edma.c 58.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * TI EDMA DMA engine driver
 *
 * Copyright 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
18
#include <linux/edma.h>
19 20 21 22 23 24 25 26
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
27
#include <linux/of.h>
28
#include <linux/of_dma.h>
29 30 31 32
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
33

34
#include <linux/platform_data/edma.h>
35 36 37 38

#include "dmaengine.h"
#include "virt-dma.h"

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
/* Offsets matching "struct edmacc_param" */
#define PARM_OPT		0x00
#define PARM_SRC		0x04
#define PARM_A_B_CNT		0x08
#define PARM_DST		0x0c
#define PARM_SRC_DST_BIDX	0x10
#define PARM_LINK_BCNTRLD	0x14
#define PARM_SRC_DST_CIDX	0x18
#define PARM_CCNT		0x1c

#define PARM_SIZE		0x20

/* Offsets for EDMA CC global channel registers and their shadows */
#define SH_ER			0x00	/* 64 bits */
#define SH_ECR			0x08	/* 64 bits */
#define SH_ESR			0x10	/* 64 bits */
#define SH_CER			0x18	/* 64 bits */
#define SH_EER			0x20	/* 64 bits */
#define SH_EECR			0x28	/* 64 bits */
#define SH_EESR			0x30	/* 64 bits */
#define SH_SER			0x38	/* 64 bits */
#define SH_SECR			0x40	/* 64 bits */
#define SH_IER			0x50	/* 64 bits */
#define SH_IECR			0x58	/* 64 bits */
#define SH_IESR			0x60	/* 64 bits */
#define SH_IPR			0x68	/* 64 bits */
#define SH_ICR			0x70	/* 64 bits */
#define SH_IEVAL		0x78
#define SH_QER			0x80
#define SH_QEER			0x84
#define SH_QEECR		0x88
#define SH_QEESR		0x8c
#define SH_QSER			0x90
#define SH_QSECR		0x94
#define SH_SIZE			0x200

/* Offsets for EDMA CC global registers */
#define EDMA_REV		0x0000
#define EDMA_CCCFG		0x0004
#define EDMA_QCHMAP		0x0200	/* 8 registers */
#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
#define EDMA_QDMAQNUM		0x0260
#define EDMA_QUETCMAP		0x0280
#define EDMA_QUEPRI		0x0284
#define EDMA_EMR		0x0300	/* 64 bits */
#define EDMA_EMCR		0x0308	/* 64 bits */
#define EDMA_QEMR		0x0310
#define EDMA_QEMCR		0x0314
#define EDMA_CCERR		0x0318
#define EDMA_CCERRCLR		0x031c
#define EDMA_EEVAL		0x0320
#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
#define EDMA_QRAE		0x0380	/* 4 registers */
#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
#define EDMA_QSTAT		0x0600	/* 2 registers */
#define EDMA_QWMTHRA		0x0620
#define EDMA_QWMTHRB		0x0624
#define EDMA_CCSTAT		0x0640

#define EDMA_M			0x1000	/* global channel registers */
#define EDMA_ECR		0x1008
#define EDMA_ECRH		0x100C
#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
#define EDMA_PARM		0x4000	/* PaRAM entries */

#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))

#define EDMA_DCHMAP		0x0100  /* 64 registers */

/* CCCFG register */
#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
110
#define GET_NUM_QDMACH(x)	(x & 0x70 >> 4) /* bits 4-6 */
111 112 113 114 115
#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
#define CHMAP_EXIST		BIT(24)

116 117 118 119 120 121 122 123
/*
 * Max of 20 segments per channel to conserve PaRAM slots
 * Also note that MAX_NR_SG should be atleast the no.of periods
 * that are required for ASoC, otherwise DMA prep calls will
 * fail. Today davinci-pcm is the only user of this driver and
 * requires atleast 17 slots, so we setup the default to 20.
 */
#define MAX_NR_SG		20
124 125 126
#define EDMA_MAX_SLOTS		MAX_NR_SG
#define EDMA_DESCRIPTORS	16

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
#define EDMA_CONT_PARAMS_ANY		 1001
#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003

/* PaRAM slots are laid out like this */
struct edmacc_param {
	u32 opt;
	u32 src;
	u32 a_b_cnt;
	u32 dst;
	u32 src_dst_bidx;
	u32 link_bcntrld;
	u32 src_dst_cidx;
	u32 ccnt;
} __packed;

/* fields in edmacc_param.opt */
#define SAM		BIT(0)
#define DAM		BIT(1)
#define SYNCDIM		BIT(2)
#define STATIC		BIT(3)
#define EDMA_FWID	(0x07 << 8)
#define TCCMODE		BIT(11)
#define EDMA_TCC(t)	((t) << 12)
#define TCINTEN		BIT(20)
#define ITCINTEN	BIT(21)
#define TCCHEN		BIT(22)
#define ITCCHEN		BIT(23)

158
struct edma_pset {
159 160
	u32				len;
	dma_addr_t			addr;
161 162 163
	struct edmacc_param		param;
};

164 165 166
struct edma_desc {
	struct virt_dma_desc		vdesc;
	struct list_head		node;
167
	enum dma_transfer_direction	direction;
168
	int				cyclic;
169 170
	int				absync;
	int				pset_nr;
171
	struct edma_chan		*echan;
172
	int				processed;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

	/*
	 * The following 4 elements are used for residue accounting.
	 *
	 * - processed_stat: the number of SG elements we have traversed
	 * so far to cover accounting. This is updated directly to processed
	 * during edma_callback and is always <= processed, because processed
	 * refers to the number of pending transfer (programmed to EDMA
	 * controller), where as processed_stat tracks number of transfers
	 * accounted for so far.
	 *
	 * - residue: The amount of bytes we have left to transfer for this desc
	 *
	 * - residue_stat: The residue in bytes of data we have covered
	 * so far for accounting. This is updated directly to residue
	 * during callbacks to keep it current.
	 *
	 * - sg_len: Tracks the length of the current intermediate transfer,
	 * this is required to update the residue during intermediate transfer
	 * completion callback.
	 */
194 195
	int				processed_stat;
	u32				sg_len;
196
	u32				residue;
197
	u32				residue_stat;
198

199
	struct edma_pset		pset[0];
200 201 202 203 204 205 206 207 208 209 210 211
};

struct edma_cc;

struct edma_chan {
	struct virt_dma_chan		vchan;
	struct list_head		node;
	struct edma_desc		*edesc;
	struct edma_cc			*ecc;
	int				ch_num;
	bool				alloced;
	int				slot[EDMA_MAX_SLOTS];
212
	int				missed;
213
	struct dma_slave_config		cfg;
214 215 216
};

struct edma_cc {
217 218 219 220 221 222 223
	struct device			*dev;
	struct edma_soc_info		*info;
	void __iomem			*base;
	int				id;

	/* eDMA3 resource information */
	unsigned			num_channels;
224
	unsigned			num_qchannels;
225 226 227
	unsigned			num_region;
	unsigned			num_slots;
	unsigned			num_tc;
228
	bool				chmap_exist;
229 230 231
	enum dma_event_q		default_queue;

	bool				unused_chan_list_done;
232
	/* The slot_inuse bit for each PaRAM slot is clear unless the
233 234
	 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
	 */
235
	unsigned long *slot_inuse;
236

237
	/* The channel_unused bit for each channel is clear unless
238 239 240
	 * it is not being used on this platform. It uses a bit
	 * of SOC-specific initialization code.
	 */
241
	unsigned long *channel_unused;
242

243
	struct dma_device		dma_slave;
244
	struct edma_chan		*slave_chans;
245 246 247
	int				dummy_slot;
};

