edma.c 62.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * TI EDMA DMA engine driver
 *
 * Copyright 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
18
#include <linux/edma.h>
19 20 21 22 23 24 25 26
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
27
#include <linux/of.h>
28
#include <linux/of_dma.h>
29 30 31 32
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
33

34
#include <linux/platform_data/edma.h>
35 36 37 38

#include "dmaengine.h"
#include "virt-dma.h"

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
/* Offsets matching "struct edmacc_param" */
#define PARM_OPT		0x00
#define PARM_SRC		0x04
#define PARM_A_B_CNT		0x08
#define PARM_DST		0x0c
#define PARM_SRC_DST_BIDX	0x10
#define PARM_LINK_BCNTRLD	0x14
#define PARM_SRC_DST_CIDX	0x18
#define PARM_CCNT		0x1c

#define PARM_SIZE		0x20

/* Offsets for EDMA CC global channel registers and their shadows */
#define SH_ER			0x00	/* 64 bits */
#define SH_ECR			0x08	/* 64 bits */
#define SH_ESR			0x10	/* 64 bits */
#define SH_CER			0x18	/* 64 bits */
#define SH_EER			0x20	/* 64 bits */
#define SH_EECR			0x28	/* 64 bits */
#define SH_EESR			0x30	/* 64 bits */
#define SH_SER			0x38	/* 64 bits */
#define SH_SECR			0x40	/* 64 bits */
#define SH_IER			0x50	/* 64 bits */
#define SH_IECR			0x58	/* 64 bits */
#define SH_IESR			0x60	/* 64 bits */
#define SH_IPR			0x68	/* 64 bits */
#define SH_ICR			0x70	/* 64 bits */
#define SH_IEVAL		0x78
#define SH_QER			0x80
#define SH_QEER			0x84
#define SH_QEECR		0x88
#define SH_QEESR		0x8c
#define SH_QSER			0x90
#define SH_QSECR		0x94
#define SH_SIZE			0x200

/* Offsets for EDMA CC global registers */
#define EDMA_REV		0x0000
#define EDMA_CCCFG		0x0004
#define EDMA_QCHMAP		0x0200	/* 8 registers */
#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
#define EDMA_QDMAQNUM		0x0260
#define EDMA_QUETCMAP		0x0280
#define EDMA_QUEPRI		0x0284
#define EDMA_EMR		0x0300	/* 64 bits */
#define EDMA_EMCR		0x0308	/* 64 bits */
#define EDMA_QEMR		0x0310
#define EDMA_QEMCR		0x0314
#define EDMA_CCERR		0x0318
#define EDMA_CCERRCLR		0x031c
#define EDMA_EEVAL		0x0320
#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
#define EDMA_QRAE		0x0380	/* 4 registers */
#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
#define EDMA_QSTAT		0x0600	/* 2 registers */
#define EDMA_QWMTHRA		0x0620
#define EDMA_QWMTHRB		0x0624
#define EDMA_CCSTAT		0x0640

#define EDMA_M			0x1000	/* global channel registers */
#define EDMA_ECR		0x1008
#define EDMA_ECRH		0x100C
#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
#define EDMA_PARM		0x4000	/* PaRAM entries */

#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))

#define EDMA_DCHMAP		0x0100  /* 64 registers */

/* CCCFG register */
#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
110
#define GET_NUM_QDMACH(x)	(x & 0x70 >> 4) /* bits 4-6 */
111 112 113 114 115
#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
#define CHMAP_EXIST		BIT(24)

116 117 118 119 120 121 122 123
/*
 * Max of 20 segments per channel to conserve PaRAM slots
 * Also note that MAX_NR_SG should be atleast the no.of periods
 * that are required for ASoC, otherwise DMA prep calls will
 * fail. Today davinci-pcm is the only user of this driver and
 * requires atleast 17 slots, so we setup the default to 20.
 */
#define MAX_NR_SG		20
124 125 126
#define EDMA_MAX_SLOTS		MAX_NR_SG
#define EDMA_DESCRIPTORS	16

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
#define EDMA_CONT_PARAMS_ANY		 1001
#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003

/* PaRAM slots are laid out like this */
struct edmacc_param {
	u32 opt;
	u32 src;
	u32 a_b_cnt;
	u32 dst;
	u32 src_dst_bidx;
	u32 link_bcntrld;
	u32 src_dst_cidx;
	u32 ccnt;
} __packed;

/* fields in edmacc_param.opt */
#define SAM		BIT(0)
#define DAM		BIT(1)
#define SYNCDIM		BIT(2)
#define STATIC		BIT(3)
#define EDMA_FWID	(0x07 << 8)
#define TCCMODE		BIT(11)
#define EDMA_TCC(t)	((t) << 12)
#define TCINTEN		BIT(20)
#define ITCINTEN	BIT(21)
#define TCCHEN		BIT(22)
#define ITCCHEN		BIT(23)

158
struct edma_pset {
159 160
	u32				len;
	dma_addr_t			addr;
161 162 163
	struct edmacc_param		param;
};

164 165 166
struct edma_desc {
	struct virt_dma_desc		vdesc;
	struct list_head		node;
167
	enum dma_transfer_direction	direction;
168
	int				cyclic;
169 170
	int				absync;
	int				pset_nr;
171
	struct edma_chan		*echan;
172
	int				processed;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

	/*
	 * The following 4 elements are used for residue accounting.
	 *
	 * - processed_stat: the number of SG elements we have traversed
	 * so far to cover accounting. This is updated directly to processed
	 * during edma_callback and is always <= processed, because processed
	 * refers to the number of pending transfer (programmed to EDMA
	 * controller), where as processed_stat tracks number of transfers
	 * accounted for so far.
	 *
	 * - residue: The amount of bytes we have left to transfer for this desc
	 *
	 * - residue_stat: The residue in bytes of data we have covered
	 * so far for accounting. This is updated directly to residue
	 * during callbacks to keep it current.
	 *
	 * - sg_len: Tracks the length of the current intermediate transfer,
	 * this is required to update the residue during intermediate transfer
	 * completion callback.
	 */
194 195
	int				processed_stat;
	u32				sg_len;
196
	u32				residue;
197
	u32				residue_stat;
198

199
	struct edma_pset		pset[0];
200 201 202 203
};

struct edma_cc;

204 205 206 207 208
struct edma_tc {
	struct device_node		*node;
	u16				id;
};

209 210 211 212 213
struct edma_chan {
	struct virt_dma_chan		vchan;
	struct list_head		node;
	struct edma_desc		*edesc;
	struct edma_cc			*ecc;
214
	struct edma_tc			*tc;
215 216
	int				ch_num;
	bool				alloced;
217
	bool				hw_triggered;
218
	int				slot[EDMA_MAX_SLOTS];
219
	int				missed;
220
	struct dma_slave_config		cfg;
221 222 223
};

struct edma_cc {
224 225 226 227
	struct device			*dev;
	struct edma_soc_info		*info;
	void __iomem			*base;
	int				id;
228
	bool				legacy_mode;
229 230 231

	/* eDMA3 resource information */
	unsigned			num_channels;
232
	unsigned			num_qchannels;
233 234 235
	unsigned			num_region;
	unsigned			num_slots;
	unsigned			num_tc;
236
	bool				chmap_exist;
237 238
	enum dma_event_q		default_queue;

239 240 241
	/*
	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
	 * in use by Linux or if it is allocated to be used by DSP.
242
	 */
243
	unsigned long *slot_inuse;
244

245
	struct dma_device		dma_slave;
246
	struct dma_device		*dma_memcpy;
247
	struct edma_chan		*slave_chans;
248
	struct edma_tc			*tc_list;
249 250 251
	int				dummy_slot;
};

252 253 254 255 256 257
/* dummy param set used to (re)initialize parameter RAM slots */
static const struct edmacc_param dummy_paramset = {
	.link_bcntrld = 0xffff,
	.ccnt = 1,
};

