edma.c 28.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * TI EDMA DMA engine driver
 *
 * Copyright 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
26
#include <linux/of.h>
27

28
#include <linux/platform_data/edma.h>
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

#include "dmaengine.h"
#include "virt-dma.h"

/*
 * This will go away when the private EDMA API is folded
 * into this driver and the platform device(s) are
 * instantiated in the arch code. We can only get away
 * with this simplification because DA8XX may not be built
 * in the same kernel image with other DaVinci parts. This
 * avoids having to sprinkle dmaengine driver platform devices
 * and data throughout all the existing board files.
 */
#ifdef CONFIG_ARCH_DAVINCI_DA8XX
#define EDMA_CTLRS	2
#define EDMA_CHANS	32
#else
#define EDMA_CTLRS	1
#define EDMA_CHANS	64
#endif /* CONFIG_ARCH_DAVINCI_DA8XX */

50 51 52 53 54 55 56 57
/*
 * Max of 20 segments per channel to conserve PaRAM slots
 * Also note that MAX_NR_SG should be atleast the no.of periods
 * that are required for ASoC, otherwise DMA prep calls will
 * fail. Today davinci-pcm is the only user of this driver and
 * requires atleast 17 slots, so we setup the default to 20.
 */
#define MAX_NR_SG		20
58 59 60
#define EDMA_MAX_SLOTS		MAX_NR_SG
#define EDMA_DESCRIPTORS	16

61
struct edma_pset {
62 63
	u32				len;
	dma_addr_t			addr;
64 65 66
	struct edmacc_param		param;
};

67 68 69
struct edma_desc {
	struct virt_dma_desc		vdesc;
	struct list_head		node;
70
	enum dma_transfer_direction	direction;
71
	int				cyclic;
72 73
	int				absync;
	int				pset_nr;
74
	struct edma_chan		*echan;
75
	int				processed;
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

	/*
	 * The following 4 elements are used for residue accounting.
	 *
	 * - processed_stat: the number of SG elements we have traversed
	 * so far to cover accounting. This is updated directly to processed
	 * during edma_callback and is always <= processed, because processed
	 * refers to the number of pending transfer (programmed to EDMA
	 * controller), where as processed_stat tracks number of transfers
	 * accounted for so far.
	 *
	 * - residue: The amount of bytes we have left to transfer for this desc
	 *
	 * - residue_stat: The residue in bytes of data we have covered
	 * so far for accounting. This is updated directly to residue
	 * during callbacks to keep it current.
	 *
	 * - sg_len: Tracks the length of the current intermediate transfer,
	 * this is required to update the residue during intermediate transfer
	 * completion callback.
	 */
97 98
	int				processed_stat;
	u32				sg_len;
99
	u32				residue;
100
	u32				residue_stat;
101

102
	struct edma_pset		pset[0];
103 104 105 106 107 108 109 110 111 112 113 114
};

struct edma_cc;

struct edma_chan {
	struct virt_dma_chan		vchan;
	struct list_head		node;
	struct edma_desc		*edesc;
	struct edma_cc			*ecc;
	int				ch_num;
	bool				alloced;
	int				slot[EDMA_MAX_SLOTS];
115
	int				missed;
116
	struct dma_slave_config		cfg;
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
};

struct edma_cc {
	int				ctlr;
	struct dma_device		dma_slave;
	struct edma_chan		slave_chans[EDMA_CHANS];
	int				num_slave_chans;
	int				dummy_slot;
};

static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
	return container_of(d, struct edma_cc, dma_slave);
}

static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
	return container_of(c, struct edma_chan, vchan.chan);
}

static inline struct edma_desc
*to_edma_desc(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct edma_desc, vdesc.tx);
}

static void edma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct edma_desc, vdesc));
}

/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
151
	struct virt_dma_desc *vdesc;
152
	struct edma_desc *edesc;
153 154 155 156 157 158 159 160 161 162 163 164 165 166
	struct device *dev = echan->vchan.chan.device->dev;
	int i, j, left, nslots;

	/* If either we processed all psets or we're still not started */
	if (!echan->edesc ||
	    echan->edesc->pset_nr == echan->edesc->processed) {
		/* Get next vdesc */
		vdesc = vchan_next_desc(&echan->vchan);
		if (!vdesc) {
			echan->edesc = NULL;
			return;
		}
		list_del(&vdesc->node);
		echan->edesc = to_edma_desc(&vdesc->tx);
167 168
	}