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/* dummy param set used to (re)initialize parameter RAM slots */
static const struct edmacc_param dummy_paramset = {
	.link_bcntrld = 0xffff,
	.ccnt = 1,
};

static const struct of_device_id edma_of_ids[] = {
	{ .compatible = "ti,edma3", },
	{}
};

static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
{
	return (unsigned int)__raw_readl(ecc->base + offset);
}

static inline void edma_write(struct edma_cc *ecc, int offset, int val)
{
	__raw_writel(val, ecc->base + offset);
}

static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
			       unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	val |= or;
	edma_write(ecc, offset, val);
}

static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	edma_write(ecc, offset, val);
}

static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val |= or;
	edma_write(ecc, offset, val);
}

static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
					   int i)
{
	return edma_read(ecc, offset + (i << 2));
}

static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
				    unsigned val)
{
	edma_write(ecc, offset + (i << 2), val);
}

static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
				     unsigned and, unsigned or)
{
	edma_modify(ecc, offset + (i << 2), and, or);
}

static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
				 unsigned or)
{
	edma_or(ecc, offset + (i << 2), or);
}

static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
				  unsigned or)
{
	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
}

static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
				     int j, unsigned val)
{
	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
}

static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset);
}

static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
						   int offset, int i)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
}

static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
				      unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset, val);
}

static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
					    int i, unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
}

354 355
static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
					   int param_no)
356 357 358 359
{
	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
}

360 361
static inline void edma_param_write(struct edma_cc *ecc, int offset,
				    int param_no, unsigned val)
362 363 364 365
{
	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
}

366 367
static inline void edma_param_modify(struct edma_cc *ecc, int offset,
				     int param_no, unsigned and, unsigned or)
368 369 370 371
{
	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
}

372 373
static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
				  unsigned and)
374 375 376 377
{
	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
}

378 379
static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
				 unsigned or)
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
{
	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
}

static inline void set_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		set_bit(offset + (len - 1), p);
}

static inline void clear_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		clear_bit(offset + (len - 1), p);
}

static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
					  int priority)
{
	int bit = queue_no * 4;

	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
}

404
static void edma_set_chmap(struct edma_chan *echan, int slot)
405
{
406 407 408
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);

409 410 411 412
	if (ecc->chmap_exist) {
		slot = EDMA_CHAN_SLOT(slot);
		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
	}
413 414 415 416 417 418
}

static int prepare_unused_channel_list(struct device *dev, void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct edma_cc *ecc = data;
419 420
	int dma_req_min = EDMA_CTLR_CHAN(ecc->id, 0);
	int dma_req_max = dma_req_min + ecc->num_channels;
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
	int i, count;
	struct of_phandle_args  dma_spec;

	if (dev->of_node) {
		struct platform_device *dma_pdev;

		count = of_property_count_strings(dev->of_node, "dma-names");
		if (count < 0)
			return 0;
		for (i = 0; i < count; i++) {
			if (of_parse_phandle_with_args(dev->of_node, "dmas",
						       "#dma-cells", i,
						       &dma_spec))
				continue;

			if (!of_match_node(edma_of_ids, dma_spec.np)) {
				of_node_put(dma_spec.np);
				continue;
			}

			dma_pdev = of_find_device_by_node(dma_spec.np);
			if (&dma_pdev->dev != ecc->dev)
				continue;

			clear_bit(EDMA_CHAN_SLOT(dma_spec.args[0]),
446
				  ecc->channel_unused);
447 448 449 450 451 452 453 454
			of_node_put(dma_spec.np);
		}
		return 0;
	}

	/* For non-OF case */
	for (i = 0; i < pdev->num_resources; i++) {
		struct resource	*res = &pdev->resource[i];
455
		int dma_req;
456

457 458 459 460 461
		if (!(res->flags & IORESOURCE_DMA))
			continue;

		dma_req = (int)res->start;
		if (dma_req >= dma_req_min && dma_req < dma_req_max)
462
			clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
463
				  ecc->channel_unused);
464 465 466 467 468
	}

	return 0;
}

469
static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
470
{
471 472
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
473

474
	if (enable) {
475 476 477 478
		edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
					 BIT(channel & 0x1f));
		edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
					 BIT(channel & 0x1f));
479
	} else {
480 481
		edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
					 BIT(channel & 0x1f));
482 483 484 485
	}
}

/*
486
 * paRAM slot management functions
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
 */
static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
			    const struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
}

static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
			   struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
}

/**
 * edma_alloc_slot - allocate DMA parameter RAM
 * @ecc: pointer to edma_cc struct
 * @slot: specific slot to allocate; negative for "any unused slot"
 *
 * This allocates a parameter RAM slot, initializing it to hold a
 * dummy transfer.  Slots allocated using this routine have not been
 * mapped to a hardware DMA channel, and will normally be used by
 * linking to them from a slot associated with a DMA channel.
 *
 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 * slots may be allocated on behalf of DSP firmware.
 *
 * Returns the number of the slot, else negative errno.
 */
static int edma_alloc_slot(struct edma_cc *ecc, int slot)
{
523
	if (slot > 0) {
524
		slot = EDMA_CHAN_SLOT(slot);
525 526 527 528 529
		/* Requesting entry paRAM slot for a HW triggered channel. */
		if (ecc->chmap_exist && slot < ecc->num_channels)
			slot = EDMA_SLOT_ANY;
	}

530
	if (slot < 0) {
531 532 533 534
		if (ecc->chmap_exist)
			slot = 0;
		else
			slot = ecc->num_channels;
535
		for (;;) {
536
			slot = find_next_zero_bit(ecc->slot_inuse,
537 538 539 540
						  ecc->num_slots,
						  slot);
			if (slot == ecc->num_slots)
				return -ENOMEM;
541
			if (!test_and_set_bit(slot, ecc->slot_inuse))
542 543
				break;
		}
544
	} else if (slot >= ecc->num_slots) {
545
		return -EINVAL;
546
	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
547 548 549 550 551 552 553 554 555 556 557
		return -EBUSY;
	}

	edma_write_slot(ecc, slot, &dummy_paramset);

	return EDMA_CTLR_CHAN(ecc->id, slot);
}

static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
{
	slot = EDMA_CHAN_SLOT(slot);
558
	if (slot >= ecc->num_slots)
559 560 561
		return;

	edma_write_slot(ecc, slot, &dummy_paramset);
562
	clear_bit(slot, ecc->slot_inuse);
563 564 565 566 567 568 569 570 571 572 573 574
}

/**
 * edma_link - link one parameter RAM slot to another
 * @ecc: pointer to edma_cc struct
 * @from: parameter RAM slot originating the link
 * @to: parameter RAM slot which is the link target
 *
 * The originating slot should not be part of any active DMA transfer.
 */
static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
{
575 576 577
	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");

578 579 580 581 582
	from = EDMA_CHAN_SLOT(from);
	to = EDMA_CHAN_SLOT(to);
	if (from >= ecc->num_slots || to >= ecc->num_slots)
		return;

583 584
	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
			  PARM_OFFSET(to));
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
}

/**
 * edma_get_position - returns the current transfer point
 * @ecc: pointer to edma_cc struct
 * @slot: parameter RAM slot being examined
 * @dst:  true selects the dest position, false the source
 *
 * Returns the position of the current active slot
 */
static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
				    bool dst)
{
	u32 offs;

	slot = EDMA_CHAN_SLOT(slot);
	offs = PARM_OFFSET(slot);
	offs += dst ? PARM_DST : PARM_SRC;

	return edma_read(ecc, offs);
}

607
/*
608 609 610 611 612
 * Channels with event associations will be triggered by their hardware
 * events, and channels without such associations will be triggered by
 * software.  (At this writing there is no interface for using software
 * triggers except with channels that don't support hardware triggers.)
 */
613
static void edma_start(struct edma_chan *echan)
614
{
615 616 617 618
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
619