258 259
#define EDMA_BINDING_LEGACY	0
#define EDMA_BINDING_TPCC	1
260
static const struct of_device_id edma_of_ids[] = {
261 262 263 264 265 266 267 268
	{
		.compatible = "ti,edma3",
		.data = (void *)EDMA_BINDING_LEGACY,
	},
	{
		.compatible = "ti,edma3-tpcc",
		.data = (void *)EDMA_BINDING_TPCC,
	},
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
	{}
};

static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
{
	return (unsigned int)__raw_readl(ecc->base + offset);
}

static inline void edma_write(struct edma_cc *ecc, int offset, int val)
{
	__raw_writel(val, ecc->base + offset);
}

static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
			       unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	val |= or;
	edma_write(ecc, offset, val);
}

static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	edma_write(ecc, offset, val);
}

static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val |= or;
	edma_write(ecc, offset, val);
}

static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
					   int i)
{
	return edma_read(ecc, offset + (i << 2));
}

static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
				    unsigned val)
{
	edma_write(ecc, offset + (i << 2), val);
}

static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
				     unsigned and, unsigned or)
{
	edma_modify(ecc, offset + (i << 2), and, or);
}

static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
				 unsigned or)
{
	edma_or(ecc, offset + (i << 2), or);
}

static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
				  unsigned or)
{
	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
}

static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
				     int j, unsigned val)
{
	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
}

static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset);
}

static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
						   int offset, int i)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
}

static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
				      unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset, val);
}

static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
					    int i, unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
}

367 368
static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
					   int param_no)
369 370 371 372
{
	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
}

373 374
static inline void edma_param_write(struct edma_cc *ecc, int offset,
				    int param_no, unsigned val)
375 376 377 378
{
	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
}

379 380
static inline void edma_param_modify(struct edma_cc *ecc, int offset,
				     int param_no, unsigned and, unsigned or)
381 382 383 384
{
	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
}

385 386
static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
				  unsigned and)
387 388 389 390
{
	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
}

391 392
static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
				 unsigned or)
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
{
	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
}

static inline void set_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		set_bit(offset + (len - 1), p);
}

static inline void clear_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		clear_bit(offset + (len - 1), p);
}

static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
					  int priority)
{
	int bit = queue_no * 4;

	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
}

417
static void edma_set_chmap(struct edma_chan *echan, int slot)
418
{
419 420 421
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);

422 423 424 425
	if (ecc->chmap_exist) {
		slot = EDMA_CHAN_SLOT(slot);
		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
	}
426 427
}

428
static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
429
{
430 431
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
432

433
	if (enable) {
434 435 436 437
		edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
					 BIT(channel & 0x1f));
		edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
					 BIT(channel & 0x1f));
438
	} else {
439 440
		edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
					 BIT(channel & 0x1f));
441 442 443 444
	}
}

/*
445
 * paRAM slot management functions
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
 */
static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
			    const struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
}

static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
			   struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
}

/**
 * edma_alloc_slot - allocate DMA parameter RAM
 * @ecc: pointer to edma_cc struct
 * @slot: specific slot to allocate; negative for "any unused slot"
 *
 * This allocates a parameter RAM slot, initializing it to hold a
 * dummy transfer.  Slots allocated using this routine have not been
 * mapped to a hardware DMA channel, and will normally be used by
 * linking to them from a slot associated with a DMA channel.
 *
 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 * slots may be allocated on behalf of DSP firmware.
 *
 * Returns the number of the slot, else negative errno.
 */
static int edma_alloc_slot(struct edma_cc *ecc, int slot)
{
482
	if (slot > 0) {
483
		slot = EDMA_CHAN_SLOT(slot);
484 485 486 487 488
		/* Requesting entry paRAM slot for a HW triggered channel. */
		if (ecc->chmap_exist && slot < ecc->num_channels)
			slot = EDMA_SLOT_ANY;
	}

489
	if (slot < 0) {
490 491 492 493
		if (ecc->chmap_exist)
			slot = 0;
		else
			slot = ecc->num_channels;
494
		for (;;) {
495
			slot = find_next_zero_bit(ecc->slot_inuse,
496 497 498 499
						  ecc->num_slots,
						  slot);
			if (slot == ecc->num_slots)
				return -ENOMEM;
500
			if (!test_and_set_bit(slot, ecc->slot_inuse))
501 502
				break;
		}
503
	} else if (slot >= ecc->num_slots) {
504
		return -EINVAL;
505
	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
506 507 508 509 510 511 512 513 514 515 516
		return -EBUSY;
	}

	edma_write_slot(ecc, slot, &dummy_paramset);

	return EDMA_CTLR_CHAN(ecc->id, slot);
}

static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
{
	slot = EDMA_CHAN_SLOT(slot);
517
	if (slot >= ecc->num_slots)
518 519 520
		return;

	edma_write_slot(ecc, slot, &dummy_paramset);
521
	clear_bit(slot, ecc->slot_inuse);
522 523 524 525 526 527 528 529 530 531 532 533
}

/**
 * edma_link - link one parameter RAM slot to another
 * @ecc: pointer to edma_cc struct
 * @from: parameter RAM slot originating the link
 * @to: parameter RAM slot which is the link target
 *
 * The originating slot should not be part of any active DMA transfer.
 */
static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
{
534 535 536
	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");

537 538 539 540 541
	from = EDMA_CHAN_SLOT(from);
	to = EDMA_CHAN_SLOT(to);
	if (from >= ecc->num_slots || to >= ecc->num_slots)
		return;

542 543
	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
			  PARM_OFFSET(to));
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
}

/**
 * edma_get_position - returns the current transfer point
 * @ecc: pointer to edma_cc struct
 * @slot: parameter RAM slot being examined
 * @dst:  true selects the dest position, false the source
 *
 * Returns the position of the current active slot
 */
static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
				    bool dst)
{
	u32 offs;

	slot = EDMA_CHAN_SLOT(slot);
	offs = PARM_OFFSET(slot);
	offs += dst ? PARM_DST : PARM_SRC;

	return edma_read(ecc, offs);
}

566
/*
567 568 569 570 571
 * Channels with event associations will be triggered by their hardware
 * events, and channels without such associations will be triggered by
 * software.  (At this writing there is no interface for using software
 * triggers except with channels that don't support hardware triggers.)
 */
572
static void edma_start(struct edma_chan *echan)
573
{
574 575 576 577
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
578

579
	if (!echan->hw_triggered) {
580
		/* EDMA channels without event association */
581 582 583 584
		dev_dbg(ecc->dev, "ESR%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ESR, j));
		edma_shadow0_write_array(ecc, SH_ESR, j, mask);
	} else {
585
		/* EDMA channel with event association */
586 587
		dev_dbg(ecc->dev, "ER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ER, j));
588 589 590 591 592 593
		/* Clear any pending event or error */
		edma_write_array(ecc, EDMA_ECR, j, mask);
		edma_write_array(ecc, EDMA_EMCR, j, mask);
		/* Clear any SER */
		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
		edma_shadow0_write_array(ecc, SH_EESR, j, mask);
594 595
		dev_dbg(ecc->dev, "EER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_EER, j));
596 597 598
	}
}

599
static void edma_stop(struct edma_chan *echan)
600
{
601 602 603 604
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
605

606 607 608 609
	edma_shadow0_write_array(ecc, SH_EECR, j, mask);
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write_array(ecc, EDMA_EMCR, j, mask);
610

611 612
	/* clear possibly pending completion interrupt */
	edma_shadow0_write_array(ecc, SH_ICR, j, mask);
613

614 615
	dev_dbg(ecc->dev, "EER%d %08x\n", j,
		edma_shadow0_read_array(ecc, SH_EER, j));
616

617 618 619
	/* REVISIT:  consider guarding against inappropriate event
	 * chaining by overwriting with dummy_paramset.
	 */
620 621
}

622 623 624
/*
 * Temporarily disable EDMA hardware events on the specified channel,
 * preventing them from triggering new transfers
625
 */
626
static void edma_pause(struct edma_chan *echan)
627
{
628 629
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
630

631
	edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
632 633
}

634
/* Re-enable EDMA hardware events on the specified channel.  */
635
static void edma_resume(struct edma_chan *echan)
636
{
637 638
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
639

640
	edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
641 642
}

643
static void edma_trigger_channel(struct edma_chan *echan)
644
{
645 646 647
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
648 649 650

	edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);

