edma.c 65.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * TI EDMA DMA engine driver
 *
 * Copyright 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
18
#include <linux/edma.h>
19 20 21 22 23 24 25 26
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
27
#include <linux/of.h>
28
#include <linux/of_dma.h>
29 30 31 32
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
33

34
#include <linux/platform_data/edma.h>
35 36 37 38

#include "dmaengine.h"
#include "virt-dma.h"

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
/* Offsets matching "struct edmacc_param" */
#define PARM_OPT		0x00
#define PARM_SRC		0x04
#define PARM_A_B_CNT		0x08
#define PARM_DST		0x0c
#define PARM_SRC_DST_BIDX	0x10
#define PARM_LINK_BCNTRLD	0x14
#define PARM_SRC_DST_CIDX	0x18
#define PARM_CCNT		0x1c

#define PARM_SIZE		0x20

/* Offsets for EDMA CC global channel registers and their shadows */
#define SH_ER			0x00	/* 64 bits */
#define SH_ECR			0x08	/* 64 bits */
#define SH_ESR			0x10	/* 64 bits */
#define SH_CER			0x18	/* 64 bits */
#define SH_EER			0x20	/* 64 bits */
#define SH_EECR			0x28	/* 64 bits */
#define SH_EESR			0x30	/* 64 bits */
#define SH_SER			0x38	/* 64 bits */
#define SH_SECR			0x40	/* 64 bits */
#define SH_IER			0x50	/* 64 bits */
#define SH_IECR			0x58	/* 64 bits */
#define SH_IESR			0x60	/* 64 bits */
#define SH_IPR			0x68	/* 64 bits */
#define SH_ICR			0x70	/* 64 bits */
#define SH_IEVAL		0x78
#define SH_QER			0x80
#define SH_QEER			0x84
#define SH_QEECR		0x88
#define SH_QEESR		0x8c
#define SH_QSER			0x90
#define SH_QSECR		0x94
#define SH_SIZE			0x200

/* Offsets for EDMA CC global registers */
#define EDMA_REV		0x0000
#define EDMA_CCCFG		0x0004
#define EDMA_QCHMAP		0x0200	/* 8 registers */
#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
#define EDMA_QDMAQNUM		0x0260
#define EDMA_QUETCMAP		0x0280
#define EDMA_QUEPRI		0x0284
#define EDMA_EMR		0x0300	/* 64 bits */
#define EDMA_EMCR		0x0308	/* 64 bits */
#define EDMA_QEMR		0x0310
#define EDMA_QEMCR		0x0314
#define EDMA_CCERR		0x0318
#define EDMA_CCERRCLR		0x031c
#define EDMA_EEVAL		0x0320
#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
#define EDMA_QRAE		0x0380	/* 4 registers */
#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
#define EDMA_QSTAT		0x0600	/* 2 registers */
#define EDMA_QWMTHRA		0x0620
#define EDMA_QWMTHRB		0x0624
#define EDMA_CCSTAT		0x0640

#define EDMA_M			0x1000	/* global channel registers */
#define EDMA_ECR		0x1008
#define EDMA_ECRH		0x100C
#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
#define EDMA_PARM		0x4000	/* PaRAM entries */

#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))

#define EDMA_DCHMAP		0x0100  /* 64 registers */

/* CCCFG register */
#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
110
#define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
111 112 113 114 115
#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
#define CHMAP_EXIST		BIT(24)

116 117 118
/* CCSTAT register */
#define EDMA_CCSTAT_ACTV	BIT(4)

119 120 121 122 123 124 125 126
/*
 * Max of 20 segments per channel to conserve PaRAM slots
 * Also note that MAX_NR_SG should be atleast the no.of periods
 * that are required for ASoC, otherwise DMA prep calls will
 * fail. Today davinci-pcm is the only user of this driver and
 * requires atleast 17 slots, so we setup the default to 20.
 */
#define MAX_NR_SG		20
127 128 129
#define EDMA_MAX_SLOTS		MAX_NR_SG
#define EDMA_DESCRIPTORS	16

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
#define EDMA_CONT_PARAMS_ANY		 1001
#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003

/* PaRAM slots are laid out like this */
struct edmacc_param {
	u32 opt;
	u32 src;
	u32 a_b_cnt;
	u32 dst;
	u32 src_dst_bidx;
	u32 link_bcntrld;
	u32 src_dst_cidx;
	u32 ccnt;
} __packed;

/* fields in edmacc_param.opt */
#define SAM		BIT(0)
#define DAM		BIT(1)
#define SYNCDIM		BIT(2)
#define STATIC		BIT(3)
#define EDMA_FWID	(0x07 << 8)
#define TCCMODE		BIT(11)
#define EDMA_TCC(t)	((t) << 12)
#define TCINTEN		BIT(20)
#define ITCINTEN	BIT(21)
#define TCCHEN		BIT(22)
#define ITCCHEN		BIT(23)

161
struct edma_pset {
162 163
	u32				len;
	dma_addr_t			addr;
164 165 166
	struct edmacc_param		param;
};

167 168 169
struct edma_desc {
	struct virt_dma_desc		vdesc;
	struct list_head		node;
170
	enum dma_transfer_direction	direction;
171
	int				cyclic;
172 173
	int				absync;
	int				pset_nr;
174
	struct edma_chan		*echan;
175
	int				processed;
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

	/*
	 * The following 4 elements are used for residue accounting.
	 *
	 * - processed_stat: the number of SG elements we have traversed
	 * so far to cover accounting. This is updated directly to processed
	 * during edma_callback and is always <= processed, because processed
	 * refers to the number of pending transfer (programmed to EDMA
	 * controller), where as processed_stat tracks number of transfers
	 * accounted for so far.
	 *
	 * - residue: The amount of bytes we have left to transfer for this desc
	 *
	 * - residue_stat: The residue in bytes of data we have covered
	 * so far for accounting. This is updated directly to residue
	 * during callbacks to keep it current.
	 *
	 * - sg_len: Tracks the length of the current intermediate transfer,
	 * this is required to update the residue during intermediate transfer
	 * completion callback.
	 */
197 198
	int				processed_stat;
	u32				sg_len;
199
	u32				residue;
200
	u32				residue_stat;
201

202
	struct edma_pset		pset[0];
203 204 205 206
};

struct edma_cc;

207 208 209 210 211
struct edma_tc {
	struct device_node		*node;
	u16				id;
};

212 213 214 215 216
struct edma_chan {
	struct virt_dma_chan		vchan;
	struct list_head		node;
	struct edma_desc		*edesc;
	struct edma_cc			*ecc;
217
	struct edma_tc			*tc;
218 219
	int				ch_num;
	bool				alloced;
220
	bool				hw_triggered;
221
	int				slot[EDMA_MAX_SLOTS];
222
	int				missed;
223
	struct dma_slave_config		cfg;
224 225 226
};

struct edma_cc {
227 228 229 230
	struct device			*dev;
	struct edma_soc_info		*info;
	void __iomem			*base;
	int				id;
231
	bool				legacy_mode;
232 233 234

	/* eDMA3 resource information */
	unsigned			num_channels;
235
	unsigned			num_qchannels;
236 237 238
	unsigned			num_region;
	unsigned			num_slots;
	unsigned			num_tc;
239
	bool				chmap_exist;
240 241
	enum dma_event_q		default_queue;

242 243 244
	unsigned int			ccint;
	unsigned int			ccerrint;

245 246 247
	/*
	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
	 * in use by Linux or if it is allocated to be used by DSP.
248
	 */
249
	unsigned long *slot_inuse;
250

251
	struct dma_device		dma_slave;
252
	struct dma_device		*dma_memcpy;
253
	struct edma_chan		*slave_chans;
254
	struct edma_tc			*tc_list;
255 256 257
	int				dummy_slot;
};

258 259 260 261 262 263
/* dummy param set used to (re)initialize parameter RAM slots */
static const struct edmacc_param dummy_paramset = {
	.link_bcntrld = 0xffff,
	.ccnt = 1,
};

264 265
#define EDMA_BINDING_LEGACY	0
#define EDMA_BINDING_TPCC	1
266
static const struct of_device_id edma_of_ids[] = {
267 268 269 270 271 272 273 274
	{
		.compatible = "ti,edma3",
		.data = (void *)EDMA_BINDING_LEGACY,
	},
	{
		.compatible = "ti,edma3-tpcc",
		.data = (void *)EDMA_BINDING_TPCC,
	},
275 276
	{}
};
277
MODULE_DEVICE_TABLE(of, edma_of_ids);
278

