intel_pstate.c 46.9 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42 43
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
44

45 46 47 48
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#endif

49
#define FRAC_BITS 8
50 51
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
52

53 54 55
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81 82 83 84 85 86
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

87 88
/**
 * struct sample -	Store performance sample
89
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90 91
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
92
 *			P state. This can be different than core_avg_perf
93 94 95 96 97 98 99 100 101 102 103 104
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
105
struct sample {
106
	int32_t core_avg_perf;
107
	int32_t busy_scaled;
108 109
	u64 aperf;
	u64 mperf;
110
	u64 tsc;
111
	u64 time;
112 113
};

114 115 116 117 118 119 120 121 122 123 124 125 126 127
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
128 129 130 131
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
132
	int	max_pstate_physical;
133
	int	scaling;
134 135 136
	int	turbo_pstate;
};

137 138 139 140 141 142 143 144 145 146 147 148 149
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
150
struct vid_data {
151 152 153
	int min;
	int max;
	int turbo;
154 155 156
	int32_t ratio;
};

157 158 159 160 161 162 163 164 165 166 167 168
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
169 170 171 172 173 174 175
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
176
	int32_t last_err;
177 178
};

179 180 181 182
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
 * @update_util:	CPUFreq utility callback information
183
 * @update_util_set:	CPUFreq utility callback is set
184 185 186 187 188 189 190 191 192 193
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
194 195
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
196 197 198
 *
 * This structure stores per CPU instance data for all CPUs.
 */
199 200 201
struct cpudata {
	int cpu;

202
	struct update_util_data update_util;
203
	bool   update_util_set;
204 205

	struct pstate_data pstate;
206
	struct vid_data vid;
207 208
	struct _pid pid;

209
	u64	last_sample_time;
210 211
	u64	prev_aperf;
	u64	prev_mperf;
212
	u64	prev_tsc;
213
	u64	prev_cummulative_iowait;
214
	struct sample sample;
215 216 217 218
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
219 220 221
};

static struct cpudata **all_cpu_data;
222 223 224 225 226 227 228 229 230 231 232 233 234

/**
 * struct pid_adjust_policy - Stores static PID configuration data
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
235 236
struct pstate_adjust_policy {
	int sample_rate_ms;
237
	s64 sample_rate_ns;
238 239 240 241 242 243 244
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

245 246 247 248 249 250 251 252 253 254 255 256 257 258
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
259 260
struct pstate_funcs {
	int (*get_max)(void);
261
	int (*get_max_physical)(void);
262 263
	int (*get_min)(void);
	int (*get_turbo)(void);
264
	int (*get_scaling)(void);
265
	u64 (*get_val)(struct cpudata*, int pstate);
266
	void (*get_vid)(struct cpudata *);
267
	int32_t (*get_target_pstate)(struct cpudata *);
268 269
};

270 271 272 273 274
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
275 276 277
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
278 279
};

280
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
281
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
282

283 284 285
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
286

287 288 289
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface
 *
 * Storage for user and policy defined limits.
 */
318 319
struct perf_limits {
	int no_turbo;
320
	int turbo_disabled;
321 322 323 324
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
325 326
	int max_policy_pct;
	int max_sysfs_pct;
327 328
	int min_policy_pct;
	int min_sysfs_pct;
329 330
};

331 332 333 334 335 336 337 338 339 340 341 342 343 344
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
345
	.no_turbo = 0,
346
	.turbo_disabled = 0,
347 348 349 350
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
351 352
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
353 354
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
355 356
};

357 358 359 360 361 362
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

363
#ifdef CONFIG_ACPI
364 365 366 367 368 369 370 371 372 373

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

374 375 376 377 378 379
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

380 381 382
	if (hwp_active)
		return;

383
	if (!intel_pstate_get_ppc_enable_status())
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
426
	 * correct max turbo frequency based on the turbo state.
427 428
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
429
	if (!limits->turbo_disabled)
430 431 432
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
433
	pr_debug("_PPC limits will be enforced\n");
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
}
#endif

