efx.c 74.4 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
22
#include <linux/topology.h>
23
#include <linux/gfp.h>
24
#include <linux/cpu_rmap.h>
25 26
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
27
#include "nic.h"
28
#include "selftest.h"
29

30
#include "mcdi.h"
31
#include "workarounds.h"
32

33 34 35 36 37 38 39 40 41
/**************************************************************************
 *
 * Type name strings
 *
 **************************************************************************
 */

/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42
const char *const efx_loopback_mode_names[] = {
43
	[LOOPBACK_NONE]		= "NONE",
44
	[LOOPBACK_DATA]		= "DATAPATH",
45 46 47
	[LOOPBACK_GMAC]		= "GMAC",
	[LOOPBACK_XGMII]	= "XGMII",
	[LOOPBACK_XGXS]		= "XGXS",
48 49 50
	[LOOPBACK_XAUI]		= "XAUI",
	[LOOPBACK_GMII]		= "GMII",
	[LOOPBACK_SGMII]	= "SGMII",
51 52 53 54 55 56
	[LOOPBACK_XGBR]		= "XGBR",
	[LOOPBACK_XFI]		= "XFI",
	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
57 58
	[LOOPBACK_GPHY]		= "GPHY",
	[LOOPBACK_PHYXS]	= "PHYXS",
59 60
	[LOOPBACK_PCS]		= "PCS",
	[LOOPBACK_PMAPMD]	= "PMA/PMD",
61 62
	[LOOPBACK_XPORT]	= "XPORT",
	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
63
	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
64 65
	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66
	[LOOPBACK_GMII_WS]	= "GMII_WS",
67 68
	[LOOPBACK_XFI_WS]	= "XFI_WS",
	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
69
	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
70 71 72
};

const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73
const char *const efx_reset_type_names[] = {
74 75 76 77 78 79 80 81 82 83
	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
	[RESET_TYPE_ALL]           = "ALL",
	[RESET_TYPE_WORLD]         = "WORLD",
	[RESET_TYPE_DISABLE]       = "DISABLE",
	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
84
	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
85 86
};

87 88
#define EFX_MAX_MTU (9 * 1024)

89 90 91 92 93 94
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 * queued onto this work queue. This is not a per-nic work queue, because
 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 */
static struct workqueue_struct *reset_workqueue;

95 96 97 98 99 100 101 102 103
/**************************************************************************
 *
 * Configurable values
 *
 *************************************************************************/

/*
 * Use separate channels for TX and RX events
 *
104 105
 * Set this to 1 to use separate channels for TX and RX. It allows us
 * to control interrupt affinity separately for TX and RX.
106
 *
107
 * This is only used in MSI-X interrupt mode
108
 */
109
static unsigned int separate_tx_channels;
110
module_param(separate_tx_channels, uint, 0444);
111 112
MODULE_PARM_DESC(separate_tx_channels,
		 "Use separate channels for TX and RX");
113 114 115 116 117 118 119

/* This is the weight assigned to each of the (per-channel) virtual
 * NAPI devices.
 */
static int napi_weight = 64;

/* This is the time (in jiffies) between invocations of the hardware
120 121 122
 * monitor.  On Falcon-based NICs, this will:
 * - Check the on-board hardware monitor;
 * - Poll the link state and reconfigure the hardware as necessary.
123
 */
S
stephen hemminger 已提交
124
static unsigned int efx_monitor_interval = 1 * HZ;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * The default for RX should strike a balance between increasing the
 * round-trip latency and reducing overhead.
 */
static unsigned int rx_irq_mod_usec = 60;

/* Initial interrupt moderation settings.  They can be modified after
 * module load with ethtool.
 *
 * This default is chosen to ensure that a 10G link does not go idle
 * while a TX queue is stopped after it has become full.  A queue is
 * restarted when it drops below half full.  The time this takes (assuming
 * worst case 3 descriptors per packet and 1024 descriptors) is
 *   512 / 3 * 1.2 = 205 usec.
 */
static unsigned int tx_irq_mod_usec = 150;

/* This is the first interrupt mode to try out of:
 * 0 => MSI-X
 * 1 => MSI
 * 2 => legacy
 */
static unsigned int interrupt_mode;

/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 * i.e. the number of CPUs among which we may distribute simultaneous
 * interrupt handling.
 *
 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
157
 * The default (0) means to assign an interrupt to each core.
158 159 160 161 162
 */
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");

163 164 165 166
static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");

167
static unsigned irq_adapt_low_thresh = 8000;
168 169 170 171
module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh,
		 "Threshold score for reducing IRQ moderation");

172
static unsigned irq_adapt_high_thresh = 16000;
173 174 175 176
module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh,
		 "Threshold score for increasing IRQ moderation");

177 178 179 180 181 182 183
static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");

184 185 186 187 188
/**************************************************************************
 *
 * Utility functions and prototypes
 *
 *************************************************************************/
189

190 191 192
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
static void efx_remove_channel(struct efx_channel *channel);
193
static void efx_remove_channels(struct efx_nic *efx);
194
static const struct efx_channel_type efx_default_channel_type;
195
static void efx_remove_port(struct efx_nic *efx);
196
static void efx_init_napi_channel(struct efx_channel *channel);
197
static void efx_fini_napi(struct efx_nic *efx);
198
static void efx_fini_napi_channel(struct efx_channel *channel);
199 200 201
static void efx_fini_struct(struct efx_nic *efx);
static void efx_start_all(struct efx_nic *efx);
static void efx_stop_all(struct efx_nic *efx);
202 203 204

#define EFX_ASSERT_RESET_SERIALISED(efx)		\
	do {						\
205 206
		if ((efx->state == STATE_RUNNING) ||	\
		    (efx->state == STATE_DISABLED))	\
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
			ASSERT_RTNL();			\
	} while (0)

/**************************************************************************
 *
 * Event queue processing
 *
 *************************************************************************/

/* Process channel's event queue
 *
 * This function is responsible for processing the event queue of a
 * single channel.  The caller must guarantee that this function will
 * never be concurrently called more than once on the same channel,
 * though different channels may be being processed concurrently.
 */
223
static int efx_process_channel(struct efx_channel *channel, int budget)
224
{
225
	int spent;
226