279 280 281 282
static const struct of_device_id edma_tptc_of_ids[] = {
	{ .compatible = "ti,edma3-tptc", },
	{}
};
283
MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
{
	return (unsigned int)__raw_readl(ecc->base + offset);
}

static inline void edma_write(struct edma_cc *ecc, int offset, int val)
{
	__raw_writel(val, ecc->base + offset);
}

static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
			       unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	val |= or;
	edma_write(ecc, offset, val);
}

static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
{
	unsigned val = edma_read(ecc, offset);

	val &= and;
	edma_write(ecc, offset, val);
}

static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
{
	unsigned val = edma_read(ecc, offset);

	val |= or;
	edma_write(ecc, offset, val);
}

static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
					   int i)
{
	return edma_read(ecc, offset + (i << 2));
}

static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
				    unsigned val)
{
	edma_write(ecc, offset + (i << 2), val);
}

static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
				     unsigned and, unsigned or)
{
	edma_modify(ecc, offset + (i << 2), and, or);
}

static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
				 unsigned or)
{
	edma_or(ecc, offset + (i << 2), or);
}

static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
				  unsigned or)
{
	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
}

static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
				     int j, unsigned val)
{
	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
}

static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset);
}

static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
						   int offset, int i)
{
	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
}

static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
				      unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset, val);
}

static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
					    int i, unsigned val)
{
	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
}

380 381
static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
					   int param_no)
382 383 384 385
{
	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
}

386 387
static inline void edma_param_write(struct edma_cc *ecc, int offset,
				    int param_no, unsigned val)
388 389 390 391
{
	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
}

392 393
static inline void edma_param_modify(struct edma_cc *ecc, int offset,
				     int param_no, unsigned and, unsigned or)
394 395 396 397
{
	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
}

398 399
static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
				  unsigned and)
400 401 402 403
{
	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
}

404 405
static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
				 unsigned or)
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
{
	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
}

static inline void set_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		set_bit(offset + (len - 1), p);
}

static inline void clear_bits(int offset, int len, unsigned long *p)
{
	for (; len > 0; len--)
		clear_bit(offset + (len - 1), p);
}

static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
					  int priority)
{
	int bit = queue_no * 4;

	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
}

430
static void edma_set_chmap(struct edma_chan *echan, int slot)
431
{
432 433 434
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);

435 436 437 438
	if (ecc->chmap_exist) {
		slot = EDMA_CHAN_SLOT(slot);
		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
	}
439 440
}

441
static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
442
{
443 444
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
445

446
	if (enable) {
447 448 449 450
		edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
					 BIT(channel & 0x1f));
		edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
					 BIT(channel & 0x1f));
451
	} else {
452 453
		edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
					 BIT(channel & 0x1f));
454 455 456 457
	}
}

/*
458
 * paRAM slot management functions
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
 */
static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
			    const struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
}

static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
			   struct edmacc_param *param)
{
	slot = EDMA_CHAN_SLOT(slot);
	if (slot >= ecc->num_slots)
		return;
	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
}

/**
 * edma_alloc_slot - allocate DMA parameter RAM
 * @ecc: pointer to edma_cc struct
 * @slot: specific slot to allocate; negative for "any unused slot"
 *
 * This allocates a parameter RAM slot, initializing it to hold a
 * dummy transfer.  Slots allocated using this routine have not been
 * mapped to a hardware DMA channel, and will normally be used by
 * linking to them from a slot associated with a DMA channel.
 *
 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 * slots may be allocated on behalf of DSP firmware.
 *
 * Returns the number of the slot, else negative errno.
 */
static int edma_alloc_slot(struct edma_cc *ecc, int slot)
{
495
	if (slot >= 0) {
496
		slot = EDMA_CHAN_SLOT(slot);
497 498 499 500 501
		/* Requesting entry paRAM slot for a HW triggered channel. */
		if (ecc->chmap_exist && slot < ecc->num_channels)
			slot = EDMA_SLOT_ANY;
	}

502
	if (slot < 0) {
503 504 505 506
		if (ecc->chmap_exist)
			slot = 0;
		else
			slot = ecc->num_channels;
507
		for (;;) {
508
			slot = find_next_zero_bit(ecc->slot_inuse,
509 510 511 512
						  ecc->num_slots,
						  slot);
			if (slot == ecc->num_slots)
				return -ENOMEM;
513
			if (!test_and_set_bit(slot, ecc->slot_inuse))
514 515
				break;
		}
516
	} else if (slot >= ecc->num_slots) {
517
		return -EINVAL;
518
	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
519 520 521 522 523 524 525 526 527 528 529
		return -EBUSY;
	}

	edma_write_slot(ecc, slot, &dummy_paramset);

	return EDMA_CTLR_CHAN(ecc->id, slot);
}

static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
{
	slot = EDMA_CHAN_SLOT(slot);
530
	if (slot >= ecc->num_slots)
531 532 533
		return;

	edma_write_slot(ecc, slot, &dummy_paramset);
534
	clear_bit(slot, ecc->slot_inuse);
535 536 537 538 539 540 541 542 543 544 545 546
}

/**
 * edma_link - link one parameter RAM slot to another
 * @ecc: pointer to edma_cc struct
 * @from: parameter RAM slot originating the link
 * @to: parameter RAM slot which is the link target
 *
 * The originating slot should not be part of any active DMA transfer.
 */
static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
{
547 548 549
	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");

550 551 552 553 554
	from = EDMA_CHAN_SLOT(from);
	to = EDMA_CHAN_SLOT(to);
	if (from >= ecc->num_slots || to >= ecc->num_slots)
		return;

555 556
	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
			  PARM_OFFSET(to));
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
}

/**
 * edma_get_position - returns the current transfer point
 * @ecc: pointer to edma_cc struct
 * @slot: parameter RAM slot being examined
 * @dst:  true selects the dest position, false the source
 *
 * Returns the position of the current active slot
 */
static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
				    bool dst)
{
	u32 offs;

	slot = EDMA_CHAN_SLOT(slot);
	offs = PARM_OFFSET(slot);
	offs += dst ? PARM_DST : PARM_SRC;

	return edma_read(ecc, offs);
}

579
/*
580 581 582 583 584
 * Channels with event associations will be triggered by their hardware
 * events, and channels without such associations will be triggered by
 * software.  (At this writing there is no interface for using software
 * triggers except with channels that don't support hardware triggers.)
 */
585
static void edma_start(struct edma_chan *echan)
586
{
587 588 589 590
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
591

592
	if (!echan->hw_triggered) {
593
		/* EDMA channels without event association */
594 595 596 597
		dev_dbg(ecc->dev, "ESR%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ESR, j));
		edma_shadow0_write_array(ecc, SH_ESR, j, mask);
	} else {
598
		/* EDMA channel with event association */
599 600
		dev_dbg(ecc->dev, "ER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_ER, j));
601 602 603 604 605 606
		/* Clear any pending event or error */
		edma_write_array(ecc, EDMA_ECR, j, mask);
		edma_write_array(ecc, EDMA_EMCR, j, mask);
		/* Clear any SER */
		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
		edma_shadow0_write_array(ecc, SH_EESR, j, mask);
607 608
		dev_dbg(ecc->dev, "EER%d %08x\n", j,
			edma_shadow0_read_array(ecc, SH_EER, j));
609 610 611
	}
}

612
static void edma_stop(struct edma_chan *echan)
613
{
614 615 616 617
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
618

619 620 621 622
	edma_shadow0_write_array(ecc, SH_EECR, j, mask);
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write_array(ecc, EDMA_EMCR, j, mask);
623

624 625
	/* clear possibly pending completion interrupt */
	edma_shadow0_write_array(ecc, SH_ICR, j, mask);
626

627 628
	dev_dbg(ecc->dev, "EER%d %08x\n", j,
		edma_shadow0_read_array(ecc, SH_EER, j));
629

630 631 632
	/* REVISIT:  consider guarding against inappropriate event
	 * chaining by overwriting with dummy_paramset.
	 */
633 634
}

635 636 637
/*
 * Temporarily disable EDMA hardware events on the specified channel,
 * preventing them from triggering new transfers
638
 */
639
static void edma_pause(struct edma_chan *echan)
640
{
641 642
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
643

644
	edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
645 646
}

647
/* Re-enable EDMA hardware events on the specified channel.  */
648
static void edma_resume(struct edma_chan *echan)
649
{
650 651
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
652

653
	edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
654 655
}

656
static void edma_trigger_channel(struct edma_chan *echan)
657
{
658 659 660
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	unsigned int mask = BIT(channel & 0x1f);
661 662 663

	edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);

664 665
	dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
		edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
666 667
}

668
static void edma_clean_channel(struct edma_chan *echan)
669
{
670 671 672 673
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int j = (channel >> 5);
	unsigned int mask = BIT(channel & 0x1f);
674

675 676 677 678 679 680 681
	dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
	/* Clear the corresponding EMR bits */
	edma_write_array(ecc, EDMA_EMCR, j, mask);
	/* Clear any SER */
	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
682 683
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
/* Move channel to a specific event queue */
static void edma_assign_channel_eventq(struct edma_chan *echan,
				       enum dma_event_q eventq_no)
{
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
	int bit = (channel & 0x7) * 4;

	/* default to low priority queue */
	if (eventq_no == EVENTQ_DEFAULT)
		eventq_no = ecc->default_queue;
	if (eventq_no >= ecc->num_tc)
		return;

	eventq_no &= 7;
	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
			  eventq_no << bit);
}

703
static int edma_alloc_channel(struct edma_chan *echan,
704
			      enum dma_event_q eventq_no)
705
{
706 707
	struct edma_cc *ecc = echan->ecc;
	int channel = EDMA_CHAN_SLOT(echan->ch_num);
708 709 710 711 712

