edma.c 63.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * TI EDMA DMA engine driver
 *
 * Copyright 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
18
#include <linux/edma.h>
19 20 21 22 23 24 25 26
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
27
#include <linux/of.h>
28
#include <linux/of_dma.h>
29 30 31 32
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
33

34
#include <linux/platform_data/edma.h>
35 36 37 38

#include "dmaengine.h"
#include "virt-dma.h"

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
/* Offsets matching "struct edmacc_param" */
#define PARM_OPT		0x00
#define PARM_SRC		0x04
#define PARM_A_B_CNT		0x08
#define PARM_DST		0x0c
#define PARM_SRC_DST_BIDX	0x10
#define PARM_LINK_BCNTRLD	0x14
#define PARM_SRC_DST_CIDX	0x18
#define PARM_CCNT		0x1c

#define PARM_SIZE		0x20

/* Offsets for EDMA CC global channel registers and their shadows */
#define SH_ER			0x00	/* 64 bits */
#define SH_ECR			0x08	/* 64 bits */
#define SH_ESR			0x10	/* 64 bits */
#define SH_CER			0x18	/* 64 bits */
#define SH_EER			0x20	/* 64 bits */
#define SH_EECR			0x28	/* 64 bits */
#define SH_EESR			0x30	/* 64 bits */
#define SH_SER			0x38	/* 64 bits */
#define SH_SECR			0x40	/* 64 bits */
#define SH_IER			0x50	/* 64 bits */
#define SH_IECR			0x58	/* 64 bits */
#define SH_IESR			0x60	/* 64 bits */
#define SH_IPR			0x68	/* 64 bits */
#define SH_ICR			0x70	/* 64 bits */
#define SH_IEVAL		0x78
#define SH_QER			0x80
#define SH_QEER			0x84
#define SH_QEECR		0x88
#define SH_QEESR		0x8c
#define SH_QSER			0x90
#define SH_QSECR		0x94
#define SH_SIZE			0x200

/* Offsets for EDMA CC global registers */
#define EDMA_REV		0x0000
#define EDMA_CCCFG		0x0004
#define EDMA_QCHMAP		0x0200	/* 8 registers */
#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
#define EDMA_QDMAQNUM		0x0260
#define EDMA_QUETCMAP		0x0280
#define EDMA_QUEPRI		0x0284
#define EDMA_EMR		0x0300	/* 64 bits */
#define EDMA_EMCR		0x0308	/* 64 bits */
#define EDMA_QEMR		0x0310
#define EDMA_QEMCR		0x0314
#define EDMA_CCERR		0x0318
#define EDMA_CCERRCLR		0x031c
#define EDMA_EEVAL		0x0320
#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
#define EDMA_QRAE		0x0380	/* 4 registers */
#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
#define EDMA_QSTAT		0x0600	/* 2 registers */
#define EDMA_QWMTHRA		0x0620
#define EDMA_QWMTHRB		0x0624
#define EDMA_CCSTAT		0x0640

#define EDMA_M			0x1000	/* global channel registers */
#define EDMA_ECR		0x1008
#define EDMA_ECRH		0x100C
#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
#define EDMA_PARM		0x4000	/* PaRAM entries */

#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))

#define EDMA_DCHMAP		0x0100  /* 64 registers */

/* CCCFG register */
#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
110
#define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
111 112 113 114 115
#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
#define CHMAP_EXIST		BIT(24)

116 117 118 119 120 121 122 123
/*
 * Max of 20 segments per channel to conserve PaRAM slots
 * Also note that MAX_NR_SG should be atleast the no.of periods
 * that are required for ASoC, otherwise DMA prep calls will
 * fail. Today davinci-pcm is the only user of this driver and
 * requires atleast 17 slots, so we setup the default to 20.
 */
#define MAX_NR_SG		20
124 125 126
#define EDMA_MAX_SLOTS		MAX_NR_SG
#define EDMA_DESCRIPTORS	16

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
#define EDMA_CONT_PARAMS_ANY		 1001
#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003

/* PaRAM slots are laid out like this */
struct edmacc_param {
	u32 opt;
	u32 src;
	u32 a_b_cnt;
	u32 dst;
	u32 src_dst_bidx;
	u32 link_bcntrld;
	u32 src_dst_cidx;
	u32 ccnt;
} __packed;

/* fields in edmacc_param.opt */
#define SAM		BIT(0)
#define DAM		BIT(1)
#define SYNCDIM		BIT(2)
#define STATIC		BIT(3)
#define EDMA_FWID	(0x07 << 8)
#define TCCMODE		BIT(11)
#define EDMA_TCC(t)	((t) << 12)
#define TCINTEN		BIT(20)
#define ITCINTEN	BIT(21)
#define TCCHEN		BIT(22)
#define ITCCHEN		BIT(23)

158
struct edma_pset {
159 160
	u32				len;
	dma_addr_t			addr;
161 162 163
	struct edmacc_param		param;
};

164 165 166
struct edma_desc {
	struct virt_dma_desc		vdesc;
	struct list_head		node;
167
	enum dma_transfer_direction	direction;
168
	int				cyclic;
169 170
	int				absync;
	int				pset_nr;
171
	struct edma_chan		*echan;
172
	int				processed;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

	/*
	 * The following 4 elements are used for residue accounting.
	 *
	 * - processed_stat: the number of SG elements we have traversed
	 * so far to cover accounting. This is updated directly to processed
	 * during edma_callback and is always <= processed, because processed
	 * refers to the number of pending transfer (programmed to EDMA
	 * controller), where as processed_stat tracks number of transfers
	 * accounted for so far.
	 *
	 * - residue: The amount of bytes we have left to transfer for this desc
	 *
	 * - residue_stat: The residue in bytes of data we have covered
	 * so far for accounting. This is updated directly to residue
	 * during callbacks to keep it current.
	 *
	 * - sg_len: Tracks the length of the current intermediate transfer,
	 * this is required to update the residue during intermediate transfer
	 * completion callback.
	 */
194 195
	int				processed_stat;
	u32				sg_len;
196
	u32				residue;
197
	u32				residue_stat;
198

199
	struct edma_pset		pset[0];
200 201 202 203
};

struct edma_cc;

204 205 206 207 208
struct edma_tc {
	struct device_node		*node;
	u16				id;
};

209 210 211 212 213
struct edma_chan {
	struct virt_dma_chan		vchan;
	struct list_head		node;
	struct edma_desc		*edesc;
	struct edma_cc			*ecc;
214
	struct edma_tc			*tc;
215 216
	int				ch_num;
	bool				alloced;
217
	bool				hw_triggered;
218
	int				slot[EDMA_MAX_SLOTS];
219
	int				missed;
220
	struct dma_slave_config		cfg;
221 222 223
};

struct edma_cc {
224 225 226 227
	struct device			*dev;
	struct edma_soc_info		*info;
	void __iomem			*base;
	int				id;
228
	bool				legacy_mode;
229 230 231

	/* eDMA3 resource information */
	unsigned			num_channels;
232
	unsigned			num_qchannels;
233 234 235
	unsigned			num_region;
	unsigned			num_slots;
	unsigned			num_tc;
236
	bool				chmap_exist;
237 238
	enum dma_event_q		default_queue;

239 240 241
	/*
	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
	 * in use by Linux or if it is allocated to be used by DSP.
242
	 */
243
	unsigned long *slot_inuse;
244

245
	struct dma_device		dma_slave;
246
	struct dma_device		*dma_memcpy;
247
	struct edma_chan		*slave_chans;
248
	struct edma_tc			*tc_list;
249 250 251
	int				dummy_slot;
};

252 253 254 255 256 257
/* dummy param set used to (re)initialize parameter RAM slots */
static const struct edmacc_param dummy_paramset = {
	.link_bcntrld = 0xffff,
	.ccnt = 1,
};

258 259
#define EDMA_BINDING_LEGACY	0
#define EDMA_BINDING_TPCC	1
260
static const struct of_device_id edma_of_ids[] = {
261 262 263 264 265 266 267 268
	{
		.compatible = "ti,edma3",
		.data = (void *)EDMA_BINDING_LEGACY,
	},
	{
		.compatible = "ti,edma3-tpcc",
		.data = (void *)EDMA_BINDING_TPCC,
	},
269 270 271
	{}
};