620
	if (test_bit(channel, ecc->channel_unused)) {
621
		/* EDMA channels without event association */
622 623 624 625
		dev_dbg(ecc->dev, "ESR%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ESR, j));
		edma_shadow0_write_array(ecc, SH_ESR, j, mask);
	} else {
626
		/* EDMA channel with event association */
627 628
		dev_dbg(ecc->dev, "ER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ER, j));
629 630 631 632 633 634
		/* Clear any pending event or error */
		edma_write_array(ecc, EDMA_ECR, j, mask);
		edma_write_array(ecc, EDMA_EMCR, j, mask);
		/* Clear any SER */
		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
		edma_shadow0_write_array(ecc, SH_EESR, j, mask);
635 636
		dev_dbg(ecc->dev, "EER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_EER, j));
637 638 639
	}
}

640
static void edma_stop(struct edma_chan *echan)
641
{
642 643 644 645
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
646

647 648 649 650
	edma_shadow0_write_array(ecc, SH_EECR, j, mask);
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write_array(ecc, EDMA_EMCR, j, mask);
651

652 653
	/* clear possibly pending completion interrupt */
	edma_shadow0_write_array(ecc, SH_ICR, j, mask);
654

655 656
	dev_dbg(ecc->dev, "EER%d %08x\n", j,
		edma_shadow0_read_array(ecc, SH_EER, j));
657

658 659 660
	/* REVISIT:  consider guarding against inappropriate event
	 * chaining by overwriting with dummy_paramset.
	 */
661 662
}

663 664 665
/*
 * Temporarily disable EDMA hardware events on the specified channel,
 * preventing them from triggering new transfers
666
 */
667
static void edma_pause(struct edma_chan *echan)
668
{
669 670
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
671

672
	edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
673 674
}

675
/* Re-enable EDMA hardware events on the specified channel.  */
676
static void edma_resume(struct edma_chan *echan)
677
{
678 679
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
680

681
	edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
682 683
}

684
static void edma_trigger_channel(struct edma_chan *echan)
685
{
686 687 688
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
689 690 691

	edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);

692 693
	dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
		edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
694 695
}

696
static void edma_clean_channel(struct edma_chan *echan)
697
{
698 699 700 701
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
702

703 704 705 706 707 708 709
	dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	/* Clear the corresponding EMR bits */
	edma_write_array(ecc, EDMA_EMCR, j, mask);
	/* Clear any SER */
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
710 711
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
/* Move channel to a specific event queue */
static void edma_assign_channel_eventq(struct edma_chan *echan,
				       enum dma_event_q eventq_no)
{
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int bit = (channel & 0x7) * 4;

	/* default to low priority queue */
	if (eventq_no == EVENTQ_DEFAULT)
		eventq_no = ecc->default_queue;
	if (eventq_no >= ecc->num_tc)
		return;

	eventq_no &= 7;
	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
			  eventq_no << bit);
}

731
static int edma_alloc_channel(struct edma_chan *echan,
732
			      enum dma_event_q eventq_no)
733
{
734 735
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
736 737 738 739 740 741 742

	if (!ecc->unused_chan_list_done) {
		/*
		 * Scan all the platform devices to find out the EDMA channels
		 * used and clear them in the unused list, making the rest
		 * available for ARM usage.
		 */
743 744
		int ret = bus_for_each_dev(&platform_bus_type, NULL, ecc,
					   prepare_unused_channel_list);
745 746 747 748 749 750 751 752 753 754
		if (ret < 0)
			return ret;

		ecc->unused_chan_list_done = true;
	}

	/* ensure access through shadow region 0 */
	edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));

	/* ensure no events are pending */
755
	edma_stop(echan);
756

757
	edma_setup_interrupt(echan, true);
758

759
	edma_assign_channel_eventq(echan, eventq_no);
760

761
	return 0;
762 763
}

764
static void edma_free_channel(struct edma_chan *echan)
765
{
766 767
	/* ensure no events are pending */
	edma_stop(echan);
768
	/* REVISIT should probably take out of shadow region 0 */
769
	edma_setup_interrupt(echan, false);
770 771
}

772 773 774 775 776 777 778 779 780 781
static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
	return container_of(d, struct edma_cc, dma_slave);
}

static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
	return container_of(c, struct edma_chan, vchan.chan);
}

782
static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
783 784 785 786 787 788 789 790 791 792 793 794
{
	return container_of(tx, struct edma_desc, vdesc.tx);
}

static void edma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct edma_desc, vdesc));
}

/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
795
	struct edma_cc *ecc = echan->ecc;
796
	struct virt_dma_desc *vdesc;
797
	struct edma_desc *edesc;
798 799 800
	struct device *dev = echan->vchan.chan.device->dev;
	int i, j, left, nslots;

801 802
	if (!echan->edesc) {
		/* Setup is needed for the first transfer */
803
		vdesc = vchan_next_desc(&echan->vchan);
804
		if (!vdesc)
805 806 807
			return;
		list_del(&vdesc->node);
		echan->edesc = to_edma_desc(&vdesc->tx);
808 809
	}

810
	edesc = echan->edesc;
811

812 813 814
	/* Find out how many left */
	left = edesc->pset_nr - edesc->processed;
	nslots = min(MAX_NR_SG, left);
815
	edesc->sg_len = 0;
816 817

	/* Write descriptor PaRAM set(s) */
818 819
	for (i = 0; i < nslots; i++) {
		j = i + edesc->processed;
820
		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
821
		edesc->sg_len += edesc->pset[j].len;
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
		dev_vdbg(dev,
			 "\n pset[%d]:\n"
			 "  chnum\t%d\n"
			 "  slot\t%d\n"
			 "  opt\t%08x\n"
			 "  src\t%08x\n"
			 "  dst\t%08x\n"
			 "  abcnt\t%08x\n"
			 "  ccnt\t%08x\n"
			 "  bidx\t%08x\n"
			 "  cidx\t%08x\n"
			 "  lkrld\t%08x\n",
			 j, echan->ch_num, echan->slot[i],
			 edesc->pset[j].param.opt,
			 edesc->pset[j].param.src,
			 edesc->pset[j].param.dst,
			 edesc->pset[j].param.a_b_cnt,
			 edesc->pset[j].param.ccnt,
			 edesc->pset[j].param.src_dst_bidx,
			 edesc->pset[j].param.src_dst_cidx,
			 edesc->pset[j].param.link_bcntrld);
843
		/* Link to the previous slot if not the last set */
844
		if (i != (nslots - 1))
845
			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
846 847
	}

848 849
	edesc->processed += nslots;

850 851 852 853 854
	/*
	 * If this is either the last set in a set of SG-list transactions
	 * then setup a link to the dummy slot, this results in all future
	 * events being absorbed and that's OK because we're done
	 */
855 856
	if (edesc->processed == edesc->pset_nr) {
		if (edesc->cyclic)
857
			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
858
		else
859
			edma_link(ecc, echan->slot[nslots - 1],
860 861
				  echan->ecc->dummy_slot);
	}
862