	/* ensure access through shadow region 0 */
	edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));

	/* ensure no events are pending */
713
	edma_stop(echan);
714

715
	edma_setup_interrupt(echan, true);
716

717
	edma_assign_channel_eventq(echan, eventq_no);
718

719
	return 0;
720 721
}

722
static void edma_free_channel(struct edma_chan *echan)
723
{
724 725
	/* ensure no events are pending */
	edma_stop(echan);
726
	/* REVISIT should probably take out of shadow region 0 */
727
	edma_setup_interrupt(echan, false);
728 729
}

730 731 732 733 734 735 736 737 738 739
static inline struct edma_cc *to_edma_cc(struct dma_device *d)
{
	return container_of(d, struct edma_cc, dma_slave);
}

static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
{
	return container_of(c, struct edma_chan, vchan.chan);
}

740
static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
741 742 743 744 745 746 747 748 749 750 751 752
{
	return container_of(tx, struct edma_desc, vdesc.tx);
}

static void edma_desc_free(struct virt_dma_desc *vdesc)
{
	kfree(container_of(vdesc, struct edma_desc, vdesc));
}

/* Dispatch a queued descriptor to the controller (caller holds lock) */
static void edma_execute(struct edma_chan *echan)
{
753
	struct edma_cc *ecc = echan->ecc;
754
	struct virt_dma_desc *vdesc;
755
	struct edma_desc *edesc;
756 757 758
	struct device *dev = echan->vchan.chan.device->dev;
	int i, j, left, nslots;

759 760
	if (!echan->edesc) {
		/* Setup is needed for the first transfer */
761
		vdesc = vchan_next_desc(&echan->vchan);
762
		if (!vdesc)
763 764 765
			return;
		list_del(&vdesc->node);
		echan->edesc = to_edma_desc(&vdesc->tx);
766 767
	}

768
	edesc = echan->edesc;
769

770 771 772
	/* Find out how many left */
	left = edesc->pset_nr - edesc->processed;
	nslots = min(MAX_NR_SG, left);
773
	edesc->sg_len = 0;
774 775

	/* Write descriptor PaRAM set(s) */
776 777
	for (i = 0; i < nslots; i++) {
		j = i + edesc->processed;
778
		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
779
		edesc->sg_len += edesc->pset[j].len;
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
		dev_vdbg(dev,
			 "\n pset[%d]:\n"
			 "  chnum\t%d\n"
			 "  slot\t%d\n"
			 "  opt\t%08x\n"
			 "  src\t%08x\n"
			 "  dst\t%08x\n"
			 "  abcnt\t%08x\n"
			 "  ccnt\t%08x\n"
			 "  bidx\t%08x\n"
			 "  cidx\t%08x\n"
			 "  lkrld\t%08x\n",
			 j, echan->ch_num, echan->slot[i],
			 edesc->pset[j].param.opt,
			 edesc->pset[j].param.src,
			 edesc->pset[j].param.dst,
			 edesc->pset[j].param.a_b_cnt,
			 edesc->pset[j].param.ccnt,
			 edesc->pset[j].param.src_dst_bidx,
			 edesc->pset[j].param.src_dst_cidx,
			 edesc->pset[j].param.link_bcntrld);
801
		/* Link to the previous slot if not the last set */
802
		if (i != (nslots - 1))
803
			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
804 805
	}

806 807
	edesc->processed += nslots;

808 809 810 811 812
	/*
	 * If this is either the last set in a set of SG-list transactions
	 * then setup a link to the dummy slot, this results in all future
	 * events being absorbed and that's OK because we're done
	 */
813 814
	if (edesc->processed == edesc->pset_nr) {
		if (edesc->cyclic)
815
			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
816
		else
817
			edma_link(ecc, echan->slot[nslots - 1],
818 819
				  echan->ecc->dummy_slot);
	}
820

821
	if (echan->missed) {
822 823 824 825 826
		/*
		 * This happens due to setup times between intermediate
		 * transfers in long SG lists which have to be broken up into
		 * transfers of MAX_NR_SG
		 */
827
		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
828 829 830 831
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
832
		echan->missed = 0;
833 834 835
	} else if (edesc->processed <= MAX_NR_SG) {
		dev_dbg(dev, "first transfer starting on channel %d\n",
			echan->ch_num);
836
		edma_start(echan);
837 838 839
	} else {
		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
			echan->ch_num, edesc->processed);
840
		edma_resume(echan);
841
	}
842 843
}

844
static int edma_terminate_all(struct dma_chan *chan)
845
{
846
	struct edma_chan *echan = to_edma_chan(chan);
847 848 849 850 851 852 853 854 855 856 857
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&echan->vchan.lock, flags);

	/*
	 * Stop DMA activity: we assume the callback will not be called
	 * after edma_dma() returns (even if it does, it will see
	 * echan->edesc is NULL and exit.)
	 */
	if (echan->edesc) {
858
		edma_stop(echan);
859
		/* Move the cyclic channel back to default queue */
860
		if (!echan->tc && echan->edesc->cyclic)
861
			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
862 863 864 865 866
		/*
		 * free the running request descriptor
		 * since it is not in any of the vdesc lists
		 */
		edma_desc_free(&echan->edesc->vdesc);
867 868 869 870 871 872 873 874 875 876
		echan->edesc = NULL;
	}

	vchan_get_all_descriptors(&echan->vchan, &head);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
	vchan_dma_desc_free_list(&echan->vchan, &head);

	return 0;
}

877 878 879 880 881 882 883
static void edma_synchronize(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);

	vchan_synchronize(&echan->vchan);
}

884
static int edma_slave_config(struct dma_chan *chan,
885
	struct dma_slave_config *cfg)
886
{
887 888
	struct edma_chan *echan = to_edma_chan(chan);

889 890
	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
891 892
		return -EINVAL;

893
	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
894 895 896 897

	return 0;
}

898
static int edma_dma_pause(struct dma_chan *chan)
899
{
900 901
	struct edma_chan *echan = to_edma_chan(chan);

902
	if (!echan->edesc)
903 904
		return -EINVAL;

905
	edma_pause(echan);
906 907 908
	return 0;
}

909
static int edma_dma_resume(struct dma_chan *chan)
910
{
911 912
	struct edma_chan *echan = to_edma_chan(chan);

913
	edma_resume(echan);
914 915 916
	return 0;
}

917 918 919 920 921 922 923 924 925 926 927
/*
 * A PaRAM set configuration abstraction used by other modes
 * @chan: Channel who's PaRAM set we're configuring
 * @pset: PaRAM set to initialize and setup.
 * @src_addr: Source address of the DMA
 * @dst_addr: Destination address of the DMA
 * @burst: In units of dev_width, how much to send
 * @dev_width: How much is the dev_width
 * @dma_length: Total length of the DMA transfer
 * @direction: Direction of the transfer
 */
928
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
929
			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
930
			    unsigned int acnt, unsigned int dma_length,
931
			    enum dma_transfer_direction direction)
932 933 934
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
935
	struct edmacc_param *param = &epset->param;
936
	int bcnt, ccnt, cidx;
937 938 939
	int src_bidx, dst_bidx, src_cidx, dst_cidx;
	int absync;

940 941 942
	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
	if (!burst)
		burst = 1;
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	/*
	 * If the maxburst is equal to the fifo width, use
	 * A-synced transfers. This allows for large contiguous
	 * buffer transfers using only one PaRAM set.
	 */
	if (burst == 1) {
		/*
		 * For the A-sync case, bcnt and ccnt are the remainder
		 * and quotient respectively of the division of:
		 * (dma_length / acnt) by (SZ_64K -1). This is so
		 * that in case bcnt over flows, we have ccnt to use.
		 * Note: In A-sync tranfer only, bcntrld is used, but it
		 * only applies for sg_dma_len(sg) >= SZ_64K.
		 * In this case, the best way adopted is- bccnt for the
		 * first frame will be the remainder below. Then for
		 * every successive frame, bcnt will be SZ_64K-1. This
		 * is assured as bcntrld = 0xffff in end of function.
		 */
		absync = false;
		ccnt = dma_length / acnt / (SZ_64K - 1);
		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
		/*
		 * If bcnt is non-zero, we have a remainder and hence an
		 * extra frame to transfer, so increment ccnt.
		 */
		if (bcnt)
			ccnt++;
		else
			bcnt = SZ_64K - 1;
		cidx = acnt;
	} else {
		/*
		 * If maxburst is greater than the fifo address_width,
		 * use AB-synced transfers where A count is the fifo
		 * address_width and B count is the maxburst. In this
		 * case, we are limited to transfers of C count frames
		 * of (address_width * maxburst) where C count is limited
		 * to SZ_64K-1. This places an upper bound on the length
		 * of an SG segment that can be handled.
		 */
		absync = true;
		bcnt = burst;
		ccnt = dma_length / (acnt * bcnt);
		if (ccnt > (SZ_64K - 1)) {
			dev_err(dev, "Exceeded max SG segment size\n");
			return -EINVAL;
		}
		cidx = acnt * bcnt;
	}