227
	if (unlikely(!channel->enabled))
B
Ben Hutchings 已提交
228
		return 0;
229

230
	spent = efx_nic_process_eventq(channel, budget);
231 232 233 234 235 236 237 238 239
	if (spent && efx_channel_has_rx_queue(channel)) {
		struct efx_rx_queue *rx_queue =
			efx_channel_get_rx_queue(channel);

		/* Deliver last RX packet. */
		if (channel->rx_pkt) {
			__efx_rx_packet(channel, channel->rx_pkt);
			channel->rx_pkt = NULL;
		}
240 241 242 243
		if (rx_queue->enabled) {
			efx_rx_strategy(channel);
			efx_fast_push_rx_descriptors(rx_queue);
		}
244 245
	}

246
	return spent;
247 248 249 250 251 252 253 254 255 256
}

/* Mark channel as finished processing
 *
 * Note that since we will not receive further interrupts for this
 * channel before we finish processing and call the eventq_read_ack()
 * method, there is no need to use the interrupt hold-off timers.
 */
static inline void efx_channel_processed(struct efx_channel *channel)
{
257 258 259
	/* The interrupt handler for this channel may set work_pending
	 * as soon as we acknowledge the events we've seen.  Make sure
	 * it's cleared before then. */
260
	channel->work_pending = false;
261 262
	smp_wmb();

263
	efx_nic_eventq_read_ack(channel);
264 265 266 267 268 269 270 271 272 273 274
}

/* NAPI poll handler
 *
 * NAPI guarantees serialisation of polls of the same device, which
 * provides the guarantee required by efx_process_channel().
 */
static int efx_poll(struct napi_struct *napi, int budget)
{
	struct efx_channel *channel =
		container_of(napi, struct efx_channel, napi_str);
275
	struct efx_nic *efx = channel->efx;
276
	int spent;
277

278 279 280
	netif_vdbg(efx, intr, efx->net_dev,
		   "channel %d NAPI poll executing on CPU %d\n",
		   channel->channel, raw_smp_processor_id());
281

282
	spent = efx_process_channel(channel, budget);
283

284
	if (spent < budget) {
285
		if (efx_channel_has_rx_queue(channel) &&
286 287 288 289
		    efx->irq_rx_adaptive &&
		    unlikely(++channel->irq_count == 1000)) {
			if (unlikely(channel->irq_mod_score <
				     irq_adapt_low_thresh)) {
290 291
				if (channel->irq_moderation > 1) {
					channel->irq_moderation -= 1;
292
					efx->type->push_irq_moderation(channel);
293
				}
294 295
			} else if (unlikely(channel->irq_mod_score >
					    irq_adapt_high_thresh)) {
296 297 298
				if (channel->irq_moderation <
				    efx->irq_rx_moderation) {
					channel->irq_moderation += 1;
299
					efx->type->push_irq_moderation(channel);
300
				}
301 302 303 304 305
			}
			channel->irq_count = 0;
			channel->irq_mod_score = 0;
		}

306 307
		efx_filter_rfs_expire(channel);

308
		/* There is no race here; although napi_disable() will
309
		 * only wait for napi_complete(), this isn't a problem
310 311 312
		 * since efx_channel_processed() will have no effect if
		 * interrupts have already been disabled.
		 */
313
		napi_complete(napi);
314 315 316
		efx_channel_processed(channel);
	}

317
	return spent;
318 319 320 321 322 323 324 325
}

/* Process the eventq of the specified channel immediately on this CPU
 *
 * Disable hardware generated interrupts, wait for any existing
 * processing to finish, then directly poll (and ack ) the eventq.
 * Finally reenable NAPI and interrupts.
 *
326 327
 * This is for use only during a loopback self-test.  It must not
 * deliver any packets up the stack as this can result in deadlock.
328 329 330 331 332
 */
void efx_process_channel_now(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

333
	BUG_ON(channel->channel >= efx->n_channels);
334
	BUG_ON(!channel->enabled);
335
	BUG_ON(!efx->loopback_selftest);
336 337

	/* Disable interrupts and wait for ISRs to complete */
338
	efx_nic_disable_interrupts(efx);
339
	if (efx->legacy_irq) {
340
		synchronize_irq(efx->legacy_irq);
341 342
		efx->legacy_irq_enabled = false;
	}
343
	if (channel->irq)
344 345 346 347 348 349
		synchronize_irq(channel->irq);

	/* Wait for any NAPI processing to complete */
	napi_disable(&channel->napi_str);

	/* Poll the channel */
350
	efx_process_channel(channel, channel->eventq_mask + 1);
351 352 353 354 355 356

	/* Ack the eventq. This may cause an interrupt to be generated
	 * when they are reenabled */
	efx_channel_processed(channel);

	napi_enable(&channel->napi_str);
357 358
	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
359
	efx_nic_enable_interrupts(efx);
360 361 362 363 364 365 366 367 368
}

/* Create event queue
 * Event queue memory allocations are done only once.  If the channel
 * is reset, the memory buffer will be reused; this guards against
 * errors during channel reset and also simplifies interrupt handling.
 */
static int efx_probe_eventq(struct efx_channel *channel)
{
369 370 371
	struct efx_nic *efx = channel->efx;
	unsigned long entries;

372
	netif_dbg(efx, probe, efx->net_dev,
373
		  "chan %d create event queue\n", channel->channel);
374

375 376 377 378 379 380
	/* Build an event queue with room for one event per tx and rx buffer,
	 * plus some extra for link state events and MCDI completions. */
	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;

381
	return efx_nic_probe_eventq(channel);
382 383 384
}

/* Prepare channel's event queue */
385
static void efx_init_eventq(struct efx_channel *channel)
386
{
387 388
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d init event queue\n", channel->channel);
389 390 391

	channel->eventq_read_ptr = 0;

392
	efx_nic_init_eventq(channel);
393 394
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
/* Enable event queue processing and NAPI */
static void efx_start_eventq(struct efx_channel *channel)
{
	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
		  "chan %d start event queue\n", channel->channel);