651 652
	dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
		edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
653 654
}

655
static void edma_clean_channel(struct edma_chan *echan)
656
{
657 658 659 660
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
661

662 663 664 665 666 667 668
	dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	/* Clear the corresponding EMR bits */
	edma_write_array(ecc, EDMA_EMCR, j, mask);
	/* Clear any SER */
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
669 670
}

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
/* Move channel to a specific event queue */
static void edma_assign_channel_eventq(struct edma_chan *echan,
				       enum dma_event_q eventq_no)
{
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int bit = (channel & 0x7) * 4;

	/* default to low priority queue */
	if (eventq_no == EVENTQ_DEFAULT)
		eventq_no = ecc->default_queue;
	if (eventq_no >= ecc->num_tc)
		return;

	eventq_no &= 7;
	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
			  eventq_no << bit);
}

690
static int edma_alloc_channel(struct edma_chan *echan,
691
			      enum dma_event_q eventq_no)
692
{
693 694
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
695 696 697 698 699

	/* ensure access through shadow region 0 */
	edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));

	/* ensure no events are pending */
700
	edma_stop(echan);
701

702
	edma_setup_interrupt(echan, true);
703

704
	edma_assign_channel_eventq(echan, eventq_no);
705

706
	return 0;
707 708
}

709
static void edma_free_channel(struct edma_chan *echan)
710
{
711 712
	/* ensure no events are pending */
	edma_stop(echan);
713
	/* REVISIT should probably take out of shadow region 0 */
714
	edma_setup_interrupt(echan, false);
715 716
}

717 718 719 720 721 722 723 724 725 726
static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
	return container_of(d, struct edma_cc, dma_slave);
}

static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
	return container_of(c, struct edma_chan, vchan.chan);
}

727
static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
728 729 730 731 732 733 734 735 736 737 738 739
{
	return container_of(tx, struct edma_desc, vdesc.tx);
}

static void edma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct edma_desc, vdesc));
}

/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
740
	struct edma_cc *ecc = echan->ecc;
741
	struct virt_dma_desc *vdesc;
742
	struct edma_desc *edesc;
743 744 745
	struct device *dev = echan->vchan.chan.device->dev;
	int i, j, left, nslots;

746 747
	if (!echan->edesc) {
		/* Setup is needed for the first transfer */
748
		vdesc = vchan_next_desc(&echan->vchan);
749
		if (!vdesc)
750 751 752
			return;
		list_del(&vdesc->node);
		echan->edesc = to_edma_desc(&vdesc->tx);
753 754
	}

755
	edesc = echan->edesc;
756

757 758 759
	/* Find out how many left */
	left = edesc->pset_nr - edesc->processed;
	nslots = min(MAX_NR_SG, left);
760
	edesc->sg_len = 0;
761 762

	/* Write descriptor PaRAM set(s) */
763 764
	for (i = 0; i < nslots; i++) {
		j = i + edesc->processed;
765
		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
766
		edesc->sg_len += edesc->pset[j].len;
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
		dev_vdbg(dev,
			 "\n pset[%d]:\n"
			 "  chnum\t%d\n"
			 "  slot\t%d\n"
			 "  opt\t%08x\n"
			 "  src\t%08x\n"
			 "  dst\t%08x\n"
			 "  abcnt\t%08x\n"
			 "  ccnt\t%08x\n"
			 "  bidx\t%08x\n"
			 "  cidx\t%08x\n"
			 "  lkrld\t%08x\n",
			 j, echan->ch_num, echan->slot[i],
			 edesc->pset[j].param.opt,
			 edesc->pset[j].param.src,
			 edesc->pset[j].param.dst,
			 edesc->pset[j].param.a_b_cnt,
			 edesc->pset[j].param.ccnt,
			 edesc->pset[j].param.src_dst_bidx,
			 edesc->pset[j].param.src_dst_cidx,
			 edesc->pset[j].param.link_bcntrld);
788
		/* Link to the previous slot if not the last set */
789
		if (i != (nslots - 1))
790
			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
791 792
	}

793 794
	edesc->processed += nslots;

795 796 797 798 799
	/*
	 * If this is either the last set in a set of SG-list transactions
	 * then setup a link to the dummy slot, this results in all future
	 * events being absorbed and that's OK because we're done
	 */
800 801
	if (edesc->processed == edesc->pset_nr) {
		if (edesc->cyclic)
802
			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
803
		else
804
			edma_link(ecc, echan->slot[nslots - 1],
805 806
				  echan->ecc->dummy_slot);
	}
807

808
	if (echan->missed) {
809 810 811 812 813
		/*
		 * This happens due to setup times between intermediate
		 * transfers in long SG lists which have to be broken up into
		 * transfers of MAX_NR_SG
		 */
814
		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
815 816 817 818
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
819
		echan->missed = 0;
820 821 822
	} else if (edesc->processed <= MAX_NR_SG) {
		dev_dbg(dev, "first transfer starting on channel %d\n",
			echan->ch_num);
823
		edma_start(echan);
824 825 826
	} else {
		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
			echan->ch_num, edesc->processed);
827
		edma_resume(echan);
828
	}
829 830
}

831
static int edma_terminate_all(struct dma_chan *chan)
832
{
833
	struct edma_chan *echan = to_edma_chan(chan);
834 835 836 837 838 839 840 841 842 843 844
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&echan->vchan.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
	 * after edma_dma() returns (even if it does, it will see
	 * echan->edesc is NULL and exit.)
	 */
	if (echan->edesc) {
845
		edma_stop(echan);
846
		/* Move the cyclic channel back to default queue */
847
		if (!echan->tc && echan->edesc->cyclic)
848
			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
849 850 851 852 853
		/*
		 * free the running request descriptor
		 * since it is not in any of the vdesc lists
		 */
		edma_desc_free(&echan->edesc->vdesc);
854 855 856 857 858 859 860 861 862 863
		echan->edesc = NULL;
	}

	vchan_get_all_descriptors(&echan->vchan, &head);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
	vchan_dma_desc_free_list(&echan->vchan, &head);

	return 0;
}

864
static int edma_slave_config(struct dma_chan *chan,
865
	struct dma_slave_config *cfg)
866
{
867 868
	struct edma_chan *echan = to_edma_chan(chan);

869 870
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
871 872
		return -EINVAL;

873
	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
874 875 876 877

	return 0;
}

878
static int edma_dma_pause(struct dma_chan *chan)
879
{
880 881
	struct edma_chan *echan = to_edma_chan(chan);

882
	if (!echan->edesc)
883 884
		return -EINVAL;

885
	edma_pause(echan);
886 887 888
	return 0;
}

889
static int edma_dma_resume(struct dma_chan *chan)
890
{
891 892
	struct edma_chan *echan = to_edma_chan(chan);

893
	edma_resume(echan);
894 895 896
	return 0;
}

897 898 899 900 901 902 903 904 905 906 907
/*
 * A PaRAM set configuration abstraction used by other modes
 * @chan: Channel who's PaRAM set we're configuring
 * @pset: PaRAM set to initialize and setup.
 * @src_addr: Source address of the DMA
 * @dst_addr: Destination address of the DMA
 * @burst: In units of dev_width, how much to send
 * @dev_width: How much is the dev_width
 * @dma_length: Total length of the DMA transfer
 * @direction: Direction of the transfer
 */
908
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
909
			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
910
			    unsigned int acnt, unsigned int dma_length,
911
			    enum dma_transfer_direction direction)
912 913 914
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
915
	struct edmacc_param *param = &epset->param;
916
	int bcnt, ccnt, cidx;
917 918 919
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
	int absync;