463
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
464
			     int deadband, int integral) {
465 466
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
467
	pid->integral  = int_tofp(integral);
468
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
469 470 471 472
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
473
	pid->p_gain = div_fp(percent, 100);
474 475 476 477
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
478
	pid->i_gain = div_fp(percent, 100);
479 480 481 482
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
483
	pid->d_gain = div_fp(percent, 100);
484 485
}

486
static signed int pid_calc(struct _pid *pid, int32_t busy)
487
{
488
	signed int result;
489 490 491
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

492
	fp_error = pid->setpoint - busy;
493

494
	if (abs(fp_error) <= pid->deadband)
495 496 497 498 499 500
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

501 502 503 504 505 506 507 508
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
509 510 511 512 513 514
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

515 516
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
517 518

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
519
	result = result + (1 << (FRAC_BITS-1));
520 521 522 523 524
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
525 526 527
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
528

529
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
530 531 532 533 534
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
535

536 537 538 539 540 541
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

542 543 544 545 546 547 548
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
549
	limits->turbo_disabled =
550 551 552 553
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

554
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
555
{
556 557 558 559 560 561 562
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
563

564
	for_each_cpu(cpu, cpumask) {
D
Dirk Brandewie 已提交
565
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
566
		adj_range = limits->min_perf_pct * range / 100;
567
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
568 569 570
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

571
		adj_range = limits->max_perf_pct * range / 100;
572
		max = hw_min + adj_range;
573
		if (limits->no_turbo) {
574 575 576
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
577 578 579 580 581 582
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
583
}
D
Dirk Brandewie 已提交
584

585 586 587 588 589 590 591 592
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
		intel_pstate_hwp_set(policy->cpus);

	return 0;
}

593 594 595 596
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
597 598 599
	put_online_cpus();
}

600 601 602 603 604 605 606
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
607

608 609 610 611 612
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
613
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
614 615 616 617 618 619 620

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
621 622 623 624 625 626
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
627 628 629
	{NULL, NULL}
};

630
static void __init intel_pstate_debug_expose_params(void)
631
{
632
	struct dentry *debugfs_parent;
633 634
	int i = 0;

D
Dirk Brandewie 已提交
635 636
	if (hwp_active)
		return;
637 638 639 640 641
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
642 643
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
644 645 646 647 648 649 650 651 652 653 654
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
655
		return sprintf(buf, "%u\n", limits->object);		\
656 657
	}

658 659 660 661 662 663 664 665 666 667 668
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
669
	turbo_fp = div_fp(no_turbo, total);
670 671 672 673
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

674 675 676 677 678 679 680 681 682 683 684
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

685 686 687 688 689 690
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
691 692
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
693
	else
694
		ret = sprintf(buf, "%u\n", limits->no_turbo);
695 696 697 698

	return ret;
}

699
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
700
			      const char *buf, size_t count)
701 702 703
{
	unsigned int input;
	int ret;
704

705 706 707
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
708 709

	update_turbo_state();
710
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
711
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
712
		return -EPERM;
713
	}
D
Dirk Brandewie 已提交
714

715
	limits->no_turbo = clamp_t(int, input, 0, 1);
716

D
Dirk Brandewie 已提交
717
	if (hwp_active)
718
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
719

720 721 722 723
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
724
				  const char *buf, size_t count)
725 726 727
{
	unsigned int input;
	int ret;
728

729 730 731 732
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

733 734 735 736 737 738 739
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
740
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
741

D
Dirk Brandewie 已提交
742
	if (hwp_active)
743
		intel_pstate_hwp_set_online_cpus();
744 745 746 747
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
748
				  const char *buf, size_t count)
749 750 751
{
	unsigned int input;
	int ret;
752

753 754 755
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
756

757 758 759 760 761 762 763
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
764
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
765

D
Dirk Brandewie 已提交
766
	if (hwp_active)
767
		intel_pstate_hwp_set_online_cpus();
768 769 770 771 772 773 774 775 776
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
777
define_one_global_ro(turbo_pct);
778
define_one_global_ro(num_pstates);
779 780 781 782 783