	/* The interrupt handler for this channel may set work_pending
	 * as soon as we enable it.  Make sure it's cleared before
	 * then.  Similarly, make sure it sees the enabled flag set.
	 */
	channel->work_pending = false;
	channel->enabled = true;
	smp_wmb();

	napi_enable(&channel->napi_str);
	efx_nic_eventq_read_ack(channel);
}

/* Disable event queue processing and NAPI */
static void efx_stop_eventq(struct efx_channel *channel)
{
	if (!channel->enabled)
		return;

	napi_disable(&channel->napi_str);
	channel->enabled = false;
}

423 424
static void efx_fini_eventq(struct efx_channel *channel)
{
425 426
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d fini event queue\n", channel->channel);
427

428
	efx_nic_fini_eventq(channel);
429 430 431 432
}

static void efx_remove_eventq(struct efx_channel *channel)
{
433 434
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "chan %d remove event queue\n", channel->channel);
435

436
	efx_nic_remove_eventq(channel);
437 438 439 440 441 442 443 444
}

/**************************************************************************
 *
 * Channel handling
 *
 *************************************************************************/

445
/* Allocate and initialise a channel structure. */
446 447 448 449 450 451 452 453
static struct efx_channel *
efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;

454 455 456
	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;
457

458 459 460
	channel->efx = efx;
	channel->channel = i;
	channel->type = &efx_default_channel_type;
461

462 463 464 465 466 467
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		tx_queue->efx = efx;
		tx_queue->queue = i * EFX_TXQ_TYPES + j;
		tx_queue->channel = channel;
	}
468

469 470 471 472
	rx_queue = &channel->rx_queue;
	rx_queue->efx = efx;
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);
473

474 475 476 477 478 479 480 481 482 483 484 485 486
	return channel;
}

/* Allocate and initialise a channel structure, copying parameters
 * (but not resources) from an old channel structure.
 */
static struct efx_channel *
efx_copy_channel(const struct efx_channel *old_channel)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int j;
487

488 489 490 491 492 493 494 495
	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
	if (!channel)
		return NULL;

	*channel = *old_channel;

	channel->napi_dev = NULL;
	memset(&channel->eventq, 0, sizeof(channel->eventq));
496

497 498 499
	for (j = 0; j < EFX_TXQ_TYPES; j++) {
		tx_queue = &channel->tx_queue[j];
		if (tx_queue->channel)
500
			tx_queue->channel = channel;
501 502
		tx_queue->buffer = NULL;
		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
503 504 505
	}

	rx_queue = &channel->rx_queue;
506 507
	rx_queue->buffer = NULL;
	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
508 509 510 511 512 513
	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
		    (unsigned long)rx_queue);

	return channel;
}

514 515 516 517 518 519
static int efx_probe_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int rc;

520 521
	netif_dbg(channel->efx, probe, channel->efx->net_dev,
		  "creating channel %d\n", channel->channel);
522

523 524 525 526
	rc = channel->type->pre_probe(channel);
	if (rc)
		goto fail;

527 528
	rc = efx_probe_eventq(channel);
	if (rc)
529
		goto fail;
530 531 532 533

	efx_for_each_channel_tx_queue(tx_queue, channel) {
		rc = efx_probe_tx_queue(tx_queue);
		if (rc)
534
			goto fail;
535 536 537 538 539
	}

	efx_for_each_channel_rx_queue(rx_queue, channel) {
		rc = efx_probe_rx_queue(rx_queue);
		if (rc)
540
			goto fail;
541 542 543 544 545 546
	}

	channel->n_rx_frm_trunc = 0;

	return 0;

547 548
fail:
	efx_remove_channel(channel);
549 550 551
	return rc;
}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
static void
efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	struct efx_nic *efx = channel->efx;
	const char *type;
	int number;

	number = channel->channel;
	if (efx->tx_channel_offset == 0) {
		type = "";
	} else if (channel->channel < efx->tx_channel_offset) {
		type = "-rx";
	} else {
		type = "-tx";
		number -= efx->tx_channel_offset;
	}
	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
}
570

571 572 573 574
static void efx_set_channel_names(struct efx_nic *efx)
{
	struct efx_channel *channel;

575 576 577 578
	efx_for_each_channel(channel, efx)
		channel->type->get_name(channel,
					efx->channel_name[channel->channel],
					sizeof(efx->channel_name[0]));
579 580
}

581 582 583 584 585 586 587 588
static int efx_probe_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	/* Restart special buffer allocation */
	efx->next_buffer_table = 0;

589 590 591 592 593 594
	/* Probe channels in reverse, so that any 'extra' channels
	 * use the start of the buffer table. This allows the traffic
	 * channels to be resized without moving them or wasting the
	 * entries before them.
	 */
	efx_for_each_channel_rev(channel, efx) {
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
		rc = efx_probe_channel(channel);
		if (rc) {
			netif_err(efx, probe, efx->net_dev,
				  "failed to create channel %d\n",
				  channel->channel);
			goto fail;
		}
	}
	efx_set_channel_names(efx);

	return 0;

fail:
	efx_remove_channels(efx);
	return rc;
}

612 613 614 615
/* Channels are shutdown and reinitialised whilst the NIC is running
 * to propagate configuration changes (mtu, checksum offload), or
 * to clear hardware error conditions
 */
616
static void efx_start_datapath(struct efx_nic *efx)
617 618 619 620 621
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	struct efx_channel *channel;

622 623 624 625 626 627
	/* Calculate the rx buffer allocation parameters required to
	 * support the current MTU, including padding for header
	 * alignment and overruns.
	 */
	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
628
			      efx->type->rx_buffer_hash_size +
629
			      efx->type->rx_buffer_padding);
630 631
	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
					 sizeof(struct efx_rx_page_state));
632 633 634

	/* Initialise the channels */
	efx_for_each_channel(channel, efx) {
635 636
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue(tx_queue);
637 638 639 640

		/* The rx buffer allocation strategy is MTU dependent */
		efx_rx_strategy(channel);

641
		efx_for_each_channel_rx_queue(rx_queue, channel) {
642
			efx_init_rx_queue(rx_queue);
643 644
			efx_nic_generate_fill_event(rx_queue);
		}
645 646 647 648 649

		WARN_ON(channel->rx_pkt != NULL);
		efx_rx_strategy(channel);
	}

650 651
	if (netif_device_present(efx->net_dev))
		netif_tx_wake_all_queues(efx->net_dev);
652 653
}