920 921 922
	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
	if (!burst)
		burst = 1;
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	/*
	 * If the maxburst is equal to the fifo width, use
	 * A-synced transfers. This allows for large contiguous
	 * buffer transfers using only one PaRAM set.
	 */
	if (burst == 1) {
		/*
		 * For the A-sync case, bcnt and ccnt are the remainder
		 * and quotient respectively of the division of:
		 * (dma_length / acnt) by (SZ_64K -1). This is so
		 * that in case bcnt over flows, we have ccnt to use.
		 * Note: In A-sync tranfer only, bcntrld is used, but it
		 * only applies for sg_dma_len(sg) >= SZ_64K.
		 * In this case, the best way adopted is- bccnt for the
		 * first frame will be the remainder below. Then for
		 * every successive frame, bcnt will be SZ_64K-1. This
		 * is assured as bcntrld = 0xffff in end of function.
		 */
		absync = false;
		ccnt = dma_length / acnt / (SZ_64K - 1);
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
		/*
		 * If bcnt is non-zero, we have a remainder and hence an
		 * extra frame to transfer, so increment ccnt.
		 */
		if (bcnt)
			ccnt++;
		else
			bcnt = SZ_64K - 1;
		cidx = acnt;
	} else {
		/*
		 * If maxburst is greater than the fifo address_width,
		 * use AB-synced transfers where A count is the fifo
		 * address_width and B count is the maxburst. In this
		 * case, we are limited to transfers of C count frames
		 * of (address_width * maxburst) where C count is limited
		 * to SZ_64K-1. This places an upper bound on the length
		 * of an SG segment that can be handled.
		 */
		absync = true;
		bcnt = burst;
		ccnt = dma_length / (acnt * bcnt);
		if (ccnt > (SZ_64K - 1)) {
			dev_err(dev, "Exceeded max SG segment size\n");
			return -EINVAL;
		}
		cidx = acnt * bcnt;
	}

973 974
	epset->len = dma_length;

975 976 977 978 979
	if (direction == DMA_MEM_TO_DEV) {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = 0;
		dst_cidx = 0;
980
		epset->addr = src_addr;
981 982 983 984 985
	} else if (direction == DMA_DEV_TO_MEM)  {
		src_bidx = 0;
		src_cidx = 0;
		dst_bidx = acnt;
		dst_cidx = cidx;
986
		epset->addr = dst_addr;
987 988 989 990 991
	} else if (direction == DMA_MEM_TO_MEM)  {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = acnt;
		dst_cidx = cidx;
992 993 994 995 996
	} else {
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
		return -EINVAL;
	}

997
	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
998 999
	/* Configure A or AB synchronized transfers */
	if (absync)
1000
		param->opt |= SYNCDIM;
1001

1002 1003
	param->src = src_addr;
	param->dst = dst_addr;
1004

1005 1006
	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1007

1008 1009
	param->a_b_cnt = bcnt << 16 | acnt;
	param->ccnt = ccnt;
1010 1011 1012 1013 1014 1015
	/*
	 * Only time when (bcntrld) auto reload is required is for
	 * A-sync case, and in this case, a requirement of reload value
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
	 * and then later will be populated by edma_execute.
	 */
1016
	param->link_bcntrld = 0xffffffff;
1017 1018 1019
	return absync;
}

1020 1021 1022 1023 1024 1025 1026 1027
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
1028
	dma_addr_t src_addr = 0, dst_addr = 0;
1029 1030
	enum dma_slave_buswidth dev_width;
	u32 burst;
1031
	struct scatterlist *sg;
1032
	int i, nslots, ret;
1033 1034 1035 1036

	if (unlikely(!echan || !sgl || !sg_len))
		return NULL;

1037
	if (direction == DMA_DEV_TO_MEM) {
1038
		src_addr = echan->cfg.src_addr;
1039 1040 1041
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
1042
		dst_addr = echan->cfg.dst_addr;
1043 1044 1045
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1046
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1047 1048 1049 1050
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1051
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1052 1053 1054
		return NULL;
	}

1055 1056
	edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1057
	if (!edesc) {
1058
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1059 1060 1061 1062
		return NULL;
	}

	edesc->pset_nr = sg_len;
1063
	edesc->residue = 0;
1064
	edesc->direction = direction;
1065
	edesc->echan = echan;
1066

1067 1068 1069 1070
	/* Allocate a PaRAM slot, if needed */
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);

	for (i = 0; i < nslots; i++) {
1071 1072
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1073
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1074
			if (echan->slot[i] < 0) {
V
Valentin Ilie 已提交
1075
				kfree(edesc);
1076 1077
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1078 1079 1080
				return NULL;
			}
		}
1081 1082 1083 1084
	}

	/* Configure PaRAM sets for each SG */
	for_each_sg(sgl, sg, sg_len, i) {
1085 1086 1087 1088 1089
		/* Get address for each SG */
		if (direction == DMA_DEV_TO_MEM)
			dst_addr = sg_dma_address(sg);
		else
			src_addr = sg_dma_address(sg);
1090

1091 1092 1093
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width,
				       sg_dma_len(sg), direction);
V
Vinod Koul 已提交
1094 1095
		if (ret < 0) {
			kfree(edesc);
1096
			return NULL;
1097 1098
		}

1099
		edesc->absync = ret;
1100
		edesc->residue += sg_dma_len(sg);
1101 1102 1103 1104

		/* If this is the last in a current SG set of transactions,
		   enable interrupts so that next set is processed */
		if (!((i+1) % MAX_NR_SG))
1105
			edesc->pset[i].param.opt |= TCINTEN;
1106

1107 1108
		/* If this is the last set, enable completion interrupt flag */
		if (i == sg_len - 1)
1109
			edesc->pset[i].param.opt |= TCINTEN;
1110
	}
1111
	edesc->residue_stat = edesc->residue;
1112 1113 1114 1115

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1116
static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1117 1118 1119
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
1120
	int ret, nslots;
1121 1122 1123
	struct edma_desc *edesc;
	struct device *dev = chan->device->dev;
	struct edma_chan *echan = to_edma_chan(chan);
1124
	unsigned int width, pset_len;
1125 1126 1127 1128

	if (unlikely(!echan || !len))
		return NULL;

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	if (len < SZ_64K) {
		/*
		 * Transfer size less than 64K can be handled with one paRAM
		 * slot and with one burst.
		 * ACNT = length
		 */
		width = len;
		pset_len = len;
		nslots = 1;
	} else {
		/*
		 * Transfer size bigger than 64K will be handled with maximum of
		 * two paRAM slots.
		 * slot1: (full_length / 32767) times 32767 bytes bursts.
		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
		 * slot2: the remaining amount of data after slot1.
		 *	  ACNT = full_length - length1, length2 = ACNT
		 *
		 * When the full_length is multibple of 32767 one slot can be
		 * used to complete the transfer.
		 */
		width = SZ_32K - 1;
		pset_len = rounddown(len, width);
		/* One slot is enough for lengths multiple of (SZ_32K -1) */
		if (unlikely(pset_len == len))
			nslots = 1;
		else
			nslots = 2;
	}

	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1161 1162 1163 1164 1165
	if (!edesc) {
		dev_dbg(dev, "Failed to allocate a descriptor\n");
		return NULL;
	}

1166 1167 1168 1169
	edesc->pset_nr = nslots;
	edesc->residue = edesc->residue_stat = len;
	edesc->direction = DMA_MEM_TO_MEM;
	edesc->echan = echan;
1170

1171
	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1172 1173 1174
			       width, pset_len, DMA_MEM_TO_MEM);
	if (ret < 0) {
		kfree(edesc);
1175
		return NULL;
1176
	}
1177 1178 1179

	edesc->absync = ret;

1180
	edesc->pset[0].param.opt |= ITCCHEN;
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	if (nslots == 1) {
		/* Enable transfer complete interrupt */
		edesc->pset[0].param.opt |= TCINTEN;
	} else {
		/* Enable transfer complete chaining for the first slot */
		edesc->pset[0].param.opt |= TCCHEN;

		if (echan->slot[1] < 0) {
			echan->slot[1] = edma_alloc_slot(echan->ecc,
							 EDMA_SLOT_ANY);
			if (echan->slot[1] < 0) {
				kfree(edesc);
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
				return NULL;
			}
		}
		dest += pset_len;
		src += pset_len;
		pset_len = width = len % (SZ_32K - 1);

		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
				       width, pset_len, DMA_MEM_TO_MEM);
		if (ret < 0) {
			kfree(edesc);
			return NULL;
		}

		edesc->pset[1].param.opt |= ITCCHEN;
		edesc->pset[1].param.opt |= TCINTEN;
	}
1212 1213 1214 1215