169
	edesc = echan->edesc;
170

171 172 173
	/* Find out how many left */
	left = edesc->pset_nr - edesc->processed;
	nslots = min(MAX_NR_SG, left);
174
	edesc->sg_len = 0;
175 176

	/* Write descriptor PaRAM set(s) */
177 178
	for (i = 0; i < nslots; i++) {
		j = i + edesc->processed;
179
		edma_write_slot(echan->slot[i], &edesc->pset[j].param);
180
		edesc->sg_len += edesc->pset[j].len;
181
		dev_vdbg(echan->vchan.chan.device->dev,
182 183 184 185 186 187 188 189 190 191 192
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
193
			j, echan->ch_num, echan->slot[i],
194 195 196 197 198 199 200 201
			edesc->pset[j].param.opt,
			edesc->pset[j].param.src,
			edesc->pset[j].param.dst,
			edesc->pset[j].param.a_b_cnt,
			edesc->pset[j].param.ccnt,
			edesc->pset[j].param.src_dst_bidx,
			edesc->pset[j].param.src_dst_cidx,
			edesc->pset[j].param.link_bcntrld);
202
		/* Link to the previous slot if not the last set */
203
		if (i != (nslots - 1))
204 205 206
			edma_link(echan->slot[i], echan->slot[i+1]);
	}

207 208
	edesc->processed += nslots;

209 210 211 212 213
	/*
	 * If this is either the last set in a set of SG-list transactions
	 * then setup a link to the dummy slot, this results in all future
	 * events being absorbed and that's OK because we're done
	 */
214 215 216 217 218 219 220
	if (edesc->processed == edesc->pset_nr) {
		if (edesc->cyclic)
			edma_link(echan->slot[nslots-1], echan->slot[1]);
		else
			edma_link(echan->slot[nslots-1],
				  echan->ecc->dummy_slot);
	}
221

222
	if (edesc->processed <= MAX_NR_SG) {
223 224
		dev_dbg(dev, "first transfer starting on channel %d\n",
			echan->ch_num);
225
		edma_start(echan->ch_num);
226 227 228 229
	} else {
		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
			echan->ch_num, edesc->processed);
		edma_resume(echan->ch_num);
230
	}
231 232 233 234 235 236 237

	/*
	 * This happens due to setup times between intermediate transfers
	 * in long SG lists which have to be broken up into transfers of
	 * MAX_NR_SG
	 */
	if (echan->missed) {
238
		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
239 240 241 242 243 244
		edma_clean_channel(echan->ch_num);
		edma_stop(echan->ch_num);
		edma_start(echan->ch_num);
		edma_trigger_channel(echan->ch_num);
		echan->missed = 0;
	}
245 246
}

247
static int edma_terminate_all(struct dma_chan *chan)
248
{
249
	struct edma_chan *echan = to_edma_chan(chan);
250 251 252 253 254 255 256 257 258 259 260
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&echan->vchan.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
	 * after edma_dma() returns (even if it does, it will see
	 * echan->edesc is NULL and exit.)
	 */
	if (echan->edesc) {
261
		int cyclic = echan->edesc->cyclic;
262 263
		echan->edesc = NULL;
		edma_stop(echan->ch_num);
264 265 266 267
		/* Move the cyclic channel back to default queue */
		if (cyclic)
			edma_assign_channel_eventq(echan->ch_num,
						   EVENTQ_DEFAULT);
268 269 270 271 272 273 274 275 276
	}

	vchan_get_all_descriptors(&echan->vchan, &head);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
	vchan_dma_desc_free_list(&echan->vchan, &head);

	return 0;
}

277
static int edma_slave_config(struct dma_chan *chan,
278
	struct dma_slave_config *cfg)
279
{
280 281
	struct edma_chan *echan = to_edma_chan(chan);

282 283
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
284 285
		return -EINVAL;

286
	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
287 288 289 290

	return 0;
}

291
static int edma_dma_pause(struct dma_chan *chan)
292
{
293 294
	struct edma_chan *echan = to_edma_chan(chan);