654
static void efx_stop_datapath(struct efx_nic *efx)
655 656 657 658
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
659
	int rc;
660 661 662 663

	EFX_ASSERT_RESET_SERIALISED(efx);
	BUG_ON(efx->port_enabled);

664
	rc = efx_nic_flush_queues(efx);
665 666 667 668 669
	if (rc && EFX_WORKAROUND_7803(efx)) {
		/* Schedule a reset to recover from the flush failure. The
		 * descriptor caches reference memory we're about to free,
		 * but falcon_reconfigure_mac_wrapper() won't reconnect
		 * the MACs because of the pending reset. */
670 671
		netif_err(efx, drv, efx->net_dev,
			  "Resetting to recover from flush failure\n");
672 673
		efx_schedule_reset(efx, RESET_TYPE_ALL);
	} else if (rc) {
674
		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
675
	} else {
676 677
		netif_dbg(efx, drv, efx->net_dev,
			  "successfully flushed all queues\n");
678
	}
679

680
	efx_for_each_channel(channel, efx) {
681 682 683 684 685 686 687 688 689 690
		/* RX packet processing is pipelined, so wait for the
		 * NAPI handler to complete.  At least event queue 0
		 * might be kept active by non-data events, so don't
		 * use napi_synchronize() but actually disable NAPI
		 * temporarily.
		 */
		if (efx_channel_has_rx_queue(channel)) {
			efx_stop_eventq(channel);
			efx_start_eventq(channel);
		}
691 692 693

		efx_for_each_channel_rx_queue(rx_queue, channel)
			efx_fini_rx_queue(rx_queue);
694
		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
695 696 697 698 699 700 701 702 703
			efx_fini_tx_queue(tx_queue);
	}
}

static void efx_remove_channel(struct efx_channel *channel)
{
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;

704 705
	netif_dbg(channel->efx, drv, channel->efx->net_dev,
		  "destroy chan %d\n", channel->channel);
706 707 708

	efx_for_each_channel_rx_queue(rx_queue, channel)
		efx_remove_rx_queue(rx_queue);
709
	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
710 711 712 713
		efx_remove_tx_queue(tx_queue);
	efx_remove_eventq(channel);
}

714 715 716 717 718 719 720 721 722 723 724 725 726
static void efx_remove_channels(struct efx_nic *efx)
{
	struct efx_channel *channel;

	efx_for_each_channel(channel, efx)
		efx_remove_channel(channel);
}

int
efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
{
	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
	u32 old_rxq_entries, old_txq_entries;
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	unsigned i, next_buffer_table = 0;
	int rc = 0;

	/* Not all channels should be reallocated. We must avoid
	 * reallocating their buffer table entries.
	 */
	efx_for_each_channel(channel, efx) {
		struct efx_rx_queue *rx_queue;
		struct efx_tx_queue *tx_queue;

		if (channel->type->copy)
			continue;
		next_buffer_table = max(next_buffer_table,
					channel->eventq.index +
					channel->eventq.entries);
		efx_for_each_channel_rx_queue(rx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						rx_queue->rxd.index +
						rx_queue->rxd.entries);
		efx_for_each_channel_tx_queue(tx_queue, channel)
			next_buffer_table = max(next_buffer_table,
						tx_queue->txd.index +
						tx_queue->txd.entries);
	}
751 752

	efx_stop_all(efx);
753
	efx_stop_interrupts(efx, true);
754

755
	/* Clone channels (where possible) */
756 757
	memset(other_channel, 0, sizeof(other_channel));
	for (i = 0; i < efx->n_channels; i++) {
758 759 760
		channel = efx->channel[i];
		if (channel->type->copy)
			channel = channel->type->copy(channel);
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
		if (!channel) {
			rc = -ENOMEM;
			goto out;
		}
		other_channel[i] = channel;
	}

	/* Swap entry counts and channel pointers */
	old_rxq_entries = efx->rxq_entries;
	old_txq_entries = efx->txq_entries;
	efx->rxq_entries = rxq_entries;
	efx->txq_entries = txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}

779 780
	/* Restart buffer table allocation */
	efx->next_buffer_table = next_buffer_table;
781 782

	for (i = 0; i < efx->n_channels; i++) {
783 784 785 786 787 788 789
		channel = efx->channel[i];
		if (!channel->type->copy)
			continue;
		rc = efx_probe_channel(channel);
		if (rc)
			goto rollback;
		efx_init_napi_channel(efx->channel[i]);
790
	}
791

792
out:
793 794 795 796 797 798 799 800 801
	/* Destroy unused channel structures */
	for (i = 0; i < efx->n_channels; i++) {
		channel = other_channel[i];
		if (channel && channel->type->copy) {
			efx_fini_napi_channel(channel);
			efx_remove_channel(channel);
			kfree(channel);
		}
	}
802

803
	efx_start_interrupts(efx, true);
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	efx_start_all(efx);
	return rc;

rollback:
	/* Swap back */
	efx->rxq_entries = old_rxq_entries;
	efx->txq_entries = old_txq_entries;
	for (i = 0; i < efx->n_channels; i++) {
		channel = efx->channel[i];
		efx->channel[i] = other_channel[i];
		other_channel[i] = channel;
	}
	goto out;
}

819
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
820
{
821
	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
822 823
}

824 825 826 827 828 829 830 831 832 833 834 835
static const struct efx_channel_type efx_default_channel_type = {
	.pre_probe		= efx_channel_dummy_op_int,
	.get_name		= efx_get_channel_name,
	.copy			= efx_copy_channel,
	.keep_eventq		= false,
};

int efx_channel_dummy_op_int(struct efx_channel *channel)
{
	return 0;
}

836 837 838 839 840 841 842 843 844 845
/**************************************************************************
 *
 * Port handling
 *
 **************************************************************************/

/* This ensures that the kernel is kept informed (via
 * netif_carrier_on/off) of the link status, and also maintains the
 * link status's stop on the port's TX queue.
 */
S
Steve Hodgson 已提交
846
void efx_link_status_changed(struct efx_nic *efx)
847
{
848 849
	struct efx_link_state *link_state = &efx->link_state;

