_of_ids,
	},
};

2507 2508
bool edma_filter_fn(struct dma_chan *chan, void *param)
{
2509 2510
	bool match = false;

2511 2512 2513
	if (chan->device->dev->driver == &edma_driver.driver) {
		struct edma_chan *echan = to_edma_chan(chan);
		unsigned ch_req = *(unsigned *)param;
2514 2515 2516 2517 2518
		if (ch_req == echan->ch_num) {
			/* The channel is going to be used as HW synchronized */
			echan->hw_triggered = true;
			match = true;
		}
2519
	}
2520
	return match;
2521 2522 2523 2524 2525
}
EXPORT_SYMBOL(edma_filter_fn);

static int edma_init(void)
{
2526 2527 2528 2529 2530 2531
	int ret;

	ret = platform_driver_register(&edma_tptc_driver);
	if (ret)
		return ret;

2532
	return platform_driver_register(&edma_driver);
2533 2534 2535 2536 2537 2538
}
subsys_initcall(edma_init);

static void __exit edma_exit(void)
{
	platform_driver_unregister(&edma_driver);
2539
	platform_driver_unregister(&edma_tptc_driver);
2540 2541 2542
}
module_exit(edma_exit);

J
Josh Boyer 已提交
2543
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2544 2545
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");