edma.c 65.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * TI EDMA DMA engine driver
 *
 * Copyright 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
18
#include <linux/edma.h>
19 20 21 22 23 24 25 26
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
27
#include <linux/of.h>
28
#include <linux/of_dma.h>
29 30 31 32
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
33

34
#include <linux/platform_data/edma.h>
35 36 37 38

#include "dmaengine.h"
#include "virt-dma.h"

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
/* Offsets matching "struct edmacc_param" */
#define PARM_OPT		0x00
#define PARM_SRC		0x04
#define PARM_A_B_CNT		0x08
#define PARM_DST		0x0c
#define PARM_SRC_DST_BIDX	0x10
#define PARM_LINK_BCNTRLD	0x14
#define PARM_SRC_DST_CIDX	0x18
#define PARM_CCNT		0x1c

#define PARM_SIZE		0x20

/* Offsets for EDMA CC global channel registers and their shadows */
#define SH_ER			0x00	/* 64 bits */
#define SH_ECR			0x08	/* 64 bits */
#define SH_ESR			0x10	/* 64 bits */
#define SH_CER			0x18	/* 64 bits */
#define SH_EER			0x20	/* 64 bits */
#define SH_EECR			0x28	/* 64 bits */
#define SH_EESR			0x30	/* 64 bits */
#define SH_SER			0x38	/* 64 bits */
#define SH_SECR			0x40	/* 64 bits */
#define SH_IER			0x50	/* 64 bits */
#define SH_IECR			0x58	/* 64 bits */
#define SH_IESR			0x60	/* 64 bits */
#define SH_IPR			0x68	/* 64 bits */
#define SH_ICR			0x70	/* 64 bits */
#define SH_IEVAL		0x78
#define SH_QER			0x80
#define SH_QEER			0x84
#define SH_QEECR		0x88
#define SH_QEESR		0x8c
#define SH_QSER			0x90
#define SH_QSECR		0x94
#define SH_SIZE			0x200

/* Offsets for EDMA CC global registers */
#define EDMA_REV		0x0000
#define EDMA_CCCFG		0x0004
#define EDMA_QCHMAP		0x0200	/* 8 registers */
#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
#define EDMA_QDMAQNUM		0x0260
#define EDMA_QUETCMAP		0x0280
#define EDMA_QUEPRI		0x0284
#define EDMA_EMR		0x0300	/* 64 bits */
#define EDMA_EMCR		0x0308	/* 64 bits */
#define EDMA_QEMR		0x0310
#define EDMA_QEMCR		0x0314
#define EDMA_CCERR		0x0318
#define EDMA_CCERRCLR		0x031c
#define EDMA_EEVAL		0x0320
#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
#define EDMA_QRAE		0x0380	/* 4 registers */
#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
#define EDMA_QSTAT		0x0600	/* 2 registers */
#define EDMA_QWMTHRA		0x0620
#define EDMA_QWMTHRB		0x0624
#define EDMA_CCSTAT		0x0640

#define EDMA_M			0x1000	/* global channel registers */
#define EDMA_ECR		0x1008
#define EDMA_ECRH		0x100C
#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
#define EDMA_PARM		0x4000	/* PaRAM entries */

#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))

#define EDMA_DCHMAP		0x0100  /* 64 registers */

/* CCCFG register */
#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
110
#define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
111 112 113 114 115
#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
#define CHMAP_EXIST		BIT(24)

116 117 118
/* CCSTAT register */
#define EDMA_CCSTAT_ACTV	BIT(4)

119 120 121 122 123 124 125 126
/*
 * Max of 20 segments per channel to conserve PaRAM slots
 * Also note that MAX_NR_SG should be atleast the no.of periods
 * that are required for ASoC, otherwise DMA prep calls will
 * fail. Today davinci-pcm is the only user of this driver and
 * requires atleast 17 slots, so we setup the default to 20.
 */
#define MAX_NR_SG		20
127 128 129
#define EDMA_MAX_SLOTS		MAX_NR_SG
#define EDMA_DESCRIPTORS	16

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
#define EDMA_CONT_PARAMS_ANY		 1001
#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003

/* PaRAM slots are laid out like this */
struct edmacc_param {
	u32 opt;
	u32 src;
	u32 a_b_cnt;
	u32 dst;
	u32 src_dst_bidx;
	u32 link_bcntrld;
	u32 src_dst_cidx;
	u32 ccnt;
} __packed;

/* fields in edmacc_param.opt */
#define SAM		BIT(0)
#define DAM		BIT(1)
#define SYNCDIM		BIT(2)
#define STATIC		BIT(3)
#define EDMA_FWID	(0x07 << 8)
#define TCCMODE		BIT(11)
#define EDMA_TCC(t)	((t) << 12)
#define TCINTEN		BIT(20)
#define ITCINTEN	BIT(21)
#define TCCHEN		BIT(22)
#define ITCCHEN		BIT(23)

161
struct edma_pset {
162 163
	u32				len;
	dma_addr_t			addr;
164 165 166
	struct edmacc_param		param;
};

167 168 169
struct edma_desc {
	struct virt_dma_desc		vdesc;
	struct list_head		node;
170
	enum dma_transfer_direction	direction;
171
	int				cyclic;
172 173
	int				absync;
	int				pset_nr;
174
	struct edma_chan		*echan;
175
	int				processed;
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

	/*
	 * The following 4 elements are used for residue accounting.
	 *
	 * - processed_stat: the number of SG elements we have traversed
	 * so far to cover accounting. This is updated directly to processed
	 * during edma_callback and is always <= processed, because processed
	 * refers to the number of pending transfer (programmed to EDMA
	 * controller), where as processed_stat tracks number of transfers
	 * accounted for so far.
	 *
	 * - residue: The amount of bytes we have left to transfer for this desc
	 *
	 * - residue_stat: The residue in bytes of data we have covered
	 * so far for accounting. This is updated directly to residue
	 * during callbacks to keep it current.
	 *
	 * - sg_len: Tracks the length of the current intermediate transfer,
	 * this is required to update the residue during intermediate transfer
	 * completion callback.
	 */
197 198
	int				processed_stat;
	u32				sg_len;
199
	u32				residue;
200
	u32				residue_stat;
201

202
	struct edma_pset		pset[0];
203 204 205 206
};

struct edma_cc;

207 208 209 210 211
struct edma_tc {
	struct device_node		*node;
	u16				id;
};

212 213 214 215 216
struct edma_chan {
	struct virt_dma_chan		vchan;
	struct list_head		node;
	struct edma_desc		*edesc;
	struct edma_cc			*ecc;
217
	struct edma_tc			*tc;
218 219
	int				ch_num;
	bool				alloced;
220
	bool				hw_triggered;
221
	int				slot[EDMA_MAX_SLOTS];
222
	int				missed;
223
	struct dma_slave_config		cfg;
224 225 226
};

struct edma_cc {
227 228 229 230
	struct device			*dev;
	struct edma_soc_info		*info;
	void __iomem			*base;
	int				id;
231
	bool				legacy_mode;
232 233 234

	/* eDMA3 resource information */
	unsigned			num_channels;
235
	unsigned			num_qchannels;
236 237 238
	unsigned			num_region;
	unsigned			num_slots;
	unsigned			num_tc;
239
	bool				chmap_exist;
240 241
	enum dma_event_q		default_queue;

242 243 244
	/*
	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
	 * in use by Linux or if it is allocated to be used by DSP.
245
	 */
246
	unsigned long *slot_inuse;
247

248
	struct dma_device		dma_slave;
249
	struct dma_device		*dma_memcpy;
250
	struct edma_chan		*slave_chans;
251
	struct edma_tc			*tc_list;
252 253 254
	int				dummy_slot;
};

255 256 257 258 259 260
/* dummy param set used to (re)initialize parameter RAM slots */
static const struct edmacc_param dummy_paramset = {
	.link_bcntrld = 0xffff,
	.ccnt = 1,
};

261 262
#define EDMA_BINDING_LEGACY	0
#define EDMA_BINDING_TPCC	1
263
static const struct of_device_id edma_of_ids[] = {
264 265 266 267 268 269 270 271
	{
		.compatible = "ti,edma3",
		.data = (void *)EDMA_BINDING_LEGACY,
	},
	{
		.compatible = "ti,edma3-tpcc",
		.data = (void *)EDMA_BINDING_TPCC,
	},
272 273 274
	{}
};

275 276 277 278 279
static const struct of_device_id edma_tptc_of_ids[] = {
	{ .compatible = "ti,edma3-tptc", },
	{}
};