850 851 852 853 854 855 856
	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
	 * that no events are triggered between unregister_netdev() and the
	 * driver unloading. A more general condition is that NETDEV_CHANGE
	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
	if (!netif_running(efx->net_dev))
		return;

857
	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
858 859
		efx->n_link_state_changes++;

860
		if (link_state->up)
861 862 863 864 865 866
			netif_carrier_on(efx->net_dev);
		else
			netif_carrier_off(efx->net_dev);
	}

	/* Status message for kernel log */
B
Ben Hutchings 已提交
867
	if (link_state->up)
868 869 870 871 872
		netif_info(efx, link, efx->net_dev,
			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
			   link_state->speed, link_state->fd ? "full" : "half",
			   efx->net_dev->mtu,
			   (efx->promiscuous ? " [PROMISC]" : ""));
B
Ben Hutchings 已提交
873
	else
874
		netif_info(efx, link, efx->net_dev, "link down\n");
875 876
}

B
Ben Hutchings 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
{
	efx->link_advertising = advertising;
	if (advertising) {
		if (advertising & ADVERTISED_Pause)
			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
		else
			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
		if (advertising & ADVERTISED_Asym_Pause)
			efx->wanted_fc ^= EFX_FC_TX;
	}
}

890
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
B
Ben Hutchings 已提交
891 892 893 894 895 896 897 898 899 900 901 902 903 904
{
	efx->wanted_fc = wanted_fc;
	if (efx->link_advertising) {
		if (wanted_fc & EFX_FC_RX)
			efx->link_advertising |= (ADVERTISED_Pause |
						  ADVERTISED_Asym_Pause);
		else
			efx->link_advertising &= ~(ADVERTISED_Pause |
						   ADVERTISED_Asym_Pause);
		if (wanted_fc & EFX_FC_TX)
			efx->link_advertising ^= ADVERTISED_Asym_Pause;
	}
}

905 906
static void efx_fini_port(struct efx_nic *efx);

B
Ben Hutchings 已提交
907 908 909 910 911 912 913 914
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 * the MAC appropriately. All other PHY configuration changes are pushed
 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 * through efx_monitor().
 *
 * Callers must hold the mac_lock
 */
int __efx_reconfigure_port(struct efx_nic *efx)
915
{
B
Ben Hutchings 已提交
916 917
	enum efx_phy_mode phy_mode;
	int rc;
918

B
Ben Hutchings 已提交
919
	WARN_ON(!mutex_is_locked(&efx->mac_lock));
920

921
	/* Serialise the promiscuous flag with efx_set_rx_mode. */
922 923
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
924

B
Ben Hutchings 已提交
925 926
	/* Disable PHY transmit in mac level loopbacks */
	phy_mode = efx->phy_mode;
927 928 929 930 931
	if (LOOPBACK_INTERNAL(efx))
		efx->phy_mode |= PHY_MODE_TX_DISABLED;
	else
		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;

B
Ben Hutchings 已提交
932
	rc = efx->type->reconfigure_port(efx);
933

B
Ben Hutchings 已提交
934 935
	if (rc)
		efx->phy_mode = phy_mode;
936

B
Ben Hutchings 已提交
937
	return rc;
938 939 940 941
}

/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 * disabled. */
B
Ben Hutchings 已提交
942
int efx_reconfigure_port(struct efx_nic *efx)
943
{
B
Ben Hutchings 已提交
944 945
	int rc;

946 947 948
	EFX_ASSERT_RESET_SERIALISED(efx);

	mutex_lock(&efx->mac_lock);
B
Ben Hutchings 已提交
949
	rc = __efx_reconfigure_port(efx);
950
	mutex_unlock(&efx->mac_lock);
B
Ben Hutchings 已提交
951 952

	return rc;
953 954
}

955 956 957
/* Asynchronous work item for changing MAC promiscuity and multicast
 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 * MAC directly. */
958 959 960 961 962
static void efx_mac_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);

	mutex_lock(&efx->mac_lock);
963
	if (efx->port_enabled)
964
		efx->type->reconfigure_mac(efx);
965 966 967
	mutex_unlock(&efx->mac_lock);
}

968 969 970 971
static int efx_probe_port(struct efx_nic *efx)
{
	int rc;

972
	netif_dbg(efx, probe, efx->net_dev, "create port\n");
973

974 975 976
	if (phy_flash_cfg)
		efx->phy_mode = PHY_MODE_SPECIAL;

977 978
	/* Connect up MAC/PHY operations table */
	rc = efx->type->probe_port(efx);
979
	if (rc)
980
		return rc;
981

982 983
	/* Initialise MAC address to permanent address */
	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
984 985 986 987 988 989 990 991

	return 0;
}

static int efx_init_port(struct efx_nic *efx)
{
	int rc;

992
	netif_dbg(efx, drv, efx->net_dev, "init port\n");
993

994 995
	mutex_lock(&efx->mac_lock);

996
	rc = efx->phy_op->init(efx);
997
	if (rc)
998
		goto fail1;
999

1000
	efx->port_initialized = true;
1001

B
Ben Hutchings 已提交
1002 1003
	/* Reconfigure the MAC before creating dma queues (required for
	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1004
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1005 1006 1007 1008 1009 1010

	/* Ensure the PHY advertises the correct flow control settings */
	rc = efx->phy_op->reconfigure(efx);
	if (rc)
		goto fail2;

1011
	mutex_unlock(&efx->mac_lock);
1012
	return 0;
1013

1014
fail2:
1015
	efx->phy_op->fini(efx);
1016 1017
fail1:
	mutex_unlock(&efx->mac_lock);
1018
	return rc;
1019 1020 1021 1022
}

static void efx_start_port(struct efx_nic *efx)
{
1023
	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1024 1025 1026
	BUG_ON(efx->port_enabled);

	mutex_lock(&efx->mac_lock);
1027
	efx->port_enabled = true;
1028 1029 1030

	/* efx_mac_work() might have been scheduled after efx_stop_port(),
	 * and then cancelled by efx_flush_all() */
1031
	efx->type->reconfigure_mac(efx);
1032