863
	if (echan->missed) {
864 865 866 867 868
		/*
		 * This happens due to setup times between intermediate
		 * transfers in long SG lists which have to be broken up into
		 * transfers of MAX_NR_SG
		 */
869
		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
870 871 872 873
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
874
		echan->missed = 0;
875 876 877
	} else if (edesc->processed <= MAX_NR_SG) {
		dev_dbg(dev, "first transfer starting on channel %d\n",
			echan->ch_num);
878
		edma_start(echan);
879 880 881
	} else {
		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
			echan->ch_num, edesc->processed);
882
		edma_resume(echan);
883
	}
884 885
}

886
static int edma_terminate_all(struct dma_chan *chan)
887
{
888
	struct edma_chan *echan = to_edma_chan(chan);
889 890 891 892 893 894 895 896 897 898 899
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&echan->vchan.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
	 * after edma_dma() returns (even if it does, it will see
	 * echan->edesc is NULL and exit.)
	 */
	if (echan->edesc) {
900
		edma_stop(echan);
901 902
		/* Move the cyclic channel back to default queue */
		if (echan->edesc->cyclic)
903
			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
904 905 906 907 908
		/*
		 * free the running request descriptor
		 * since it is not in any of the vdesc lists
		 */
		edma_desc_free(&echan->edesc->vdesc);
909 910 911 912 913 914 915 916 917 918
		echan->edesc = NULL;
	}

	vchan_get_all_descriptors(&echan->vchan, &head);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
	vchan_dma_desc_free_list(&echan->vchan, &head);

	return 0;
}

919
static int edma_slave_config(struct dma_chan *chan,
920
	struct dma_slave_config *cfg)
921
{
922 923
	struct edma_chan *echan = to_edma_chan(chan);

924 925
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
926 927
		return -EINVAL;

928
	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
929 930 931 932

	return 0;
}

933
static int edma_dma_pause(struct dma_chan *chan)
934
{
935 936
	struct edma_chan *echan = to_edma_chan(chan);

937
	if (!echan->edesc)
938 939
		return -EINVAL;

940
	edma_pause(echan);
941 942 943
	return 0;
}

944
static int edma_dma_resume(struct dma_chan *chan)
945
{
946 947
	struct edma_chan *echan = to_edma_chan(chan);

948
	edma_resume(echan);
949 950 951
	return 0;
}

952 953 954 955 956 957 958 959 960 961 962
/*
 * A PaRAM set configuration abstraction used by other modes
 * @chan: Channel who's PaRAM set we're configuring
 * @pset: PaRAM set to initialize and setup.
 * @src_addr: Source address of the DMA
 * @dst_addr: Destination address of the DMA
 * @burst: In units of dev_width, how much to send
 * @dev_width: How much is the dev_width
 * @dma_length: Total length of the DMA transfer
 * @direction: Direction of the transfer
 */
963
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
964
			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
965
			    unsigned int acnt, unsigned int dma_length,
966
			    enum dma_transfer_direction direction)
967 968 969
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
970
	struct edmacc_param *param = &epset->param;
971
	int bcnt, ccnt, cidx;
972 973 974
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
	int absync;

975 976 977
	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
	if (!burst)
		burst = 1;
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	/*
	 * If the maxburst is equal to the fifo width, use
	 * A-synced transfers. This allows for large contiguous
	 * buffer transfers using only one PaRAM set.
	 */
	if (burst == 1) {
		/*
		 * For the A-sync case, bcnt and ccnt are the remainder
		 * and quotient respectively of the division of:
		 * (dma_length / acnt) by (SZ_64K -1). This is so
		 * that in case bcnt over flows, we have ccnt to use.
		 * Note: In A-sync tranfer only, bcntrld is used, but it
		 * only applies for sg_dma_len(sg) >= SZ_64K.
		 * In this case, the best way adopted is- bccnt for the
		 * first frame will be the remainder below. Then for
		 * every successive frame, bcnt will be SZ_64K-1. This
		 * is assured as bcntrld = 0xffff in end of function.
		 */
		absync = false;
		ccnt = dma_length / acnt / (SZ_64K - 1);
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
		/*
		 * If bcnt is non-zero, we have a remainder and hence an
		 * extra frame to transfer, so increment ccnt.
		 */
		if (bcnt)
			ccnt++;
		else
			bcnt = SZ_64K - 1;
		cidx = acnt;
	} else {
		/*
		 * If maxburst is greater than the fifo address_width,
		 * use AB-synced transfers where A count is the fifo
		 * address_width and B count is the maxburst. In this
		 * case, we are limited to transfers of C count frames
		 * of (address_width * maxburst) where C count is limited
		 * to SZ_64K-1. This places an upper bound on the length
		 * of an SG segment that can be handled.
		 */
		absync = true;
		bcnt = burst;
		ccnt = dma_length / (acnt * bcnt);
		if (ccnt > (SZ_64K - 1)) {
			dev_err(dev, "Exceeded max SG segment size\n");
			return -EINVAL;
		}
		cidx = acnt * bcnt;
	}

1028 1029
	epset->len = dma_length;

1030 1031 1032 1033 1034
	if (direction == DMA_MEM_TO_DEV) {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = 0;
		dst_cidx = 0;
1035
		epset->addr = src_addr;
1036 1037 1038 1039 1040
	} else if (direction == DMA_DEV_TO_MEM)  {
		src_bidx = 0;
		src_cidx = 0;
		dst_bidx = acnt;
		dst_cidx = cidx;
1041
		epset->addr = dst_addr;
1042 1043 1044 1045 1046
	} else if (direction == DMA_MEM_TO_MEM)  {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = acnt;
		dst_cidx = cidx;
1047 1048 1049 1050 1051
	} else {
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
		return -EINVAL;
	}

1052
	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1053 1054
	/* Configure A or AB synchronized transfers */
	if (absync)
1055
		param->opt |= SYNCDIM;
1056

1057 1058
	param->src = src_addr;
	param->dst = dst_addr;
1059

1060 1061
	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1062

1063 1064
	param->a_b_cnt = bcnt << 16 | acnt;
	param->ccnt = ccnt;
1065 1066 1067 1068 1069 1070
	/*
	 * Only time when (bcntrld) auto reload is required is for
	 * A-sync case, and in this case, a requirement of reload value
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
	 * and then later will be populated by edma_execute.
	 */
1071
	param->link_bcntrld = 0xffffffff;
1072 1073 1074
	return absync;
}

1075 1076 1077 1078 1079 1080 1081 1082
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
1083
	dma_addr_t src_addr = 0, dst_addr = 0;
1084 1085
	enum dma_slave_buswidth dev_width;
	u32 burst;
1086
	struct scatterlist *sg;
1087
	int i, nslots, ret;
1088 1089 1090 1091

	if (unlikely(!echan || !sgl || !sg_len))
		return NULL;

1092
	if (direction == DMA_DEV_TO_MEM) {
1093
		src_addr = echan->cfg.src_addr;
1094 1095 1096
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
1097
		dst_addr = echan->cfg.dst_addr;
1098 1099 1100
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1101
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1102 1103 1104 1105
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1106
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1107 1108 1109
		return NULL;
	}

1110 1111
	edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1112
	if (!edesc) {
1113
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1114 1115 1116 1117
		return NULL;
	}

	edesc->pset_nr = sg_len;
1118
	edesc->residue = 0;
1119
	edesc->direction = direction;
1120
	edesc->echan = echan;
1121

1122 1123 1124 1125
	/* Allocate a PaRAM slot, if needed */
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);

	for (i = 0; i < nslots; i++) {
1126 1127
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1128
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1129
			if (echan->slot[i] < 0) {
V
Valentin Ilie 已提交
1130
				kfree(edesc);
1131 1132
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1133 1134 1135
				return NULL;
			}
		}
1136 1137 1138 1139
	}