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
784
	&turbo_pct.attr,
785
	&num_pstates.attr,
786 787 788 789 790 791 792
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

793
static void __init intel_pstate_sysfs_expose_params(void)
794
{
795
	struct kobject *intel_pstate_kobject;
796 797 798 799 800
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
801
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
802 803 804
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
805

806
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
807
{
808
	/* First disable HWP notification interrupt as we don't process them */
809 810
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
811

812
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
813 814
}

815
static int atom_get_min_pstate(void)
816 817
{
	u64 value;
818

819
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
820
	return (value >> 8) & 0x7F;
821 822
}

823
static int atom_get_max_pstate(void)
824 825
{
	u64 value;
826

827
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
828
	return (value >> 16) & 0x7F;
829
}
830

831
static int atom_get_turbo_pstate(void)
832 833
{
	u64 value;
834

835
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
836
	return value & 0x7F;
837 838
}

839
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
840 841 842 843 844
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

845
	val = (u64)pstate << 8;
846
	if (limits->no_turbo && !limits->turbo_disabled)
847 848 849 850 851 852 853
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
854
	vid = ceiling_fp(vid_fp);
855

856 857 858
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

859
	return val | vid;
860 861
}

862
static int silvermont_get_scaling(void)
863 864 865
{
	u64 value;
	int i;
866 867 868
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
869 870

	rdmsrl(MSR_FSB_FREQ, value);
871 872
	i = value & 0x7;
	WARN_ON(i > 4);
873

874 875
	return silvermont_freq_table[i];
}
876

877 878 879 880 881 882 883 884 885 886 887 888 889 890
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
891 892
}

893
static void atom_get_vid(struct cpudata *cpudata)
894 895 896
{
	u64 value;

897
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
898 899
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
900 901 902 903
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
904

905
	rdmsrl(ATOM_TURBO_VIDS, value);
906
	cpudata->vid.turbo = value & 0x7f;
907 908
}

909
static int core_get_min_pstate(void)
910 911
{
	u64 value;
912

913
	rdmsrl(MSR_PLATFORM_INFO, value);
914 915 916
	return (value >> 40) & 0xFF;
}

917
static int core_get_max_pstate_physical(void)
918 919
{
	u64 value;
920

921
	rdmsrl(MSR_PLATFORM_INFO, value);
922 923 924
	return (value >> 8) & 0xFF;
}

925
static int core_get_max_pstate(void)
926
{
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

947
			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
948 949 950 951
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

952 953 954 955 956
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
957 958 959 960 961 962 963 964
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
965

966 967
skip_tar:
	return max_pstate;
968 969
}

970
static int core_get_turbo_pstate(void)
971 972 973
{
	u64 value;
	int nont, ret;
974

975
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
976
	nont = core_get_max_pstate();
977
	ret = (value) & 255;
978 979 980 981 982
	if (ret <= nont)
		ret = nont;
	return ret;
}

983 984 985 986 987
static inline int core_get_scaling(void)
{
	return 100000;
}

988
static u64 core_get_val(struct cpudata *cpudata, int pstate)
989 990 991
{
	u64 val;

992
	val = (u64)pstate << 8;
993
	if (limits->no_turbo && !limits->turbo_disabled)
994 995
		val |= (u64)1 << 32;

996
	return val;
997 998
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1023
		.get_max_physical = core_get_max_pstate_physical,
1024 1025
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1026
		.get_scaling = core_get_scaling,
1027
		.get_val = core_get_val,
1028
		.get_target_pstate = get_target_pstate_use_performance,
1029 1030 1031
	},
};

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static struct cpu_defaults silvermont_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1046
		.get_val = atom_get_val,
1047 1048
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1049
		.get_target_pstate = get_target_pstate_use_cpu_load,
1050 1051 1052 1053
	},
};

static struct cpu_defaults airmont_params = {
1054 1055 1056
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1057
		.setpoint = 60,
1058 1059 1060 1061 1062
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1063 1064 1065 1066
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1067
		.get_val = atom_get_val,
1068
		.get_scaling = airmont_get_scaling,
1069
		.get_vid = atom_get_vid,
1070
		.get_target_pstate = get_target_pstate_use_cpu_load,
1071 1072 1073
	},
};