295
	/* Pause/Resume only allowed with cyclic mode */
296
	if (!echan->edesc || !echan->edesc->cyclic)
297 298 299 300 301 302
		return -EINVAL;

	edma_pause(echan->ch_num);
	return 0;
}

303
static int edma_dma_resume(struct dma_chan *chan)
304
{
305 306
	struct edma_chan *echan = to_edma_chan(chan);

307 308 309 310 311 312 313 314
	/* Pause/Resume only allowed with cyclic mode */
	if (!echan->edesc->cyclic)
		return -EINVAL;

	edma_resume(echan->ch_num);
	return 0;
}

315 316 317 318 319 320 321 322 323 324 325
/*
 * A PaRAM set configuration abstraction used by other modes
 * @chan: Channel who's PaRAM set we're configuring
 * @pset: PaRAM set to initialize and setup.
 * @src_addr: Source address of the DMA
 * @dst_addr: Destination address of the DMA
 * @burst: In units of dev_width, how much to send
 * @dev_width: How much is the dev_width
 * @dma_length: Total length of the DMA transfer
 * @direction: Direction of the transfer
 */
326
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
327 328 329 330 331 332
	dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
	enum dma_slave_buswidth dev_width, unsigned int dma_length,
	enum dma_transfer_direction direction)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
333
	struct edmacc_param *param = &epset->param;
334 335 336 337 338
	int acnt, bcnt, ccnt, cidx;
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
	int absync;

	acnt = dev_width;
339 340 341 342

	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
	if (!burst)
		burst = 1;
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	/*
	 * If the maxburst is equal to the fifo width, use
	 * A-synced transfers. This allows for large contiguous
	 * buffer transfers using only one PaRAM set.
	 */
	if (burst == 1) {
		/*
		 * For the A-sync case, bcnt and ccnt are the remainder
		 * and quotient respectively of the division of:
		 * (dma_length / acnt) by (SZ_64K -1). This is so
		 * that in case bcnt over flows, we have ccnt to use.
		 * Note: In A-sync tranfer only, bcntrld is used, but it
		 * only applies for sg_dma_len(sg) >= SZ_64K.
		 * In this case, the best way adopted is- bccnt for the
		 * first frame will be the remainder below. Then for
		 * every successive frame, bcnt will be SZ_64K-1. This
		 * is assured as bcntrld = 0xffff in end of function.
		 */
		absync = false;
		ccnt = dma_length / acnt / (SZ_64K - 1);
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
		/*
		 * If bcnt is non-zero, we have a remainder and hence an
		 * extra frame to transfer, so increment ccnt.
		 */
		if (bcnt)
			ccnt++;
		else
			bcnt = SZ_64K - 1;
		cidx = acnt;
	} else {
		/*
		 * If maxburst is greater than the fifo address_width,
		 * use AB-synced transfers where A count is the fifo
		 * address_width and B count is the maxburst. In this
		 * case, we are limited to transfers of C count frames
		 * of (address_width * maxburst) where C count is limited
		 * to SZ_64K-1. This places an upper bound on the length
		 * of an SG segment that can be handled.
		 */
		absync = true;
		bcnt = burst;
		ccnt = dma_length / (acnt * bcnt);
		if (ccnt > (SZ_64K - 1)) {
			dev_err(dev, "Exceeded max SG segment size\n");
			return -EINVAL;
		}
		cidx = acnt * bcnt;
	}

393 394
	epset->len = dma_length;

395 396 397 398 399
	if (direction == DMA_MEM_TO_DEV) {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = 0;
		dst_cidx = 0;
400
		epset->addr = src_addr;
401 402 403 404 405
	} else if (direction == DMA_DEV_TO_MEM)  {
		src_bidx = 0;
		src_cidx = 0;
		dst_bidx = acnt;
		dst_cidx = cidx;
406
		epset->addr = dst_addr;
407 408 409 410 411
	} else if (direction == DMA_MEM_TO_MEM)  {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = acnt;
		dst_cidx = cidx;
412 413 414 415 416
	} else {
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
		return -EINVAL;
	}

417
	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
418 419
	/* Configure A or AB synchronized transfers */
	if (absync)
420
		param->opt |= SYNCDIM;
421