272 273 274 275 276
static const struct of_device_id edma_tptc_of_ids[] = {
	{ .compatible = "ti,edma3-tptc", },
	{}
};

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
{
	return (unsigned int)__raw_readl(ecc->base + offset);
}

static inline void edma_write(struct edma_cc *ecc, int offset, int val)
{
	__raw_writel(val, ecc->base + offset);
}

static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
			       unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	val |= or;
	edma_write(ecc, offset, val);
}

static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	edma_write(ecc, offset, val);
}

static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val |= or;
	edma_write(ecc, offset, val);
}

static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
					   int i)
{
	return edma_read(ecc, offset + (i << 2));
}

static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
				    unsigned val)
{
	edma_write(ecc, offset + (i << 2), val);
}

static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
				     unsigned and, unsigned or)
{
	edma_modify(ecc, offset + (i << 2), and, or);
}

static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
				 unsigned or)
{
	edma_or(ecc, offset + (i << 2), or);
}

static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
				  unsigned or)
{
	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
}

static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
				     int j, unsigned val)
{
	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
}

static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset);
}

static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
						   int offset, int i)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
}

static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
				      unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset, val);
}

static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
					    int i, unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
}

372 373
static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
					   int param_no)
374 375 376 377
{
	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
}

378 379
static inline void edma_param_write(struct edma_cc *ecc, int offset,
				    int param_no, unsigned val)
380 381 382 383
{
	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
}

384 385
static inline void edma_param_modify(struct edma_cc *ecc, int offset,
				     int param_no, unsigned and, unsigned or)
386 387 388 389
{
	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
}

390 391
static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
				  unsigned and)
392 393 394 395
{
	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
}

396 397
static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
				 unsigned or)
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
{
	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
}

static inline void set_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		set_bit(offset + (len - 1), p);
}

static inline void clear_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		clear_bit(offset + (len - 1), p);
}

static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
					  int priority)
{
	int bit = queue_no * 4;

	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
}

422
static void edma_set_chmap(struct edma_chan *echan, int slot)
423
{
424 425 426
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);

427 428 429 430
	if (ecc->chmap_exist) {
		slot = EDMA_CHAN_SLOT(slot);
		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
	}
431 432
}

433
static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
434
{
435 436
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
437

438
	if (enable) {
439 440 441 442
		edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
					 BIT(channel & 0x1f));
		edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
					 BIT(channel & 0x1f));
443
	} else {
444 445
		edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
					 BIT(channel & 0x1f));
446 447 448 449
	}
}

/*
450
 * paRAM slot management functions
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
 */
static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
			    const struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
}

static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
			   struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
}

/**
 * edma_alloc_slot - allocate DMA parameter RAM
 * @ecc: pointer to edma_cc struct
 * @slot: specific slot to allocate; negative for "any unused slot"
 *
 * This allocates a parameter RAM slot, initializing it to hold a
 * dummy transfer.  Slots allocated using this routine have not been
 * mapped to a hardware DMA channel, and will normally be used by
 * linking to them from a slot associated with a DMA channel.
 *
 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 * slots may be allocated on behalf of DSP firmware.
 *
 * Returns the number of the slot, else negative errno.
 */
static int edma_alloc_slot(struct edma_cc *ecc, int slot)
{
487
	if (slot >= 0) {
488
		slot = EDMA_CHAN_SLOT(slot);
489 490 491 492 493
		/* Requesting entry paRAM slot for a HW triggered channel. */
		if (ecc->chmap_exist && slot < ecc->num_channels)
			slot = EDMA_SLOT_ANY;
	}

494
	if (slot < 0) {
495 496 497 498
		if (ecc->chmap_exist)
			slot = 0;
		else
			slot = ecc->num_channels;
499
		for (;;) {
500
			slot = find_next_zero_bit(ecc->slot_inuse,
501 502 503 504
						  ecc->num_slots,
						  slot);
			if (slot == ecc->num_slots)
				return -ENOMEM;
505
			if (!test_and_set_bit(slot, ecc->slot_inuse))
506 507
				break;
		}
508
	} else if (slot >= ecc->num_slots) {
509
		return -EINVAL;
510
	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
511 512 513 514 515 516 517 518 519 520 521
		return -EBUSY;
	}

	edma_write_slot(ecc, slot, &dummy_paramset);

	return EDMA_CTLR_CHAN(ecc->id, slot);
}

static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
{
	slot = EDMA_CHAN_SLOT(slot);
522
	if (slot >= ecc->num_slots)
523 524 525
		return;

	edma_write_slot(ecc, slot, &dummy_paramset);
526
	clear_bit(slot, ecc->slot_inuse);
527 528 529 530 531 532 533 534 535 536 537 538
}

/**
 * edma_link - link one parameter RAM slot to another
 * @ecc: pointer to edma_cc struct
 * @from: parameter RAM slot originating the link
 * @to: parameter RAM slot which is the link target
 *
 * The originating slot should not be part of any active DMA transfer.
 */
static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
{
539 540 541
	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");

542 543 544 545 546
	from = EDMA_CHAN_SLOT(from);
	to = EDMA_CHAN_SLOT(to);
	if (from >= ecc->num_slots || to >= ecc->num_slots)
		return;

547 548
	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
			  PARM_OFFSET(to));
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
}

/**
 * edma_get_position - returns the current transfer point
 * @ecc: pointer to edma_cc struct
 * @slot: parameter RAM slot being examined
 * @dst:  true selects the dest position, false the source
 *
 * Returns the position of the current active slot
 */
static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
				    bool dst)
{
	u32 offs;

	slot = EDMA_CHAN_SLOT(slot);
	offs = PARM_OFFSET(slot);
	offs += dst ? PARM_DST : PARM_SRC;

	return edma_read(ecc, offs);
}

571
/*
572 573 574 575 576
 * Channels with event associations will be triggered by their hardware
 * events, and channels without such associations will be triggered by
 * software.  (At this writing there is no interface for using software
 * triggers except with channels that don't support hardware triggers.)
 */
577
static void edma_start(struct edma_chan *echan)
578
{
579 580 581 582
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
583

584
	if (!echan->hw_triggered) {
585
		/* EDMA channels without event association */
586 587 588 589
		dev_dbg(ecc->dev, "ESR%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ESR, j));
		edma_shadow0_write_array(ecc, SH_ESR, j, mask);
	} else {
590
		/* EDMA channel with event association */
591 592
		dev_dbg(ecc->dev, "ER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ER, j));
593 594 595 596 597 598
		/* Clear any pending event or error */
		edma_write_array(ecc, EDMA_ECR, j, mask);
		edma_write_array(ecc, EDMA_EMCR, j, mask);
		/* Clear any SER */
		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
		edma_shadow0_write_array(ecc, SH_EESR, j, mask);
599 600
		dev_dbg(ecc->dev, "EER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_EER, j));
601 602 603
	}
}

604
static void edma_stop(struct edma_chan *echan)
605
{
606 607 608 609
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
610

611 612 613 614
	edma_shadow0_write_array(ecc, SH_EECR, j, mask);
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write_array(ecc, EDMA_EMCR, j, mask);
615

616 617
	/* clear possibly pending completion interrupt */
	edma_shadow0_write_array(ecc, SH_ICR, j, mask);
618

619 620
	dev_dbg(ecc->dev, "EER%d %08x\n", j,
		edma_shadow0_read_array(ecc, SH_EER, j));
621

622 623 624
	/* REVISIT:  consider guarding against inappropriate event
	 * chaining by overwriting with dummy_paramset.
	 */
625 626
}

627 628 629
/*
 * Temporarily disable EDMA hardware events on the specified channel,
 * preventing them from triggering new transfers
630
 */
631
static void edma_pause(struct edma_chan *echan)
632
{
633 634
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
635

636
	edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
637 638
}

639
/* Re-enable EDMA hardware events on the specified channel.  */
640
static void edma_resume(struct edma_chan *echan)
641
{
642 643
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
644

645
	edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
646 647
}

648
static void edma_trigger_channel(struct edma_chan *echan)
649
{
650 651 652
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
653 654 655

	edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);

656 657
	dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
		edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
658 659
}

660
static void edma_clean_channel(struct edma_chan *echan)
661
{
662 663 664 665
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
666