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1085
		.get_max_physical = core_get_max_pstate_physical,
1086 1087
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1088
		.get_scaling = core_get_scaling,
1089
		.get_val = core_get_val,
1090
		.get_target_pstate = get_target_pstate_use_performance,
1091 1092 1093
	},
};

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
static struct cpu_defaults bxt_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1114 1115 1116
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1117
	int max_perf_adj;
1118
	int min_perf;
1119

1120
	if (limits->no_turbo || limits->turbo_disabled)
1121 1122
		max_perf = cpu->pstate.max_pstate;

1123 1124 1125 1126 1127
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1128
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1129 1130
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1131

1132
	min_perf = fp_toint(max_perf * limits->min_perf);
1133
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1134 1135
}

1136 1137 1138 1139
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	int pstate = cpu->pstate.min_pstate;

1140 1141
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1142 1143 1144 1145 1146 1147 1148
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1149 1150 1151 1152
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1153 1154
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1155
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1156
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1157
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1158

1159 1160
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1161 1162

	intel_pstate_set_min_pstate(cpu);
1163 1164
}

1165
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1166
{
1167
	struct sample *sample = &cpu->sample;
1168

1169
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1170 1171
}

1172
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1173 1174
{
	u64 aperf, mperf;
1175
	unsigned long flags;
1176
	u64 tsc;
1177

1178
	local_irq_save(flags);
1179 1180
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1181
	tsc = rdtsc();
1182
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1183
		local_irq_restore(flags);
1184
		return false;
1185
	}
1186
	local_irq_restore(flags);
1187

1188
	cpu->last_sample_time = cpu->sample.time;
1189
	cpu->sample.time = time;
1190 1191
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1192
	cpu->sample.tsc =  tsc;
1193 1194
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1195
	cpu->sample.tsc -= cpu->prev_tsc;
1196

1197 1198
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1199
	cpu->prev_tsc = tsc;
1200 1201 1202 1203 1204 1205 1206 1207
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1208 1209
}

1210 1211
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1212 1213
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1214 1215
}

1216 1217
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1218 1219
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1220 1221
}

1222 1223 1224
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1225 1226 1227
	u64 cummulative_iowait, delta_iowait_us;
	u64 delta_iowait_mperf;
	u64 mperf, now;
1228 1229
	int32_t cpu_load;

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);

	/*
	 * Convert iowait time into number of IO cycles spent at max_freq.
	 * IO is considered as busy only for the cpu_load algorithm. For
	 * performance this is not needed since we always try to reach the
	 * maximum P-State, so we are already boosting the IOs.
	 */
	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
		cpu->pstate.max_pstate, MSEC_PER_SEC);

	mperf = cpu->sample.mperf + delta_iowait_mperf;
	cpu->prev_cummulative_iowait = cummulative_iowait;

1245 1246 1247 1248 1249 1250
	/*
	 * The load can be estimated as the ratio of the mperf counter
	 * running at a constant frequency during active periods
	 * (C0) and the time stamp counter running at the same frequency
	 * also during C-states.
	 */
1251
	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1252 1253
	cpu->sample.busy_scaled = cpu_load;

1254
	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1255 1256
}

1257
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1258
{
1259
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1260
	u64 duration_ns;
1261

1262
	/*
1263 1264 1265 1266
	 * perf_scaled is the average performance during the last sampling
	 * period scaled by the ratio of the maximum P-state to the P-state
	 * requested last time (in percent).  That measures the system's
	 * response to the previous P-state selection.
1267
	 */
1268 1269
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1270
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1271
			       div_fp(100 * max_pstate, current_pstate));
1272

1273
	/*
1274 1275 1276
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1277
	 * enough period of time to adjust our performance metric.
1278
	 */
1279
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1280
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1281
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1282
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1283 1284 1285
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1286
			perf_scaled = 0;
1287 1288
	}