422 423
	param->src = src_addr;
	param->dst = dst_addr;
424

425 426
	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
427

428 429
	param->a_b_cnt = bcnt << 16 | acnt;
	param->ccnt = ccnt;
430 431 432 433 434 435
	/*
	 * Only time when (bcntrld) auto reload is required is for
	 * A-sync case, and in this case, a requirement of reload value
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
	 * and then later will be populated by edma_execute.
	 */
436
	param->link_bcntrld = 0xffffffff;
437 438 439
	return absync;
}

440 441 442 443 444 445 446 447
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
448
	dma_addr_t src_addr = 0, dst_addr = 0;
449 450
	enum dma_slave_buswidth dev_width;
	u32 burst;
451
	struct scatterlist *sg;
452
	int i, nslots, ret;
453 454 455 456

	if (unlikely(!echan || !sgl || !sg_len))
		return NULL;

457
	if (direction == DMA_DEV_TO_MEM) {
458
		src_addr = echan->cfg.src_addr;
459 460 461
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
462
		dst_addr = echan->cfg.dst_addr;
463 464 465
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
466
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
467 468 469 470
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
471
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
472 473 474 475 476 477
		return NULL;
	}

	edesc = kzalloc(sizeof(*edesc) + sg_len *
		sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
478
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
479 480 481 482
		return NULL;
	}

	edesc->pset_nr = sg_len;
483
	edesc->residue = 0;
484
	edesc->direction = direction;
485
	edesc->echan = echan;
486

487 488 489 490
	/* Allocate a PaRAM slot, if needed */
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);

	for (i = 0; i < nslots; i++) {
491 492 493 494 495
		if (echan->slot[i] < 0) {
			echan->slot[i] =
				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
						EDMA_SLOT_ANY);
			if (echan->slot[i] < 0) {
V
Valentin Ilie 已提交
496
				kfree(edesc);
497 498
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
499 500 501
				return NULL;
			}
		}
502 503 504 505
	}

	/* Configure PaRAM sets for each SG */
	for_each_sg(sgl, sg, sg_len, i) {
506 507 508 509 510
		/* Get address for each SG */
		if (direction == DMA_DEV_TO_MEM)
			dst_addr = sg_dma_address(sg);
		else
			src_addr = sg_dma_address(sg);
511

512 513 514
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width,
				       sg_dma_len(sg), direction);
V
Vinod Koul 已提交
515 516
		if (ret < 0) {
			kfree(edesc);
517
			return NULL;
518 519
		}

520
		edesc->absync = ret;
521
		edesc->residue += sg_dma_len(sg);
522 523 524 525

		/* If this is the last in a current SG set of transactions,
		   enable interrupts so that next set is processed */
		if (!((i+1) % MAX_NR_SG))
526
			edesc->pset[i].param.opt |= TCINTEN;
527

528 529
		/* If this is the last set, enable completion interrupt flag */
		if (i == sg_len - 1)
530
			edesc->pset[i].param.opt |= TCINTEN;
531
	}
532
	edesc->residue_stat = edesc->residue;
533 534 535 536

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
	int ret;
	struct edma_desc *edesc;
	struct device *dev = chan->device->dev;
	struct edma_chan *echan = to_edma_chan(chan);

	if (unlikely(!echan || !len))
		return NULL;

	edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
		dev_dbg(dev, "Failed to allocate a descriptor\n");
		return NULL;
	}

	edesc->pset_nr = 1;

	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
			       DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM);
	if (ret < 0)
		return NULL;

	edesc->absync = ret;

	/*
	 * Enable intermediate transfer chaining to re-trigger channel
	 * on completion of every TR, and enable transfer-completion
	 * interrupt on completion of the whole transfer.
	 */
569 570
	edesc->pset[0].param.opt |= ITCCHEN;
	edesc->pset[0].param.opt |= TCINTEN;
571 572 573 574

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

575 576 577
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
578
	unsigned long tx_flags)
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr, dst_addr;
	enum dma_slave_buswidth dev_width;
	u32 burst;
	int i, ret, nslots;

	if (unlikely(!echan || !buf_len || !period_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dst_addr = buf_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		src_addr = buf_addr;
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
602
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
603 604 605 606
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
607
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		return NULL;
	}

	if (unlikely(buf_len % period_len)) {
		dev_err(dev, "Period should be multiple of Buffer length\n");
		return NULL;
	}

	nslots = (buf_len / period_len) + 1;