667 668 669 670 671 672 673
	dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	/* Clear the corresponding EMR bits */
	edma_write_array(ecc, EDMA_EMCR, j, mask);
	/* Clear any SER */
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
674 675
}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
/* Move channel to a specific event queue */
static void edma_assign_channel_eventq(struct edma_chan *echan,
				       enum dma_event_q eventq_no)
{
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int bit = (channel & 0x7) * 4;

	/* default to low priority queue */
	if (eventq_no == EVENTQ_DEFAULT)
		eventq_no = ecc->default_queue;
	if (eventq_no >= ecc->num_tc)
		return;

	eventq_no &= 7;
	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
			  eventq_no << bit);
}

695
static int edma_alloc_channel(struct edma_chan *echan,
696
			      enum dma_event_q eventq_no)
697
{
698 699
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
700 701 702 703 704

	/* ensure access through shadow region 0 */
	edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));

	/* ensure no events are pending */
705
	edma_stop(echan);
706

707
	edma_setup_interrupt(echan, true);
708

709
	edma_assign_channel_eventq(echan, eventq_no);
710

711
	return 0;
712 713
}

714
static void edma_free_channel(struct edma_chan *echan)
715
{
716 717
	/* ensure no events are pending */
	edma_stop(echan);
718
	/* REVISIT should probably take out of shadow region 0 */
719
	edma_setup_interrupt(echan, false);
720 721
}

722 723 724 725 726 727 728 729 730 731
static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
	return container_of(d, struct edma_cc, dma_slave);
}

static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
	return container_of(c, struct edma_chan, vchan.chan);
}

732
static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
733 734 735 736 737 738 739 740 741 742 743 744
{
	return container_of(tx, struct edma_desc, vdesc.tx);
}

static void edma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct edma_desc, vdesc));
}

/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
745
	struct edma_cc *ecc = echan->ecc;
746
	struct virt_dma_desc *vdesc;
747
	struct edma_desc *edesc;
748 749 750
	struct device *dev = echan->vchan.chan.device->dev;
	int i, j, left, nslots;

751 752
	if (!echan->edesc) {
		/* Setup is needed for the first transfer */
753
		vdesc = vchan_next_desc(&echan->vchan);
754
		if (!vdesc)
755 756 757
			return;
		list_del(&vdesc->node);
		echan->edesc = to_edma_desc(&vdesc->tx);
758 759
	}

760
	edesc = echan->edesc;
761

762 763 764
	/* Find out how many left */
	left = edesc->pset_nr - edesc->processed;
	nslots = min(MAX_NR_SG, left);
765
	edesc->sg_len = 0;
766 767

	/* Write descriptor PaRAM set(s) */
768 769
	for (i = 0; i < nslots; i++) {
		j = i + edesc->processed;
770
		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
771
		edesc->sg_len += edesc->pset[j].len;
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
		dev_vdbg(dev,
			 "\n pset[%d]:\n"
			 "  chnum\t%d\n"
			 "  slot\t%d\n"
			 "  opt\t%08x\n"
			 "  src\t%08x\n"
			 "  dst\t%08x\n"
			 "  abcnt\t%08x\n"
			 "  ccnt\t%08x\n"
			 "  bidx\t%08x\n"
			 "  cidx\t%08x\n"
			 "  lkrld\t%08x\n",
			 j, echan->ch_num, echan->slot[i],
			 edesc->pset[j].param.opt,
			 edesc->pset[j].param.src,
			 edesc->pset[j].param.dst,
			 edesc->pset[j].param.a_b_cnt,
			 edesc->pset[j].param.ccnt,
			 edesc->pset[j].param.src_dst_bidx,
			 edesc->pset[j].param.src_dst_cidx,
			 edesc->pset[j].param.link_bcntrld);
793
		/* Link to the previous slot if not the last set */
794
		if (i != (nslots - 1))
795
			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
796 797
	}

798 799
	edesc->processed += nslots;

800 801 802 803 804
	/*
	 * If this is either the last set in a set of SG-list transactions
	 * then setup a link to the dummy slot, this results in all future
	 * events being absorbed and that's OK because we're done
	 */
805 806
	if (edesc->processed == edesc->pset_nr) {
		if (edesc->cyclic)
807
			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
808
		else
809
			edma_link(ecc, echan->slot[nslots - 1],
810 811
				  echan->ecc->dummy_slot);
	}
812

813
	if (echan->missed) {
814 815 816 817 818
		/*
		 * This happens due to setup times between intermediate
		 * transfers in long SG lists which have to be broken up into
		 * transfers of MAX_NR_SG
		 */
819
		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
820 821 822 823
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
824
		echan->missed = 0;
825 826 827
	} else if (edesc->processed <= MAX_NR_SG) {
		dev_dbg(dev, "first transfer starting on channel %d\n",
			echan->ch_num);
828
		edma_start(echan);
829 830 831
	} else {
		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
			echan->ch_num, edesc->processed);
832
		edma_resume(echan);
833
	}
834 835
}

836
static int edma_terminate_all(struct dma_chan *chan)
837
{
838
	struct edma_chan *echan = to_edma_chan(chan);
839 840 841 842 843 844 845 846 847 848 849
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&echan->vchan.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
	 * after edma_dma() returns (even if it does, it will see
	 * echan->edesc is NULL and exit.)
	 */
	if (echan->edesc) {
850
		edma_stop(echan);
851
		/* Move the cyclic channel back to default queue */
852
		if (!echan->tc && echan->edesc->cyclic)
853
			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
854 855 856 857 858
		/*
		 * free the running request descriptor
		 * since it is not in any of the vdesc lists
		 */
		edma_desc_free(&echan->edesc->vdesc);
859 860 861 862 863 864 865 866 867 868
		echan->edesc = NULL;
	}

	vchan_get_all_descriptors(&echan->vchan, &head);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
	vchan_dma_desc_free_list(&echan->vchan, &head);

	return 0;
}

869
static int edma_slave_config(struct dma_chan *chan,
870
	struct dma_slave_config *cfg)
871
{
872 873
	struct edma_chan *echan = to_edma_chan(chan);

874 875
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
876 877
		return -EINVAL;

878
	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
879 880 881 882

	return 0;
}

883
static int edma_dma_pause(struct dma_chan *chan)
884
{
885 886
	struct edma_chan *echan = to_edma_chan(chan);

887
	if (!echan->edesc)
888 889
		return -EINVAL;

890
	edma_pause(echan);
891 892 893
	return 0;
}

894
static int edma_dma_resume(struct dma_chan *chan)
895
{
896 897
	struct edma_chan *echan = to_edma_chan(chan);

898
	edma_resume(echan);
899 900 901
	return 0;
}

902 903 904 905 906 907 908 909 910 911 912
/*
 * A PaRAM set configuration abstraction used by other modes
 * @chan: Channel who's PaRAM set we're configuring
 * @pset: PaRAM set to initialize and setup.
 * @src_addr: Source address of the DMA
 * @dst_addr: Destination address of the DMA
 * @burst: In units of dev_width, how much to send
 * @dev_width: How much is the dev_width
 * @dma_length: Total length of the DMA transfer
 * @direction: Direction of the transfer
 */
913
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
914
			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
915
			    unsigned int acnt, unsigned int dma_length,
916
			    enum dma_transfer_direction direction)
917 918 919
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
920
	struct edmacc_param *param = &epset->param;
921
	int bcnt, ccnt, cidx;
922 923 924
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
	int absync;

925 926 927
	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
	if (!burst)
		burst = 1;
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
	/*
	 * If the maxburst is equal to the fifo width, use
	 * A-synced transfers. This allows for large contiguous
	 * buffer transfers using only one PaRAM set.
	 */
	if (burst == 1) {
		/*
		 * For the A-sync case, bcnt and ccnt are the remainder
		 * and quotient respectively of the division of:
		 * (dma_length / acnt) by (SZ_64K -1). This is so
		 * that in case bcnt over flows, we have ccnt to use.
		 * Note: In A-sync tranfer only, bcntrld is used, but it
		 * only applies for sg_dma_len(sg) >= SZ_64K.
		 * In this case, the best way adopted is- bccnt for the
		 * first frame will be the remainder below. Then for
		 * every successive frame, bcnt will be SZ_64K-1. This
		 * is assured as bcntrld = 0xffff in end of function.
		 */
		absync = false;
		ccnt = dma_length / acnt / (SZ_64K - 1);
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
		/*
		 * If bcnt is non-zero, we have a remainder and hence an
		 * extra frame to transfer, so increment ccnt.
		 */
		if (bcnt)
			ccnt++;
		else
			bcnt = SZ_64K - 1;
		cidx = acnt;
	} else {
		/*
		 * If maxburst is greater than the fifo address_width,
		 * use AB-synced transfers where A count is the fifo
		 * address_width and B count is the maxburst. In this
		 * case, we are limited to transfers of C count frames
		 * of (address_width * maxburst) where C count is limited
		 * to SZ_64K-1. This places an upper bound on the length
		 * of an SG segment that can be handled.
		 */
		absync = true;
		bcnt = burst;
		ccnt = dma_length / (acnt * bcnt);
		if (ccnt > (SZ_64K - 1)) {
			dev_err(dev, "Exceeded max SG segment size\n");
			return -EINVAL;
		}
		cidx = acnt * bcnt;
	}