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
{
	return (unsigned int)__raw_readl(ecc->base + offset);
}

static inline void edma_write(struct edma_cc *ecc, int offset, int val)
{
	__raw_writel(val, ecc->base + offset);
}

static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
			       unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	val |= or;
	edma_write(ecc, offset, val);
}

static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	edma_write(ecc, offset, val);
}

static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val |= or;
	edma_write(ecc, offset, val);
}

static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
					   int i)
{
	return edma_read(ecc, offset + (i << 2));
}

static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
				    unsigned val)
{
	edma_write(ecc, offset + (i << 2), val);
}

static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
				     unsigned and, unsigned or)
{
	edma_modify(ecc, offset + (i << 2), and, or);
}

static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
				 unsigned or)
{
	edma_or(ecc, offset + (i << 2), or);
}

static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
				  unsigned or)
{
	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
}

static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
				     int j, unsigned val)
{
	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
}

static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset);
}

static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
						   int offset, int i)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
}

static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
				      unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset, val);
}

static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
					    int i, unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
}

375 376
static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
					   int param_no)
377 378 379 380
{
	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
}

381 382
static inline void edma_param_write(struct edma_cc *ecc, int offset,
				    int param_no, unsigned val)
383 384 385 386
{
	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
}

387 388
static inline void edma_param_modify(struct edma_cc *ecc, int offset,
				     int param_no, unsigned and, unsigned or)
389 390 391 392
{
	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
}

393 394
static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
				  unsigned and)
395 396 397 398
{
	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
}

399 400
static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
				 unsigned or)
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
{
	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
}

static inline void set_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		set_bit(offset + (len - 1), p);
}

static inline void clear_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		clear_bit(offset + (len - 1), p);
}

static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
					  int priority)
{
	int bit = queue_no * 4;

	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
}

425
static void edma_set_chmap(struct edma_chan *echan, int slot)
426
{
427 428 429
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);

430 431 432 433
	if (ecc->chmap_exist) {
		slot = EDMA_CHAN_SLOT(slot);
		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
	}
434 435
}

436
static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
437
{
438 439
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
440

441
	if (enable) {
442 443 444 445
		edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
					 BIT(channel & 0x1f));
		edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
					 BIT(channel & 0x1f));
446
	} else {
447 448
		edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
					 BIT(channel & 0x1f));
449 450 451 452
	}
}

/*
453
 * paRAM slot management functions
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
 */
static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
			    const struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
}

static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
			   struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
}

/**
 * edma_alloc_slot - allocate DMA parameter RAM
 * @ecc: pointer to edma_cc struct
 * @slot: specific slot to allocate; negative for "any unused slot"
 *
 * This allocates a parameter RAM slot, initializing it to hold a
 * dummy transfer.  Slots allocated using this routine have not been
 * mapped to a hardware DMA channel, and will normally be used by
 * linking to them from a slot associated with a DMA channel.
 *
 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 * slots may be allocated on behalf of DSP firmware.
 *
 * Returns the number of the slot, else negative errno.
 */
static int edma_alloc_slot(struct edma_cc *ecc, int slot)
{
490
	if (slot >= 0) {
491
		slot = EDMA_CHAN_SLOT(slot);
492 493 494 495 496
		/* Requesting entry paRAM slot for a HW triggered channel. */
		if (ecc->chmap_exist && slot < ecc->num_channels)
			slot = EDMA_SLOT_ANY;
	}

497
	if (slot < 0) {
498 499 500 501
		if (ecc->chmap_exist)
			slot = 0;
		else
			slot = ecc->num_channels;
502
		for (;;) {
503
			slot = find_next_zero_bit(ecc->slot_inuse,
504 505 506 507
						  ecc->num_slots,
						  slot);
			if (slot == ecc->num_slots)
				return -ENOMEM;
508
			if (!test_and_set_bit(slot, ecc->slot_inuse))
509 510
				break;
		}
511
	} else if (slot >= ecc->num_slots) {
512
		return -EINVAL;
513
	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
514 515 516 517 518 519 520 521 522 523 524
		return -EBUSY;
	}

	edma_write_slot(ecc, slot, &dummy_paramset);

	return EDMA_CTLR_CHAN(ecc->id, slot);
}

static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
{
	slot = EDMA_CHAN_SLOT(slot);
525
	if (slot >= ecc->num_slots)
526 527 528
		return;

	edma_write_slot(ecc, slot, &dummy_paramset);
529
	clear_bit(slot, ecc->slot_inuse);
530 531 532 533 534 535 536 537 538 539 540 541
}

/**
 * edma_link - link one parameter RAM slot to another
 * @ecc: pointer to edma_cc struct
 * @from: parameter RAM slot originating the link
 * @to: parameter RAM slot which is the link target
 *
 * The originating slot should not be part of any active DMA transfer.
 */
static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
{
542 543 544
	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");

545 546 547 548 549
	from = EDMA_CHAN_SLOT(from);
	to = EDMA_CHAN_SLOT(to);
	if (from >= ecc->num_slots || to >= ecc->num_slots)
		return;

550 551
	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
			  PARM_OFFSET(to));
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
}

/**
 * edma_get_position - returns the current transfer point
 * @ecc: pointer to edma_cc struct
 * @slot: parameter RAM slot being examined
 * @dst:  true selects the dest position, false the source
 *
 * Returns the position of the current active slot
 */
static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
				    bool dst)
{
	u32 offs;

	slot = EDMA_CHAN_SLOT(slot);
	offs = PARM_OFFSET(slot);
	offs += dst ? PARM_DST : PARM_SRC;

	return edma_read(ecc, offs);
}

574
/*
575 576 577 578 579
 * Channels with event associations will be triggered by their hardware
 * events, and channels without such associations will be triggered by
 * software.  (At this writing there is no interface for using software
 * triggers except with channels that don't support hardware triggers.)
 */
580
static void edma_start(struct edma_chan *echan)
581
{
582 583 584 585
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
586

587
	if (!echan->hw_triggered) {
588
		/* EDMA channels without event association */
589 590 591 592
		dev_dbg(ecc->dev, "ESR%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ESR, j));
		edma_shadow0_write_array(ecc, SH_ESR, j, mask);
	} else {
593
		/* EDMA channel with event association */
594 595
		dev_dbg(ecc->dev, "ER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ER, j));
596 597 598 599 600 601
		/* Clear any pending event or error */
		edma_write_array(ecc, EDMA_ECR, j, mask);
		edma_write_array(ecc, EDMA_EMCR, j, mask);
		/* Clear any SER */
		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
		edma_shadow0_write_array(ecc, SH_EESR, j, mask);
602 603
		dev_dbg(ecc->dev, "EER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_EER, j));
604 605 606
	}
}

607
static void edma_stop(struct edma_chan *echan)
608
{
609 610 611 612
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
613

614 615 616 617
	edma_shadow0_write_array(ecc, SH_EECR, j, mask);
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write_array(ecc, EDMA_EMCR, j, mask);
618

619 620
	/* clear possibly pending completion interrupt */
	edma_shadow0_write_array(ecc, SH_ICR, j, mask);
621

622 623
	dev_dbg(ecc->dev, "EER%d %08x\n", j,
		edma_shadow0_read_array(ecc, SH_EER, j));
624

625 626 627
	/* REVISIT:  consider guarding against inappropriate event
	 * chaining by overwriting with dummy_paramset.
	 */
628 629
}

630 631 632
/*
 * Temporarily disable EDMA hardware events on the specified channel,
 * preventing them from triggering new transfers
633
 */
634
static void edma_pause(struct edma_chan *echan)
635
{
636 637
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
638

639
	edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
640 641
}

642
/* Re-enable EDMA hardware events on the specified channel.  */
643
static void edma_resume(struct edma_chan *echan)
644
{
645 646
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
647

648
	edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
649 650
}

651
static void edma_trigger_channel(struct edma_chan *echan)
652
{
653 654 655
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
656 657 658

	edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);

659 660
	dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
		edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
661 662
}

663
static void edma_clean_channel(struct edma_chan *echan)
664
{
665 666 667 668
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
669

670 671 672 673 674 675 676
	dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	/* Clear the corresponding EMR bits */
	edma_write_array(ecc, EDMA_EMCR, j, mask);
	/* Clear any SER */
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
677 678
}

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
/* Move channel to a specific event queue */
static void edma_assign_channel_eventq(struct edma_chan *echan,
				       enum dma_event_q eventq_no)
{
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int bit = (channel & 0x7) * 4;