	/*
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
	 * by cases where the number of periods is more than the maximum
	 * number of SGs the EDMA driver can handle at a time. For DMA types
	 * such as Slave SGs, such delays are tolerable and synchronized,
	 * but the synchronization is difficult to achieve with Cyclic and
	 * cannot be guaranteed, so we error out early.
	 */
	if (nslots > MAX_NR_SG)
		return NULL;

	edesc = kzalloc(sizeof(*edesc) + nslots *
		sizeof(edesc->pset[0]), GFP_ATOMIC);
	if (!edesc) {
632
		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
633 634 635 636 637
		return NULL;
	}

	edesc->cyclic = 1;
	edesc->pset_nr = nslots;
638
	edesc->residue = edesc->residue_stat = buf_len;
639
	edesc->direction = direction;
640
	edesc->echan = echan;
641

642 643
	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
		__func__, echan->ch_num, nslots, period_len, buf_len);
644 645 646 647 648 649 650 651

	for (i = 0; i < nslots; i++) {
		/* Allocate a PaRAM slot, if needed */
		if (echan->slot[i] < 0) {
			echan->slot[i] =
				edma_alloc_slot(EDMA_CTLR(echan->ch_num),
						EDMA_SLOT_ANY);
			if (echan->slot[i] < 0) {
652
				kfree(edesc);
653 654
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
655 656 657 658 659 660 661 662 663 664 665 666 667
				return NULL;
			}
		}

		if (i == nslots - 1) {
			memcpy(&edesc->pset[i], &edesc->pset[0],
			       sizeof(edesc->pset[0]));
			break;
		}

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width, period_len,
				       direction);
668 669
		if (ret < 0) {
			kfree(edesc);
670
			return NULL;
671
		}
672

673 674 675 676
		if (direction == DMA_DEV_TO_MEM)
			dst_addr += period_len;
		else
			src_addr += period_len;
677

678 679
		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
		dev_vdbg(dev,
680 681 682 683 684 685 686 687 688 689 690 691
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
			i, echan->ch_num, echan->slot[i],
692 693 694 695 696 697 698 699
			edesc->pset[i].param.opt,
			edesc->pset[i].param.src,
			edesc->pset[i].param.dst,
			edesc->pset[i].param.a_b_cnt,
			edesc->pset[i].param.ccnt,
			edesc->pset[i].param.src_dst_bidx,
			edesc->pset[i].param.src_dst_cidx,
			edesc->pset[i].param.link_bcntrld);
700 701 702 703

		edesc->absync = ret;

		/*
704
		 * Enable period interrupt only if it is requested
705
		 */
706 707
		if (tx_flags & DMA_PREP_INTERRUPT)
			edesc->pset[i].param.opt |= TCINTEN;
708 709
	}

710 711 712
	/* Place the cyclic channel to highest priority queue */
	edma_assign_channel_eventq(echan->ch_num, EVENTQ_0);

713 714 715 716 717 718 719 720
	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
{
	struct edma_chan *echan = data;
	struct device *dev = echan->vchan.chan.device->dev;
	struct edma_desc *edesc;
721
	struct edmacc_param p;
722

723 724 725 726 727
	edesc = echan->edesc;

	/* Pause the channel for non-cyclic */
	if (!edesc || (edesc && !edesc->cyclic))
		edma_pause(echan->ch_num);
728 729

	switch (ch_status) {
730
	case EDMA_DMA_COMPLETE:
731
		spin_lock(&echan->vchan.lock);
732 733

		if (edesc) {
734 735 736
			if (edesc->cyclic) {
				vchan_cyclic_callback(&edesc->vdesc);
			} else if (edesc->processed == edesc->pset_nr) {
737
				dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
738
				edesc->residue = 0;
739 740
				edma_stop(echan->ch_num);
				vchan_cookie_complete(&edesc->vdesc);
741
				edma_execute(echan);
742 743
			} else {
				dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
744 745 746 747 748 749

				/* Update statistics for tx_status */
				edesc->residue -= edesc->sg_len;
				edesc->residue_stat = edesc->residue;
				edesc->processed_stat = edesc->processed;