1033 1034 1035
	mutex_unlock(&efx->mac_lock);
}

S
Steve Hodgson 已提交
1036
/* Prevent efx_mac_work() and efx_monitor() from working */
1037 1038
static void efx_stop_port(struct efx_nic *efx)
{
1039
	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1040 1041

	mutex_lock(&efx->mac_lock);
1042
	efx->port_enabled = false;
1043 1044 1045
	mutex_unlock(&efx->mac_lock);

	/* Serialise against efx_set_multicast_list() */
1046 1047
	netif_addr_lock_bh(efx->net_dev);
	netif_addr_unlock_bh(efx->net_dev);
1048 1049 1050 1051
}

static void efx_fini_port(struct efx_nic *efx)
{
1052
	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1053 1054 1055 1056

	if (!efx->port_initialized)
		return;

1057
	efx->phy_op->fini(efx);
1058
	efx->port_initialized = false;
1059

1060
	efx->link_state.up = false;
1061 1062 1063 1064 1065
	efx_link_status_changed(efx);
}

static void efx_remove_port(struct efx_nic *efx)
{
1066
	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1067

1068
	efx->type->remove_port(efx);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
}

/**************************************************************************
 *
 * NIC handling
 *
 **************************************************************************/

/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	dma_addr_t dma_mask = efx->type->max_dma_mask;
	int rc;

1084
	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1085 1086 1087

	rc = pci_enable_device(pci_dev);
	if (rc) {
1088 1089
		netif_err(efx, probe, efx->net_dev,
			  "failed to enable PCI device\n");
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		goto fail1;
	}

	pci_set_master(pci_dev);

	/* Set the PCI DMA mask.  Try all possibilities from our
	 * genuine mask down to 32 bits, because some architectures
	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
	 * masks event though they reject 46 bit masks.
	 */
	while (dma_mask > 0x7fffffffUL) {
1101 1102 1103 1104 1105
		if (pci_dma_supported(pci_dev, dma_mask)) {
			rc = pci_set_dma_mask(pci_dev, dma_mask);
			if (rc == 0)
				break;
		}
1106 1107 1108
		dma_mask >>= 1;
	}
	if (rc) {
1109 1110
		netif_err(efx, probe, efx->net_dev,
			  "could not find a suitable DMA mask\n");
1111 1112
		goto fail2;
	}
1113 1114
	netif_dbg(efx, probe, efx->net_dev,
		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1115 1116 1117 1118 1119 1120
	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
	if (rc) {
		/* pci_set_consistent_dma_mask() is not *allowed* to
		 * fail with a mask that pci_set_dma_mask() accepted,
		 * but just in case...
		 */
1121 1122
		netif_err(efx, probe, efx->net_dev,
			  "failed to set consistent DMA mask\n");
1123 1124 1125
		goto fail2;
	}

1126 1127
	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1128
	if (rc) {
1129 1130
		netif_err(efx, probe, efx->net_dev,
			  "request for memory BAR failed\n");
1131 1132 1133
		rc = -EIO;
		goto fail3;
	}
1134 1135
	efx->membase = ioremap_nocache(efx->membase_phys,
				       efx->type->mem_map_size);
1136
	if (!efx->membase) {
1137 1138 1139 1140
		netif_err(efx, probe, efx->net_dev,
			  "could not map memory BAR at %llx+%x\n",
			  (unsigned long long)efx->membase_phys,
			  efx->type->mem_map_size);
1141 1142 1143
		rc = -ENOMEM;
		goto fail4;
	}
1144 1145 1146 1147
	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %llx+%x (virtual %p)\n",
		  (unsigned long long)efx->membase_phys,
		  efx->type->mem_map_size, efx->membase);
1148 1149 1150 1151

	return 0;

 fail4:
1152
	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1153
 fail3:
1154
	efx->membase_phys = 0;
1155 1156 1157 1158 1159 1160 1161 1162
 fail2:
	pci_disable_device(efx->pci_dev);
 fail1:
	return rc;
}

static void efx_fini_io(struct efx_nic *efx)
{
1163
	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1164 1165 1166 1167 1168 1169 1170

	if (efx->membase) {
		iounmap(efx->membase);
		efx->membase = NULL;
	}

	if (efx->membase_phys) {
1171
		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1172
		efx->membase_phys = 0;
1173 1174 1175 1176 1177
	}

	pci_disable_device(efx->pci_dev);
}

1178
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1179
{
1180
	cpumask_var_t thread_mask;
1181
	unsigned int count;
1182
	int cpu;
1183

1184 1185 1186 1187 1188 1189 1190 1191
	if (rss_cpus) {
		count = rss_cpus;
	} else {
		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
			netif_warn(efx, probe, efx->net_dev,
				   "RSS disabled due to allocation failure\n");
			return 1;
		}
1192

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
		count = 0;
		for_each_online_cpu(cpu) {
			if (!cpumask_test_cpu(cpu, thread_mask)) {
				++count;
				cpumask_or(thread_mask, thread_mask,
					   topology_thread_cpumask(cpu));
			}
		}

		free_cpumask_var(thread_mask);
R
Rusty Russell 已提交
1203 1204
	}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	/* If RSS is requested for the PF *and* VFs then we can't write RSS
	 * table entries that are inaccessible to VFs
	 */
	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
	    count > efx_vf_size(efx)) {
		netif_warn(efx, probe, efx->net_dev,
			   "Reducing number of RSS channels from %u to %u for "
			   "VF support. Increase vf-msix-limit to use more "
			   "channels on the PF.\n",
			   count, efx_vf_size(efx));
		count = efx_vf_size(efx);
1216 1217 1218 1219 1220
	}

	return count;
}

1221 1222 1223 1224
static int
efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
{
#ifdef CONFIG_RFS_ACCEL
1225 1226
	unsigned int i;
	int rc;
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
	if (!efx->net_dev->rx_cpu_rmap)
		return -ENOMEM;
	for (i = 0; i < efx->n_rx_channels; i++) {
		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
				      xentries[i].vector);
		if (rc) {
			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
			efx->net_dev->rx_cpu_rmap = NULL;
			return rc;
		}
	}
#endif
	return 0;
}