	/* default to low priority queue */
	if (eventq_no == EVENTQ_DEFAULT)
		eventq_no = ecc->default_queue;
	if (eventq_no >= ecc->num_tc)
		return;

	eventq_no &= 7;
	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
			  eventq_no << bit);
}

698
static int edma_alloc_channel(struct edma_chan *echan,
699
			      enum dma_event_q eventq_no)
700
{
701 702
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
703 704 705 706 707

	/* ensure access through shadow region 0 */
	edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));

	/* ensure no events are pending */
708
	edma_stop(echan);
709

710
	edma_setup_interrupt(echan, true);
711

712
	edma_assign_channel_eventq(echan, eventq_no);
713

714
	return 0;
715 716
}

717
static void edma_free_channel(struct edma_chan *echan)
718
{
719 720
	/* ensure no events are pending */
	edma_stop(echan);
721
	/* REVISIT should probably take out of shadow region 0 */
722
	edma_setup_interrupt(echan, false);
723 724
}

725 726 727 728 729 730 731 732 733 734
static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
	return container_of(d, struct edma_cc, dma_slave);
}

static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
	return container_of(c, struct edma_chan, vchan.chan);
}

735
static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
736 737 738 739 740 741 742 743 744 745 746 747
{
	return container_of(tx, struct edma_desc, vdesc.tx);
}

static void edma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct edma_desc, vdesc));
}

/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
748
	struct edma_cc *ecc = echan->ecc;
749
	struct virt_dma_desc *vdesc;
750
	struct edma_desc *edesc;
751 752 753
	struct device *dev = echan->vchan.chan.device->dev;
	int i, j, left, nslots;

754 755
	if (!echan->edesc) {
		/* Setup is needed for the first transfer */
756
		vdesc = vchan_next_desc(&echan->vchan);
757
		if (!vdesc)
758 759 760
			return;
		list_del(&vdesc->node);
		echan->edesc = to_edma_desc(&vdesc->tx);
761 762
	}

763
	edesc = echan->edesc;
764

765 766 767
	/* Find out how many left */
	left = edesc->pset_nr - edesc->processed;
	nslots = min(MAX_NR_SG, left);
768
	edesc->sg_len = 0;
769 770

	/* Write descriptor PaRAM set(s) */
771 772
	for (i = 0; i < nslots; i++) {
		j = i + edesc->processed;
773
		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
774
		edesc->sg_len += edesc->pset[j].len;
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
		dev_vdbg(dev,
			 "\n pset[%d]:\n"
			 "  chnum\t%d\n"
			 "  slot\t%d\n"
			 "  opt\t%08x\n"
			 "  src\t%08x\n"
			 "  dst\t%08x\n"
			 "  abcnt\t%08x\n"
			 "  ccnt\t%08x\n"
			 "  bidx\t%08x\n"
			 "  cidx\t%08x\n"
			 "  lkrld\t%08x\n",
			 j, echan->ch_num, echan->slot[i],
			 edesc->pset[j].param.opt,
			 edesc->pset[j].param.src,
			 edesc->pset[j].param.dst,
			 edesc->pset[j].param.a_b_cnt,
			 edesc->pset[j].param.ccnt,
			 edesc->pset[j].param.src_dst_bidx,
			 edesc->pset[j].param.src_dst_cidx,
			 edesc->pset[j].param.link_bcntrld);
796
		/* Link to the previous slot if not the last set */
797
		if (i != (nslots - 1))
798
			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
799 800
	}

801 802
	edesc->processed += nslots;

803 804 805 806 807
	/*
	 * If this is either the last set in a set of SG-list transactions
	 * then setup a link to the dummy slot, this results in all future
	 * events being absorbed and that's OK because we're done
	 */
808 809
	if (edesc->processed == edesc->pset_nr) {
		if (edesc->cyclic)
810
			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
811
		else
812
			edma_link(ecc, echan->slot[nslots - 1],
813 814
				  echan->ecc->dummy_slot);
	}
815

816
	if (echan->missed) {
817 818 819 820 821
		/*
		 * This happens due to setup times between intermediate
		 * transfers in long SG lists which have to be broken up into
		 * transfers of MAX_NR_SG
		 */
822
		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
823 824 825 826
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
827
		echan->missed = 0;
828 829 830
	} else if (edesc->processed <= MAX_NR_SG) {
		dev_dbg(dev, "first transfer starting on channel %d\n",
			echan->ch_num);
831
		edma_start(echan);
832 833 834
	} else {
		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
			echan->ch_num, edesc->processed);
835
		edma_resume(echan);
836
	}
837 838
}

839
static int edma_terminate_all(struct dma_chan *chan)
840
{
841
	struct edma_chan *echan = to_edma_chan(chan);
842 843 844 845 846 847 848 849 850 851 852
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&echan->vchan.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
	 * after edma_dma() returns (even if it does, it will see
	 * echan->edesc is NULL and exit.)
	 */
	if (echan->edesc) {
853
		edma_stop(echan);
854
		/* Move the cyclic channel back to default queue */
855
		if (!echan->tc && echan->edesc->cyclic)
856
			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
857 858 859 860 861
		/*
		 * free the running request descriptor
		 * since it is not in any of the vdesc lists
		 */
		edma_desc_free(&echan->edesc->vdesc);
862 863 864 865 866 867 868 869 870 871
		echan->edesc = NULL;
	}

	vchan_get_all_descriptors(&echan->vchan, &head);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
	vchan_dma_desc_free_list(&echan->vchan, &head);

	return 0;
}

872 873 874 875 876 877 878
static void edma_synchronize(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);

	vchan_synchronize(&echan->vchan);
}

879
static int edma_slave_config(struct dma_chan *chan,
880
	struct dma_slave_config *cfg)
881
{
882 883
	struct edma_chan *echan = to_edma_chan(chan);

884 885
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
886 887
		return -EINVAL;

888
	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
889 890 891 892

	return 0;
}

893
static int edma_dma_pause(struct dma_chan *chan)
894
{
895 896
	struct edma_chan *echan = to_edma_chan(chan);

897
	if (!echan->edesc)
898 899
		return -EINVAL;

900
	edma_pause(echan);
901 902 903
	return 0;
}

904
static int edma_dma_resume(struct dma_chan *chan)
905
{
906 907
	struct edma_chan *echan = to_edma_chan(chan);

908
	edma_resume(echan);
909 910 911
	return 0;
}

912 913 914 915 916 917 918 919 920 921 922
/*
 * A PaRAM set configuration abstraction used by other modes
 * @chan: Channel who's PaRAM set we're configuring
 * @pset: PaRAM set to initialize and setup.
 * @src_addr: Source address of the DMA
 * @dst_addr: Destination address of the DMA
 * @burst: In units of dev_width, how much to send
 * @dev_width: How much is the dev_width
 * @dma_length: Total length of the DMA transfer
 * @direction: Direction of the transfer
 */
923
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
924
			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
925
			    unsigned int acnt, unsigned int dma_length,
926
			    enum dma_transfer_direction direction)
927 928 929
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
930
	struct edmacc_param *param = &epset->param;
931
	int bcnt, ccnt, cidx;
932 933 934
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
	int absync;

935 936 937
	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
	if (!burst)
		burst = 1;
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	/*
	 * If the maxburst is equal to the fifo width, use
	 * A-synced transfers. This allows for large contiguous
	 * buffer transfers using only one PaRAM set.
	 */
	if (burst == 1) {
		/*
		 * For the A-sync case, bcnt and ccnt are the remainder
		 * and quotient respectively of the division of:
		 * (dma_length / acnt) by (SZ_64K -1). This is so
		 * that in case bcnt over flows, we have ccnt to use.
		 * Note: In A-sync tranfer only, bcntrld is used, but it
		 * only applies for sg_dma_len(sg) >= SZ_64K.
		 * In this case, the best way adopted is- bccnt for the
		 * first frame will be the remainder below. Then for
		 * every successive frame, bcnt will be SZ_64K-1. This
		 * is assured as bcntrld = 0xffff in end of function.
		 */
		absync = false;
		ccnt = dma_length / acnt / (SZ_64K - 1);
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
		/*
		 * If bcnt is non-zero, we have a remainder and hence an
		 * extra frame to transfer, so increment ccnt.
		 */
		if (bcnt)
			ccnt++;
		else
			bcnt = SZ_64K - 1;
		cidx = acnt;
	} else {
		/*
		 * If maxburst is greater than the fifo address_width,
		 * use AB-synced transfers where A count is the fifo
		 * address_width and B count is the maxburst. In this
		 * case, we are limited to transfers of C count frames
		 * of (address_width * maxburst) where C count is limited
		 * to SZ_64K-1. This places an upper bound on the length
		 * of an SG segment that can be handled.
		 */
		absync = true;
		bcnt = burst;
		ccnt = dma_length / (acnt * bcnt);
		if (ccnt > (SZ_64K - 1)) {
			dev_err(dev, "Exceeded max SG segment size\n");
			return -EINVAL;
		}
		cidx = acnt * bcnt;
	}