978 979
	epset->len = dma_length;

980 981 982 983 984
	if (direction == DMA_MEM_TO_DEV) {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = 0;
		dst_cidx = 0;
985
		epset->addr = src_addr;
986 987 988 989 990
	} else if (direction == DMA_DEV_TO_MEM)  {
		src_bidx = 0;
		src_cidx = 0;
		dst_bidx = acnt;
		dst_cidx = cidx;
991
		epset->addr = dst_addr;
992 993 994 995 996
	} else if (direction == DMA_MEM_TO_MEM)  {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = acnt;
		dst_cidx = cidx;
997 998 999 1000 1001
	} else {
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
		return -EINVAL;
	}

1002
	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1003 1004
	/* Configure A or AB synchronized transfers */
	if (absync)
1005
		param->opt |= SYNCDIM;
1006

1007 1008
	param->src = src_addr;
	param->dst = dst_addr;
1009

1010 1011
	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1012

1013 1014
	param->a_b_cnt = bcnt << 16 | acnt;
	param->ccnt = ccnt;
1015 1016 1017 1018 1019 1020
	/*
	 * Only time when (bcntrld) auto reload is required is for
	 * A-sync case, and in this case, a requirement of reload value
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
	 * and then later will be populated by edma_execute.
	 */
1021
	param->link_bcntrld = 0xffffffff;
1022 1023 1024
	return absync;
}

1025 1026 1027 1028 1029 1030 1031 1032
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
1033
	dma_addr_t src_addr = 0, dst_addr = 0;
1034 1035
	enum dma_slave_buswidth dev_width;
	u32 burst;
1036
	struct scatterlist *sg;
1037
	int i, nslots, ret;
1038 1039 1040 1041

	if (unlikely(!echan || !sgl || !sg_len))
		return NULL;

1042
	if (direction == DMA_DEV_TO_MEM) {
1043
		src_addr = echan->cfg.src_addr;
1044 1045 1046
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
1047
		dst_addr = echan->cfg.dst_addr;
1048 1049 1050
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1051
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1052 1053 1054 1055
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1056
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1057 1058 1059
		return NULL;
	}

1060 1061
	edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1062
	if (!edesc) {
1063
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1064 1065 1066 1067
		return NULL;
	}

	edesc->pset_nr = sg_len;
1068
	edesc->residue = 0;
1069
	edesc->direction = direction;
1070
	edesc->echan = echan;
1071

1072 1073 1074 1075
	/* Allocate a PaRAM slot, if needed */
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);

	for (i = 0; i < nslots; i++) {
1076 1077
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1078
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1079
			if (echan->slot[i] < 0) {
V
Valentin Ilie 已提交
1080
				kfree(edesc);
1081 1082
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1083 1084 1085
				return NULL;
			}
		}
1086 1087 1088 1089
	}

	/* Configure PaRAM sets for each SG */
	for_each_sg(sgl, sg, sg_len, i) {
1090 1091 1092 1093 1094
		/* Get address for each SG */
		if (direction == DMA_DEV_TO_MEM)
			dst_addr = sg_dma_address(sg);
		else
			src_addr = sg_dma_address(sg);
1095

1096 1097 1098
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width,
				       sg_dma_len(sg), direction);
V
Vinod Koul 已提交
1099 1100
		if (ret < 0) {
			kfree(edesc);
1101
			return NULL;
1102 1103
		}

1104
		edesc->absync = ret;
1105
		edesc->residue += sg_dma_len(sg);
1106 1107 1108 1109

		/* If this is the last in a current SG set of transactions,
		   enable interrupts so that next set is processed */
		if (!((i+1) % MAX_NR_SG))
1110
			edesc->pset[i].param.opt |= TCINTEN;
1111

1112 1113
		/* If this is the last set, enable completion interrupt flag */
		if (i == sg_len - 1)
1114
			edesc->pset[i].param.opt |= TCINTEN;
1115
	}
1116
	edesc->residue_stat = edesc->residue;
1117 1118 1119 1120

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1121
static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1122 1123 1124
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
1125
	int ret, nslots;
1126 1127 1128
	struct edma_desc *edesc;
	struct device *dev = chan->device->dev;
	struct edma_chan *echan = to_edma_chan(chan);
1129
	unsigned int width, pset_len;
1130 1131 1132 1133

	if (unlikely(!echan || !len))
		return NULL;

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	if (len < SZ_64K) {
		/*
		 * Transfer size less than 64K can be handled with one paRAM
		 * slot and with one burst.
		 * ACNT = length
		 */
		width = len;
		pset_len = len;
		nslots = 1;
	} else {
		/*
		 * Transfer size bigger than 64K will be handled with maximum of
		 * two paRAM slots.
		 * slot1: (full_length / 32767) times 32767 bytes bursts.
		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
		 * slot2: the remaining amount of data after slot1.
		 *	  ACNT = full_length - length1, length2 = ACNT
		 *
		 * When the full_length is multibple of 32767 one slot can be
		 * used to complete the transfer.
		 */
		width = SZ_32K - 1;
		pset_len = rounddown(len, width);
		/* One slot is enough for lengths multiple of (SZ_32K -1) */
		if (unlikely(pset_len == len))
			nslots = 1;
		else
			nslots = 2;
	}

	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1166 1167 1168 1169 1170
	if (!edesc) {
		dev_dbg(dev, "Failed to allocate a descriptor\n");
		return NULL;
	}

1171 1172 1173 1174
	edesc->pset_nr = nslots;
	edesc->residue = edesc->residue_stat = len;
	edesc->direction = DMA_MEM_TO_MEM;
	edesc->echan = echan;
1175

1176
	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1177 1178 1179
			       width, pset_len, DMA_MEM_TO_MEM);
	if (ret < 0) {
		kfree(edesc);
1180
		return NULL;
1181
	}
1182 1183 1184

	edesc->absync = ret;

1185
	edesc->pset[0].param.opt |= ITCCHEN;
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	if (nslots == 1) {
		/* Enable transfer complete interrupt */
		edesc->pset[0].param.opt |= TCINTEN;
	} else {
		/* Enable transfer complete chaining for the first slot */
		edesc->pset[0].param.opt |= TCCHEN;

		if (echan->slot[1] < 0) {
			echan->slot[1] = edma_alloc_slot(echan->ecc,
							 EDMA_SLOT_ANY);
			if (echan->slot[1] < 0) {
				kfree(edesc);
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
				return NULL;
			}
		}
		dest += pset_len;
		src += pset_len;
		pset_len = width = len % (SZ_32K - 1);

		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
				       width, pset_len, DMA_MEM_TO_MEM);
		if (ret < 0) {
			kfree(edesc);
			return NULL;
		}

		edesc->pset[1].param.opt |= ITCCHEN;
		edesc->pset[1].param.opt |= TCINTEN;
	}
1217 1218 1219 1220

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1221 1222 1223
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
1224
	unsigned long tx_flags)
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr, dst_addr;
	enum dma_slave_buswidth dev_width;
	u32 burst;
	int i, ret, nslots;

	if (unlikely(!echan || !buf_len || !period_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dst_addr = buf_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		src_addr = buf_addr;
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1248
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1249 1250 1251 1252
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1253
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
		return NULL;
	}

	if (unlikely(buf_len % period_len)) {
		dev_err(dev, "Period should be multiple of Buffer length\n");
		return NULL;
	}

	nslots = (buf_len / period_len) + 1;