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1216 1217 1218
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
1219
	unsigned long tx_flags)
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr, dst_addr;
	enum dma_slave_buswidth dev_width;
	u32 burst;
	int i, ret, nslots;

	if (unlikely(!echan || !buf_len || !period_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dst_addr = buf_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		src_addr = buf_addr;
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1243
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1244 1245 1246 1247
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1248
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		return NULL;
	}

	if (unlikely(buf_len % period_len)) {
		dev_err(dev, "Period should be multiple of Buffer length\n");
		return NULL;
	}

	nslots = (buf_len / period_len) + 1;

	/*
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
	 * by cases where the number of periods is more than the maximum
	 * number of SGs the EDMA driver can handle at a time. For DMA types
	 * such as Slave SGs, such delays are tolerable and synchronized,
	 * but the synchronization is difficult to achieve with Cyclic and
	 * cannot be guaranteed, so we error out early.
	 */
	if (nslots > MAX_NR_SG)
		return NULL;

1270 1271
	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1272
	if (!edesc) {
1273
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1274 1275 1276 1277 1278
		return NULL;
	}

	edesc->cyclic = 1;
	edesc->pset_nr = nslots;
1279
	edesc->residue = edesc->residue_stat = buf_len;
1280
	edesc->direction = direction;
1281
	edesc->echan = echan;
1282

1283 1284
	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
		__func__, echan->ch_num, nslots, period_len, buf_len);
1285 1286 1287 1288 1289

	for (i = 0; i < nslots; i++) {
		/* Allocate a PaRAM slot, if needed */
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1290
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1291
			if (echan->slot[i] < 0) {
1292
				kfree(edesc);
1293 1294
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
				return NULL;
			}
		}

		if (i == nslots - 1) {
			memcpy(&edesc->pset[i], &edesc->pset[0],
			       sizeof(edesc->pset[0]));
			break;
		}

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width, period_len,
				       direction);
1308 1309
		if (ret < 0) {
			kfree(edesc);
1310
			return NULL;
1311
		}
1312

1313 1314 1315 1316
		if (direction == DMA_DEV_TO_MEM)
			dst_addr += period_len;
		else
			src_addr += period_len;
1317

1318 1319
		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
		dev_vdbg(dev,
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
			i, echan->ch_num, echan->slot[i],
1332 1333 1334 1335 1336 1337 1338 1339
			edesc->pset[i].param.opt,
			edesc->pset[i].param.src,
			edesc->pset[i].param.dst,
			edesc->pset[i].param.a_b_cnt,
			edesc->pset[i].param.ccnt,
			edesc->pset[i].param.src_dst_bidx,
			edesc->pset[i].param.src_dst_cidx,
			edesc->pset[i].param.link_bcntrld);
1340 1341 1342 1343

		edesc->absync = ret;

		/*
1344
		 * Enable period interrupt only if it is requested
1345
		 */
1346 1347
		if (tx_flags & DMA_PREP_INTERRUPT)
			edesc->pset[i].param.opt |= TCINTEN;
1348 1349
	}

1350
	/* Place the cyclic channel to highest priority queue */
1351 1352
	if (!echan->tc)
		edma_assign_channel_eventq(echan, EVENTQ_0);
1353

1354 1355 1356
	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1357
static void edma_completion_handler(struct edma_chan *echan)
1358 1359
{
	struct device *dev = echan->vchan.chan.device->dev;
1360
	struct edma_desc *edesc = echan->edesc;
1361

1362 1363
	if (!edesc)
		return;
1364

1365
	spin_lock(&echan->vchan.lock);
1366 1367 1368 1369 1370 1371
	if (edesc->cyclic) {
		vchan_cyclic_callback(&edesc->vdesc);
		spin_unlock(&echan->vchan.lock);
		return;
	} else if (edesc->processed == edesc->pset_nr) {
		edesc->residue = 0;
1372
		edma_stop(echan);
1373 1374 1375 1376 1377 1378 1379 1380 1381
		vchan_cookie_complete(&edesc->vdesc);
		echan->edesc = NULL;

		dev_dbg(dev, "Transfer completed on channel %d\n",
			echan->ch_num);
	} else {
		dev_dbg(dev, "Sub transfer completed on channel %d\n",
			echan->ch_num);

1382
		edma_pause(echan);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432

		/* Update statistics for tx_status */
		edesc->residue -= edesc->sg_len;
		edesc->residue_stat = edesc->residue;
		edesc->processed_stat = edesc->processed;
	}
	edma_execute(echan);

	spin_unlock(&echan->vchan.lock);
}

/* eDMA interrupt handler */
static irqreturn_t dma_irq_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
	int ctlr;
	u32 sh_ier;
	u32 sh_ipr;
	u32 bank;

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_irq_handler\n");

	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
	if (!sh_ipr) {
		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
		if (!sh_ipr)
			return IRQ_NONE;
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
		bank = 1;
	} else {
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
		bank = 0;
	}

	do {
		u32 slot;
		u32 channel;

		slot = __ffs(sh_ipr);
		sh_ipr &= ~(BIT(slot));

		if (sh_ier & BIT(slot)) {
			channel = (bank << 5) | slot;
			/* Clear the corresponding IPR bits */
			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
			edma_completion_handler(&ecc->slave_chans[channel]);
1433
		}
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	} while (sh_ipr);

	edma_shadow0_write(ecc, SH_IEVAL, 1);
	return IRQ_HANDLED;
}

static void edma_error_handler(struct edma_chan *echan)
{
	struct edma_cc *ecc = echan->ecc;
	struct device *dev = echan->vchan.chan.device->dev;
	struct edmacc_param p;

	if (!echan->edesc)
		return;

	spin_lock(&echan->vchan.lock);
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	edma_read_slot(ecc, echan->slot[0], &p);
	/*
	 * Issue later based on missed flag which will be sure
	 * to happen as:
	 * (1) we finished transmitting an intermediate slot and
	 *     edma_execute is coming up.
	 * (2) or we finished current transfer and issue will
	 *     call edma_execute.
	 *
	 * Important note: issuing can be dangerous here and
	 * lead to some nasty recursion when we are in a NULL
	 * slot. So we avoid doing so and set the missed flag.
	 */
	if (p.a_b_cnt == 0 && p.ccnt == 0) {
		dev_dbg(dev, "Error on null slot, setting miss\n");
		echan->missed = 1;
	} else {
1468
		/*
1469 1470
		 * The slot is already programmed but the event got
		 * missed, so its safe to issue it here.
1471
		 */
1472
		dev_dbg(dev, "Missed event, TRIGGERING\n");
1473 1474 1475 1476
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
1477 1478 1479 1480
	}
	spin_unlock(&echan->vchan.lock);
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
static inline bool edma_error_pending(struct edma_cc *ecc)
{
	if (edma_read_array(ecc, EDMA_EMR, 0) ||
	    edma_read_array(ecc, EDMA_EMR, 1) ||
	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
		return true;

	return false;
}

1491 1492 1493 1494
/* eDMA error interrupt handler */
static irqreturn_t dma_ccerr_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
1495
	int i, j;
1496 1497
	int ctlr;
	unsigned int cnt = 0;
1498
	unsigned int val;
1499 1500 1501 1502 1503 1504 1505

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");

1506
	if (!edma_error_pending(ecc))
1507 1508 1509
		return IRQ_NONE;

	while (1) {
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
		/* Event missed register(s) */
		for (j = 0; j < 2; j++) {
			unsigned long emr;

			val = edma_read_array(ecc, EDMA_EMR, j);
			if (!val)
				continue;

			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
			emr = val;
			for (i = find_next_bit(&emr, 32, 0); i < 32;
			     i = find_next_bit(&emr, 32, i + 1)) {
1522 1523
				int k = (j << 5) + i;