993 994
	epset->len = dma_length;

995 996 997 998 999
	if (direction == DMA_MEM_TO_DEV) {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = 0;
		dst_cidx = 0;
1000
		epset->addr = src_addr;
1001 1002 1003 1004 1005
	} else if (direction == DMA_DEV_TO_MEM)  {
		src_bidx = 0;
		src_cidx = 0;
		dst_bidx = acnt;
		dst_cidx = cidx;
1006
		epset->addr = dst_addr;
1007 1008 1009 1010 1011
	} else if (direction == DMA_MEM_TO_MEM)  {
		src_bidx = acnt;
		src_cidx = cidx;
		dst_bidx = acnt;
		dst_cidx = cidx;
1012 1013 1014 1015 1016
	} else {
		dev_err(dev, "%s: direction not implemented yet\n", __func__);
		return -EINVAL;
	}

1017
	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1018 1019
	/* Configure A or AB synchronized transfers */
	if (absync)
1020
		param->opt |= SYNCDIM;
1021

1022 1023
	param->src = src_addr;
	param->dst = dst_addr;
1024

1025 1026
	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1027

1028 1029
	param->a_b_cnt = bcnt << 16 | acnt;
	param->ccnt = ccnt;
1030 1031 1032 1033 1034 1035
	/*
	 * Only time when (bcntrld) auto reload is required is for
	 * A-sync case, and in this case, a requirement of reload value
	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
	 * and then later will be populated by edma_execute.
	 */
1036
	param->link_bcntrld = 0xffffffff;
1037 1038 1039
	return absync;
}

1040 1041 1042 1043 1044 1045 1046 1047
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long tx_flags, void *context)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
1048
	dma_addr_t src_addr = 0, dst_addr = 0;
1049 1050
	enum dma_slave_buswidth dev_width;
	u32 burst;
1051
	struct scatterlist *sg;
1052
	int i, nslots, ret;
1053 1054 1055 1056

	if (unlikely(!echan || !sgl || !sg_len))
		return NULL;

1057
	if (direction == DMA_DEV_TO_MEM) {
1058
		src_addr = echan->cfg.src_addr;
1059 1060 1061
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
1062
		dst_addr = echan->cfg.dst_addr;
1063 1064 1065
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1066
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1067 1068 1069 1070
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1071
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1072 1073 1074
		return NULL;
	}

1075 1076
	edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1077
	if (!edesc)
1078 1079 1080
		return NULL;

	edesc->pset_nr = sg_len;
1081
	edesc->residue = 0;
1082
	edesc->direction = direction;
1083
	edesc->echan = echan;
1084

1085 1086 1087 1088
	/* Allocate a PaRAM slot, if needed */
	nslots = min_t(unsigned, MAX_NR_SG, sg_len);

	for (i = 0; i < nslots; i++) {
1089 1090
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1091
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1092
			if (echan->slot[i] < 0) {
V
Valentin Ilie 已提交
1093
				kfree(edesc);
1094 1095
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1096 1097 1098
				return NULL;
			}
		}
1099 1100 1101 1102
	}

	/* Configure PaRAM sets for each SG */
	for_each_sg(sgl, sg, sg_len, i) {
1103 1104 1105 1106 1107
		/* Get address for each SG */
		if (direction == DMA_DEV_TO_MEM)
			dst_addr = sg_dma_address(sg);
		else
			src_addr = sg_dma_address(sg);
1108

1109 1110 1111
		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width,
				       sg_dma_len(sg), direction);
V
Vinod Koul 已提交
1112 1113
		if (ret < 0) {
			kfree(edesc);
1114
			return NULL;
1115 1116
		}

1117
		edesc->absync = ret;
1118
		edesc->residue += sg_dma_len(sg);
1119

1120
		if (i == sg_len - 1)
1121
			/* Enable completion interrupt */
1122
			edesc->pset[i].param.opt |= TCINTEN;
1123 1124 1125 1126 1127 1128 1129 1130
		else if (!((i+1) % MAX_NR_SG))
			/*
			 * Enable early completion interrupt for the
			 * intermediateset. In this case the driver will be
			 * notified when the paRAM set is submitted to TC. This
			 * will allow more time to set up the next set of slots.
			 */
			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1131
	}
1132
	edesc->residue_stat = edesc->residue;
1133 1134 1135 1136

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1137
static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1138 1139 1140
	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
	size_t len, unsigned long tx_flags)
{
1141
	int ret, nslots;
1142 1143 1144
	struct edma_desc *edesc;
	struct device *dev = chan->device->dev;
	struct edma_chan *echan = to_edma_chan(chan);
1145
	unsigned int width, pset_len;
1146 1147 1148 1149

	if (unlikely(!echan || !len))
		return NULL;

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	if (len < SZ_64K) {
		/*
		 * Transfer size less than 64K can be handled with one paRAM
		 * slot and with one burst.
		 * ACNT = length
		 */
		width = len;
		pset_len = len;
		nslots = 1;
	} else {
		/*
		 * Transfer size bigger than 64K will be handled with maximum of
		 * two paRAM slots.
		 * slot1: (full_length / 32767) times 32767 bytes bursts.
		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
		 * slot2: the remaining amount of data after slot1.
		 *	  ACNT = full_length - length1, length2 = ACNT
		 *
		 * When the full_length is multibple of 32767 one slot can be
		 * used to complete the transfer.
		 */
		width = SZ_32K - 1;
		pset_len = rounddown(len, width);
		/* One slot is enough for lengths multiple of (SZ_32K -1) */
		if (unlikely(pset_len == len))
			nslots = 1;
		else
			nslots = 2;
	}

	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1182
	if (!edesc)
1183 1184
		return NULL;

1185 1186 1187 1188
	edesc->pset_nr = nslots;
	edesc->residue = edesc->residue_stat = len;
	edesc->direction = DMA_MEM_TO_MEM;
	edesc->echan = echan;
1189

1190
	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1191 1192 1193
			       width, pset_len, DMA_MEM_TO_MEM);
	if (ret < 0) {
		kfree(edesc);
1194
		return NULL;
1195
	}
1196 1197 1198

	edesc->absync = ret;

1199
	edesc->pset[0].param.opt |= ITCCHEN;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	if (nslots == 1) {
		/* Enable transfer complete interrupt */
		edesc->pset[0].param.opt |= TCINTEN;
	} else {
		/* Enable transfer complete chaining for the first slot */
		edesc->pset[0].param.opt |= TCCHEN;

		if (echan->slot[1] < 0) {
			echan->slot[1] = edma_alloc_slot(echan->ecc,
							 EDMA_SLOT_ANY);
			if (echan->slot[1] < 0) {
				kfree(edesc);
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
				return NULL;
			}
		}
		dest += pset_len;
		src += pset_len;
		pset_len = width = len % (SZ_32K - 1);

		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
				       width, pset_len, DMA_MEM_TO_MEM);
		if (ret < 0) {
			kfree(edesc);
			return NULL;
		}

		edesc->pset[1].param.opt |= ITCCHEN;
		edesc->pset[1].param.opt |= TCINTEN;
	}
1231 1232 1233 1234

	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1235 1236 1237
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
1238
	unsigned long tx_flags)
1239 1240 1241 1242 1243 1244
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct device *dev = chan->device->dev;
	struct edma_desc *edesc;
	dma_addr_t src_addr, dst_addr;
	enum dma_slave_buswidth dev_width;
1245
	bool use_intermediate = false;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	u32 burst;
	int i, ret, nslots;

	if (unlikely(!echan || !buf_len || !period_len))
		return NULL;

	if (direction == DMA_DEV_TO_MEM) {
		src_addr = echan->cfg.src_addr;
		dst_addr = buf_addr;
		dev_width = echan->cfg.src_addr_width;
		burst = echan->cfg.src_maxburst;
	} else if (direction == DMA_MEM_TO_DEV) {
		src_addr = buf_addr;
		dst_addr = echan->cfg.dst_addr;
		dev_width = echan->cfg.dst_addr_width;
		burst = echan->cfg.dst_maxburst;
	} else {
1263
		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1264 1265 1266 1267
		return NULL;
	}

	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1268
		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		return NULL;
	}

	if (unlikely(buf_len % period_len)) {
		dev_err(dev, "Period should be multiple of Buffer length\n");
		return NULL;
	}

	nslots = (buf_len / period_len) + 1;

	/*
	 * Cyclic DMA users such as audio cannot tolerate delays introduced
	 * by cases where the number of periods is more than the maximum
	 * number of SGs the EDMA driver can handle at a time. For DMA types
	 * such as Slave SGs, such delays are tolerable and synchronized,
	 * but the synchronization is difficult to achieve with Cyclic and
	 * cannot be guaranteed, so we error out early.
	 */
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	if (nslots > MAX_NR_SG) {
		/*
		 * If the burst and period sizes are the same, we can put
		 * the full buffer into a single period and activate
		 * intermediate interrupts. This will produce interrupts
		 * after each burst, which is also after each desired period.
		 */
		if (burst == period_len) {
			period_len = buf_len;
			nslots = 2;
			use_intermediate = true;
		} else {
			return NULL;
		}
	}
1302