	/* Configure PaRAM sets for each SG */
	for_each_sg(sgl, sg, sg_len, i) {
1140 1141 1142 1143 1144
		/* Get address for each SG */
		if (direction == DMA_DEV_TO_MEM)
			dst_addr = sg_dma_address(sg);
		else
			src_addr = sg_dma_address(sg);
1145

1146 1147 1148
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width,
				       sg_dma_len(sg), direction);
V
Vinod Koul 已提交
1149 1150
		if (ret < 0) {
			kfree(edesc);
1151
			return NULL;
1152 1153
		}

1154
		edesc->absync = ret;
1155
		edesc->residue += sg_dma_len(sg);
1156 1157 1158 1159

		/* If this is the last in a current SG set of transactions,
		   enable interrupts so that next set is processed */
		if (!((i+1) % MAX_NR_SG))
1160
			edesc->pset[i].param.opt |= TCINTEN;
1161

1162 1163
		/* If this is the last set, enable completion interrupt flag */
		if (i == sg_len - 1)
1164
			edesc->pset[i].param.opt |= TCINTEN;
1165
	}
1166
	edesc->residue_stat = edesc->residue;
1167 1168 1169 1170

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1171
static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1172 1173 1174
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
1175
	int ret, nslots;
1176 1177 1178
	struct edma_desc *edesc;
	struct device *dev = chan->device->dev;
	struct edma_chan *echan = to_edma_chan(chan);
1179
	unsigned int width, pset_len;
1180 1181 1182 1183

	if (unlikely(!echan || !len))
		return NULL;

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	if (len < SZ_64K) {
		/*
		 * Transfer size less than 64K can be handled with one paRAM
		 * slot and with one burst.
		 * ACNT = length
		 */
		width = len;
		pset_len = len;
		nslots = 1;
	} else {
		/*
		 * Transfer size bigger than 64K will be handled with maximum of
		 * two paRAM slots.
		 * slot1: (full_length / 32767) times 32767 bytes bursts.
		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
		 * slot2: the remaining amount of data after slot1.
		 *	  ACNT = full_length - length1, length2 = ACNT
		 *
		 * When the full_length is multibple of 32767 one slot can be
		 * used to complete the transfer.
		 */
		width = SZ_32K - 1;
		pset_len = rounddown(len, width);
		/* One slot is enough for lengths multiple of (SZ_32K -1) */
		if (unlikely(pset_len == len))
			nslots = 1;
		else
			nslots = 2;
	}

	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1216 1217 1218 1219 1220
	if (!edesc) {
		dev_dbg(dev, "Failed to allocate a descriptor\n");
		return NULL;
	}

1221 1222 1223 1224
	edesc->pset_nr = nslots;
	edesc->residue = edesc->residue_stat = len;
	edesc->direction = DMA_MEM_TO_MEM;
	edesc->echan = echan;
1225

1226
	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1227 1228 1229
			       width, pset_len, DMA_MEM_TO_MEM);
	if (ret < 0) {
		kfree(edesc);
1230
		return NULL;
1231
	}
1232 1233 1234

	edesc->absync = ret;

1235
	edesc->pset[0].param.opt |= ITCCHEN;
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	if (nslots == 1) {
		/* Enable transfer complete interrupt */
		edesc->pset[0].param.opt |= TCINTEN;
	} else {
		/* Enable transfer complete chaining for the first slot */
		edesc->pset[0].param.opt |= TCCHEN;

		if (echan->slot[1] < 0) {
			echan->slot[1] = edma_alloc_slot(echan->ecc,
							 EDMA_SLOT_ANY);
			if (echan->slot[1] < 0) {
				kfree(edesc);
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
				return NULL;
			}
		}
		dest += pset_len;
		src += pset_len;
		pset_len = width = len % (SZ_32K - 1);

		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
				       width, pset_len, DMA_MEM_TO_MEM);
		if (ret < 0) {
			kfree(edesc);
			return NULL;
		}

		edesc->pset[1].param.opt |= ITCCHEN;
		edesc->pset[1].param.opt |= TCINTEN;
	}
1267 1268 1269 1270

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1271 1272 1273
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
1274
	unsigned long tx_flags)
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr, dst_addr;
	enum dma_slave_buswidth dev_width;
	u32 burst;
	int i, ret, nslots;

	if (unlikely(!echan || !buf_len || !period_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dst_addr = buf_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		src_addr = buf_addr;
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1298
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1299 1300 1301 1302
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1303
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		return NULL;
	}

	if (unlikely(buf_len % period_len)) {
		dev_err(dev, "Period should be multiple of Buffer length\n");
		return NULL;
	}

	nslots = (buf_len / period_len) + 1;

	/*
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
	 * by cases where the number of periods is more than the maximum
	 * number of SGs the EDMA driver can handle at a time. For DMA types
	 * such as Slave SGs, such delays are tolerable and synchronized,
	 * but the synchronization is difficult to achieve with Cyclic and
	 * cannot be guaranteed, so we error out early.
	 */
	if (nslots > MAX_NR_SG)
		return NULL;

1325 1326
	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1327
	if (!edesc) {
1328
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1329 1330 1331 1332 1333
		return NULL;
	}

	edesc->cyclic = 1;
	edesc->pset_nr = nslots;
1334
	edesc->residue = edesc->residue_stat = buf_len;
1335
	edesc->direction = direction;
1336
	edesc->echan = echan;
1337

1338 1339
	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
		__func__, echan->ch_num, nslots, period_len, buf_len);
1340 1341 1342 1343 1344

	for (i = 0; i < nslots; i++) {
		/* Allocate a PaRAM slot, if needed */
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1345
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1346
			if (echan->slot[i] < 0) {
1347
				kfree(edesc);
1348 1349
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
				return NULL;
			}
		}

		if (i == nslots - 1) {
			memcpy(&edesc->pset[i], &edesc->pset[0],
			       sizeof(edesc->pset[0]));
			break;
		}

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width, period_len,
				       direction);
1363 1364
		if (ret < 0) {
			kfree(edesc);
1365
			return NULL;
1366
		}
1367

1368 1369 1370 1371
		if (direction == DMA_DEV_TO_MEM)
			dst_addr += period_len;
		else
			src_addr += period_len;
1372

1373 1374
		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
		dev_vdbg(dev,
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
			i, echan->ch_num, echan->slot[i],
1387 1388 1389 1390 1391 1392 1393 1394
			edesc->pset[i].param.opt,
			edesc->pset[i].param.src,
			edesc->pset[i].param.dst,
			edesc->pset[i].param.a_b_cnt,
			edesc->pset[i].param.ccnt,
			edesc->pset[i].param.src_dst_bidx,
			edesc->pset[i].param.src_dst_cidx,
			edesc->pset[i].param.link_bcntrld);
1395 1396 1397 1398

		edesc->absync = ret;

		/*
1399
		 * Enable period interrupt only if it is requested
1400
		 */
1401 1402
		if (tx_flags & DMA_PREP_INTERRUPT)
			edesc->pset[i].param.opt |= TCINTEN;
1403 1404
	}

1405
	/* Place the cyclic channel to highest priority queue */
1406
	edma_assign_channel_eventq(echan, EVENTQ_0);
1407

1408 1409 1410
	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1411
static void edma_completion_handler(struct edma_chan *echan)
1412 1413
{
	struct device *dev = echan->vchan.chan.device->dev;
1414
	struct edma_desc *edesc = echan->edesc;
1415