1524 1525 1526 1527
				/* Clear the corresponding EMR bits */
				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
				/* Clear any SER */
				edma_shadow0_write_array(ecc, SH_SECR, j,
1528
							 BIT(i));
1529
				edma_error_handler(&ecc->slave_chans[k]);
1530
			}
1531
		}
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

		val = edma_read(ecc, EDMA_QEMR);
		if (val) {
			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_QEMCR, val);
			edma_shadow0_write(ecc, SH_QSECR, val);
		}

		val = edma_read(ecc, EDMA_CCERR);
		if (val) {
			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_CCERRCLR, val);
		}

1548
		if (!edma_error_pending(ecc))
1549 1550 1551 1552
			break;
		cnt++;
		if (cnt > 10)
			break;
1553
	}
1554 1555
	edma_write(ecc, EDMA_EEVAL, 1);
	return IRQ_HANDLED;
1556 1557
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
static void edma_tc_set_pm_state(struct edma_tc *tc, bool enable)
{
	struct platform_device *tc_pdev;
	int ret;

	if (!tc)
		return;

	tc_pdev = of_find_device_by_node(tc->node);
	if (!tc_pdev) {
		pr_err("%s: TPTC device is not found\n", __func__);
		return;
	}
	if (!pm_runtime_enabled(&tc_pdev->dev))
		pm_runtime_enable(&tc_pdev->dev);

	if (enable)
		ret = pm_runtime_get_sync(&tc_pdev->dev);
	else
		ret = pm_runtime_put_sync(&tc_pdev->dev);

	if (ret < 0)
		pr_err("%s: pm_runtime_%s_sync() failed for %s\n", __func__,
		       enable ? "get" : "put", dev_name(&tc_pdev->dev));
}

1584 1585 1586 1587
/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
1588 1589 1590
	struct edma_cc *ecc = echan->ecc;
	struct device *dev = ecc->dev;
	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1591 1592
	int ret;

1593 1594 1595 1596 1597 1598 1599 1600 1601
	if (echan->tc) {
		eventq_no = echan->tc->id;
	} else if (ecc->tc_list) {
		/* memcpy channel */
		echan->tc = &ecc->tc_list[ecc->info->default_queue];
		eventq_no = echan->tc->id;
	}

	ret = edma_alloc_channel(echan, eventq_no);
1602 1603
	if (ret)
		return ret;
1604

1605
	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1606 1607 1608
	if (echan->slot[0] < 0) {
		dev_err(dev, "Entry slot allocation failed for channel %u\n",
			EDMA_CHAN_SLOT(echan->ch_num));
1609
		goto err_slot;
1610 1611 1612
	}

	/* Set up channel -> slot mapping for the entry slot */
1613 1614
	edma_set_chmap(echan, echan->slot[0]);
	echan->alloced = true;
1615

1616 1617 1618 1619 1620
	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
		echan->hw_triggered ? "HW" : "SW");

	edma_tc_set_pm_state(echan->tc, true);
1621 1622 1623

	return 0;

1624 1625
err_slot:
	edma_free_channel(echan);
1626 1627 1628 1629 1630 1631 1632
	return ret;
}

/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
1633
	struct device *dev = echan->ecc->dev;
1634 1635 1636
	int i;

	/* Terminate transfers */
1637
	edma_stop(echan);
1638 1639 1640 1641

	vchan_free_chan_resources(&echan->vchan);

	/* Free EDMA PaRAM slots */
1642
	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1643
		if (echan->slot[i] >= 0) {
1644
			edma_free_slot(echan->ecc, echan->slot[i]);
1645 1646 1647 1648
			echan->slot[i] = -1;
		}
	}

1649
	/* Set entry slot to the dummy slot */
1650
	edma_set_chmap(echan, echan->ecc->dummy_slot);
1651

1652 1653
	/* Free EDMA channel */
	if (echan->alloced) {
1654
		edma_free_channel(echan);
1655 1656 1657
		echan->alloced = false;
	}

1658 1659 1660 1661 1662 1663
	edma_tc_set_pm_state(echan->tc, false);
	echan->tc = NULL;
	echan->hw_triggered = false;

	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
}

/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
		edma_execute(echan);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
static u32 edma_residue(struct edma_desc *edesc)
{
	bool dst = edesc->direction == DMA_DEV_TO_MEM;
	struct edma_pset *pset = edesc->pset;
	dma_addr_t done, pos;
	int i;

	/*
	 * We always read the dst/src position from the first RamPar
	 * pset. That's the one which is active now.
	 */
1689
	pos = edma_get_position(edesc->echan->ecc, edesc->echan->slot[0], dst);
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

	/*
	 * Cyclic is simple. Just subtract pset[0].addr from pos.
	 *
	 * We never update edesc->residue in the cyclic case, so we
	 * can tell the remaining room to the end of the circular
	 * buffer.
	 */
	if (edesc->cyclic) {
		done = pos - pset->addr;
		edesc->residue_stat = edesc->residue - done;
		return edesc->residue_stat;
	}

	/*
	 * For SG operation we catch up with the last processed
	 * status.
	 */
	pset += edesc->processed_stat;

	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
		/*
		 * If we are inside this pset address range, we know
		 * this is the active one. Get the current delta and
		 * stop walking the psets.
		 */
		if (pos >= pset->addr && pos < pset->addr + pset->len)
			return edesc->residue_stat - (pos - pset->addr);

		/* Otherwise mark it done and update residue_stat. */
		edesc->processed_stat++;
		edesc->residue_stat -= pset->len;
	}
	return edesc->residue_stat;
}

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
1737
	if (ret == DMA_COMPLETE || !txstate)
1738 1739 1740
		return ret;

	spin_lock_irqsave(&echan->vchan.lock, flags);
1741
	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1742
		txstate->residue = edma_residue(echan->edesc);
1743 1744
	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1745 1746 1747 1748 1749
	spin_unlock_irqrestore(&echan->vchan.lock, flags);

	return ret;
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
static bool edma_is_memcpy_channel(int ch_num, u16 *memcpy_channels)
{
	s16 *memcpy_ch = memcpy_channels;

	if (!memcpy_channels)
		return false;
	while (*memcpy_ch != -1) {
		if (*memcpy_ch == ch_num)
			return true;
		memcpy_ch++;
	}
	return false;
}

1764 1765 1766 1767 1768
#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

1769
static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1770
{
1771 1772 1773
	struct dma_device *s_ddev = &ecc->dma_slave;
	struct dma_device *m_ddev = NULL;
	s16 *memcpy_channels = ecc->info->memcpy_channels;
1774 1775
	int i, j;

1776 1777 1778 1779 1780 1781
	dma_cap_zero(s_ddev->cap_mask);
	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
	if (ecc->legacy_mode && !memcpy_channels) {
		dev_warn(ecc->dev,
			 "Legacy memcpy is enabled, things might not work\n");
1782

1783 1784 1785 1786
		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
	}
1787

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
	s_ddev->device_free_chan_resources = edma_free_chan_resources;
	s_ddev->device_issue_pending = edma_issue_pending;
	s_ddev->device_tx_status = edma_tx_status;
	s_ddev->device_config = edma_slave_config;
	s_ddev->device_pause = edma_dma_pause;
	s_ddev->device_resume = edma_dma_resume;
	s_ddev->device_terminate_all = edma_terminate_all;

	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

	s_ddev->dev = ecc->dev;
	INIT_LIST_HEAD(&s_ddev->channels);

	if (memcpy_channels) {
		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
		ecc->dma_memcpy = m_ddev;

		dma_cap_zero(m_ddev->cap_mask);
		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);

		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
		m_ddev->device_free_chan_resources = edma_free_chan_resources;
		m_ddev->device_issue_pending = edma_issue_pending;
		m_ddev->device_tx_status = edma_tx_status;
		m_ddev->device_config = edma_slave_config;
		m_ddev->device_pause = edma_dma_pause;
		m_ddev->device_resume = edma_dma_resume;
		m_ddev->device_terminate_all = edma_terminate_all;

		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

		m_ddev->dev = ecc->dev;
		INIT_LIST_HEAD(&m_ddev->channels);
	} else if (!ecc->legacy_mode) {
		dev_info(ecc->dev, "memcpy is disabled\n");
	}
1834

1835
	for (i = 0; i < ecc->num_channels; i++) {
1836
		struct edma_chan *echan = &ecc->slave_chans[i];
1837
		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1838 1839 1840
		echan->ecc = ecc;
		echan->vchan.desc_free = edma_desc_free;