	/*
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
	 * by cases where the number of periods is more than the maximum
	 * number of SGs the EDMA driver can handle at a time. For DMA types
	 * such as Slave SGs, such delays are tolerable and synchronized,
	 * but the synchronization is difficult to achieve with Cyclic and
	 * cannot be guaranteed, so we error out early.
	 */
	if (nslots > MAX_NR_SG)
		return NULL;

1275 1276
	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1277
	if (!edesc) {
1278
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1279 1280 1281 1282 1283
		return NULL;
	}

	edesc->cyclic = 1;
	edesc->pset_nr = nslots;
1284
	edesc->residue = edesc->residue_stat = buf_len;
1285
	edesc->direction = direction;
1286
	edesc->echan = echan;
1287

1288 1289
	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
		__func__, echan->ch_num, nslots, period_len, buf_len);
1290 1291 1292 1293 1294

	for (i = 0; i < nslots; i++) {
		/* Allocate a PaRAM slot, if needed */
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1295
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1296
			if (echan->slot[i] < 0) {
1297
				kfree(edesc);
1298 1299
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
				return NULL;
			}
		}

		if (i == nslots - 1) {
			memcpy(&edesc->pset[i], &edesc->pset[0],
			       sizeof(edesc->pset[0]));
			break;
		}

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width, period_len,
				       direction);
1313 1314
		if (ret < 0) {
			kfree(edesc);
1315
			return NULL;
1316
		}
1317

1318 1319 1320 1321
		if (direction == DMA_DEV_TO_MEM)
			dst_addr += period_len;
		else
			src_addr += period_len;
1322

1323 1324
		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
		dev_vdbg(dev,
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
			i, echan->ch_num, echan->slot[i],
1337 1338 1339 1340 1341 1342 1343 1344
			edesc->pset[i].param.opt,
			edesc->pset[i].param.src,
			edesc->pset[i].param.dst,
			edesc->pset[i].param.a_b_cnt,
			edesc->pset[i].param.ccnt,
			edesc->pset[i].param.src_dst_bidx,
			edesc->pset[i].param.src_dst_cidx,
			edesc->pset[i].param.link_bcntrld);
1345 1346 1347 1348

		edesc->absync = ret;

		/*
1349
		 * Enable period interrupt only if it is requested
1350
		 */
1351 1352
		if (tx_flags & DMA_PREP_INTERRUPT)
			edesc->pset[i].param.opt |= TCINTEN;
1353 1354
	}

1355
	/* Place the cyclic channel to highest priority queue */
1356 1357
	if (!echan->tc)
		edma_assign_channel_eventq(echan, EVENTQ_0);
1358

1359 1360 1361
	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1362
static void edma_completion_handler(struct edma_chan *echan)
1363 1364
{
	struct device *dev = echan->vchan.chan.device->dev;
1365
	struct edma_desc *edesc = echan->edesc;
1366

1367 1368
	if (!edesc)
		return;
1369

1370
	spin_lock(&echan->vchan.lock);
1371 1372 1373 1374 1375 1376
	if (edesc->cyclic) {
		vchan_cyclic_callback(&edesc->vdesc);
		spin_unlock(&echan->vchan.lock);
		return;
	} else if (edesc->processed == edesc->pset_nr) {
		edesc->residue = 0;
1377
		edma_stop(echan);
1378 1379 1380 1381 1382 1383 1384 1385 1386
		vchan_cookie_complete(&edesc->vdesc);
		echan->edesc = NULL;

		dev_dbg(dev, "Transfer completed on channel %d\n",
			echan->ch_num);
	} else {
		dev_dbg(dev, "Sub transfer completed on channel %d\n",
			echan->ch_num);

1387
		edma_pause(echan);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437

		/* Update statistics for tx_status */
		edesc->residue -= edesc->sg_len;
		edesc->residue_stat = edesc->residue;
		edesc->processed_stat = edesc->processed;
	}
	edma_execute(echan);

	spin_unlock(&echan->vchan.lock);
}

/* eDMA interrupt handler */
static irqreturn_t dma_irq_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
	int ctlr;
	u32 sh_ier;
	u32 sh_ipr;
	u32 bank;

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_irq_handler\n");

	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
	if (!sh_ipr) {
		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
		if (!sh_ipr)
			return IRQ_NONE;
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
		bank = 1;
	} else {
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
		bank = 0;
	}

	do {
		u32 slot;
		u32 channel;

		slot = __ffs(sh_ipr);
		sh_ipr &= ~(BIT(slot));

		if (sh_ier & BIT(slot)) {
			channel = (bank << 5) | slot;
			/* Clear the corresponding IPR bits */
			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
			edma_completion_handler(&ecc->slave_chans[channel]);
1438
		}
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	} while (sh_ipr);

	edma_shadow0_write(ecc, SH_IEVAL, 1);
	return IRQ_HANDLED;
}

static void edma_error_handler(struct edma_chan *echan)
{
	struct edma_cc *ecc = echan->ecc;
	struct device *dev = echan->vchan.chan.device->dev;
	struct edmacc_param p;

	if (!echan->edesc)
		return;

	spin_lock(&echan->vchan.lock);
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	edma_read_slot(ecc, echan->slot[0], &p);
	/*
	 * Issue later based on missed flag which will be sure
	 * to happen as:
	 * (1) we finished transmitting an intermediate slot and
	 *     edma_execute is coming up.
	 * (2) or we finished current transfer and issue will
	 *     call edma_execute.
	 *
	 * Important note: issuing can be dangerous here and
	 * lead to some nasty recursion when we are in a NULL
	 * slot. So we avoid doing so and set the missed flag.
	 */
	if (p.a_b_cnt == 0 && p.ccnt == 0) {
		dev_dbg(dev, "Error on null slot, setting miss\n");
		echan->missed = 1;
	} else {
1473
		/*
1474 1475
		 * The slot is already programmed but the event got
		 * missed, so its safe to issue it here.
1476
		 */
1477
		dev_dbg(dev, "Missed event, TRIGGERING\n");
1478 1479 1480 1481
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
1482 1483 1484 1485
	}
	spin_unlock(&echan->vchan.lock);
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
static inline bool edma_error_pending(struct edma_cc *ecc)
{
	if (edma_read_array(ecc, EDMA_EMR, 0) ||
	    edma_read_array(ecc, EDMA_EMR, 1) ||
	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
		return true;

	return false;
}

1496 1497 1498 1499
/* eDMA error interrupt handler */
static irqreturn_t dma_ccerr_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
1500
	int i, j;
1501 1502
	int ctlr;
	unsigned int cnt = 0;
1503
	unsigned int val;
1504 1505 1506 1507 1508 1509 1510

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");

1511
	if (!edma_error_pending(ecc))
1512 1513 1514
		return IRQ_NONE;

	while (1) {
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
		/* Event missed register(s) */
		for (j = 0; j < 2; j++) {
			unsigned long emr;

			val = edma_read_array(ecc, EDMA_EMR, j);
			if (!val)
				continue;

			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
			emr = val;
			for (i = find_next_bit(&emr, 32, 0); i < 32;
			     i = find_next_bit(&emr, 32, i + 1)) {
1527 1528
				int k = (j << 5) + i;

1529 1530 1531 1532
				/* Clear the corresponding EMR bits */
				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
				/* Clear any SER */
				edma_shadow0_write_array(ecc, SH_SECR, j,
1533
							 BIT(i));
1534
				edma_error_handler(&ecc->slave_chans[k]);
1535
			}
1536
		}
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552

		val = edma_read(ecc, EDMA_QEMR);
		if (val) {
			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_QEMCR, val);
			edma_shadow0_write(ecc, SH_QSECR, val);
		}

		val = edma_read(ecc, EDMA_CCERR);
		if (val) {
			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_CCERRCLR, val);
		}

1553
		if (!edma_error_pending(ecc))
1554 1555 1556 1557
			break;
		cnt++;
		if (cnt > 10)
			break;
1558
	}
1559 1560
	edma_write(ecc, EDMA_EEVAL, 1);
	return IRQ_HANDLED;
1561 1562
}

1563 1564 1565 1566 1567
static void edma_tc_set_pm_state(struct edma_tc *tc, bool enable)
{
	struct platform_device *tc_pdev;
	int ret;