1244 1245 1246
/* Probe the number and type of interrupts we are able to obtain, and
 * the resulting numbers of channels and RX queues.
 */
1247
static int efx_probe_interrupts(struct efx_nic *efx)
1248
{
1249 1250
	unsigned int max_channels =
		min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1251 1252
	unsigned int extra_channels = 0;
	unsigned int i, j;
1253
	int rc;
1254

1255 1256 1257 1258
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
		if (efx->extra_channel_type[i])
			++extra_channels;

1259
	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1260
		struct msix_entry xentries[EFX_MAX_CHANNELS];
1261
		unsigned int n_channels;
1262

1263
		n_channels = efx_wanted_parallelism(efx);
B
Ben Hutchings 已提交
1264 1265
		if (separate_tx_channels)
			n_channels *= 2;
1266
		n_channels += extra_channels;
B
Ben Hutchings 已提交
1267
		n_channels = min(n_channels, max_channels);
1268

B
Ben Hutchings 已提交
1269
		for (i = 0; i < n_channels; i++)
1270
			xentries[i].entry = i;
B
Ben Hutchings 已提交
1271
		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1272
		if (rc > 0) {
1273 1274
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Insufficient MSI-X vectors"
1275
				  " available (%d < %u).\n", rc, n_channels);
1276 1277
			netif_err(efx, drv, efx->net_dev,
				  "WARNING: Performance may be reduced.\n");
B
Ben Hutchings 已提交
1278 1279
			EFX_BUG_ON_PARANOID(rc >= n_channels);
			n_channels = rc;
1280
			rc = pci_enable_msix(efx->pci_dev, xentries,
B
Ben Hutchings 已提交
1281
					     n_channels);
1282 1283 1284
		}

		if (rc == 0) {
B
Ben Hutchings 已提交
1285
			efx->n_channels = n_channels;
1286 1287
			if (n_channels > extra_channels)
				n_channels -= extra_channels;
B
Ben Hutchings 已提交
1288
			if (separate_tx_channels) {
1289 1290 1291 1292
				efx->n_tx_channels = max(n_channels / 2, 1U);
				efx->n_rx_channels = max(n_channels -
							 efx->n_tx_channels,
							 1U);
B
Ben Hutchings 已提交
1293
			} else {
1294 1295
				efx->n_tx_channels = n_channels;
				efx->n_rx_channels = n_channels;
B
Ben Hutchings 已提交
1296
			}
1297 1298 1299 1300 1301
			rc = efx_init_rx_cpu_rmap(efx, xentries);
			if (rc) {
				pci_disable_msix(efx->pci_dev);
				return rc;
			}
1302
			for (i = 0; i < efx->n_channels; i++)
1303 1304
				efx_get_channel(efx, i)->irq =
					xentries[i].vector;
1305 1306 1307
		} else {
			/* Fall back to single channel MSI */
			efx->interrupt_mode = EFX_INT_MODE_MSI;
1308 1309
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI-X\n");
1310 1311 1312 1313 1314
		}
	}

	/* Try single interrupt MSI */
	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1315
		efx->n_channels = 1;
B
Ben Hutchings 已提交
1316 1317
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1318 1319
		rc = pci_enable_msi(efx->pci_dev);
		if (rc == 0) {
1320
			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1321
		} else {
1322 1323
			netif_err(efx, drv, efx->net_dev,
				  "could not enable MSI\n");
1324 1325 1326 1327 1328 1329
			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
		}
	}

	/* Assume legacy interrupts */
	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1330
		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
B
Ben Hutchings 已提交
1331 1332
		efx->n_rx_channels = 1;
		efx->n_tx_channels = 1;
1333 1334
		efx->legacy_irq = efx->pci_dev->irq;
	}
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	/* Assign extra channels if possible */
	j = efx->n_channels;
	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
		if (!efx->extra_channel_type[i])
			continue;
		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
		    efx->n_channels <= extra_channels) {
			efx->extra_channel_type[i]->handle_no_channel(efx);
		} else {
			--j;
			efx_get_channel(efx, j)->type =
				efx->extra_channel_type[i];
		}
	}

1351 1352 1353 1354
	/* RSS might be usable on VFs even if it is disabled on the PF */
	efx->rss_spread = (efx->n_rx_channels > 1 ?
			   efx->n_rx_channels : efx_vf_size(efx));

1355
	return 0;
1356 1357
}

1358
/* Enable interrupts, then probe and start the event queues */
1359
static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1360 1361 1362 1363 1364 1365 1366 1367
{
	struct efx_channel *channel;

	if (efx->legacy_irq)
		efx->legacy_irq_enabled = true;
	efx_nic_enable_interrupts(efx);

	efx_for_each_channel(channel, efx) {
1368 1369
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_init_eventq(channel);
1370 1371 1372 1373 1374 1375
		efx_start_eventq(channel);
	}

	efx_mcdi_mode_event(efx);
}

1376
static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
{
	struct efx_channel *channel;

	efx_mcdi_mode_poll(efx);

	efx_nic_disable_interrupts(efx);
	if (efx->legacy_irq) {
		synchronize_irq(efx->legacy_irq);
		efx->legacy_irq_enabled = false;
	}

	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			synchronize_irq(channel->irq);

		efx_stop_eventq(channel);
1393 1394
		if (!channel->type->keep_eventq || !may_keep_eventq)
			efx_fini_eventq(channel);
1395 1396 1397
	}
}

1398 1399 1400 1401 1402
static void efx_remove_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	/* Remove MSI/MSI-X interrupts */
1403
	efx_for_each_channel(channel, efx)
1404 1405 1406 1407 1408 1409 1410 1411
		channel->irq = 0;
	pci_disable_msi(efx->pci_dev);
	pci_disable_msix(efx->pci_dev);

	/* Remove legacy interrupt */
	efx->legacy_irq = 0;
}

1412
static void efx_set_channels(struct efx_nic *efx)
1413
{
1414 1415 1416
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

1417
	efx->tx_channel_offset =
B
Ben Hutchings 已提交
1418
		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1419 1420 1421 1422 1423 1424 1425 1426 1427

	/* We need to adjust the TX queue numbers if we have separate
	 * RX-only and TX-only channels.
	 */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->queue -= (efx->tx_channel_offset *
					    EFX_TXQ_TYPES);
	}
1428 1429 1430 1431
}

static int efx_probe_nic(struct efx_nic *efx)
{
1432
	size_t i;
1433 1434
	int rc;