1303 1304
	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
			GFP_ATOMIC);
1305
	if (!edesc)
1306 1307 1308 1309
		return NULL;

	edesc->cyclic = 1;
	edesc->pset_nr = nslots;
1310
	edesc->residue = edesc->residue_stat = buf_len;
1311
	edesc->direction = direction;
1312
	edesc->echan = echan;
1313

1314 1315
	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
		__func__, echan->ch_num, nslots, period_len, buf_len);
1316 1317 1318 1319 1320

	for (i = 0; i < nslots; i++) {
		/* Allocate a PaRAM slot, if needed */
		if (echan->slot[i] < 0) {
			echan->slot[i] =
1321
				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1322
			if (echan->slot[i] < 0) {
1323
				kfree(edesc);
1324 1325
				dev_err(dev, "%s: Failed to allocate slot\n",
					__func__);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
				return NULL;
			}
		}

		if (i == nslots - 1) {
			memcpy(&edesc->pset[i], &edesc->pset[0],
			       sizeof(edesc->pset[0]));
			break;
		}

		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
				       dst_addr, burst, dev_width, period_len,
				       direction);
1339 1340
		if (ret < 0) {
			kfree(edesc);
1341
			return NULL;
1342
		}
1343

1344 1345 1346 1347
		if (direction == DMA_DEV_TO_MEM)
			dst_addr += period_len;
		else
			src_addr += period_len;
1348

1349 1350
		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
		dev_vdbg(dev,
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
			"\n pset[%d]:\n"
			"  chnum\t%d\n"
			"  slot\t%d\n"
			"  opt\t%08x\n"
			"  src\t%08x\n"
			"  dst\t%08x\n"
			"  abcnt\t%08x\n"
			"  ccnt\t%08x\n"
			"  bidx\t%08x\n"
			"  cidx\t%08x\n"
			"  lkrld\t%08x\n",
			i, echan->ch_num, echan->slot[i],
1363 1364 1365 1366 1367 1368 1369 1370
			edesc->pset[i].param.opt,
			edesc->pset[i].param.src,
			edesc->pset[i].param.dst,
			edesc->pset[i].param.a_b_cnt,
			edesc->pset[i].param.ccnt,
			edesc->pset[i].param.src_dst_bidx,
			edesc->pset[i].param.src_dst_cidx,
			edesc->pset[i].param.link_bcntrld);
1371 1372 1373 1374

		edesc->absync = ret;

		/*
1375
		 * Enable period interrupt only if it is requested
1376
		 */
1377
		if (tx_flags & DMA_PREP_INTERRUPT) {
1378
			edesc->pset[i].param.opt |= TCINTEN;
1379 1380 1381 1382 1383

			/* Also enable intermediate interrupts if necessary */
			if (use_intermediate)
				edesc->pset[i].param.opt |= ITCINTEN;
		}
1384 1385
	}

1386
	/* Place the cyclic channel to highest priority queue */
1387 1388
	if (!echan->tc)
		edma_assign_channel_eventq(echan, EVENTQ_0);
1389

1390 1391 1392
	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
}

1393
static void edma_completion_handler(struct edma_chan *echan)
1394 1395
{
	struct device *dev = echan->vchan.chan.device->dev;
1396
	struct edma_desc *edesc;
1397

1398
	spin_lock(&echan->vchan.lock);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	edesc = echan->edesc;
	if (edesc) {
		if (edesc->cyclic) {
			vchan_cyclic_callback(&edesc->vdesc);
			spin_unlock(&echan->vchan.lock);
			return;
		} else if (edesc->processed == edesc->pset_nr) {
			edesc->residue = 0;
			edma_stop(echan);
			vchan_cookie_complete(&edesc->vdesc);
			echan->edesc = NULL;

			dev_dbg(dev, "Transfer completed on channel %d\n",
				echan->ch_num);
		} else {
			dev_dbg(dev, "Sub transfer completed on channel %d\n",
				echan->ch_num);

			edma_pause(echan);

			/* Update statistics for tx_status */
			edesc->residue -= edesc->sg_len;
			edesc->residue_stat = edesc->residue;
			edesc->processed_stat = edesc->processed;
		}
		edma_execute(echan);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	}

	spin_unlock(&echan->vchan.lock);
}

/* eDMA interrupt handler */
static irqreturn_t dma_irq_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
	int ctlr;
	u32 sh_ier;
	u32 sh_ipr;
	u32 bank;

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_irq_handler\n");

	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
	if (!sh_ipr) {
		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
		if (!sh_ipr)
			return IRQ_NONE;
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
		bank = 1;
	} else {
		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
		bank = 0;
	}

	do {
		u32 slot;
		u32 channel;

		slot = __ffs(sh_ipr);
		sh_ipr &= ~(BIT(slot));

		if (sh_ier & BIT(slot)) {
			channel = (bank << 5) | slot;
			/* Clear the corresponding IPR bits */
			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
			edma_completion_handler(&ecc->slave_chans[channel]);
1469
		}
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	} while (sh_ipr);

	edma_shadow0_write(ecc, SH_IEVAL, 1);
	return IRQ_HANDLED;
}

static void edma_error_handler(struct edma_chan *echan)
{
	struct edma_cc *ecc = echan->ecc;
	struct device *dev = echan->vchan.chan.device->dev;
	struct edmacc_param p;

	if (!echan->edesc)
		return;

	spin_lock(&echan->vchan.lock);
1486

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	edma_read_slot(ecc, echan->slot[0], &p);
	/*
	 * Issue later based on missed flag which will be sure
	 * to happen as:
	 * (1) we finished transmitting an intermediate slot and
	 *     edma_execute is coming up.
	 * (2) or we finished current transfer and issue will
	 *     call edma_execute.
	 *
	 * Important note: issuing can be dangerous here and
	 * lead to some nasty recursion when we are in a NULL
	 * slot. So we avoid doing so and set the missed flag.
	 */
	if (p.a_b_cnt == 0 && p.ccnt == 0) {
		dev_dbg(dev, "Error on null slot, setting miss\n");
		echan->missed = 1;
	} else {
1504
		/*
1505 1506
		 * The slot is already programmed but the event got
		 * missed, so its safe to issue it here.
1507
		 */
1508
		dev_dbg(dev, "Missed event, TRIGGERING\n");
1509 1510 1511 1512
		edma_clean_channel(echan);
		edma_stop(echan);
		edma_start(echan);
		edma_trigger_channel(echan);
1513 1514 1515 1516
	}
	spin_unlock(&echan->vchan.lock);
}

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
static inline bool edma_error_pending(struct edma_cc *ecc)
{
	if (edma_read_array(ecc, EDMA_EMR, 0) ||
	    edma_read_array(ecc, EDMA_EMR, 1) ||
	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
		return true;

	return false;
}

1527 1528 1529 1530
/* eDMA error interrupt handler */
static irqreturn_t dma_ccerr_handler(int irq, void *data)
{
	struct edma_cc *ecc = data;
1531
	int i, j;
1532 1533
	int ctlr;
	unsigned int cnt = 0;
1534
	unsigned int val;
1535 1536 1537 1538 1539 1540 1541

	ctlr = ecc->id;
	if (ctlr < 0)
		return IRQ_NONE;

	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");

1542 1543 1544 1545 1546 1547 1548 1549 1550
	if (!edma_error_pending(ecc)) {
		/*
		 * The registers indicate no pending error event but the irq
		 * handler has been called.
		 * Ask eDMA to re-evaluate the error registers.
		 */
		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
			__func__);
		edma_write(ecc, EDMA_EEVAL, 1);
1551
		return IRQ_NONE;
1552
	}
1553 1554

	while (1) {
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
		/* Event missed register(s) */
		for (j = 0; j < 2; j++) {
			unsigned long emr;

			val = edma_read_array(ecc, EDMA_EMR, j);
			if (!val)
				continue;

			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
			emr = val;
			for (i = find_next_bit(&emr, 32, 0); i < 32;
			     i = find_next_bit(&emr, 32, i + 1)) {
1567 1568
				int k = (j << 5) + i;

1569 1570 1571 1572
				/* Clear the corresponding EMR bits */
				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
				/* Clear any SER */
				edma_shadow0_write_array(ecc, SH_SECR, j,
1573
							 BIT(i));
1574
				edma_error_handler(&ecc->slave_chans[k]);
1575
			}
1576
		}
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

		val = edma_read(ecc, EDMA_QEMR);
		if (val) {
			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_QEMCR, val);
			edma_shadow0_write(ecc, SH_QSECR, val);
		}

		val = edma_read(ecc, EDMA_CCERR);
		if (val) {
			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
			/* Not reported, just clear the interrupt reason. */
			edma_write(ecc, EDMA_CCERRCLR, val);
		}

1593
		if (!edma_error_pending(ecc))
1594 1595 1596 1597
			break;
		cnt++;
		if (cnt > 10)
			break;
1598
	}
1599 1600
	edma_write(ecc, EDMA_EEVAL, 1);
	return IRQ_HANDLED;
1601 1602 1603 1604 1605 1606
}