1568
	if (!IS_ENABLED(CONFIG_OF) || !tc)
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
		return;

	tc_pdev = of_find_device_by_node(tc->node);
	if (!tc_pdev) {
		pr_err("%s: TPTC device is not found\n", __func__);
		return;
	}
	if (!pm_runtime_enabled(&tc_pdev->dev))
		pm_runtime_enable(&tc_pdev->dev);

	if (enable)
		ret = pm_runtime_get_sync(&tc_pdev->dev);
	else
		ret = pm_runtime_put_sync(&tc_pdev->dev);

	if (ret < 0)
		pr_err("%s: pm_runtime_%s_sync() failed for %s\n", __func__,
		       enable ? "get" : "put", dev_name(&tc_pdev->dev));
}

1589 1590 1591 1592
/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
1593 1594 1595
	struct edma_cc *ecc = echan->ecc;
	struct device *dev = ecc->dev;
	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1596 1597
	int ret;

1598 1599 1600 1601 1602 1603 1604 1605 1606
	if (echan->tc) {
		eventq_no = echan->tc->id;
	} else if (ecc->tc_list) {
		/* memcpy channel */
		echan->tc = &ecc->tc_list[ecc->info->default_queue];
		eventq_no = echan->tc->id;
	}

	ret = edma_alloc_channel(echan, eventq_no);
1607 1608
	if (ret)
		return ret;
1609

1610
	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1611 1612 1613
	if (echan->slot[0] < 0) {
		dev_err(dev, "Entry slot allocation failed for channel %u\n",
			EDMA_CHAN_SLOT(echan->ch_num));
1614
		goto err_slot;
1615 1616 1617
	}

	/* Set up channel -> slot mapping for the entry slot */
1618 1619
	edma_set_chmap(echan, echan->slot[0]);
	echan->alloced = true;
1620

1621 1622 1623 1624 1625
	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
		echan->hw_triggered ? "HW" : "SW");

	edma_tc_set_pm_state(echan->tc, true);
1626 1627 1628

	return 0;

1629 1630
err_slot:
	edma_free_channel(echan);
1631 1632 1633 1634 1635 1636 1637
	return ret;
}

/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
1638
	struct device *dev = echan->ecc->dev;
1639 1640 1641
	int i;

	/* Terminate transfers */
1642
	edma_stop(echan);
1643 1644 1645 1646

	vchan_free_chan_resources(&echan->vchan);

	/* Free EDMA PaRAM slots */
1647
	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1648
		if (echan->slot[i] >= 0) {
1649
			edma_free_slot(echan->ecc, echan->slot[i]);
1650 1651 1652 1653
			echan->slot[i] = -1;
		}
	}

1654
	/* Set entry slot to the dummy slot */
1655
	edma_set_chmap(echan, echan->ecc->dummy_slot);
1656

1657 1658
	/* Free EDMA channel */
	if (echan->alloced) {
1659
		edma_free_channel(echan);
1660 1661 1662
		echan->alloced = false;
	}

1663 1664 1665 1666 1667 1668
	edma_tc_set_pm_state(echan->tc, false);
	echan->tc = NULL;
	echan->hw_triggered = false;

	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
}

/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
		edma_execute(echan);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
}

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
static u32 edma_residue(struct edma_desc *edesc)
{
	bool dst = edesc->direction == DMA_DEV_TO_MEM;
	struct edma_pset *pset = edesc->pset;
	dma_addr_t done, pos;
	int i;

	/*
	 * We always read the dst/src position from the first RamPar
	 * pset. That's the one which is active now.
	 */
1694
	pos = edma_get_position(edesc->echan->ecc, edesc->echan->slot[0], dst);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

	/*
	 * Cyclic is simple. Just subtract pset[0].addr from pos.
	 *
	 * We never update edesc->residue in the cyclic case, so we
	 * can tell the remaining room to the end of the circular
	 * buffer.
	 */
	if (edesc->cyclic) {
		done = pos - pset->addr;
		edesc->residue_stat = edesc->residue - done;
		return edesc->residue_stat;
	}

	/*
	 * For SG operation we catch up with the last processed
	 * status.
	 */
	pset += edesc->processed_stat;

	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
		/*
		 * If we are inside this pset address range, we know
		 * this is the active one. Get the current delta and
		 * stop walking the psets.
		 */
		if (pos >= pset->addr && pos < pset->addr + pset->len)
			return edesc->residue_stat - (pos - pset->addr);

		/* Otherwise mark it done and update residue_stat. */
		edesc->processed_stat++;
		edesc->residue_stat -= pset->len;
	}
	return edesc->residue_stat;
}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
1742
	if (ret == DMA_COMPLETE || !txstate)
1743 1744 1745
		return ret;

	spin_lock_irqsave(&echan->vchan.lock, flags);
1746
	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1747
		txstate->residue = edma_residue(echan->edesc);
1748 1749
	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1750 1751 1752 1753 1754
	spin_unlock_irqrestore(&echan->vchan.lock, flags);

	return ret;
}

1755
static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1756 1757 1758
{
	if (!memcpy_channels)
		return false;
1759 1760
	while (*memcpy_channels != -1) {
		if (*memcpy_channels == ch_num)
1761
			return true;
1762
		memcpy_channels++;
1763 1764 1765 1766
	}
	return false;
}

1767 1768 1769 1770 1771
#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

1772
static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1773
{
1774 1775
	struct dma_device *s_ddev = &ecc->dma_slave;
	struct dma_device *m_ddev = NULL;
1776
	s32 *memcpy_channels = ecc->info->memcpy_channels;
1777 1778
	int i, j;

1779 1780 1781 1782 1783 1784
	dma_cap_zero(s_ddev->cap_mask);
	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
	if (ecc->legacy_mode && !memcpy_channels) {
		dev_warn(ecc->dev,
			 "Legacy memcpy is enabled, things might not work\n");
1785

1786 1787 1788 1789
		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
	}
1790

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
	s_ddev->device_free_chan_resources = edma_free_chan_resources;
	s_ddev->device_issue_pending = edma_issue_pending;
	s_ddev->device_tx_status = edma_tx_status;
	s_ddev->device_config = edma_slave_config;
	s_ddev->device_pause = edma_dma_pause;
	s_ddev->device_resume = edma_dma_resume;
	s_ddev->device_terminate_all = edma_terminate_all;

	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

	s_ddev->dev = ecc->dev;
	INIT_LIST_HEAD(&s_ddev->channels);

	if (memcpy_channels) {
		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
		ecc->dma_memcpy = m_ddev;

		dma_cap_zero(m_ddev->cap_mask);
		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);

		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
		m_ddev->device_free_chan_resources = edma_free_chan_resources;
		m_ddev->device_issue_pending = edma_issue_pending;
		m_ddev->device_tx_status = edma_tx_status;
		m_ddev->device_config = edma_slave_config;
		m_ddev->device_pause = edma_dma_pause;
		m_ddev->device_resume = edma_dma_resume;
		m_ddev->device_terminate_all = edma_terminate_all;

		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

		m_ddev->dev = ecc->dev;
		INIT_LIST_HEAD(&m_ddev->channels);
	} else if (!ecc->legacy_mode) {
		dev_info(ecc->dev, "memcpy is disabled\n");
	}
1837

1838
	for (i = 0; i < ecc->num_channels; i++) {
1839
		struct edma_chan *echan = &ecc->slave_chans[i];
1840
		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1841 1842 1843
		echan->ecc = ecc;
		echan->vchan.desc_free = edma_desc_free;

1844 1845 1846 1847
		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
			vchan_init(&echan->vchan, m_ddev);
		else
			vchan_init(&echan->vchan, s_ddev);
1848 1849 1850 1851 1852 1853 1854

		INIT_LIST_HEAD(&echan->node);
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
			echan->slot[j] = -1;
	}
}

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
			      struct edma_cc *ecc)
{
	int i;
	u32 value, cccfg;
	s8 (*queue_priority_map)[2];

	/* Decode the eDMA3 configuration from CCCFG register */
	cccfg = edma_read(ecc, EDMA_CCCFG);

	value = GET_NUM_REGN(cccfg);
	ecc->num_region = BIT(value);

	value = GET_NUM_DMACH(cccfg);
	ecc->num_channels = BIT(value + 1);

1871 1872 1873
	value = GET_NUM_QDMACH(cccfg);
	ecc->num_qchannels = value * 2;

1874 1875 1876 1877 1878 1879
	value = GET_NUM_PAENTRY(cccfg);
	ecc->num_slots = BIT(value + 4);

	value = GET_NUM_EVQUE(cccfg);
	ecc->num_tc = value + 1;