1416 1417
	if (!edesc)
		return;
1418

1419
	spin_lock(&echan->vchan.lock);
1420 1421 1422 1423 1424 1425
	if (edesc->cyclic) {
		vchan_cyclic_callback(&edesc->vdesc);
		spin_unlock(&echan->vchan.lock);
		return;
	} else if (edesc->processed == edesc->pset_nr) {
		edesc->residue = 0;
1426
		edma_stop(echan);
1427 1428 1429 1430 1431 1432 1433 1434 1435
		vchan_cookie_complete(&edesc->vdesc);
		echan->edesc = NULL;

		dev_dbg(dev, "Transfer completed on channel %d\n",
			echan->ch_num);
	} else {
		dev_dbg(dev, "Sub transfer completed on channel %d\n",
			echan->ch_num);

1436
		edma_pause(echan);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

		/* Update statistics for tx_status */
		edesc->residue -= edesc->sg_len;
		edesc->residue_stat = edesc->residue;
		edesc->processed_stat = edesc->processed;
	}
	edma_execute(echan);

	spin_unlock(&echan->vchan.lock);
}

/* eDMA interrupt handler */
static irqreturn_t dma_irq_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
	int ctlr;
	u32 sh_ier;
	u32 sh_ipr;
	u32 bank;

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_irq_handler\n");

	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
	if (!sh_ipr) {
		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
		if (!sh_ipr)
			return IRQ_NONE;
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
		bank = 1;
	} else {
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
		bank = 0;
	}

	do {
		u32 slot;
		u32 channel;

		slot = __ffs(sh_ipr);
		sh_ipr &= ~(BIT(slot));

		if (sh_ier & BIT(slot)) {
			channel = (bank << 5) | slot;
			/* Clear the corresponding IPR bits */
			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
			edma_completion_handler(&ecc->slave_chans[channel]);
1487
		}
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	} while (sh_ipr);

	edma_shadow0_write(ecc, SH_IEVAL, 1);
	return IRQ_HANDLED;
}

static void edma_error_handler(struct edma_chan *echan)
{
	struct edma_cc *ecc = echan->ecc;
	struct device *dev = echan->vchan.chan.device->dev;
	struct edmacc_param p;

	if (!echan->edesc)
		return;

	spin_lock(&echan->vchan.lock);
1504

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	edma_read_slot(ecc, echan->slot[0], &p);
	/*
	 * Issue later based on missed flag which will be sure
	 * to happen as:
	 * (1) we finished transmitting an intermediate slot and
	 *     edma_execute is coming up.
	 * (2) or we finished current transfer and issue will
	 *     call edma_execute.
	 *
	 * Important note: issuing can be dangerous here and
	 * lead to some nasty recursion when we are in a NULL
	 * slot. So we avoid doing so and set the missed flag.
	 */
	if (p.a_b_cnt == 0 && p.ccnt == 0) {
		dev_dbg(dev, "Error on null slot, setting miss\n");
		echan->missed = 1;
	} else {
1522
		/*
1523 1524
		 * The slot is already programmed but the event got
		 * missed, so its safe to issue it here.
1525
		 */
1526
		dev_dbg(dev, "Missed event, TRIGGERING\n");
1527 1528 1529 1530
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
1531 1532 1533 1534
	}
	spin_unlock(&echan->vchan.lock);
}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
static inline bool edma_error_pending(struct edma_cc *ecc)
{
	if (edma_read_array(ecc, EDMA_EMR, 0) ||
	    edma_read_array(ecc, EDMA_EMR, 1) ||
	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
		return true;

	return false;
}

1545 1546 1547 1548
/* eDMA error interrupt handler */
static irqreturn_t dma_ccerr_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
1549
	int i, j;
1550 1551
	int ctlr;
	unsigned int cnt = 0;
1552
	unsigned int val;
1553 1554 1555 1556 1557 1558 1559

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");

1560
	if (!edma_error_pending(ecc))
1561 1562 1563
		return IRQ_NONE;

	while (1) {
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
		/* Event missed register(s) */
		for (j = 0; j < 2; j++) {
			unsigned long emr;

			val = edma_read_array(ecc, EDMA_EMR, j);
			if (!val)
				continue;

			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
			emr = val;
			for (i = find_next_bit(&emr, 32, 0); i < 32;
			     i = find_next_bit(&emr, 32, i + 1)) {
1576 1577
				int k = (j << 5) + i;

1578 1579 1580 1581
				/* Clear the corresponding EMR bits */
				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
				/* Clear any SER */
				edma_shadow0_write_array(ecc, SH_SECR, j,
1582
							 BIT(i));
1583
				edma_error_handler(&ecc->slave_chans[k]);
1584
			}
1585
		}
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601

		val = edma_read(ecc, EDMA_QEMR);
		if (val) {
			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_QEMCR, val);
			edma_shadow0_write(ecc, SH_QSECR, val);
		}

		val = edma_read(ecc, EDMA_CCERR);
		if (val) {
			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_CCERRCLR, val);
		}

1602
		if (!edma_error_pending(ecc))
1603 1604 1605 1606
			break;
		cnt++;
		if (cnt > 10)
			break;
1607
	}
1608 1609
	edma_write(ecc, EDMA_EEVAL, 1);
	return IRQ_HANDLED;
1610 1611 1612 1613 1614 1615 1616 1617 1618
}

/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	int ret;

1619 1620 1621
	ret = edma_alloc_channel(echan, EVENTQ_DEFAULT);
	if (ret)
		return ret;
1622

1623 1624 1625 1626
	echan->slot[0] = edma_alloc_slot(echan->ecc, echan->ch_num);
	if (echan->slot[0] < 0) {
		dev_err(dev, "Entry slot allocation failed for channel %u\n",
			EDMA_CHAN_SLOT(echan->ch_num));
1627
		goto err_slot;
1628 1629 1630
	}

	/* Set up channel -> slot mapping for the entry slot */
1631 1632
	edma_set_chmap(echan, echan->slot[0]);
	echan->alloced = true;
1633

1634
	dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
1635
		EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
1636 1637 1638

	return 0;

1639 1640
err_slot:
	edma_free_channel(echan);
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	return ret;
}

/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	int i;

	/* Terminate transfers */
1651
	edma_stop(echan);
1652 1653 1654 1655

	vchan_free_chan_resources(&echan->vchan);

	/* Free EDMA PaRAM slots */
1656
	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1657
		if (echan->slot[i] >= 0) {
1658
			edma_free_slot(echan->ecc, echan->slot[i]);
1659 1660 1661 1662
			echan->slot[i] = -1;
		}
	}

1663
	/* Set entry slot to the dummy slot */
1664
	edma_set_chmap(echan, echan->ecc->dummy_slot);
1665

1666 1667
	/* Free EDMA channel */
	if (echan->alloced) {
1668
		edma_free_channel(echan);
1669 1670 1671
		echan->alloced = false;
	}

1672
	dev_dbg(chan->device->dev, "freeing channel for %u\n", echan->ch_num);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
}

/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
		edma_execute(echan);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
}

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
static u32 edma_residue(struct edma_desc *edesc)
{
	bool dst = edesc->direction == DMA_DEV_TO_MEM;
	struct edma_pset *pset = edesc->pset;
	dma_addr_t done, pos;
	int i;

	/*
	 * We always read the dst/src position from the first RamPar
	 * pset. That's the one which is active now.
	 */
1698
	pos = edma_get_position(edesc->echan->ecc, edesc->echan->slot[0], dst);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

	/*
	 * Cyclic is simple. Just subtract pset[0].addr from pos.
	 *
	 * We never update edesc->residue in the cyclic case, so we
	 * can tell the remaining room to the end of the circular
	 * buffer.
	 */
	if (edesc->cyclic) {
		done = pos - pset->addr;
		edesc->residue_stat = edesc->residue - done;
		return edesc->residue_stat;
	}