/* Alloc channel resources */
static int edma_alloc_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
1607 1608 1609
	struct edma_cc *ecc = echan->ecc;
	struct device *dev = ecc->dev;
	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1610 1611
	int ret;

1612 1613 1614 1615 1616 1617 1618 1619 1620
	if (echan->tc) {
		eventq_no = echan->tc->id;
	} else if (ecc->tc_list) {
		/* memcpy channel */
		echan->tc = &ecc->tc_list[ecc->info->default_queue];
		eventq_no = echan->tc->id;
	}

	ret = edma_alloc_channel(echan, eventq_no);
1621 1622
	if (ret)
		return ret;
1623

1624
	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1625 1626 1627
	if (echan->slot[0] < 0) {
		dev_err(dev, "Entry slot allocation failed for channel %u\n",
			EDMA_CHAN_SLOT(echan->ch_num));
1628
		goto err_slot;
1629 1630 1631
	}

	/* Set up channel -> slot mapping for the entry slot */
1632 1633
	edma_set_chmap(echan, echan->slot[0]);
	echan->alloced = true;
1634

1635 1636 1637 1638
	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
		echan->hw_triggered ? "HW" : "SW");

1639 1640
	return 0;

1641 1642
err_slot:
	edma_free_channel(echan);
1643 1644 1645 1646 1647 1648 1649
	return ret;
}

/* Free channel resources */
static void edma_free_chan_resources(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
1650
	struct device *dev = echan->ecc->dev;
1651 1652 1653
	int i;

	/* Terminate transfers */
1654
	edma_stop(echan);
1655 1656 1657 1658

	vchan_free_chan_resources(&echan->vchan);

	/* Free EDMA PaRAM slots */
1659
	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1660
		if (echan->slot[i] >= 0) {
1661
			edma_free_slot(echan->ecc, echan->slot[i]);
1662 1663 1664 1665
			echan->slot[i] = -1;
		}
	}

1666
	/* Set entry slot to the dummy slot */
1667
	edma_set_chmap(echan, echan->ecc->dummy_slot);
1668

1669 1670
	/* Free EDMA channel */
	if (echan->alloced) {
1671
		edma_free_channel(echan);
1672 1673 1674
		echan->alloced = false;
	}

1675 1676 1677 1678 1679
	echan->tc = NULL;
	echan->hw_triggered = false;

	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
}

/* Send pending descriptor to hardware */
static void edma_issue_pending(struct dma_chan *chan)
{
	struct edma_chan *echan = to_edma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&echan->vchan.lock, flags);
	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
		edma_execute(echan);
	spin_unlock_irqrestore(&echan->vchan.lock, flags);
}

1694 1695 1696 1697 1698 1699 1700 1701 1702
/*
 * This limit exists to avoid a possible infinite loop when waiting for proof
 * that a particular transfer is completed. This limit can be hit if there
 * are large bursts to/from slow devices or the CPU is never able to catch
 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
 * RX-FIFO, as many as 55 loops have been seen.
 */
#define EDMA_MAX_TR_WAIT_LOOPS 1000

1703 1704 1705
static u32 edma_residue(struct edma_desc *edesc)
{
	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1706 1707
	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
	struct edma_chan *echan = edesc->echan;
1708 1709 1710 1711 1712 1713 1714 1715
	struct edma_pset *pset = edesc->pset;
	dma_addr_t done, pos;
	int i;

	/*
	 * We always read the dst/src position from the first RamPar
	 * pset. That's the one which is active now.
	 */
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	pos = edma_get_position(echan->ecc, echan->slot[0], dst);

	/*
	 * "pos" may represent a transfer request that is still being
	 * processed by the EDMACC or EDMATC. We will busy wait until
	 * any one of the situations occurs:
	 *   1. the DMA hardware is idle
	 *   2. a new transfer request is setup
	 *   3. we hit the loop limit
	 */
	while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
		/* check if a new transfer request is setup */
		if (edma_get_position(echan->ecc,
				      echan->slot[0], dst) != pos) {
			break;
		}

		if (!--loop_count) {
			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
				"%s: timeout waiting for PaRAM update\n",
				__func__);
			break;
		}

		cpu_relax();
	}
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777

	/*
	 * Cyclic is simple. Just subtract pset[0].addr from pos.
	 *
	 * We never update edesc->residue in the cyclic case, so we
	 * can tell the remaining room to the end of the circular
	 * buffer.
	 */
	if (edesc->cyclic) {
		done = pos - pset->addr;
		edesc->residue_stat = edesc->residue - done;
		return edesc->residue_stat;
	}

	/*
	 * For SG operation we catch up with the last processed
	 * status.
	 */
	pset += edesc->processed_stat;

	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
		/*
		 * If we are inside this pset address range, we know
		 * this is the active one. Get the current delta and
		 * stop walking the psets.
		 */
		if (pos >= pset->addr && pos < pset->addr + pset->len)
			return edesc->residue_stat - (pos - pset->addr);

		/* Otherwise mark it done and update residue_stat. */
		edesc->processed_stat++;
		edesc->residue_stat -= pset->len;
	}
	return edesc->residue_stat;
}

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
/* Check request completion status */
static enum dma_status edma_tx_status(struct dma_chan *chan,
				      dma_cookie_t cookie,
				      struct dma_tx_state *txstate)
{
	struct edma_chan *echan = to_edma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status ret;
	unsigned long flags;

	ret = dma_cookie_status(chan, cookie, txstate);
1789
	if (ret == DMA_COMPLETE || !txstate)
1790 1791 1792
		return ret;

	spin_lock_irqsave(&echan->vchan.lock, flags);
1793
	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1794
		txstate->residue = edma_residue(echan->edesc);
1795 1796
	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1797 1798 1799 1800 1801
	spin_unlock_irqrestore(&echan->vchan.lock, flags);

	return ret;
}

1802
static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1803 1804 1805
{
	if (!memcpy_channels)
		return false;
1806 1807
	while (*memcpy_channels != -1) {
		if (*memcpy_channels == ch_num)
1808
			return true;
1809
		memcpy_channels++;
1810 1811 1812 1813
	}
	return false;
}

1814 1815 1816 1817 1818
#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

1819
static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1820
{
1821 1822
	struct dma_device *s_ddev = &ecc->dma_slave;
	struct dma_device *m_ddev = NULL;
1823
	s32 *memcpy_channels = ecc->info->memcpy_channels;
1824 1825
	int i, j;

1826 1827 1828 1829 1830 1831
	dma_cap_zero(s_ddev->cap_mask);
	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
	if (ecc->legacy_mode && !memcpy_channels) {
		dev_warn(ecc->dev,
			 "Legacy memcpy is enabled, things might not work\n");
1832

1833 1834 1835 1836
		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
	}
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
	s_ddev->device_free_chan_resources = edma_free_chan_resources;
	s_ddev->device_issue_pending = edma_issue_pending;
	s_ddev->device_tx_status = edma_tx_status;
	s_ddev->device_config = edma_slave_config;
	s_ddev->device_pause = edma_dma_pause;
	s_ddev->device_resume = edma_dma_resume;
	s_ddev->device_terminate_all = edma_terminate_all;
1848
	s_ddev->device_synchronize = edma_synchronize;
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

	s_ddev->dev = ecc->dev;
	INIT_LIST_HEAD(&s_ddev->channels);

	if (memcpy_channels) {
		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
		ecc->dma_memcpy = m_ddev;

		dma_cap_zero(m_ddev->cap_mask);
		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);

		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
		m_ddev->device_free_chan_resources = edma_free_chan_resources;
		m_ddev->device_issue_pending = edma_issue_pending;
		m_ddev->device_tx_status = edma_tx_status;
		m_ddev->device_config = edma_slave_config;
		m_ddev->device_pause = edma_dma_pause;
		m_ddev->device_resume = edma_dma_resume;
		m_ddev->device_terminate_all = edma_terminate_all;
1874
		m_ddev->device_synchronize = edma_synchronize;
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885

		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

		m_ddev->dev = ecc->dev;
		INIT_LIST_HEAD(&m_ddev->channels);
	} else if (!ecc->legacy_mode) {
		dev_info(ecc->dev, "memcpy is disabled\n");
	}
1886

1887
	for (i = 0; i < ecc->num_channels; i++) {
1888
		struct edma_chan *echan = &ecc->slave_chans[i];
1889
		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1890 1891 1892
		echan->ecc = ecc;
		echan->vchan.desc_free = edma_desc_free;

1893 1894 1895 1896
		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
			vchan_init(&echan->vchan, m_ddev);
		else
			vchan_init(&echan->vchan, s_ddev);
1897 1898 1899 1900 1901 1902 1903

		INIT_LIST_HEAD(&echan->node);
		for (j = 0; j < EDMA_MAX_SLOTS; j++)
			echan->slot[j] = -1;
	}
}

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
			      struct edma_cc *ecc)
{
	int i;
	u32 value, cccfg;
	s8 (*queue_priority_map)[2];