1880 1881
	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;

1882 1883 1884
	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1885
	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1886 1887
	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1888
	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

	/* Nothing need to be done if queue priority is provided */
	if (pdata->queue_priority_mapping)
		return 0;

	/*
	 * Configure TC/queue priority as follows:
	 * Q0 - priority 0
	 * Q1 - priority 1
	 * Q2 - priority 2
	 * ...
	 * The meaning of priority numbers: 0 highest priority, 7 lowest
	 * priority. So Q0 is the highest priority queue and the last queue has
	 * the lowest priority.
	 */
1904
	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
					  GFP_KERNEL);
	if (!queue_priority_map)
		return -ENOMEM;

	for (i = 0; i < ecc->num_tc; i++) {
		queue_priority_map[i][0] = i;
		queue_priority_map[i][1] = i;
	}
	queue_priority_map[i][0] = -1;
	queue_priority_map[i][1] = -1;

	pdata->queue_priority_mapping = queue_priority_map;
	/* Default queue has the lowest priority */
	pdata->default_queue = i - 1;

	return 0;
}

#if IS_ENABLED(CONFIG_OF)
static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
			       size_t sz)
{
	const char pname[] = "ti,edma-xbar-event-map";
	struct resource res;
	void __iomem *xbar;
	s16 (*xbar_chans)[2];
	size_t nelm = sz / sizeof(s16);
	u32 shift, offset, mux;
	int ret, i;

1935
	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	if (!xbar_chans)
		return -ENOMEM;

	ret = of_address_to_resource(dev->of_node, 1, &res);
	if (ret)
		return -ENOMEM;

	xbar = devm_ioremap(dev, res.start, resource_size(&res));
	if (!xbar)
		return -ENOMEM;

	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
					 nelm);
	if (ret)
		return -EIO;

	/* Invalidate last entry for the other user of this mess */
	nelm >>= 1;
	xbar_chans[nelm][0] = -1;
	xbar_chans[nelm][1] = -1;

	for (i = 0; i < nelm; i++) {
		shift = (xbar_chans[i][1] & 0x03) << 3;
		offset = xbar_chans[i][1] & 0xfffffffc;
		mux = readl(xbar + offset);
		mux &= ~(0xff << shift);
		mux |= xbar_chans[i][0] << shift;
		writel(mux, (xbar + offset));
	}

	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
	return 0;
}

1970 1971
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
						     bool legacy_mode)
1972 1973
{
	struct edma_soc_info *info;
1974 1975
	struct property *prop;
	size_t sz;
1976 1977 1978 1979 1980 1981
	int ret;

	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
	if (!info)
		return ERR_PTR(-ENOMEM);

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	if (legacy_mode) {
		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
					&sz);
		if (prop) {
			ret = edma_xbar_event_map(dev, info, sz);
			if (ret)
				return ERR_PTR(ret);
		}
		return info;
	}

	/* Get the list of channels allocated to be used for memcpy */
	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
	if (prop) {
		const char pname[] = "ti,edma-memcpy-channels";
1997 1998
		size_t nelm = sz / sizeof(s32);
		s32 *memcpy_ch;
1999

2000
		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2001 2002 2003 2004
					 GFP_KERNEL);
		if (!memcpy_ch)
			return ERR_PTR(-ENOMEM);

2005 2006
		ret = of_property_read_u32_array(dev->of_node, pname,
						 (u32 *)memcpy_ch, nelm);
2007 2008 2009 2010 2011 2012 2013 2014 2015
		if (ret)
			return ERR_PTR(ret);

		memcpy_ch[nelm] = -1;
		info->memcpy_channels = memcpy_ch;
	}

	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
				&sz);
2016
	if (prop) {
2017
		const char pname[] = "ti,edma-reserved-slot-ranges";
2018
		u32 (*tmp)[2];
2019
		s16 (*rsv_slots)[2];
2020
		size_t nelm = sz / sizeof(*tmp);
2021
		struct edma_rsv_info *rsv_info;
2022
		int i;
2023 2024 2025 2026

		if (!nelm)
			return info;

2027 2028 2029 2030
		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
		if (!tmp)
			return ERR_PTR(-ENOMEM);

2031
		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2032 2033
		if (!rsv_info) {
			kfree(tmp);
2034
			return ERR_PTR(-ENOMEM);
2035
		}
2036 2037 2038

		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
					 GFP_KERNEL);
2039 2040
		if (!rsv_slots) {
			kfree(tmp);
2041
			return ERR_PTR(-ENOMEM);
2042
		}
2043

2044 2045 2046 2047
		ret = of_property_read_u32_array(dev->of_node, pname,
						 (u32 *)tmp, nelm * 2);
		if (ret) {
			kfree(tmp);
2048
			return ERR_PTR(ret);
2049
		}
2050

2051 2052 2053 2054
		for (i = 0; i < nelm; i++) {
			rsv_slots[i][0] = tmp[i][0];
			rsv_slots[i][1] = tmp[i][1];
		}
2055 2056
		rsv_slots[nelm][0] = -1;
		rsv_slots[nelm][1] = -1;
2057

2058 2059
		info->rsv = rsv_info;
		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2060 2061

		kfree(tmp);
2062
	}
2063 2064 2065

	return info;
}
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
				      struct of_dma *ofdma)
{
	struct edma_cc *ecc = ofdma->of_dma_data;
	struct dma_chan *chan = NULL;
	struct edma_chan *echan;
	int i;

	if (!ecc || dma_spec->args_count < 1)
		return NULL;

	for (i = 0; i < ecc->num_channels; i++) {
		echan = &ecc->slave_chans[i];
		if (echan->ch_num == dma_spec->args[0]) {
			chan = &echan->vchan.chan;
			break;
		}
	}

	if (!chan)
		return NULL;

	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
		goto out;

	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
	    dma_spec->args[1] < echan->ecc->num_tc) {
		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
		goto out;
	}

	return NULL;
out:
	/* The channel is going to be used as HW synchronized */
	echan->hw_triggered = true;
	return dma_get_slave_channel(chan);
}
2104
#else
2105 2106
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
						     bool legacy_mode)
2107 2108 2109
{
	return ERR_PTR(-EINVAL);
}
2110 2111 2112 2113 2114 2115

static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
				      struct of_dma *ofdma)
{
	return NULL;
}
2116 2117
#endif

B
Bill Pemberton 已提交
2118
static int edma_probe(struct platform_device *pdev)
2119
{
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	struct edma_soc_info	*info = pdev->dev.platform_data;
	s8			(*queue_priority_mapping)[2];
	int			i, off, ln;
	const s16		(*rsv_slots)[2];
	const s16		(*xbar_chans)[2];
	int			irq;
	char			*irq_name;
	struct resource		*mem;
	struct device_node	*node = pdev->dev.of_node;
	struct device		*dev = &pdev->dev;
	struct edma_cc		*ecc;
2131
	bool			legacy_mode = true;
2132 2133
	int ret;

2134
	if (node) {
2135 2136 2137 2138 2139 2140 2141
		const struct of_device_id *match;

		match = of_match_node(edma_of_ids, node);
		if (match && (u32)match->data == EDMA_BINDING_TPCC)
			legacy_mode = false;

		info = edma_setup_info_from_dt(dev, legacy_mode);
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
		if (IS_ERR(info)) {
			dev_err(dev, "failed to get DT data\n");
			return PTR_ERR(info);
		}
	}

	if (!info)
		return -ENODEV;

	pm_runtime_enable(dev);
	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		dev_err(dev, "pm_runtime_get_sync() failed\n");
		return ret;
	}

2158
	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2159 2160 2161
	if (ret)
		return ret;

2162
	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2163
	if (!ecc) {
2164
		dev_err(dev, "Can't allocate controller\n");
2165 2166 2167
		return -ENOMEM;
	}

2168 2169
	ecc->dev = dev;
	ecc->id = pdev->id;
2170
	ecc->legacy_mode = legacy_mode;
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	/* When booting with DT the pdev->id is -1 */
	if (ecc->id < 0)
		ecc->id = 0;

	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
	if (!mem) {
		dev_dbg(dev, "mem resource not found, using index 0\n");
		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
		if (!mem) {
			dev_err(dev, "no mem resource?\n");
			return -ENODEV;
		}
	}
	ecc->base = devm_ioremap_resource(dev, mem);
	if (IS_ERR(ecc->base))
		return PTR_ERR(ecc->base);

	platform_set_drvdata(pdev, ecc);