	/*
	 * For SG operation we catch up with the last processed
	 * status.
	 */
	pset += edesc->processed_stat;

	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
		/*
		 * If we are inside this pset address range, we know
		 * this is the active one. Get the current delta and
		 * stop walking the psets.
		 */
		if (pos >= pset->addr && pos < pset->addr + pset->len)
			return edesc->residue_stat - (pos - pset->addr);

		/* Otherwise mark it done and update residue_stat. */
		edesc->processed_stat++;
		edesc->residue_stat -= pset->len;
	}
	return edesc->residue_stat;
}

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
1746
	if (ret == DMA_COMPLETE || !txstate)
1747 1748 1749
		return ret;

	spin_lock_irqsave(&echan->vchan.lock, flags);
1750
	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1751
		txstate->residue = edma_residue(echan->edesc);
1752 1753
	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1754 1755 1756 1757 1758
	spin_unlock_irqrestore(&echan->vchan.lock, flags);

	return ret;
}

1759
static void __init edma_chan_init(struct edma_cc *ecc, struct dma_device *dma,
1760 1761 1762 1763
				  struct edma_chan *echans)
{
	int i, j;

1764
	for (i = 0; i < ecc->num_channels; i++) {
1765
		struct edma_chan *echan = &echans[i];
1766
		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
		echan->ecc = ecc;
		echan->vchan.desc_free = edma_desc_free;

		vchan_init(&echan->vchan, dma);

		INIT_LIST_HEAD(&echan->node);
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
			echan->slot[j] = -1;
	}
}

1778 1779
#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1780
				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1781 1782
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

1783 1784 1785 1786
static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
			  struct device *dev)
{
	dma->device_prep_slave_sg = edma_prep_slave_sg;
1787
	dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1788
	dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1789 1790 1791 1792
	dma->device_alloc_chan_resources = edma_alloc_chan_resources;
	dma->device_free_chan_resources = edma_free_chan_resources;
	dma->device_issue_pending = edma_issue_pending;
	dma->device_tx_status = edma_tx_status;
1793 1794 1795 1796
	dma->device_config = edma_slave_config;
	dma->device_pause = edma_dma_pause;
	dma->device_resume = edma_dma_resume;
	dma->device_terminate_all = edma_terminate_all;
1797 1798 1799 1800 1801 1802

	dma->src_addr_widths = EDMA_DMA_BUSWIDTHS;
	dma->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
	dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

1803 1804 1805 1806 1807
	dma->dev = dev;

	INIT_LIST_HEAD(&dma->channels);
}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
			      struct edma_cc *ecc)
{
	int i;
	u32 value, cccfg;
	s8 (*queue_priority_map)[2];

	/* Decode the eDMA3 configuration from CCCFG register */
	cccfg = edma_read(ecc, EDMA_CCCFG);

	value = GET_NUM_REGN(cccfg);
	ecc->num_region = BIT(value);

	value = GET_NUM_DMACH(cccfg);
	ecc->num_channels = BIT(value + 1);

1824 1825 1826
	value = GET_NUM_QDMACH(cccfg);
	ecc->num_qchannels = value * 2;

1827 1828 1829 1830 1831 1832
	value = GET_NUM_PAENTRY(cccfg);
	ecc->num_slots = BIT(value + 4);

	value = GET_NUM_EVQUE(cccfg);
	ecc->num_tc = value + 1;

1833 1834
	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;

1835 1836 1837
	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1838
	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1839 1840
	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1841
	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856

	/* Nothing need to be done if queue priority is provided */
	if (pdata->queue_priority_mapping)
		return 0;

	/*
	 * Configure TC/queue priority as follows:
	 * Q0 - priority 0
	 * Q1 - priority 1
	 * Q2 - priority 2
	 * ...
	 * The meaning of priority numbers: 0 highest priority, 7 lowest
	 * priority. So Q0 is the highest priority queue and the last queue has
	 * the lowest priority.
	 */
1857
	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
					  GFP_KERNEL);
	if (!queue_priority_map)
		return -ENOMEM;

	for (i = 0; i < ecc->num_tc; i++) {
		queue_priority_map[i][0] = i;
		queue_priority_map[i][1] = i;
	}
	queue_priority_map[i][0] = -1;
	queue_priority_map[i][1] = -1;

	pdata->queue_priority_mapping = queue_priority_map;
	/* Default queue has the lowest priority */
	pdata->default_queue = i - 1;

	return 0;
}

#if IS_ENABLED(CONFIG_OF)
static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
			       size_t sz)
{
	const char pname[] = "ti,edma-xbar-event-map";
	struct resource res;
	void __iomem *xbar;
	s16 (*xbar_chans)[2];
	size_t nelm = sz / sizeof(s16);
	u32 shift, offset, mux;
	int ret, i;

1888
	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	if (!xbar_chans)
		return -ENOMEM;

	ret = of_address_to_resource(dev->of_node, 1, &res);
	if (ret)
		return -ENOMEM;

	xbar = devm_ioremap(dev, res.start, resource_size(&res));
	if (!xbar)
		return -ENOMEM;

	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
					 nelm);
	if (ret)
		return -EIO;

	/* Invalidate last entry for the other user of this mess */
	nelm >>= 1;
	xbar_chans[nelm][0] = -1;
	xbar_chans[nelm][1] = -1;

	for (i = 0; i < nelm; i++) {
		shift = (xbar_chans[i][1] & 0x03) << 3;
		offset = xbar_chans[i][1] & 0xfffffffc;
		mux = readl(xbar + offset);
		mux &= ~(0xff << shift);
		mux |= xbar_chans[i][0] << shift;
		writel(mux, (xbar + offset));
	}

	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
	return 0;
}

static int edma_of_parse_dt(struct device *dev, struct edma_soc_info *pdata)
{
	int ret = 0;
	struct property *prop;
	size_t sz;
	struct edma_rsv_info *rsv_info;

	rsv_info = devm_kzalloc(dev, sizeof(struct edma_rsv_info), GFP_KERNEL);
	if (!rsv_info)
		return -ENOMEM;
	pdata->rsv = rsv_info;

	prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", &sz);
	if (prop)
		ret = edma_xbar_event_map(dev, pdata, sz);

	return ret;
}

static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev)
{
	struct edma_soc_info *info;
	int ret;

	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
	if (!info)
		return ERR_PTR(-ENOMEM);

	ret = edma_of_parse_dt(dev, info);
	if (ret)
		return ERR_PTR(ret);

	return info;
}
#else
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev)
{
	return ERR_PTR(-EINVAL);
}
#endif

B
Bill Pemberton 已提交
1964
static int edma_probe(struct platform_device *pdev)
1965
{
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	struct edma_soc_info	*info = pdev->dev.platform_data;
	s8			(*queue_priority_mapping)[2];
	int			i, off, ln;
	const s16		(*rsv_chans)[2];
	const s16		(*rsv_slots)[2];
	const s16		(*xbar_chans)[2];
	int			irq;
	char			*irq_name;
	struct resource		*mem;
	struct device_node	*node = pdev->dev.of_node;
	struct device		*dev = &pdev->dev;
	struct edma_cc		*ecc;
1978 1979
	int ret;

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	if (node) {
		info = edma_setup_info_from_dt(dev);
		if (IS_ERR(info)) {
			dev_err(dev, "failed to get DT data\n");
			return PTR_ERR(info);
		}
	}

	if (!info)
		return -ENODEV;

	pm_runtime_enable(dev);
	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		dev_err(dev, "pm_runtime_get_sync() failed\n");
		return ret;
	}