988 989
	epset->len = dma_length;

990 991 992 993 994
	if (direction == DMA_MEM_TO_DEV) {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = 0;
		dst_cidx = 0;
995
		epset->addr = src_addr;
996 997 998 999 1000
	} else if (direction == DMA_DEV_TO_MEM)  {
		src_bidx = 0;
		src_cidx = 0;
		dst_bidx = acnt;
		dst_cidx = cidx;
1001
		epset->addr = dst_addr;
1002 1003 1004 1005 1006
	} else if (direction == DMA_MEM_TO_MEM)  {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = acnt;
		dst_cidx = cidx;
1007 1008 1009 1010 1011
	} else {
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
		return -EINVAL;
	}

1012
	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1013 1014
	/* Configure A or AB synchronized transfers */
	if (absync)
1015
		param->opt |= SYNCDIM;
1016

1017 1018
	param->src = src_addr;
	param->dst = dst_addr;
1019

1020 1021
	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1022

1023 1024
	param->a_b_cnt = bcnt << 16 | acnt;
	param->ccnt = ccnt;
1025 1026 1027 1028 1029 1030
	/*
	 * Only time when (bcntrld) auto reload is required is for
	 * A-sync case, and in this case, a requirement of reload value
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
	 * and then later will be populated by edma_execute.
	 */
1031
	param->link_bcntrld = 0xffffffff;
1032 1033 1034
	return absync;
}

1035 1036 1037 1038 1039 1040 1041 1042
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
1043
	dma_addr_t src_addr = 0, dst_addr = 0;
1044 1045
	enum dma_slave_buswidth dev_width;
	u32 burst;
1046
	struct scatterlist *sg;
1047
	int i, nslots, ret;
1048 1049 1050 1051

	if (unlikely(!echan || !sgl || !sg_len))
		return NULL;

1052
	if (direction == DMA_DEV_TO_MEM) {
1053
		src_addr = echan->cfg.src_addr;
1054 1055 1056
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
1057
		dst_addr = echan->cfg.dst_addr;
1058 1059 1060
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1061
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1062 1063 1064 1065
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1066
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1067 1068 1069
		return NULL;
	}

1070 1071
	edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1072
	if (!edesc) {
1073
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1074 1075 1076 1077
		return NULL;
	}

	edesc->pset_nr = sg_len;
1078
	edesc->residue = 0;
1079
	edesc->direction = direction;
1080
	edesc->echan = echan;
1081

1082 1083 1084 1085
	/* Allocate a PaRAM slot, if needed */
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);

	for (i = 0; i < nslots; i++) {
1086 1087
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1088
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1089
			if (echan->slot[i] < 0) {
V
Valentin Ilie 已提交
1090
				kfree(edesc);
1091 1092
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1093 1094 1095
				return NULL;
			}
		}
1096 1097 1098 1099
	}

	/* Configure PaRAM sets for each SG */
	for_each_sg(sgl, sg, sg_len, i) {
1100 1101 1102 1103 1104
		/* Get address for each SG */
		if (direction == DMA_DEV_TO_MEM)
			dst_addr = sg_dma_address(sg);
		else
			src_addr = sg_dma_address(sg);
1105

1106 1107 1108
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width,
				       sg_dma_len(sg), direction);
V
Vinod Koul 已提交
1109 1110
		if (ret < 0) {
			kfree(edesc);
1111
			return NULL;
1112 1113
		}

1114
		edesc->absync = ret;
1115
		edesc->residue += sg_dma_len(sg);
1116 1117 1118 1119

		/* If this is the last in a current SG set of transactions,
		   enable interrupts so that next set is processed */
		if (!((i+1) % MAX_NR_SG))
1120
			edesc->pset[i].param.opt |= TCINTEN;
1121

1122 1123
		/* If this is the last set, enable completion interrupt flag */
		if (i == sg_len - 1)
1124
			edesc->pset[i].param.opt |= TCINTEN;
1125
	}
1126
	edesc->residue_stat = edesc->residue;
1127 1128 1129 1130

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1131
static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1132 1133 1134
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
1135
	int ret, nslots;
1136 1137 1138
	struct edma_desc *edesc;
	struct device *dev = chan->device->dev;
	struct edma_chan *echan = to_edma_chan(chan);
1139
	unsigned int width, pset_len;
1140 1141 1142 1143

	if (unlikely(!echan || !len))
		return NULL;

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	if (len < SZ_64K) {
		/*
		 * Transfer size less than 64K can be handled with one paRAM
		 * slot and with one burst.
		 * ACNT = length
		 */
		width = len;
		pset_len = len;
		nslots = 1;
	} else {
		/*
		 * Transfer size bigger than 64K will be handled with maximum of
		 * two paRAM slots.
		 * slot1: (full_length / 32767) times 32767 bytes bursts.
		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
		 * slot2: the remaining amount of data after slot1.
		 *	  ACNT = full_length - length1, length2 = ACNT
		 *
		 * When the full_length is multibple of 32767 one slot can be
		 * used to complete the transfer.
		 */
		width = SZ_32K - 1;
		pset_len = rounddown(len, width);
		/* One slot is enough for lengths multiple of (SZ_32K -1) */
		if (unlikely(pset_len == len))
			nslots = 1;
		else
			nslots = 2;
	}

	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1176 1177 1178 1179 1180
	if (!edesc) {
		dev_dbg(dev, "Failed to allocate a descriptor\n");
		return NULL;
	}

1181 1182 1183 1184
	edesc->pset_nr = nslots;
	edesc->residue = edesc->residue_stat = len;
	edesc->direction = DMA_MEM_TO_MEM;
	edesc->echan = echan;
1185

1186
	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1187 1188 1189
			       width, pset_len, DMA_MEM_TO_MEM);
	if (ret < 0) {
		kfree(edesc);
1190
		return NULL;
1191
	}
1192 1193 1194

	edesc->absync = ret;

1195
	edesc->pset[0].param.opt |= ITCCHEN;
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	if (nslots == 1) {
		/* Enable transfer complete interrupt */
		edesc->pset[0].param.opt |= TCINTEN;
	} else {
		/* Enable transfer complete chaining for the first slot */
		edesc->pset[0].param.opt |= TCCHEN;

		if (echan->slot[1] < 0) {
			echan->slot[1] = edma_alloc_slot(echan->ecc,
							 EDMA_SLOT_ANY);
			if (echan->slot[1] < 0) {
				kfree(edesc);
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
				return NULL;
			}
		}
		dest += pset_len;
		src += pset_len;
		pset_len = width = len % (SZ_32K - 1);

		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
				       width, pset_len, DMA_MEM_TO_MEM);
		if (ret < 0) {
			kfree(edesc);
			return NULL;
		}

		edesc->pset[1].param.opt |= ITCCHEN;
		edesc->pset[1].param.opt |= TCINTEN;
	}
1227 1228 1229 1230

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1231 1232 1233
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
1234
	unsigned long tx_flags)
1235 1236 1237 1238 1239 1240
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr, dst_addr;
	enum dma_slave_buswidth dev_width;
1241
	bool use_intermediate = false;
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	u32 burst;
	int i, ret, nslots;

	if (unlikely(!echan || !buf_len || !period_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dst_addr = buf_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		src_addr = buf_addr;
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1259
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1260 1261 1262 1263
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1264
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		return NULL;
	}

	if (unlikely(buf_len % period_len)) {
		dev_err(dev, "Period should be multiple of Buffer length\n");
		return NULL;
	}

	nslots = (buf_len / period_len) + 1;

	/*
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
	 * by cases where the number of periods is more than the maximum
	 * number of SGs the EDMA driver can handle at a time. For DMA types
	 * such as Slave SGs, such delays are tolerable and synchronized,
	 * but the synchronization is difficult to achieve with Cyclic and
	 * cannot be guaranteed, so we error out early.
	 */
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	if (nslots > MAX_NR_SG) {
		/*
		 * If the burst and period sizes are the same, we can put
		 * the full buffer into a single period and activate
		 * intermediate interrupts. This will produce interrupts
		 * after each burst, which is also after each desired period.
		 */
		if (burst == period_len) {
			period_len = buf_len;
			nslots = 2;
			use_intermediate = true;
		} else {
			return NULL;
		}
	}
1298