	/* Decode the eDMA3 configuration from CCCFG register */
	cccfg = edma_read(ecc, EDMA_CCCFG);

	value = GET_NUM_REGN(cccfg);
	ecc->num_region = BIT(value);

	value = GET_NUM_DMACH(cccfg);
	ecc->num_channels = BIT(value + 1);

1920 1921 1922
	value = GET_NUM_QDMACH(cccfg);
	ecc->num_qchannels = value * 2;

1923 1924 1925 1926 1927 1928
	value = GET_NUM_PAENTRY(cccfg);
	ecc->num_slots = BIT(value + 4);

	value = GET_NUM_EVQUE(cccfg);
	ecc->num_tc = value + 1;

1929 1930
	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;

1931 1932 1933
	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1934
	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1935 1936
	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1937
	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

	/* Nothing need to be done if queue priority is provided */
	if (pdata->queue_priority_mapping)
		return 0;

	/*
	 * Configure TC/queue priority as follows:
	 * Q0 - priority 0
	 * Q1 - priority 1
	 * Q2 - priority 2
	 * ...
	 * The meaning of priority numbers: 0 highest priority, 7 lowest
	 * priority. So Q0 is the highest priority queue and the last queue has
	 * the lowest priority.
	 */
1953
	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
					  GFP_KERNEL);
	if (!queue_priority_map)
		return -ENOMEM;

	for (i = 0; i < ecc->num_tc; i++) {
		queue_priority_map[i][0] = i;
		queue_priority_map[i][1] = i;
	}
	queue_priority_map[i][0] = -1;
	queue_priority_map[i][1] = -1;

	pdata->queue_priority_mapping = queue_priority_map;
	/* Default queue has the lowest priority */
	pdata->default_queue = i - 1;

	return 0;
}

#if IS_ENABLED(CONFIG_OF)
static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
			       size_t sz)
{
	const char pname[] = "ti,edma-xbar-event-map";
	struct resource res;
	void __iomem *xbar;
	s16 (*xbar_chans)[2];
	size_t nelm = sz / sizeof(s16);
	u32 shift, offset, mux;
	int ret, i;

1984
	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	if (!xbar_chans)
		return -ENOMEM;

	ret = of_address_to_resource(dev->of_node, 1, &res);
	if (ret)
		return -ENOMEM;

	xbar = devm_ioremap(dev, res.start, resource_size(&res));
	if (!xbar)
		return -ENOMEM;

	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
					 nelm);
	if (ret)
		return -EIO;

	/* Invalidate last entry for the other user of this mess */
	nelm >>= 1;
	xbar_chans[nelm][0] = -1;
	xbar_chans[nelm][1] = -1;

	for (i = 0; i < nelm; i++) {
		shift = (xbar_chans[i][1] & 0x03) << 3;
		offset = xbar_chans[i][1] & 0xfffffffc;
		mux = readl(xbar + offset);
		mux &= ~(0xff << shift);
		mux |= xbar_chans[i][0] << shift;
		writel(mux, (xbar + offset));
	}

	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
	return 0;
}

2019 2020
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
						     bool legacy_mode)
2021 2022
{
	struct edma_soc_info *info;
2023 2024
	struct property *prop;
	size_t sz;
2025 2026 2027 2028 2029 2030
	int ret;

	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
	if (!info)
		return ERR_PTR(-ENOMEM);

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	if (legacy_mode) {
		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
					&sz);
		if (prop) {
			ret = edma_xbar_event_map(dev, info, sz);
			if (ret)
				return ERR_PTR(ret);
		}
		return info;
	}

	/* Get the list of channels allocated to be used for memcpy */
	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
	if (prop) {
		const char pname[] = "ti,edma-memcpy-channels";
2046 2047
		size_t nelm = sz / sizeof(s32);
		s32 *memcpy_ch;
2048

2049
		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2050 2051 2052 2053
					 GFP_KERNEL);
		if (!memcpy_ch)
			return ERR_PTR(-ENOMEM);

2054 2055
		ret = of_property_read_u32_array(dev->of_node, pname,
						 (u32 *)memcpy_ch, nelm);
2056 2057 2058 2059 2060 2061 2062 2063 2064
		if (ret)
			return ERR_PTR(ret);

		memcpy_ch[nelm] = -1;
		info->memcpy_channels = memcpy_ch;
	}

	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
				&sz);
2065
	if (prop) {
2066
		const char pname[] = "ti,edma-reserved-slot-ranges";
2067
		u32 (*tmp)[2];
2068
		s16 (*rsv_slots)[2];
2069
		size_t nelm = sz / sizeof(*tmp);
2070
		struct edma_rsv_info *rsv_info;
2071
		int i;
2072 2073 2074 2075

		if (!nelm)
			return info;

2076 2077 2078 2079
		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
		if (!tmp)
			return ERR_PTR(-ENOMEM);

2080
		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2081 2082
		if (!rsv_info) {
			kfree(tmp);
2083
			return ERR_PTR(-ENOMEM);
2084
		}
2085 2086 2087

		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
					 GFP_KERNEL);
2088 2089
		if (!rsv_slots) {
			kfree(tmp);
2090
			return ERR_PTR(-ENOMEM);
2091
		}
2092

2093 2094 2095 2096
		ret = of_property_read_u32_array(dev->of_node, pname,
						 (u32 *)tmp, nelm * 2);
		if (ret) {
			kfree(tmp);
2097
			return ERR_PTR(ret);
2098
		}
2099

2100 2101 2102 2103
		for (i = 0; i < nelm; i++) {
			rsv_slots[i][0] = tmp[i][0];
			rsv_slots[i][1] = tmp[i][1];
		}
2104 2105
		rsv_slots[nelm][0] = -1;
		rsv_slots[nelm][1] = -1;
2106

2107 2108
		info->rsv = rsv_info;
		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2109 2110

		kfree(tmp);
2111
	}
2112 2113 2114

	return info;
}
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
				      struct of_dma *ofdma)
{
	struct edma_cc *ecc = ofdma->of_dma_data;
	struct dma_chan *chan = NULL;
	struct edma_chan *echan;
	int i;

	if (!ecc || dma_spec->args_count < 1)
		return NULL;

	for (i = 0; i < ecc->num_channels; i++) {
		echan = &ecc->slave_chans[i];
		if (echan->ch_num == dma_spec->args[0]) {
			chan = &echan->vchan.chan;
			break;
		}
	}

	if (!chan)
		return NULL;

	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
		goto out;

	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
	    dma_spec->args[1] < echan->ecc->num_tc) {
		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
		goto out;
	}

	return NULL;
out:
	/* The channel is going to be used as HW synchronized */
	echan->hw_triggered = true;
	return dma_get_slave_channel(chan);
}
2153
#else
2154 2155
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
						     bool legacy_mode)
2156 2157 2158
{
	return ERR_PTR(-EINVAL);
}
2159 2160 2161 2162 2163 2164

static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
				      struct of_dma *ofdma)
{
	return NULL;
}
2165 2166
#endif

B
Bill Pemberton 已提交
2167
static int edma_probe(struct platform_device *pdev)
2168
{
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	struct edma_soc_info	*info = pdev->dev.platform_data;
	s8			(*queue_priority_mapping)[2];
	int			i, off, ln;
	const s16		(*rsv_slots)[2];
	const s16		(*xbar_chans)[2];
	int			irq;
	char			*irq_name;
	struct resource		*mem;
	struct device_node	*node = pdev->dev.of_node;
	struct device		*dev = &pdev->dev;
	struct edma_cc		*ecc;
2180
	bool			legacy_mode = true;
2181 2182
	int ret;

2183
	if (node) {
2184 2185 2186 2187 2188 2189 2190
		const struct of_device_id *match;

		match = of_match_node(edma_of_ids, node);
		if (match && (u32)match->data == EDMA_BINDING_TPCC)
			legacy_mode = false;

		info = edma_setup_info_from_dt(dev, legacy_mode);
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
		if (IS_ERR(info)) {
			dev_err(dev, "failed to get DT data\n");
			return PTR_ERR(info);
		}
	}

	if (!info)
		return -ENODEV;

	pm_runtime_enable(dev);
	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		dev_err(dev, "pm_runtime_get_sync() failed\n");
		return ret;
	}

2207
	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2208 2209 2210
	if (ret)
		return ret;

2211
	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2212
	if (!ecc)
2213 2214
		return -ENOMEM;

2215 2216
	ecc->dev = dev;
	ecc->id = pdev->id;
2217
	ecc->legacy_mode = legacy_mode;
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
	/* When booting with DT the pdev->id is -1 */
	if (ecc->id < 0)
		ecc->id = 0;

	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
	if (!mem) {
		dev_dbg(dev, "mem resource not found, using index 0\n");
		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
		if (!mem) {
			dev_err(dev, "no mem resource?\n");
			return -ENODEV;
		}
	}
	ecc->base = devm_ioremap_resource(dev, mem);
	if (IS_ERR(ecc->base))
		return PTR_ERR(ecc->base);

	platform_set_drvdata(pdev, ecc);

	/* Get eDMA3 configuration from IP */
	ret = edma_setup_from_hw(dev, info, ecc);
	if (ret)
		return ret;