1841 1842 1843 1844
		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
			vchan_init(&echan->vchan, m_ddev);
		else
			vchan_init(&echan->vchan, s_ddev);
1845 1846 1847 1848 1849 1850 1851

		INIT_LIST_HEAD(&echan->node);
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
			echan->slot[j] = -1;
	}
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
			      struct edma_cc *ecc)
{
	int i;
	u32 value, cccfg;
	s8 (*queue_priority_map)[2];

	/* Decode the eDMA3 configuration from CCCFG register */
	cccfg = edma_read(ecc, EDMA_CCCFG);

	value = GET_NUM_REGN(cccfg);
	ecc->num_region = BIT(value);

	value = GET_NUM_DMACH(cccfg);
	ecc->num_channels = BIT(value + 1);

1868 1869 1870
	value = GET_NUM_QDMACH(cccfg);
	ecc->num_qchannels = value * 2;

1871 1872 1873 1874 1875 1876
	value = GET_NUM_PAENTRY(cccfg);
	ecc->num_slots = BIT(value + 4);

	value = GET_NUM_EVQUE(cccfg);
	ecc->num_tc = value + 1;

1877 1878
	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;

1879 1880 1881
	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1882
	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1883 1884
	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1885
	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

	/* Nothing need to be done if queue priority is provided */
	if (pdata->queue_priority_mapping)
		return 0;

	/*
	 * Configure TC/queue priority as follows:
	 * Q0 - priority 0
	 * Q1 - priority 1
	 * Q2 - priority 2
	 * ...
	 * The meaning of priority numbers: 0 highest priority, 7 lowest
	 * priority. So Q0 is the highest priority queue and the last queue has
	 * the lowest priority.
	 */
1901
	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
					  GFP_KERNEL);
	if (!queue_priority_map)
		return -ENOMEM;

	for (i = 0; i < ecc->num_tc; i++) {
		queue_priority_map[i][0] = i;
		queue_priority_map[i][1] = i;
	}
	queue_priority_map[i][0] = -1;
	queue_priority_map[i][1] = -1;

	pdata->queue_priority_mapping = queue_priority_map;
	/* Default queue has the lowest priority */
	pdata->default_queue = i - 1;

	return 0;
}

#if IS_ENABLED(CONFIG_OF)
static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
			       size_t sz)
{
	const char pname[] = "ti,edma-xbar-event-map";
	struct resource res;
	void __iomem *xbar;
	s16 (*xbar_chans)[2];
	size_t nelm = sz / sizeof(s16);
	u32 shift, offset, mux;
	int ret, i;

1932
	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	if (!xbar_chans)
		return -ENOMEM;

	ret = of_address_to_resource(dev->of_node, 1, &res);
	if (ret)
		return -ENOMEM;

	xbar = devm_ioremap(dev, res.start, resource_size(&res));
	if (!xbar)
		return -ENOMEM;

	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
					 nelm);
	if (ret)
		return -EIO;

	/* Invalidate last entry for the other user of this mess */
	nelm >>= 1;
	xbar_chans[nelm][0] = -1;
	xbar_chans[nelm][1] = -1;

	for (i = 0; i < nelm; i++) {
		shift = (xbar_chans[i][1] & 0x03) << 3;
		offset = xbar_chans[i][1] & 0xfffffffc;
		mux = readl(xbar + offset);
		mux &= ~(0xff << shift);
		mux |= xbar_chans[i][0] << shift;
		writel(mux, (xbar + offset));
	}

	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
	return 0;
}

1967 1968
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
						     bool legacy_mode)
1969 1970
{
	struct edma_soc_info *info;
1971 1972
	struct property *prop;
	size_t sz;
1973 1974 1975 1976 1977 1978
	int ret;

	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
	if (!info)
		return ERR_PTR(-ENOMEM);

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	if (legacy_mode) {
		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
					&sz);
		if (prop) {
			ret = edma_xbar_event_map(dev, info, sz);
			if (ret)
				return ERR_PTR(ret);
		}
		return info;
	}

	/* Get the list of channels allocated to be used for memcpy */
	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
	if (prop) {
		const char pname[] = "ti,edma-memcpy-channels";
		size_t nelm = sz / sizeof(s16);
		s16 *memcpy_ch;

		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s16),
					 GFP_KERNEL);
		if (!memcpy_ch)
			return ERR_PTR(-ENOMEM);

		ret = of_property_read_u16_array(dev->of_node, pname,
						 (u16 *)memcpy_ch, nelm);
		if (ret)
			return ERR_PTR(ret);

		memcpy_ch[nelm] = -1;
		info->memcpy_channels = memcpy_ch;
	}

	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
				&sz);
2013
	if (prop) {
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
		const char pname[] = "ti,edma-reserved-slot-ranges";
		s16 (*rsv_slots)[2];
		size_t nelm = sz / sizeof(*rsv_slots);
		struct edma_rsv_info *rsv_info;

		if (!nelm)
			return info;

		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
		if (!rsv_info)
			return ERR_PTR(-ENOMEM);

		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
					 GFP_KERNEL);
		if (!rsv_slots)
			return ERR_PTR(-ENOMEM);

		ret = of_property_read_u16_array(dev->of_node, pname,
						 (u16 *)rsv_slots, nelm * 2);
2033 2034
		if (ret)
			return ERR_PTR(ret);
2035 2036 2037 2038 2039

		rsv_slots[nelm][0] = -1;
		rsv_slots[nelm][1] = -1;
		info->rsv = rsv_info;
		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2040
	}
2041 2042 2043

	return info;
}
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
				      struct of_dma *ofdma)
{
	struct edma_cc *ecc = ofdma->of_dma_data;
	struct dma_chan *chan = NULL;
	struct edma_chan *echan;
	int i;

	if (!ecc || dma_spec->args_count < 1)
		return NULL;

	for (i = 0; i < ecc->num_channels; i++) {
		echan = &ecc->slave_chans[i];
		if (echan->ch_num == dma_spec->args[0]) {
			chan = &echan->vchan.chan;
			break;
		}
	}

	if (!chan)
		return NULL;

	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
		goto out;

	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
	    dma_spec->args[1] < echan->ecc->num_tc) {
		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
		goto out;
	}

	return NULL;
out:
	/* The channel is going to be used as HW synchronized */
	echan->hw_triggered = true;
	return dma_get_slave_channel(chan);
}
2082
#else
2083 2084
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
						     bool legacy_mode)
2085 2086 2087
{
	return ERR_PTR(-EINVAL);
}
2088 2089 2090 2091 2092 2093

static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
				      struct of_dma *ofdma)
{
	return NULL;
}
2094 2095
#endif

B
Bill Pemberton 已提交
2096
static int edma_probe(struct platform_device *pdev)
2097
{
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	struct edma_soc_info	*info = pdev->dev.platform_data;
	s8			(*queue_priority_mapping)[2];
	int			i, off, ln;
	const s16		(*rsv_slots)[2];
	const s16		(*xbar_chans)[2];
	int			irq;
	char			*irq_name;
	struct resource		*mem;
	struct device_node	*node = pdev->dev.of_node;
	struct device		*dev = &pdev->dev;
	struct edma_cc		*ecc;
2109
	bool			legacy_mode = true;
2110 2111
	int ret;

2112
	if (node) {
2113 2114 2115 2116 2117 2118 2119
		const struct of_device_id *match;

		match = of_match_node(edma_of_ids, node);
		if (match && (u32)match->data == EDMA_BINDING_TPCC)
			legacy_mode = false;

		info = edma_setup_info_from_dt(dev, legacy_mode);
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
		if (IS_ERR(info)) {
			dev_err(dev, "failed to get DT data\n");
			return PTR_ERR(info);
		}
	}

	if (!info)
		return -ENODEV;

	pm_runtime_enable(dev);
	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		dev_err(dev, "pm_runtime_get_sync() failed\n");
		return ret;
	}

2136
	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2137 2138 2139
	if (ret)
		return ret;

2140
	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2141
	if (!ecc) {
2142
		dev_err(dev, "Can't allocate controller\n");
2143 2144 2145
		return -ENOMEM;
	}