	/* Get eDMA3 configuration from IP */
	ret = edma_setup_from_hw(dev, info, ecc);
	if (ret)
		return ret;

2195 2196 2197 2198 2199 2200
	/* Allocate memory based on the information we got from the IP */
	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
					sizeof(*ecc->slave_chans), GFP_KERNEL);
	if (!ecc->slave_chans)
		return -ENOMEM;

2201
	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2202
				       sizeof(unsigned long), GFP_KERNEL);
2203
	if (!ecc->slot_inuse)
2204 2205
		return -ENOMEM;

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	ecc->default_queue = info->default_queue;

	for (i = 0; i < ecc->num_slots; i++)
		edma_write_slot(ecc, i, &dummy_paramset);

	if (info->rsv) {
		/* Set the reserved slots in inuse list */
		rsv_slots = info->rsv->rsv_slots;
		if (rsv_slots) {
			for (i = 0; rsv_slots[i][0] != -1; i++) {
				off = rsv_slots[i][0];
				ln = rsv_slots[i][1];
2218
				set_bits(off, ln, ecc->slot_inuse);
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
			}
		}
	}

	/* Clear the xbar mapped channels in unused list */
	xbar_chans = info->xbar_chans;
	if (xbar_chans) {
		for (i = 0; xbar_chans[i][1] != -1; i++) {
			off = xbar_chans[i][1];
		}
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 0);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 2);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
	}

2261 2262 2263 2264 2265 2266
	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
	if (ecc->dummy_slot < 0) {
		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
		return ecc->dummy_slot;
	}

2267 2268
	queue_priority_mapping = info->queue_priority_mapping;

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	if (!ecc->legacy_mode) {
		int lowest_priority = 0;
		struct of_phandle_args tc_args;

		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
					    sizeof(*ecc->tc_list), GFP_KERNEL);
		if (!ecc->tc_list)
			return -ENOMEM;

		for (i = 0;; i++) {
			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
							       1, i, &tc_args);
			if (ret || i == ecc->num_tc)
				break;

			ecc->tc_list[i].node = tc_args.np;
			ecc->tc_list[i].id = i;
			queue_priority_mapping[i][1] = tc_args.args[0];
			if (queue_priority_mapping[i][1] > lowest_priority) {
				lowest_priority = queue_priority_mapping[i][1];
				info->default_queue = i;
			}
		}
	}

2294 2295 2296 2297
	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);
2298

2299 2300 2301 2302 2303 2304 2305
	for (i = 0; i < ecc->num_region; i++) {
		edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
		edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
		edma_write_array(ecc, EDMA_QRAE, i, 0x0);
	}
	ecc->info = info;

2306
	/* Init the dma device and channels */
2307
	edma_dma_init(ecc, legacy_mode);
2308

2309 2310
	for (i = 0; i < ecc->num_channels; i++) {
		/* Assign all channels to the default queue */
2311 2312
		edma_assign_channel_eventq(&ecc->slave_chans[i],
					   info->default_queue);
2313 2314 2315 2316
		/* Set entry slot to the dummy slot */
		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
	}

2317 2318 2319 2320
	ecc->dma_slave.filter.map = info->slave_map;
	ecc->dma_slave.filter.mapcnt = info->slavecnt;
	ecc->dma_slave.filter.fn = edma_filter_fn;

2321
	ret = dma_async_device_register(&ecc->dma_slave);
2322 2323
	if (ret) {
		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2324
		goto err_reg1;
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	}

	if (ecc->dma_memcpy) {
		ret = dma_async_device_register(ecc->dma_memcpy);
		if (ret) {
			dev_err(dev, "memcpy ddev registration failed (%d)\n",
				ret);
			dma_async_device_unregister(&ecc->dma_slave);
			goto err_reg1;
		}
	}
2336

2337
	if (node)
2338
		of_dma_controller_register(node, of_edma_xlate, ecc);
2339

2340
	dev_info(dev, "TI EDMA DMA engine driver\n");
2341 2342 2343 2344

	return 0;

err_reg1:
2345
	edma_free_slot(ecc, ecc->dummy_slot);
2346 2347 2348
	return ret;
}

2349
static int edma_remove(struct platform_device *pdev)
2350 2351 2352 2353
{
	struct device *dev = &pdev->dev;
	struct edma_cc *ecc = dev_get_drvdata(dev);

2354 2355
	if (dev->of_node)
		of_dma_controller_free(dev->of_node);
2356
	dma_async_device_unregister(&ecc->dma_slave);
2357 2358
	if (ecc->dma_memcpy)
		dma_async_device_unregister(ecc->dma_memcpy);
2359
	edma_free_slot(ecc, ecc->dummy_slot);
2360 2361 2362 2363

	return 0;
}

2364
#ifdef CONFIG_PM_SLEEP
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
static int edma_pm_suspend(struct device *dev)
{
	struct edma_cc *ecc = dev_get_drvdata(dev);
	struct edma_chan *echan = ecc->slave_chans;
	int i;

	for (i = 0; i < ecc->num_channels; i++) {
		if (echan[i].alloced) {
			edma_setup_interrupt(&echan[i], false);
			edma_tc_set_pm_state(echan[i].tc, false);
		}
	}

	return 0;
}

2381 2382 2383
static int edma_pm_resume(struct device *dev)
{
	struct edma_cc *ecc = dev_get_drvdata(dev);
2384
	struct edma_chan *echan = ecc->slave_chans;
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	int i;
	s8 (*queue_priority_mapping)[2];

	queue_priority_mapping = ecc->info->queue_priority_mapping;

	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);

	for (i = 0; i < ecc->num_channels; i++) {
2396
		if (echan[i].alloced) {
2397 2398 2399 2400
			/* ensure access through shadow region 0 */
			edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
				       BIT(i & 0x1f));

2401
			edma_setup_interrupt(&echan[i], true);
2402 2403

			/* Set up channel -> slot mapping for the entry slot */
2404
			edma_set_chmap(&echan[i], echan[i].slot[0]);
2405 2406

			edma_tc_set_pm_state(echan[i].tc, true);
2407 2408 2409 2410 2411 2412 2413 2414
		}
	}

	return 0;
}
#endif

static const struct dev_pm_ops edma_pm_ops = {
2415
	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2416 2417
};

2418 2419
static struct platform_driver edma_driver = {
	.probe		= edma_probe,
B
Bill Pemberton 已提交
2420
	.remove		= edma_remove,
2421
	.driver = {
2422 2423 2424
		.name	= "edma",
		.pm	= &edma_pm_ops,
		.of_match_table = edma_of_ids,
2425 2426 2427
	},
};

2428 2429 2430 2431 2432
static int edma_tptc_probe(struct platform_device *pdev)
{
	return 0;
}

2433
static struct platform_driver edma_tptc_driver = {
2434
	.probe		= edma_tptc_probe,
2435 2436 2437 2438 2439 2440
	.driver = {
		.name	= "edma3-tptc",
		.of_match_table = edma_tptc_of_ids,
	},
};

2441 2442
bool edma_filter_fn(struct dma_chan *chan, void *param)
{
2443 2444
	bool match = false;

2445 2446 2447
	if (chan->device->dev->driver == &edma_driver.driver) {
		struct edma_chan *echan = to_edma_chan(chan);
		unsigned ch_req = *(unsigned *)param;
2448 2449 2450 2451 2452
		if (ch_req == echan->ch_num) {
			/* The channel is going to be used as HW synchronized */
			echan->hw_triggered = true;
			match = true;
		}
2453
	}
2454
	return match;
2455 2456 2457 2458 2459
}
EXPORT_SYMBOL(edma_filter_fn);

static int edma_init(void)
{
2460 2461 2462 2463 2464 2465
	int ret;

	ret = platform_driver_register(&edma_tptc_driver);
	if (ret)
		return ret;

2466
	return platform_driver_register(&edma_driver);
2467 2468 2469 2470 2471 2472
}
subsys_initcall(edma_init);

static void __exit edma_exit(void)
{
	platform_driver_unregister(&edma_driver);
2473
	platform_driver_unregister(&edma_tptc_driver);
2474 2475 2476
}
module_exit(edma_exit);

J
Josh Boyer 已提交
2477
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2478 2479
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");