750
				edma_execute(echan);
751
			}
752 753
		}

754
		spin_unlock(&echan->vchan.lock);
755 756

		break;
757
	case EDMA_DMA_CC_ERROR:
758
		spin_lock(&echan->vchan.lock);
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788

		edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);

		/*
		 * Issue later based on missed flag which will be sure
		 * to happen as:
		 * (1) we finished transmitting an intermediate slot and
		 *     edma_execute is coming up.
		 * (2) or we finished current transfer and issue will
		 *     call edma_execute.
		 *
		 * Important note: issuing can be dangerous here and
		 * lead to some nasty recursion when we are in a NULL
		 * slot. So we avoid doing so and set the missed flag.
		 */
		if (p.a_b_cnt == 0 && p.ccnt == 0) {
			dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
			echan->missed = 1;
		} else {
			/*
			 * The slot is already programmed but the event got
			 * missed, so its safe to issue it here.
			 */
			dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
			edma_clean_channel(echan->ch_num);
			edma_stop(echan->ch_num);
			edma_start(echan->ch_num);
			edma_trigger_channel(echan->ch_num);
		}

789
		spin_unlock(&echan->vchan.lock);
790

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
		break;
	default:
		break;
	}
}

/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	int ret;
	int a_ch_num;
	LIST_HEAD(descs);

	a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
					chan, EVENTQ_DEFAULT);

	if (a_ch_num < 0) {
		ret = -ENODEV;
		goto err_no_chan;
	}

	if (a_ch_num != echan->ch_num) {
		dev_err(dev, "failed to allocate requested channel %u:%u\n",
			EDMA_CTLR(echan->ch_num),
			EDMA_CHAN_SLOT(echan->ch_num));
		ret = -ENODEV;
		goto err_wrong_chan;
	}

	echan->alloced = true;
	echan->slot[0] = echan->ch_num;

825
	dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num,
826
		EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

	return 0;

err_wrong_chan:
	edma_free_channel(a_ch_num);
err_no_chan:
	return ret;
}

/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	int i;

	/* Terminate transfers */
	edma_stop(echan->ch_num);

	vchan_free_chan_resources(&echan->vchan);

	/* Free EDMA PaRAM slots */
	for (i = 1; i < EDMA_MAX_SLOTS; i++) {
		if (echan->slot[i] >= 0) {
			edma_free_slot(echan->slot[i]);
			echan->slot[i] = -1;
		}
	}

	/* Free EDMA channel */
	if (echan->alloced) {
		edma_free_channel(echan->ch_num);
		echan->alloced = false;
	}

862
	dev_dbg(dev, "freeing channel for %u\n", echan->ch_num);
863 864 865 866 867 868 869 870 871 872 873 874 875 876
}

/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
		edma_execute(echan);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
static u32 edma_residue(struct edma_desc *edesc)
{
	bool dst = edesc->direction == DMA_DEV_TO_MEM;
	struct edma_pset *pset = edesc->pset;
	dma_addr_t done, pos;
	int i;

	/*
	 * We always read the dst/src position from the first RamPar
	 * pset. That's the one which is active now.
	 */
	pos = edma_get_position(edesc->echan->slot[0], dst);

	/*
	 * Cyclic is simple. Just subtract pset[0].addr from pos.
	 *
	 * We never update edesc->residue in the cyclic case, so we
	 * can tell the remaining room to the end of the circular
	 * buffer.
	 */
	if (edesc->cyclic) {
		done = pos - pset->addr;
		edesc->residue_stat = edesc->residue - done;
		return edesc->residue_stat;
	}

	/*
	 * For SG operation we catch up with the last processed
	 * status.
	 */
	pset += edesc->processed_stat;

	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
		/*
		 * If we are inside this pset address range, we know
		 * this is the active one. Get the current delta and
		 * stop walking the psets.
		 */
		if (pos >= pset->addr && pos < pset->addr + pset->len)
			return edesc->residue_stat - (pos - pset->addr);

		/* Otherwise mark it done and update residue_stat. */
		edesc->processed_stat++;
		edesc->residue_stat -= pset->len;
	}
	return edesc->residue_stat;
}