1299 1300
	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1301
	if (!edesc) {
1302
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1303 1304 1305 1306 1307
		return NULL;
	}

	edesc->cyclic = 1;
	edesc->pset_nr = nslots;
1308
	edesc->residue = edesc->residue_stat = buf_len;
1309
	edesc->direction = direction;
1310
	edesc->echan = echan;
1311

1312 1313
	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
		__func__, echan->ch_num, nslots, period_len, buf_len);
1314 1315 1316 1317 1318

	for (i = 0; i < nslots; i++) {
		/* Allocate a PaRAM slot, if needed */
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1319
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1320
			if (echan->slot[i] < 0) {
1321
				kfree(edesc);
1322 1323
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
				return NULL;
			}
		}

		if (i == nslots - 1) {
			memcpy(&edesc->pset[i], &edesc->pset[0],
			       sizeof(edesc->pset[0]));
			break;
		}

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width, period_len,
				       direction);
1337 1338
		if (ret < 0) {
			kfree(edesc);
1339
			return NULL;
1340
		}
1341

1342 1343 1344 1345
		if (direction == DMA_DEV_TO_MEM)
			dst_addr += period_len;
		else
			src_addr += period_len;
1346

1347 1348
		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
		dev_vdbg(dev,
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
			i, echan->ch_num, echan->slot[i],
1361 1362 1363 1364 1365 1366 1367 1368
			edesc->pset[i].param.opt,
			edesc->pset[i].param.src,
			edesc->pset[i].param.dst,
			edesc->pset[i].param.a_b_cnt,
			edesc->pset[i].param.ccnt,
			edesc->pset[i].param.src_dst_bidx,
			edesc->pset[i].param.src_dst_cidx,
			edesc->pset[i].param.link_bcntrld);
1369 1370 1371 1372

		edesc->absync = ret;

		/*
1373
		 * Enable period interrupt only if it is requested
1374
		 */
1375
		if (tx_flags & DMA_PREP_INTERRUPT) {
1376
			edesc->pset[i].param.opt |= TCINTEN;
1377 1378 1379 1380 1381

			/* Also enable intermediate interrupts if necessary */
			if (use_intermediate)
				edesc->pset[i].param.opt |= ITCINTEN;
		}
1382 1383
	}

1384
	/* Place the cyclic channel to highest priority queue */
1385 1386
	if (!echan->tc)
		edma_assign_channel_eventq(echan, EVENTQ_0);
1387

1388 1389 1390
	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1391
static void edma_completion_handler(struct edma_chan *echan)
1392 1393
{
	struct device *dev = echan->vchan.chan.device->dev;
1394
	struct edma_desc *edesc;
1395

1396
	spin_lock(&echan->vchan.lock);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	edesc = echan->edesc;
	if (edesc) {
		if (edesc->cyclic) {
			vchan_cyclic_callback(&edesc->vdesc);
			spin_unlock(&echan->vchan.lock);
			return;
		} else if (edesc->processed == edesc->pset_nr) {
			edesc->residue = 0;
			edma_stop(echan);
			vchan_cookie_complete(&edesc->vdesc);
			echan->edesc = NULL;

			dev_dbg(dev, "Transfer completed on channel %d\n",
				echan->ch_num);
		} else {
			dev_dbg(dev, "Sub transfer completed on channel %d\n",
				echan->ch_num);

			edma_pause(echan);

			/* Update statistics for tx_status */
			edesc->residue -= edesc->sg_len;
			edesc->residue_stat = edesc->residue;
			edesc->processed_stat = edesc->processed;
		}
		edma_execute(echan);
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	}

	spin_unlock(&echan->vchan.lock);
}

/* eDMA interrupt handler */
static irqreturn_t dma_irq_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
	int ctlr;
	u32 sh_ier;
	u32 sh_ipr;
	u32 bank;

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_irq_handler\n");

	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
	if (!sh_ipr) {
		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
		if (!sh_ipr)
			return IRQ_NONE;
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
		bank = 1;
	} else {
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
		bank = 0;
	}

	do {
		u32 slot;
		u32 channel;

		slot = __ffs(sh_ipr);
		sh_ipr &= ~(BIT(slot));

		if (sh_ier & BIT(slot)) {
			channel = (bank << 5) | slot;
			/* Clear the corresponding IPR bits */
			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
			edma_completion_handler(&ecc->slave_chans[channel]);
1467
		}
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	} while (sh_ipr);

	edma_shadow0_write(ecc, SH_IEVAL, 1);
	return IRQ_HANDLED;
}

static void edma_error_handler(struct edma_chan *echan)
{
	struct edma_cc *ecc = echan->ecc;
	struct device *dev = echan->vchan.chan.device->dev;
	struct edmacc_param p;

	if (!echan->edesc)
		return;

	spin_lock(&echan->vchan.lock);
1484

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	edma_read_slot(ecc, echan->slot[0], &p);
	/*
	 * Issue later based on missed flag which will be sure
	 * to happen as:
	 * (1) we finished transmitting an intermediate slot and
	 *     edma_execute is coming up.
	 * (2) or we finished current transfer and issue will
	 *     call edma_execute.
	 *
	 * Important note: issuing can be dangerous here and
	 * lead to some nasty recursion when we are in a NULL
	 * slot. So we avoid doing so and set the missed flag.
	 */
	if (p.a_b_cnt == 0 && p.ccnt == 0) {
		dev_dbg(dev, "Error on null slot, setting miss\n");
		echan->missed = 1;
	} else {
1502
		/*
1503 1504
		 * The slot is already programmed but the event got
		 * missed, so its safe to issue it here.
1505
		 */
1506
		dev_dbg(dev, "Missed event, TRIGGERING\n");
1507 1508 1509 1510
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
1511 1512 1513 1514
	}
	spin_unlock(&echan->vchan.lock);
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
static inline bool edma_error_pending(struct edma_cc *ecc)
{
	if (edma_read_array(ecc, EDMA_EMR, 0) ||
	    edma_read_array(ecc, EDMA_EMR, 1) ||
	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
		return true;

	return false;
}

1525 1526 1527 1528
/* eDMA error interrupt handler */
static irqreturn_t dma_ccerr_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
1529
	int i, j;
1530 1531
	int ctlr;
	unsigned int cnt = 0;
1532
	unsigned int val;
1533 1534 1535 1536 1537 1538 1539

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");

1540 1541 1542 1543 1544 1545 1546 1547 1548
	if (!edma_error_pending(ecc)) {
		/*
		 * The registers indicate no pending error event but the irq
		 * handler has been called.
		 * Ask eDMA to re-evaluate the error registers.
		 */
		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
			__func__);
		edma_write(ecc, EDMA_EEVAL, 1);
1549
		return IRQ_NONE;
1550
	}
1551 1552

	while (1) {
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		/* Event missed register(s) */
		for (j = 0; j < 2; j++) {
			unsigned long emr;

			val = edma_read_array(ecc, EDMA_EMR, j);
			if (!val)
				continue;

			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
			emr = val;
			for (i = find_next_bit(&emr, 32, 0); i < 32;
			     i = find_next_bit(&emr, 32, i + 1)) {
1565 1566
				int k = (j << 5) + i;

1567 1568 1569 1570
				/* Clear the corresponding EMR bits */
				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
				/* Clear any SER */
				edma_shadow0_write_array(ecc, SH_SECR, j,
1571
							 BIT(i));
1572
				edma_error_handler(&ecc->slave_chans[k]);
1573
			}
1574
		}
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

		val = edma_read(ecc, EDMA_QEMR);
		if (val) {
			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_QEMCR, val);
			edma_shadow0_write(ecc, SH_QSECR, val);
		}

		val = edma_read(ecc, EDMA_CCERR);
		if (val) {
			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_CCERRCLR, val);
		}

1591
		if (!edma_error_pending(ecc))
1592 1593 1594 1595
			break;
		cnt++;
		if (cnt > 10)
			break;
1596
	}
1597 1598
	edma_write(ecc, EDMA_EEVAL, 1);
	return IRQ_HANDLED;
1599 1600 1601 1602 1603 1604
}

/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
1605 1606 1607
	struct edma_cc *ecc = echan->ecc;
	struct device *dev = ecc->dev;
	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1608 1609
	int ret;