1998
	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
1999 2000 2001
	if (ret)
		return ret;

2002
	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2003
	if (!ecc) {
2004
		dev_err(dev, "Can't allocate controller\n");
2005 2006 2007
		return -ENOMEM;
	}

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	ecc->dev = dev;
	ecc->id = pdev->id;
	/* When booting with DT the pdev->id is -1 */
	if (ecc->id < 0)
		ecc->id = 0;

	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
	if (!mem) {
		dev_dbg(dev, "mem resource not found, using index 0\n");
		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
		if (!mem) {
			dev_err(dev, "no mem resource?\n");
			return -ENODEV;
		}
	}
	ecc->base = devm_ioremap_resource(dev, mem);
	if (IS_ERR(ecc->base))
		return PTR_ERR(ecc->base);

	platform_set_drvdata(pdev, ecc);

	/* Get eDMA3 configuration from IP */
	ret = edma_setup_from_hw(dev, info, ecc);
	if (ret)
		return ret;

2034 2035 2036 2037 2038 2039
	/* Allocate memory based on the information we got from the IP */
	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
					sizeof(*ecc->slave_chans), GFP_KERNEL);
	if (!ecc->slave_chans)
		return -ENOMEM;

2040 2041 2042 2043
	ecc->channel_unused = devm_kcalloc(dev,
					   BITS_TO_LONGS(ecc->num_channels),
					   sizeof(unsigned long), GFP_KERNEL);
	if (!ecc->channel_unused)
2044 2045
		return -ENOMEM;

2046
	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2047
				       sizeof(unsigned long), GFP_KERNEL);
2048
	if (!ecc->slot_inuse)
2049 2050
		return -ENOMEM;

2051 2052 2053 2054 2055 2056
	ecc->default_queue = info->default_queue;

	for (i = 0; i < ecc->num_slots; i++)
		edma_write_slot(ecc, i, &dummy_paramset);

	/* Mark all channels as unused */
2057
	memset(ecc->channel_unused, 0xff, sizeof(ecc->channel_unused));
2058 2059 2060 2061 2062 2063 2064 2065

	if (info->rsv) {
		/* Clear the reserved channels in unused list */
		rsv_chans = info->rsv->rsv_chans;
		if (rsv_chans) {
			for (i = 0; rsv_chans[i][0] != -1; i++) {
				off = rsv_chans[i][0];
				ln = rsv_chans[i][1];
2066
				clear_bits(off, ln, ecc->channel_unused);
2067 2068 2069 2070 2071 2072 2073 2074 2075
			}
		}

		/* Set the reserved slots in inuse list */
		rsv_slots = info->rsv->rsv_slots;
		if (rsv_slots) {
			for (i = 0; rsv_slots[i][0] != -1; i++) {
				off = rsv_slots[i][0];
				ln = rsv_slots[i][1];
2076
				set_bits(off, ln, ecc->slot_inuse);
2077 2078 2079 2080 2081 2082 2083 2084 2085
			}
		}
	}

	/* Clear the xbar mapped channels in unused list */
	xbar_chans = info->xbar_chans;
	if (xbar_chans) {
		for (i = 0; xbar_chans[i][1] != -1; i++) {
			off = xbar_chans[i][1];
2086
			clear_bits(off, 1, ecc->channel_unused);
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
		}
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 0);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 2);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
	}

2120 2121 2122 2123 2124 2125
	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
	if (ecc->dummy_slot < 0) {
		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
		return ecc->dummy_slot;
	}

2126 2127 2128 2129 2130 2131
	queue_priority_mapping = info->queue_priority_mapping;

	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);
2132

2133 2134 2135 2136 2137 2138 2139
	for (i = 0; i < ecc->num_region; i++) {
		edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
		edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
		edma_write_array(ecc, EDMA_QRAE, i, 0x0);
	}
	ecc->info = info;

2140 2141
	dma_cap_zero(ecc->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
2142
	dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
2143
	dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
2144

2145
	edma_dma_init(ecc, &ecc->dma_slave, dev);
2146 2147 2148

	edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);

2149 2150
	for (i = 0; i < ecc->num_channels; i++) {
		/* Assign all channels to the default queue */
2151 2152
		edma_assign_channel_eventq(&ecc->slave_chans[i],
					   info->default_queue);
2153 2154 2155 2156
		/* Set entry slot to the dummy slot */
		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
	}

2157 2158 2159 2160
	ret = dma_async_device_register(&ecc->dma_slave);
	if (ret)
		goto err_reg1;

2161 2162
	if (node)
		of_dma_controller_register(node, of_dma_xlate_by_chan_id,
2163
					   &ecc->dma_slave);
2164

2165
	dev_info(dev, "TI EDMA DMA engine driver\n");
2166 2167 2168 2169

	return 0;

err_reg1:
2170
	edma_free_slot(ecc, ecc->dummy_slot);
2171 2172 2173
	return ret;
}

2174
static int edma_remove(struct platform_device *pdev)
2175 2176 2177 2178
{
	struct device *dev = &pdev->dev;
	struct edma_cc *ecc = dev_get_drvdata(dev);

2179 2180
	if (dev->of_node)
		of_dma_controller_free(dev->of_node);
2181
	dma_async_device_unregister(&ecc->dma_slave);
2182
	edma_free_slot(ecc, ecc->dummy_slot);
2183 2184 2185 2186

	return 0;
}

2187 2188 2189 2190
#ifdef CONFIG_PM_SLEEP
static int edma_pm_resume(struct device *dev)
{
	struct edma_cc *ecc = dev_get_drvdata(dev);
2191
	struct edma_chan *echan = ecc->slave_chans;
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	int i;
	s8 (*queue_priority_mapping)[2];

	queue_priority_mapping = ecc->info->queue_priority_mapping;

	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);

	for (i = 0; i < ecc->num_channels; i++) {
2203
		if (echan[i].alloced) {
2204 2205 2206 2207
			/* ensure access through shadow region 0 */
			edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
				       BIT(i & 0x1f));

2208
			edma_setup_interrupt(&echan[i], true);
2209 2210

			/* Set up channel -> slot mapping for the entry slot */
2211
			edma_set_chmap(&echan[i], echan[i].slot[0]);
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
		}
	}

	return 0;
}
#endif

static const struct dev_pm_ops edma_pm_ops = {
	SET_LATE_SYSTEM_SLEEP_PM_OPS(NULL, edma_pm_resume)
};

2223 2224
static struct platform_driver edma_driver = {
	.probe		= edma_probe,
B
Bill Pemberton 已提交
2225
	.remove		= edma_remove,
2226
	.driver = {
2227 2228 2229
		.name	= "edma",
		.pm	= &edma_pm_ops,
		.of_match_table = edma_of_ids,
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	},
};

bool edma_filter_fn(struct dma_chan *chan, void *param)
{
	if (chan->device->dev->driver == &edma_driver.driver) {
		struct edma_chan *echan = to_edma_chan(chan);
		unsigned ch_req = *(unsigned *)param;
		return ch_req == echan->ch_num;
	}
	return false;
}
EXPORT_SYMBOL(edma_filter_fn);

static int edma_init(void)
{
2246
	return platform_driver_register(&edma_driver);
2247 2248 2249 2250 2251 2252 2253 2254 2255
}
subsys_initcall(edma_init);

static void __exit edma_exit(void)
{
	platform_driver_unregister(&edma_driver);
}
module_exit(edma_exit);

J
Josh Boyer 已提交
2256
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2257 2258
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");