1289 1290
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1291 1292
}

1293 1294 1295 1296 1297 1298 1299 1300
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1301
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1302 1303 1304
	if (pstate == cpu->pstate.current_pstate)
		return;

1305
	cpu->pstate.current_pstate = pstate;
1306 1307 1308
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1309 1310
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1311
	int from, target_pstate;
1312 1313 1314
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1315

1316
	target_pstate = pstate_funcs.get_target_pstate(cpu);
1317

1318
	intel_pstate_update_pstate(cpu, target_pstate);
1319 1320

	sample = &cpu->sample;
1321
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1322
		fp_toint(sample->busy_scaled),
1323 1324 1325 1326 1327
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1328
		get_avg_frequency(cpu));
1329 1330
}

1331 1332
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
				     unsigned long util, unsigned long max)
1333
{
1334 1335
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;
1336

1337
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1338 1339
		bool sample_taken = intel_pstate_sample(cpu, time);

1340
		if (sample_taken) {
1341
			intel_pstate_calc_avg_perf(cpu);
1342 1343 1344
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1345
	}
1346 1347 1348
}

#define ICPU(model, policy) \
1349 1350
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1351 1352

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1370
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1371 1372 1373 1374
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1375
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1376
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
D
Dirk Brandewie 已提交
1377 1378 1379
	{}
};

1380 1381 1382 1383
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1384 1385 1386
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1387 1388 1389 1390 1391 1392
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1393

1394
	if (hwp_active) {
1395
		intel_pstate_hwp_enable(cpu);
1396 1397 1398
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1399

1400
	intel_pstate_get_cpu_pstates(cpu);
1401

1402 1403
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1404
	pr_debug("controlling: cpu %d\n", cpunum);
1405 1406 1407 1408 1409 1410

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1411
	struct cpudata *cpu = all_cpu_data[cpu_num];
1412

1413
	return cpu ? get_avg_frequency(cpu) : 0;
1414 1415
}

1416
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1417
{
1418 1419
	struct cpudata *cpu = all_cpu_data[cpu_num];

1420 1421 1422
	if (cpu->update_util_set)
		return;

1423 1424
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1425 1426
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1427
	cpu->update_util_set = true;
1428 1429 1430 1431
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1432 1433 1434 1435 1436
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1437
	cpufreq_remove_update_util_hook(cpu);
1438
	cpu_data->update_util_set = false;
1439 1440 1441
	synchronize_sched();
}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1456 1457
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1458 1459
	struct cpudata *cpu;

1460 1461 1462
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1463 1464 1465
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1466
	cpu = all_cpu_data[0];
1467 1468 1469 1470 1471
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
1472 1473
	}

1474
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1475
		limits = &performance_limits;
1476
		if (policy->max >= policy->cpuinfo.max_freq) {
J
Joe Perches 已提交
1477
			pr_debug("set performance\n");
1478 1479 1480 1481
			intel_pstate_set_performance_limits(limits);
			goto out;
		}
	} else {
J
Joe Perches 已提交
1482
		pr_debug("set powersave\n");
1483
		limits = &powersave_limits;
1484
	}
D
Dirk Brandewie 已提交
1485

1486 1487
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1488 1489
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1490
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1491 1492

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1493 1494 1495 1496 1497 1498 1499 1500
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1501 1502

	/* Make sure min_perf_pct <= max_perf_pct */
1503
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1504

1505 1506
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1507
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1508

1509 1510 1511
 out:
	intel_pstate_set_update_util_hook(policy->cpu);

1512
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
1513

1514 1515 1516 1517 1518
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1519
	cpufreq_verify_within_cpu_limits(policy);
1520

1521
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1522
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1523 1524 1525 1526 1527
		return -EINVAL;

	return 0;
}

1528
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1529
{
1530 1531
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1532

J
Joe Perches 已提交
1533
	pr_debug("CPU %d exiting\n", cpu_num);
1534

1535
	intel_pstate_clear_update_util_hook(cpu_num);
1536

D
Dirk Brandewie 已提交
1537 1538 1539
	if (hwp_active)
		return;