1610 1611 1612 1613 1614 1615 1616 1617 1618
	if (echan->tc) {
		eventq_no = echan->tc->id;
	} else if (ecc->tc_list) {
		/* memcpy channel */
		echan->tc = &ecc->tc_list[ecc->info->default_queue];
		eventq_no = echan->tc->id;
	}

	ret = edma_alloc_channel(echan, eventq_no);
1619 1620
	if (ret)
		return ret;
1621

1622
	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1623 1624 1625
	if (echan->slot[0] < 0) {
		dev_err(dev, "Entry slot allocation failed for channel %u\n",
			EDMA_CHAN_SLOT(echan->ch_num));
1626
		goto err_slot;
1627 1628 1629
	}

	/* Set up channel -> slot mapping for the entry slot */
1630 1631
	edma_set_chmap(echan, echan->slot[0]);
	echan->alloced = true;
1632

1633 1634 1635 1636
	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
		echan->hw_triggered ? "HW" : "SW");

1637 1638
	return 0;

1639 1640
err_slot:
	edma_free_channel(echan);
1641 1642 1643 1644 1645 1646 1647
	return ret;
}

/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
1648
	struct device *dev = echan->ecc->dev;
1649 1650 1651
	int i;

	/* Terminate transfers */
1652
	edma_stop(echan);
1653 1654 1655 1656

	vchan_free_chan_resources(&echan->vchan);

	/* Free EDMA PaRAM slots */
1657
	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1658
		if (echan->slot[i] >= 0) {
1659
			edma_free_slot(echan->ecc, echan->slot[i]);
1660 1661 1662 1663
			echan->slot[i] = -1;
		}
	}

1664
	/* Set entry slot to the dummy slot */
1665
	edma_set_chmap(echan, echan->ecc->dummy_slot);
1666

1667 1668
	/* Free EDMA channel */
	if (echan->alloced) {
1669
		edma_free_channel(echan);
1670 1671 1672
		echan->alloced = false;
	}

1673 1674 1675 1676 1677
	echan->tc = NULL;
	echan->hw_triggered = false;

	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
}

/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
		edma_execute(echan);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
}

1692 1693 1694 1695 1696 1697 1698 1699 1700
/*
 * This limit exists to avoid a possible infinite loop when waiting for proof
 * that a particular transfer is completed. This limit can be hit if there
 * are large bursts to/from slow devices or the CPU is never able to catch
 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
 * RX-FIFO, as many as 55 loops have been seen.
 */
#define EDMA_MAX_TR_WAIT_LOOPS 1000

1701 1702 1703
static u32 edma_residue(struct edma_desc *edesc)
{
	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1704 1705
	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
	struct edma_chan *echan = edesc->echan;
1706 1707 1708 1709 1710 1711 1712 1713
	struct edma_pset *pset = edesc->pset;
	dma_addr_t done, pos;
	int i;

	/*
	 * We always read the dst/src position from the first RamPar
	 * pset. That's the one which is active now.
	 */
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	pos = edma_get_position(echan->ecc, echan->slot[0], dst);

	/*
	 * "pos" may represent a transfer request that is still being
	 * processed by the EDMACC or EDMATC. We will busy wait until
	 * any one of the situations occurs:
	 *   1. the DMA hardware is idle
	 *   2. a new transfer request is setup
	 *   3. we hit the loop limit
	 */
	while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
		/* check if a new transfer request is setup */
		if (edma_get_position(echan->ecc,
				      echan->slot[0], dst) != pos) {
			break;
		}

		if (!--loop_count) {
			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
				"%s: timeout waiting for PaRAM update\n",
				__func__);
			break;
		}

		cpu_relax();
	}
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

	/*
	 * Cyclic is simple. Just subtract pset[0].addr from pos.
	 *
	 * We never update edesc->residue in the cyclic case, so we
	 * can tell the remaining room to the end of the circular
	 * buffer.
	 */
	if (edesc->cyclic) {
		done = pos - pset->addr;
		edesc->residue_stat = edesc->residue - done;
		return edesc->residue_stat;
	}

	/*
	 * For SG operation we catch up with the last processed
	 * status.
	 */
	pset += edesc->processed_stat;

	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
		/*
		 * If we are inside this pset address range, we know
		 * this is the active one. Get the current delta and
		 * stop walking the psets.
		 */
		if (pos >= pset->addr && pos < pset->addr + pset->len)
			return edesc->residue_stat - (pos - pset->addr);

		/* Otherwise mark it done and update residue_stat. */
		edesc->processed_stat++;
		edesc->residue_stat -= pset->len;
	}
	return edesc->residue_stat;
}

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
1787
	if (ret == DMA_COMPLETE || !txstate)
1788 1789 1790
		return ret;

	spin_lock_irqsave(&echan->vchan.lock, flags);
1791
	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1792
		txstate->residue = edma_residue(echan->edesc);
1793 1794
	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1795 1796 1797 1798 1799
	spin_unlock_irqrestore(&echan->vchan.lock, flags);

	return ret;
}

1800
static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1801 1802 1803
{
	if (!memcpy_channels)
		return false;
1804 1805
	while (*memcpy_channels != -1) {
		if (*memcpy_channels == ch_num)
1806
			return true;
1807
		memcpy_channels++;
1808 1809 1810 1811
	}
	return false;
}

1812 1813 1814 1815 1816
#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

1817
static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1818
{
1819 1820
	struct dma_device *s_ddev = &ecc->dma_slave;
	struct dma_device *m_ddev = NULL;
1821
	s32 *memcpy_channels = ecc->info->memcpy_channels;
1822 1823
	int i, j;

1824 1825 1826 1827 1828 1829
	dma_cap_zero(s_ddev->cap_mask);
	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
	if (ecc->legacy_mode && !memcpy_channels) {
		dev_warn(ecc->dev,
			 "Legacy memcpy is enabled, things might not work\n");
1830

1831 1832 1833 1834
		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
	}
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
	s_ddev->device_free_chan_resources = edma_free_chan_resources;
	s_ddev->device_issue_pending = edma_issue_pending;
	s_ddev->device_tx_status = edma_tx_status;
	s_ddev->device_config = edma_slave_config;
	s_ddev->device_pause = edma_dma_pause;
	s_ddev->device_resume = edma_dma_resume;
	s_ddev->device_terminate_all = edma_terminate_all;
1846
	s_ddev->device_synchronize = edma_synchronize;
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

	s_ddev->dev = ecc->dev;
	INIT_LIST_HEAD(&s_ddev->channels);

	if (memcpy_channels) {
		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
		ecc->dma_memcpy = m_ddev;

		dma_cap_zero(m_ddev->cap_mask);
		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);

		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
		m_ddev->device_free_chan_resources = edma_free_chan_resources;
		m_ddev->device_issue_pending = edma_issue_pending;
		m_ddev->device_tx_status = edma_tx_status;
		m_ddev->device_config = edma_slave_config;
		m_ddev->device_pause = edma_dma_pause;
		m_ddev->device_resume = edma_dma_resume;
		m_ddev->device_terminate_all = edma_terminate_all;
1872
		m_ddev->device_synchronize = edma_synchronize;
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883

		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

		m_ddev->dev = ecc->dev;
		INIT_LIST_HEAD(&m_ddev->channels);
	} else if (!ecc->legacy_mode) {
		dev_info(ecc->dev, "memcpy is disabled\n");
	}
1884

1885
	for (i = 0; i < ecc->num_channels; i++) {
1886
		struct edma_chan *echan = &ecc->slave_chans[i];
1887
		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1888 1889 1890
		echan->ecc = ecc;
		echan->vchan.desc_free = edma_desc_free;

1891 1892 1893 1894
		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
			vchan_init(&echan->vchan, m_ddev);
		else
			vchan_init(&echan->vchan, s_ddev);
1895 1896 1897 1898 1899 1900 1901

		INIT_LIST_HEAD(&echan->node);
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
			echan->slot[j] = -1;
	}
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
			      struct edma_cc *ecc)
{
	int i;
	u32 value, cccfg;
	s8 (*queue_priority_map)[2];

	/* Decode the eDMA3 configuration from CCCFG register */
	cccfg = edma_read(ecc, EDMA_CCCFG);

	value = GET_NUM_REGN(cccfg);
	ecc->num_region = BIT(value);

	value = GET_NUM_DMACH(cccfg);
	ecc->num_channels = BIT(value + 1);

1918 1919 1920
	value = GET_NUM_QDMACH(cccfg);
	ecc->num_qchannels = value * 2;