2242 2243 2244 2245 2246 2247
	/* Allocate memory based on the information we got from the IP */
	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
					sizeof(*ecc->slave_chans), GFP_KERNEL);
	if (!ecc->slave_chans)
		return -ENOMEM;

2248
	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2249
				       sizeof(unsigned long), GFP_KERNEL);
2250
	if (!ecc->slot_inuse)
2251 2252
		return -ENOMEM;

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	ecc->default_queue = info->default_queue;

	for (i = 0; i < ecc->num_slots; i++)
		edma_write_slot(ecc, i, &dummy_paramset);

	if (info->rsv) {
		/* Set the reserved slots in inuse list */
		rsv_slots = info->rsv->rsv_slots;
		if (rsv_slots) {
			for (i = 0; rsv_slots[i][0] != -1; i++) {
				off = rsv_slots[i][0];
				ln = rsv_slots[i][1];
2265
				set_bits(off, ln, ecc->slot_inuse);
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
			}
		}
	}

	/* Clear the xbar mapped channels in unused list */
	xbar_chans = info->xbar_chans;
	if (xbar_chans) {
		for (i = 0; xbar_chans[i][1] != -1; i++) {
			off = xbar_chans[i][1];
		}
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 0);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
2291
		ecc->ccint = irq;
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	}

	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
	if (irq < 0 && node)
		irq = irq_of_parse_and_map(node, 2);

	if (irq >= 0) {
		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
					  dev_name(dev));
		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
				       ecc);
		if (ret) {
			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
			return ret;
		}
2307
		ecc->ccerrint = irq;
2308 2309
	}

2310 2311 2312 2313 2314 2315
	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
	if (ecc->dummy_slot < 0) {
		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
		return ecc->dummy_slot;
	}

2316 2317
	queue_priority_mapping = info->queue_priority_mapping;

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
	if (!ecc->legacy_mode) {
		int lowest_priority = 0;
		struct of_phandle_args tc_args;

		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
					    sizeof(*ecc->tc_list), GFP_KERNEL);
		if (!ecc->tc_list)
			return -ENOMEM;

		for (i = 0;; i++) {
			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
							       1, i, &tc_args);
			if (ret || i == ecc->num_tc)
				break;

			ecc->tc_list[i].node = tc_args.np;
			ecc->tc_list[i].id = i;
			queue_priority_mapping[i][1] = tc_args.args[0];
			if (queue_priority_mapping[i][1] > lowest_priority) {
				lowest_priority = queue_priority_mapping[i][1];
				info->default_queue = i;
			}
		}
	}

2343 2344 2345 2346
	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);
2347

2348 2349 2350 2351 2352 2353 2354
	for (i = 0; i < ecc->num_region; i++) {
		edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
		edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
		edma_write_array(ecc, EDMA_QRAE, i, 0x0);
	}
	ecc->info = info;

2355
	/* Init the dma device and channels */
2356
	edma_dma_init(ecc, legacy_mode);
2357

2358 2359
	for (i = 0; i < ecc->num_channels; i++) {
		/* Assign all channels to the default queue */
2360 2361
		edma_assign_channel_eventq(&ecc->slave_chans[i],
					   info->default_queue);
2362 2363 2364 2365
		/* Set entry slot to the dummy slot */
		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
	}

2366 2367 2368 2369
	ecc->dma_slave.filter.map = info->slave_map;
	ecc->dma_slave.filter.mapcnt = info->slavecnt;
	ecc->dma_slave.filter.fn = edma_filter_fn;

2370
	ret = dma_async_device_register(&ecc->dma_slave);
2371 2372
	if (ret) {
		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2373
		goto err_reg1;
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	}

	if (ecc->dma_memcpy) {
		ret = dma_async_device_register(ecc->dma_memcpy);
		if (ret) {
			dev_err(dev, "memcpy ddev registration failed (%d)\n",
				ret);
			dma_async_device_unregister(&ecc->dma_slave);
			goto err_reg1;
		}
	}
2385

2386
	if (node)
2387
		of_dma_controller_register(node, of_edma_xlate, ecc);
2388

2389
	dev_info(dev, "TI EDMA DMA engine driver\n");
2390 2391 2392 2393

	return 0;

err_reg1:
2394
	edma_free_slot(ecc, ecc->dummy_slot);
2395 2396 2397
	return ret;
}

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
static void edma_cleanupp_vchan(struct dma_device *dmadev)
{
	struct edma_chan *echan, *_echan;

	list_for_each_entry_safe(echan, _echan,
			&dmadev->channels, vchan.chan.device_node) {
		list_del(&echan->vchan.chan.device_node);
		tasklet_kill(&echan->vchan.task);
	}
}

2409
static int edma_remove(struct platform_device *pdev)
2410 2411 2412 2413
{
	struct device *dev = &pdev->dev;
	struct edma_cc *ecc = dev_get_drvdata(dev);

2414 2415 2416
	devm_free_irq(dev, ecc->ccint, ecc);
	devm_free_irq(dev, ecc->ccerrint, ecc);

2417 2418
	edma_cleanupp_vchan(&ecc->dma_slave);

2419 2420
	if (dev->of_node)
		of_dma_controller_free(dev->of_node);
2421
	dma_async_device_unregister(&ecc->dma_slave);
2422 2423
	if (ecc->dma_memcpy)
		dma_async_device_unregister(ecc->dma_memcpy);
2424
	edma_free_slot(ecc, ecc->dummy_slot);
2425 2426 2427 2428

	return 0;
}

2429
#ifdef CONFIG_PM_SLEEP
2430 2431 2432 2433 2434 2435 2436
static int edma_pm_suspend(struct device *dev)
{
	struct edma_cc *ecc = dev_get_drvdata(dev);
	struct edma_chan *echan = ecc->slave_chans;
	int i;

	for (i = 0; i < ecc->num_channels; i++) {
2437
		if (echan[i].alloced)
2438 2439 2440 2441 2442 2443
			edma_setup_interrupt(&echan[i], false);
	}

	return 0;
}

2444 2445 2446
static int edma_pm_resume(struct device *dev)
{
	struct edma_cc *ecc = dev_get_drvdata(dev);
2447
	struct edma_chan *echan = ecc->slave_chans;
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
	int i;
	s8 (*queue_priority_mapping)[2];

	queue_priority_mapping = ecc->info->queue_priority_mapping;

	/* Event queue priority mapping */
	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
					      queue_priority_mapping[i][1]);

	for (i = 0; i < ecc->num_channels; i++) {
2459
		if (echan[i].alloced) {
2460 2461 2462 2463
			/* ensure access through shadow region 0 */
			edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
				       BIT(i & 0x1f));

2464
			edma_setup_interrupt(&echan[i], true);
2465 2466

			/* Set up channel -> slot mapping for the entry slot */
2467
			edma_set_chmap(&echan[i], echan[i].slot[0]);
2468 2469 2470 2471 2472 2473 2474 2475
		}
	}

	return 0;
}
#endif

static const struct dev_pm_ops edma_pm_ops = {
2476
	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2477 2478
};

2479 2480
static struct platform_driver edma_driver = {
	.probe		= edma_probe,
B
Bill Pemberton 已提交
2481
	.remove		= edma_remove,
2482
	.driver = {
2483 2484 2485
		.name	= "edma",
		.pm	= &edma_pm_ops,
		.of_match_table = edma_of_ids,
2486 2487 2488
	},
};

2489 2490
static int edma_tptc_probe(struct platform_device *pdev)
{
2491 2492
	pm_runtime_enable(&pdev->dev);
	return pm_runtime_get_sync(&pdev->dev);
2493 2494
}

2495
static struct platform_driver edma_tptc_driver = {
2496
	.probe		= edma_tptc_probe,
2497 2498 2499 2500 2501 2502
	.driver = {
		.name	= "edma3-tptc",
		.of_match_table = edma_tptc_of_ids,
	},
};

2503 2504
bool edma_filter_fn(struct dma_chan *chan, void *param)
{
2505 2506
	bool match = false;

2507 2508 2509
	if (chan->device->dev->driver == &edma_driver.driver) {
		struct edma_chan *echan = to_edma_chan(chan);
		unsigned ch_req = *(unsigned *)param;
2510 2511 2512 2513 2514
		if (ch_req == echan->ch_num) {
			/* The channel is going to be used as HW synchronized */
			echan->hw_triggered = true;
			match = true;
		}
2515
	}
2516
	return match;
2517 2518 2519 2520 2521
}
EXPORT_SYMBOL(edma_filter_fn);

static int edma_init(void)
{
2522 2523 2524 2525 2526 2527
	int ret;

	ret = platform_driver_register(&edma_tptc_driver);
	if (ret)
		return ret;

2528
	return platform_driver_register(&edma_driver);
2529 2530 2531 2532 2533 2534
}
subsys_initcall(edma_init);

static void __exit edma_exit(void)
{
	platform_driver_unregister(&edma_driver);
2535
	platform_driver_unregister(&edma_tptc_driver);
2536 2537 2538
}
module_exit(edma_exit);

J
Josh Boyer 已提交
2539
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2540 2541
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
MODULE_LICENSE("GPL v2");