2146 2147
	ecc->dev = dev;
	ecc->id = pdev->id;
2148
	ecc->legacy_mode = legacy_mode;
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
	/* When booting with DT the pdev->id is -1 */
	if (ecc->id < 0)
		ecc->id = 0;

	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
	if (!mem) {
		dev_dbg(dev, "mem resource not found, using index 0\n");
		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
		if (!mem) {
			dev_err(dev, "no mem resource?\n");
			return -ENODEV;
		}
	}
	ecc->base = devm_ioremap_resource(dev, mem);
	if (IS_ERR(ecc->base))
		return PTR_ERR(ecc->base);

	platform_set_drvdata(pdev, ecc);

	/* Get eDMA3 configuration from IP */
	ret = edma_setup_from_hw(dev, info, ecc);
	if (ret)
		return ret;

2173 2174 2175 2176 2177 2178
	/* Allocate memory based on the information we got from the IP */
	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
					sizeof(*ecc->slave_chans), GFP_KERNEL);
	if (!ecc->slave_chans)
		return -ENOMEM;

2179
	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2180
				       sizeof(unsigned long), GFP_KERNEL);
2181
	if (!ecc->slot_inuse)
2182 2183
		return -ENOMEM;

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
	ecc->default_queue = info->default_queue;

	for (i = 0; i < ecc->num_slots; i++)
		edma_write_slot(ecc, i, &dummy_paramset);

	if (info->rsv) {
		/* Set the reserved slots in inuse list */
		rsv_slots = info->rsv->rsv_slots;
		if (rsv_slots) {
			for (i = 0; rsv_slots[i][0] != -1; i++) {
				off = rsv_slots[i][0];
				ln = rsv_slots[i][1];
2196
				set_bits(off, ln, ecc->slot_inuse);
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
			}
		}
	}

	/* Clear the xbar mapped channels in unused list */
	xbar_chans = info->xbar_chans;
	if (xbar_chans) {
		for (i = 0; xbar_chans[i][1] != -1; i++) {
			off = xbar_chans[i][1];
		}
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 0);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 2);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
	}

2239 2240 2241 2242 2243 2244
	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
	if (ecc->dummy_slot < 0) {
		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
		return ecc->dummy_slot;
	}

2245 2246
	queue_priority_mapping = info->queue_priority_mapping;

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	if (!ecc->legacy_mode) {
		int lowest_priority = 0;
		struct of_phandle_args tc_args;

		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
					    sizeof(*ecc->tc_list), GFP_KERNEL);
		if (!ecc->tc_list)
			return -ENOMEM;

		for (i = 0;; i++) {
			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
							       1, i, &tc_args);
			if (ret || i == ecc->num_tc)
				break;

			ecc->tc_list[i].node = tc_args.np;
			ecc->tc_list[i].id = i;
			queue_priority_mapping[i][1] = tc_args.args[0];
			if (queue_priority_mapping[i][1] > lowest_priority) {
				lowest_priority = queue_priority_mapping[i][1];
				info->default_queue = i;
			}
		}
	}

2272 2273 2274 2275
	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);
2276

2277 2278 2279 2280 2281 2282 2283
	for (i = 0; i < ecc->num_region; i++) {
		edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
		edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
		edma_write_array(ecc, EDMA_QRAE, i, 0x0);
	}
	ecc->info = info;

2284
	/* Init the dma device and channels */
2285
	edma_dma_init(ecc, legacy_mode);
2286

2287 2288
	for (i = 0; i < ecc->num_channels; i++) {
		/* Assign all channels to the default queue */
2289 2290
		edma_assign_channel_eventq(&ecc->slave_chans[i],
					   info->default_queue);
2291 2292 2293 2294
		/* Set entry slot to the dummy slot */
		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
	}

2295
	ret = dma_async_device_register(&ecc->dma_slave);
2296 2297
	if (ret) {
		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2298
		goto err_reg1;
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
	}

	if (ecc->dma_memcpy) {
		ret = dma_async_device_register(ecc->dma_memcpy);
		if (ret) {
			dev_err(dev, "memcpy ddev registration failed (%d)\n",
				ret);
			dma_async_device_unregister(&ecc->dma_slave);
			goto err_reg1;
		}
	}
2310

2311
	if (node)
2312
		of_dma_controller_register(node, of_edma_xlate, ecc);
2313

2314
	dev_info(dev, "TI EDMA DMA engine driver\n");
2315 2316 2317 2318

	return 0;

err_reg1:
2319
	edma_free_slot(ecc, ecc->dummy_slot);
2320 2321 2322
	return ret;
}

2323
static int edma_remove(struct platform_device *pdev)
2324 2325 2326 2327
{
	struct device *dev = &pdev->dev;
	struct edma_cc *ecc = dev_get_drvdata(dev);

2328 2329
	if (dev->of_node)
		of_dma_controller_free(dev->of_node);
2330
	dma_async_device_unregister(&ecc->dma_slave);
2331 2332
	if (ecc->dma_memcpy)
		dma_async_device_unregister(ecc->dma_memcpy);
2333
	edma_free_slot(ecc, ecc->dummy_slot);
2334 2335 2336 2337

	return 0;
}

2338
#ifdef CONFIG_PM_SLEEP
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
static int edma_pm_suspend(struct device *dev)
{
	struct edma_cc *ecc = dev_get_drvdata(dev);
	struct edma_chan *echan = ecc->slave_chans;
	int i;

	for (i = 0; i < ecc->num_channels; i++) {
		if (echan[i].alloced) {
			edma_setup_interrupt(&echan[i], false);
			edma_tc_set_pm_state(echan[i].tc, false);
		}
	}

	return 0;
}

2355 2356 2357
static int edma_pm_resume(struct device *dev)
{
	struct edma_cc *ecc = dev_get_drvdata(dev);
2358
	struct edma_chan *echan = ecc->slave_chans;
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	int i;
	s8 (*queue_priority_mapping)[2];

	queue_priority_mapping = ecc->info->queue_priority_mapping;

	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);

	for (i = 0; i < ecc->num_channels; i++) {
2370
		if (echan[i].alloced) {
2371 2372 2373 2374
			/* ensure access through shadow region 0 */
			edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
				       BIT(i & 0x1f));

2375
			edma_setup_interrupt(&echan[i], true);
2376 2377

			/* Set up channel -> slot mapping for the entry slot */
2378
			edma_set_chmap(&echan[i], echan[i].slot[0]);
2379 2380

			edma_tc_set_pm_state(echan[i].tc, true);
2381 2382 2383 2384 2385 2386 2387 2388
		}
	}

	return 0;
}
#endif

static const struct dev_pm_ops edma_pm_ops = {
2389
	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2390 2391
};

2392 2393
static struct platform_driver edma_driver = {
	.probe		= edma_probe,
B
Bill Pemberton 已提交
2394
	.remove		= edma_remove,
2395
	.driver = {
2396 2397 2398
		.name	= "edma",
		.pm	= &edma_pm_ops,
		.of_match_table = edma_of_ids,
2399 2400 2401 2402 2403
	},
};

bool edma_filter_fn(struct dma_chan *chan, void *param)
{
2404 2405
	bool match = false;

2406 2407 2408
	if (chan->device->dev->driver == &edma_driver.driver) {
		struct edma_chan *echan = to_edma_chan(chan);
		unsigned ch_req = *(unsigned *)param;
2409 2410 2411 2412 2413
		if (ch_req == echan->ch_num) {
			/* The channel is going to be used as HW synchronized */
			echan->hw_triggered = true;
			match = true;
		}
2414
	}
2415
	return match;
2416 2417 2418 2419 2420
}
EXPORT_SYMBOL(edma_filter_fn);

static int edma_init(void)
{
2421
	return platform_driver_register(&edma_driver);
2422 2423 2424 2425 2426 2427 2428 2429 2430
}
subsys_initcall(edma_init);

static void __exit edma_exit(void)
{
	platform_driver_unregister(&edma_driver);
}
module_exit(edma_exit);

J
Josh Boyer 已提交
2431
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2432 2433
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");