1921 1922 1923 1924 1925 1926
	value = GET_NUM_PAENTRY(cccfg);
	ecc->num_slots = BIT(value + 4);

	value = GET_NUM_EVQUE(cccfg);
	ecc->num_tc = value + 1;

1927 1928
	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;

1929 1930 1931
	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1932
	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1933 1934
	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1935
	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

	/* Nothing need to be done if queue priority is provided */
	if (pdata->queue_priority_mapping)
		return 0;

	/*
	 * Configure TC/queue priority as follows:
	 * Q0 - priority 0
	 * Q1 - priority 1
	 * Q2 - priority 2
	 * ...
	 * The meaning of priority numbers: 0 highest priority, 7 lowest
	 * priority. So Q0 is the highest priority queue and the last queue has
	 * the lowest priority.
	 */
1951
	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
					  GFP_KERNEL);
	if (!queue_priority_map)
		return -ENOMEM;

	for (i = 0; i < ecc->num_tc; i++) {
		queue_priority_map[i][0] = i;
		queue_priority_map[i][1] = i;
	}
	queue_priority_map[i][0] = -1;
	queue_priority_map[i][1] = -1;

	pdata->queue_priority_mapping = queue_priority_map;
	/* Default queue has the lowest priority */
	pdata->default_queue = i - 1;

	return 0;
}

#if IS_ENABLED(CONFIG_OF)
static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
			       size_t sz)
{
	const char pname[] = "ti,edma-xbar-event-map";
	struct resource res;
	void __iomem *xbar;
	s16 (*xbar_chans)[2];
	size_t nelm = sz / sizeof(s16);
	u32 shift, offset, mux;
	int ret, i;

1982
	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	if (!xbar_chans)
		return -ENOMEM;

	ret = of_address_to_resource(dev->of_node, 1, &res);
	if (ret)
		return -ENOMEM;

	xbar = devm_ioremap(dev, res.start, resource_size(&res));
	if (!xbar)
		return -ENOMEM;

	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
					 nelm);
	if (ret)
		return -EIO;

	/* Invalidate last entry for the other user of this mess */
	nelm >>= 1;
	xbar_chans[nelm][0] = -1;
	xbar_chans[nelm][1] = -1;

	for (i = 0; i < nelm; i++) {
		shift = (xbar_chans[i][1] & 0x03) << 3;
		offset = xbar_chans[i][1] & 0xfffffffc;
		mux = readl(xbar + offset);
		mux &= ~(0xff << shift);
		mux |= xbar_chans[i][0] << shift;
		writel(mux, (xbar + offset));
	}

	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
	return 0;
}

2017 2018
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
						     bool legacy_mode)
2019 2020
{
	struct edma_soc_info *info;
2021 2022
	struct property *prop;
	size_t sz;
2023 2024 2025 2026 2027 2028
	int ret;

	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
	if (!info)
		return ERR_PTR(-ENOMEM);

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	if (legacy_mode) {
		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
					&sz);
		if (prop) {
			ret = edma_xbar_event_map(dev, info, sz);
			if (ret)
				return ERR_PTR(ret);
		}
		return info;
	}

	/* Get the list of channels allocated to be used for memcpy */
	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
	if (prop) {
		const char pname[] = "ti,edma-memcpy-channels";
2044 2045
		size_t nelm = sz / sizeof(s32);
		s32 *memcpy_ch;
2046

2047
		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2048 2049 2050 2051
					 GFP_KERNEL);
		if (!memcpy_ch)
			return ERR_PTR(-ENOMEM);

2052 2053
		ret = of_property_read_u32_array(dev->of_node, pname,
						 (u32 *)memcpy_ch, nelm);
2054 2055 2056 2057 2058 2059 2060 2061 2062
		if (ret)
			return ERR_PTR(ret);

		memcpy_ch[nelm] = -1;
		info->memcpy_channels = memcpy_ch;
	}

	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
				&sz);
2063
	if (prop) {
2064
		const char pname[] = "ti,edma-reserved-slot-ranges";
2065
		u32 (*tmp)[2];
2066
		s16 (*rsv_slots)[2];
2067
		size_t nelm = sz / sizeof(*tmp);
2068
		struct edma_rsv_info *rsv_info;
2069
		int i;
2070 2071 2072 2073

		if (!nelm)
			return info;

2074 2075 2076 2077
		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
		if (!tmp)
			return ERR_PTR(-ENOMEM);

2078
		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2079 2080
		if (!rsv_info) {
			kfree(tmp);
2081
			return ERR_PTR(-ENOMEM);
2082
		}
2083 2084 2085

		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
					 GFP_KERNEL);
2086 2087
		if (!rsv_slots) {
			kfree(tmp);
2088
			return ERR_PTR(-ENOMEM);
2089
		}
2090

2091 2092 2093 2094
		ret = of_property_read_u32_array(dev->of_node, pname,
						 (u32 *)tmp, nelm * 2);
		if (ret) {
			kfree(tmp);
2095
			return ERR_PTR(ret);
2096
		}
2097

2098 2099 2100 2101
		for (i = 0; i < nelm; i++) {
			rsv_slots[i][0] = tmp[i][0];
			rsv_slots[i][1] = tmp[i][1];
		}
2102 2103
		rsv_slots[nelm][0] = -1;
		rsv_slots[nelm][1] = -1;
2104

2105 2106
		info->rsv = rsv_info;
		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2107 2108

		kfree(tmp);
2109
	}
2110 2111 2112

	return info;
}
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
				      struct of_dma *ofdma)
{
	struct edma_cc *ecc = ofdma->of_dma_data;
	struct dma_chan *chan = NULL;
	struct edma_chan *echan;
	int i;

	if (!ecc || dma_spec->args_count < 1)
		return NULL;

	for (i = 0; i < ecc->num_channels; i++) {
		echan = &ecc->slave_chans[i];
		if (echan->ch_num == dma_spec->args[0]) {
			chan = &echan->vchan.chan;
			break;
		}
	}

	if (!chan)
		return NULL;

	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
		goto out;

	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
	    dma_spec->args[1] < echan->ecc->num_tc) {
		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
		goto out;
	}

	return NULL;
out:
	/* The channel is going to be used as HW synchronized */
	echan->hw_triggered = true;
	return dma_get_slave_channel(chan);
}
2151
#else
2152 2153
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
						     bool legacy_mode)
2154 2155 2156
{
	return ERR_PTR(-EINVAL);
}
2157 2158 2159 2160 2161 2162

static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
				      struct of_dma *ofdma)
{
	return NULL;
}
2163 2164
#endif

B
Bill Pemberton 已提交
2165
static int edma_probe(struct platform_device *pdev)
2166
{
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	struct edma_soc_info	*info = pdev->dev.platform_data;
	s8			(*queue_priority_mapping)[2];
	int			i, off, ln;
	const s16		(*rsv_slots)[2];
	const s16		(*xbar_chans)[2];
	int			irq;
	char			*irq_name;
	struct resource		*mem;
	struct device_node	*node = pdev->dev.of_node;
	struct device		*dev = &pdev->dev;
	struct edma_cc		*ecc;
2178
	bool			legacy_mode = true;
2179 2180
	int ret;

2181
	if (node) {
2182 2183 2184 2185 2186 2187 2188
		const struct of_device_id *match;

		match = of_match_node(edma_of_ids, node);
		if (match && (u32)match->data == EDMA_BINDING_TPCC)
			legacy_mode = false;

		info = edma_setup_info_from_dt(dev, legacy_mode);
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
		if (IS_ERR(info)) {
			dev_err(dev, "failed to get DT data\n");
			return PTR_ERR(info);
		}
	}

	if (!info)
		return -ENODEV;

	pm_runtime_enable(dev);
	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		dev_err(dev, "pm_runtime_get_sync() failed\n");
		return ret;
	}

2205
	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2206 2207 2208
	if (ret)
		return ret;

2209
	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2210
	if (!ecc) {
2211
		dev_err(dev, "Can't allocate controller\n");
2212 2213 2214
		return -ENOMEM;
	}

2215 2216
	ecc->dev = dev;
	ecc->id = pdev->id;
2217
	ecc->legacy_mode = legacy_mode;
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
	/* When booting with DT the pdev->id is -1 */
	if (ecc->id < 0)
		ecc->id = 0;