1540
	intel_pstate_set_min_pstate(cpu);
1541 1542
}

1543
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1544 1545
{
	struct cpudata *cpu;
1546
	int rc;
1547 1548 1549 1550 1551 1552 1553

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1554
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1555 1556 1557 1558
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1559 1560
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1561 1562

	/* cpuinfo and default policy values */
1563
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1564 1565 1566 1567 1568
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

1569
	intel_pstate_init_acpi_perf_limits(policy);
1570 1571 1572 1573 1574 1575
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1576 1577 1578 1579 1580 1581 1582
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);

	return 0;
}

1583 1584 1585 1586
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1587
	.resume		= intel_pstate_hwp_set_policy,
1588 1589
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1590
	.exit		= intel_pstate_cpu_exit,
1591
	.stop_cpu	= intel_pstate_stop_cpu,
1592 1593 1594
	.name		= "intel_pstate",
};

1595 1596 1597
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
1598
static unsigned int force_load __initdata;
1599

1600
static int __init intel_pstate_msrs_not_valid(void)
1601
{
1602
	if (!pstate_funcs.get_max() ||
1603 1604
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1605 1606 1607 1608
		return -ENODEV;

	return 0;
}
1609

1610
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1611 1612
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1613
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1614 1615 1616 1617 1618 1619 1620
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1621
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1622 1623
{
	pstate_funcs.get_max   = funcs->get_max;
1624
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1625 1626
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1627
	pstate_funcs.get_scaling = funcs->get_scaling;
1628
	pstate_funcs.get_val   = funcs->get_val;
1629
	pstate_funcs.get_vid   = funcs->get_vid;
1630 1631
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1632 1633
}

1634
#ifdef CONFIG_ACPI
1635

1636
static bool __init intel_pstate_no_acpi_pss(void)
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1665
static bool __init intel_pstate_has_acpi_ppc(void)
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1685 1686 1687 1688
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1689
	int  oem_pwr_table;
1690 1691 1692
};

/* Hardware vendor-specific info that has its own power management modes */
1693
static struct hw_vendor_info vendor_info[] __initdata = {
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1705 1706 1707 1708
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1709 1710 1711
	{0, "", ""},
};

1712
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1713 1714 1715
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1725

1726 1727
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1728 1729 1730
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1731
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1732 1733 1734 1735 1736 1737
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1738 1739
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1740
			}
1741 1742 1743 1744 1745 1746
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1747
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1748 1749
#endif /* CONFIG_ACPI */

1750 1751 1752 1753 1754
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1755 1756
static int __init intel_pstate_init(void)
{
1757
	int cpu, rc = 0;
1758
	const struct x86_cpu_id *id;
1759
	struct cpu_defaults *cpu_def;
1760

1761 1762 1763
	if (no_load)
		return -ENODEV;

1764 1765 1766 1767 1768 1769
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1770 1771 1772 1773
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1774
	cpu_def = (struct cpu_defaults *)id->driver_data;
1775

1776 1777
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1778

1779 1780 1781
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1782 1783 1784 1785 1786 1787 1788 1789
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
1790
	pr_info("Intel P-state driver initializing\n");
1791

1792
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1793 1794 1795
	if (!all_cpu_data)
		return -ENOMEM;

1796 1797 1798
	if (!hwp_active && hwp_only)
		goto out;

1799 1800 1801 1802 1803 1804
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1805

1806
	if (hwp_active)
J
Joe Perches 已提交
1807
		pr_info("HWP enabled\n");
1808

1809 1810
	return rc;
out:
1811 1812 1813
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1814
			intel_pstate_clear_update_util_hook(cpu);
1815 1816 1817 1818 1819 1820
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1821 1822 1823 1824
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1825 1826 1827 1828 1829 1830 1831
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1832
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
1833
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
1834
		no_hwp = 1;
1835
	}
1836 1837
	if (!strcmp(str, "force"))
		force_load = 1;
1838 1839
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1840 1841 1842 1843 1844 1845

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

1846 1847 1848 1849
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1850 1851 1852
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");