925 926 927 928 929 930 931 932 933 934 935
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
936
	if (ret == DMA_COMPLETE || !txstate)
937 938 939
		return ret;

	spin_lock_irqsave(&echan->vchan.lock, flags);
940
	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
941
		txstate->residue = edma_residue(echan->edesc);
942 943
	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	spin_unlock_irqrestore(&echan->vchan.lock, flags);

	return ret;
}

static void __init edma_chan_init(struct edma_cc *ecc,
				  struct dma_device *dma,
				  struct edma_chan *echans)
{
	int i, j;

	for (i = 0; i < EDMA_CHANS; i++) {
		struct edma_chan *echan = &echans[i];
		echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
		echan->ecc = ecc;
		echan->vchan.desc_free = edma_desc_free;

		vchan_init(&echan->vchan, dma);

		INIT_LIST_HEAD(&echan->node);
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
			echan->slot[j] = -1;
	}
}

969 970
#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
971
				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
972 973
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

974 975 976 977
static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
			  struct device *dev)
{
	dma->device_prep_slave_sg = edma_prep_slave_sg;
978
	dma->device_prep_dma_cyclic = edma_prep_dma_cyclic;
979
	dma->device_prep_dma_memcpy = edma_prep_dma_memcpy;
980 981 982 983
	dma->device_alloc_chan_resources = edma_alloc_chan_resources;
	dma->device_free_chan_resources = edma_free_chan_resources;
	dma->device_issue_pending = edma_issue_pending;
	dma->device_tx_status = edma_tx_status;
984 985 986 987
	dma->device_config = edma_slave_config;
	dma->device_pause = edma_dma_pause;
	dma->device_resume = edma_dma_resume;
	dma->device_terminate_all = edma_terminate_all;
988 989 990 991 992 993

	dma->src_addr_widths = EDMA_DMA_BUSWIDTHS;
	dma->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
	dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

994 995
	dma->dev = dev;

996 997 998 999 1000 1001
	/*
	 * code using dma memcpy must make sure alignment of
	 * length is at dma->copy_align boundary.
	 */
	dma->copy_align = DMA_SLAVE_BUSWIDTH_4_BYTES;

1002 1003 1004
	INIT_LIST_HEAD(&dma->channels);
}

B
Bill Pemberton 已提交
1005
static int edma_probe(struct platform_device *pdev)
1006 1007 1008 1009
{
	struct edma_cc *ecc;
	int ret;

1010 1011 1012 1013
	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
	if (!ecc) {
		dev_err(&pdev->dev, "Can't allocate controller\n");
		return -ENOMEM;
	}

	ecc->ctlr = pdev->id;
	ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
	if (ecc->dummy_slot < 0) {
		dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
1024
		return ecc->dummy_slot;
1025 1026 1027 1028
	}

	dma_cap_zero(ecc->dma_slave.cap_mask);
	dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
1029
	dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask);
1030
	dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

	edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);

	edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);

	ret = dma_async_device_register(&ecc->dma_slave);
	if (ret)
		goto err_reg1;

	platform_set_drvdata(pdev, ecc);

	dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");

	return 0;

err_reg1:
	edma_free_slot(ecc->dummy_slot);
	return ret;
}

1051
static int edma_remove(struct platform_device *pdev)
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
{
	struct device *dev = &pdev->dev;
	struct edma_cc *ecc = dev_get_drvdata(dev);

	dma_async_device_unregister(&ecc->dma_slave);
	edma_free_slot(ecc->dummy_slot);

	return 0;
}

static struct platform_driver edma_driver = {
	.probe		= edma_probe,
B
Bill Pemberton 已提交
1064
	.remove		= edma_remove,
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	.driver = {
		.name = "edma-dma-engine",
	},
};

bool edma_filter_fn(struct dma_chan *chan, void *param)
{
	if (chan->device->dev->driver == &edma_driver.driver) {
		struct edma_chan *echan = to_edma_chan(chan);
		unsigned ch_req = *(unsigned *)param;
		return ch_req == echan->ch_num;
	}
	return false;
}
EXPORT_SYMBOL(edma_filter_fn);

static int edma_init(void)
{
1083
	return platform_driver_register(&edma_driver);
1084 1085 1086 1087 1088 1089 1090 1091 1092
}
subsys_initcall(edma_init);

static void __exit edma_exit(void)
{
	platform_driver_unregister(&edma_driver);
}
module_exit(edma_exit);

J
Josh Boyer 已提交
1093
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
1094 1095
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");