	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
	if (!mem) {
		dev_dbg(dev, "mem resource not found, using index 0\n");
		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
		if (!mem) {
			dev_err(dev, "no mem resource?\n");
			return -ENODEV;
		}
	}
	ecc->base = devm_ioremap_resource(dev, mem);
	if (IS_ERR(ecc->base))
		return PTR_ERR(ecc->base);

	platform_set_drvdata(pdev, ecc);

	/* Get eDMA3 configuration from IP */
	ret = edma_setup_from_hw(dev, info, ecc);
	if (ret)
		return ret;

2242 2243 2244 2245 2246 2247
	/* Allocate memory based on the information we got from the IP */
	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
					sizeof(*ecc->slave_chans), GFP_KERNEL);
	if (!ecc->slave_chans)
		return -ENOMEM;

2248
	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2249
				       sizeof(unsigned long), GFP_KERNEL);
2250
	if (!ecc->slot_inuse)
2251 2252
		return -ENOMEM;

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	ecc->default_queue = info->default_queue;

	for (i = 0; i < ecc->num_slots; i++)
		edma_write_slot(ecc, i, &dummy_paramset);

	if (info->rsv) {
		/* Set the reserved slots in inuse list */
		rsv_slots = info->rsv->rsv_slots;
		if (rsv_slots) {
			for (i = 0; rsv_slots[i][0] != -1; i++) {
				off = rsv_slots[i][0];
				ln = rsv_slots[i][1];
2265
				set_bits(off, ln, ecc->slot_inuse);
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
			}
		}
	}

	/* Clear the xbar mapped channels in unused list */
	xbar_chans = info->xbar_chans;
	if (xbar_chans) {
		for (i = 0; xbar_chans[i][1] != -1; i++) {
			off = xbar_chans[i][1];
		}
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 0);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 2);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
	}

2308 2309 2310 2311 2312 2313
	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
	if (ecc->dummy_slot < 0) {
		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
		return ecc->dummy_slot;
	}

2314 2315
	queue_priority_mapping = info->queue_priority_mapping;

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	if (!ecc->legacy_mode) {
		int lowest_priority = 0;
		struct of_phandle_args tc_args;

		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
					    sizeof(*ecc->tc_list), GFP_KERNEL);
		if (!ecc->tc_list)
			return -ENOMEM;

		for (i = 0;; i++) {
			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
							       1, i, &tc_args);
			if (ret || i == ecc->num_tc)
				break;

			ecc->tc_list[i].node = tc_args.np;
			ecc->tc_list[i].id = i;
			queue_priority_mapping[i][1] = tc_args.args[0];
			if (queue_priority_mapping[i][1] > lowest_priority) {
				lowest_priority = queue_priority_mapping[i][1];
				info->default_queue = i;
			}
		}
	}

2341 2342 2343 2344
	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);
2345

2346 2347 2348 2349 2350 2351 2352
	for (i = 0; i < ecc->num_region; i++) {
		edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
		edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
		edma_write_array(ecc, EDMA_QRAE, i, 0x0);
	}
	ecc->info = info;

2353
	/* Init the dma device and channels */
2354
	edma_dma_init(ecc, legacy_mode);
2355

2356 2357
	for (i = 0; i < ecc->num_channels; i++) {
		/* Assign all channels to the default queue */
2358 2359
		edma_assign_channel_eventq(&ecc->slave_chans[i],
					   info->default_queue);
2360 2361 2362 2363
		/* Set entry slot to the dummy slot */
		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
	}

2364 2365 2366 2367
	ecc->dma_slave.filter.map = info->slave_map;
	ecc->dma_slave.filter.mapcnt = info->slavecnt;
	ecc->dma_slave.filter.fn = edma_filter_fn;

2368
	ret = dma_async_device_register(&ecc->dma_slave);
2369 2370
	if (ret) {
		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2371
		goto err_reg1;
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	}

	if (ecc->dma_memcpy) {
		ret = dma_async_device_register(ecc->dma_memcpy);
		if (ret) {
			dev_err(dev, "memcpy ddev registration failed (%d)\n",
				ret);
			dma_async_device_unregister(&ecc->dma_slave);
			goto err_reg1;
		}
	}
2383

2384
	if (node)
2385
		of_dma_controller_register(node, of_edma_xlate, ecc);
2386

2387
	dev_info(dev, "TI EDMA DMA engine driver\n");
2388 2389 2390 2391

	return 0;

err_reg1:
2392
	edma_free_slot(ecc, ecc->dummy_slot);
2393 2394 2395
	return ret;
}

2396
static int edma_remove(struct platform_device *pdev)
2397 2398 2399 2400
{
	struct device *dev = &pdev->dev;
	struct edma_cc *ecc = dev_get_drvdata(dev);

2401 2402
	if (dev->of_node)
		of_dma_controller_free(dev->of_node);
2403
	dma_async_device_unregister(&ecc->dma_slave);
2404 2405
	if (ecc->dma_memcpy)
		dma_async_device_unregister(ecc->dma_memcpy);
2406
	edma_free_slot(ecc, ecc->dummy_slot);
2407 2408 2409 2410

	return 0;
}

2411
#ifdef CONFIG_PM_SLEEP
2412 2413 2414 2415 2416 2417 2418
static int edma_pm_suspend(struct device *dev)
{
	struct edma_cc *ecc = dev_get_drvdata(dev);
	struct edma_chan *echan = ecc->slave_chans;
	int i;

	for (i = 0; i < ecc->num_channels; i++) {
2419
		if (echan[i].alloced)
2420 2421 2422 2423 2424 2425
			edma_setup_interrupt(&echan[i], false);
	}

	return 0;
}

2426 2427 2428
static int edma_pm_resume(struct device *dev)
{
	struct edma_cc *ecc = dev_get_drvdata(dev);
2429
	struct edma_chan *echan = ecc->slave_chans;
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	int i;
	s8 (*queue_priority_mapping)[2];

	queue_priority_mapping = ecc->info->queue_priority_mapping;

	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);

	for (i = 0; i < ecc->num_channels; i++) {
2441
		if (echan[i].alloced) {
2442 2443 2444 2445
			/* ensure access through shadow region 0 */
			edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
				       BIT(i & 0x1f));

2446
			edma_setup_interrupt(&echan[i], true);
2447 2448

			/* Set up channel -> slot mapping for the entry slot */
2449
			edma_set_chmap(&echan[i], echan[i].slot[0]);
2450 2451 2452 2453 2454 2455 2456 2457
		}
	}

	return 0;
}
#endif

static const struct dev_pm_ops edma_pm_ops = {
2458
	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2459 2460
};

2461 2462
static struct platform_driver edma_driver = {
	.probe		= edma_probe,
B
Bill Pemberton 已提交
2463
	.remove		= edma_remove,
2464
	.driver = {
2465 2466 2467
		.name	= "edma",
		.pm	= &edma_pm_ops,
		.of_match_table = edma_of_ids,
2468 2469 2470
	},
};

2471 2472
static int edma_tptc_probe(struct platform_device *pdev)
{
2473 2474
	pm_runtime_enable(&pdev->dev);
	return pm_runtime_get_sync(&pdev->dev);
2475 2476
}

2477
static struct platform_driver edma_tptc_driver = {
2478
	.probe		= edma_tptc_probe,
2479 2480 2481 2482 2483 2484
	.driver = {
		.name	= "edma3-tptc",
		.of_match_table = edma_tptc_of_ids,
	},
};

2485 2486
bool edma_filter_fn(struct dma_chan *chan, void *param)
{
2487 2488
	bool match = false;

2489 2490 2491
	if (chan->device->dev->driver == &edma_driver.driver) {
		struct edma_chan *echan = to_edma_chan(chan);
		unsigned ch_req = *(unsigned *)param;
2492 2493 2494 2495 2496
		if (ch_req == echan->ch_num) {
			/* The channel is going to be used as HW synchronized */
			echan->hw_triggered = true;
			match = true;
		}
2497
	}
2498
	return match;
2499 2500 2501 2502 2503
}
EXPORT_SYMBOL(edma_filter_fn);

static int edma_init(void)
{
2504 2505 2506 2507 2508 2509
	int ret;

	ret = platform_driver_register(&edma_tptc_driver);
	if (ret)
		return ret;

2510
	return platform_driver_register(&edma_driver);
2511 2512 2513 2514 2515 2516
}
subsys_initcall(edma_init);

static void __exit edma_exit(void)
{
	platform_driver_unregister(&edma_driver);
2517
	platform_driver_unregister(&edma_tptc_driver);
2518 2519 2520
}
module_exit(edma_exit);

J
Josh Boyer 已提交
2521
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2522 2523
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");