1435
	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1436 1437

	/* Carry out hardware-type specific initialisation */
1438
	rc = efx->type->probe(efx);
1439 1440 1441
	if (rc)
		return rc;

B
Ben Hutchings 已提交
1442
	/* Determine the number of channels and queues by trying to hook
1443
	 * in MSI-X interrupts. */
1444 1445 1446
	rc = efx_probe_interrupts(efx);
	if (rc)
		goto fail;
1447

1448 1449
	efx->type->dimension_resources(efx);

1450 1451
	if (efx->n_channels > 1)
		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1452
	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1453
		efx->rx_indir_table[i] =
1454
			ethtool_rxfh_indir_default(i, efx->rss_spread);
1455

1456
	efx_set_channels(efx);
1457 1458
	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1459 1460

	/* Initialise the interrupt moderation settings */
1461 1462
	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
				true);
1463 1464

	return 0;
1465 1466 1467 1468

fail:
	efx->type->remove(efx);
	return rc;
1469 1470 1471 1472
}

static void efx_remove_nic(struct efx_nic *efx)
{
1473
	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1474 1475

	efx_remove_interrupts(efx);
1476
	efx->type->remove(efx);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
}

/**************************************************************************
 *
 * NIC startup/shutdown
 *
 *************************************************************************/

static int efx_probe_all(struct efx_nic *efx)
{
	int rc;

	rc = efx_probe_nic(efx);
	if (rc) {
1491
		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1492 1493 1494 1495 1496
		goto fail1;
	}

	rc = efx_probe_port(efx);
	if (rc) {
1497
		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1498 1499 1500
		goto fail2;
	}

1501
	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1502

B
Ben Hutchings 已提交
1503 1504 1505 1506
	rc = efx_probe_filters(efx);
	if (rc) {
		netif_err(efx, probe, efx->net_dev,
			  "failed to create filter tables\n");
1507
		goto fail3;
B
Ben Hutchings 已提交
1508 1509
	}

1510 1511 1512 1513
	rc = efx_probe_channels(efx);
	if (rc)
		goto fail4;

1514 1515
	return 0;

B
Ben Hutchings 已提交
1516
 fail4:
1517
	efx_remove_filters(efx);
1518 1519 1520 1521 1522 1523 1524 1525
 fail3:
	efx_remove_port(efx);
 fail2:
	efx_remove_nic(efx);
 fail1:
	return rc;
}

1526 1527 1528 1529 1530
/* Called after previous invocation(s) of efx_stop_all, restarts the port,
 * kernel transmit queues and NAPI processing, and ensures that the port is
 * scheduled to be reconfigured. This function is safe to call multiple
 * times when the NIC is in any state.
 */
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
static void efx_start_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* Check that it is appropriate to restart the interface. All
	 * of these flags are safe to read under just the rtnl lock */
	if (efx->port_enabled)
		return;
	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
		return;
1541
	if (!netif_running(efx->net_dev))
1542 1543 1544
		return;

	efx_start_port(efx);
1545
	efx_start_datapath(efx);
1546

1547 1548 1549 1550
	/* Start the hardware monitor if there is one. Otherwise (we're link
	 * event driven), we have to poll the PHY because after an event queue
	 * flush, we could have a missed a link state change */
	if (efx->type->monitor != NULL) {
1551 1552
		queue_delayed_work(efx->workqueue, &efx->monitor_work,
				   efx_monitor_interval);
1553 1554 1555 1556 1557 1558
	} else {
		mutex_lock(&efx->mac_lock);
		if (efx->phy_op->poll(efx))
			efx_link_status_changed(efx);
		mutex_unlock(&efx->mac_lock);
	}
1559

1560
	efx->type->start_stats(efx);
1561 1562 1563 1564 1565 1566 1567
}

/* Flush all delayed work. Should only be called when no more delayed work
 * will be scheduled. This doesn't flush pending online resets (efx_reset),
 * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
1568
	/* Make sure the hardware monitor and event self-test are stopped */
1569
	cancel_delayed_work_sync(&efx->monitor_work);
1570
	efx_selftest_async_cancel(efx);
1571
	/* Stop scheduled port reconfigurations */
1572
	cancel_work_sync(&efx->mac_work);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
}

/* Quiesce hardware and software without bringing the link down.
 * Safe to call multiple times, when the nic and interface is in any
 * state. The caller is guaranteed to subsequently be in a position
 * to modify any hardware and software state they see fit without
 * taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
	EFX_ASSERT_RESET_SERIALISED(efx);

	/* port_enabled can be read safely under the rtnl lock */
	if (!efx->port_enabled)
		return;

1588
	efx->type->stop_stats(efx);
1589 1590
	efx_stop_port(efx);

S
Steve Hodgson 已提交
1591
	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1592 1593 1594 1595
	efx_flush_all(efx);

	/* Stop the kernel transmit interface late, so the watchdog
	 * timer isn't ticking over the flush */
1596 1597 1598
	netif_tx_disable(efx->net_dev);

	efx_stop_datapath(efx);
1599 1600 1601 1602
}

static void efx_remove_all(struct efx_nic *efx)
{
1603
	efx_remove_channels(efx);
1604
	efx_remove_filters(efx);
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	efx_remove_port(efx);
	efx_remove_nic(efx);
}

/**************************************************************************
 *
 * Interrupt moderation
 *
 **************************************************************************/

1615
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1616
{
1617 1618
	if (usecs == 0)
		return 0;
1619
	if (usecs * 1000 < quantum_ns)
1620
		return 1; /* never round down to 0 */
1621
	return usecs * 1000 / quantum_ns;
1622 1623
}

1624
/* Set interrupt moderation parameters */
1625 1626 1627
int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
			    unsigned int rx_usecs, bool rx_adaptive,
			    bool rx_may_override_tx)
1628
{
1629
	struct efx_channel *channel;
1630 1631 1632 1633 1634
	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
						efx->timer_quantum_ns,
						1000);
	unsigned int tx_ticks;
	unsigned int rx_ticks;
1635 1636 1637

	EFX_ASSERT_RESET_SERIALISED(efx);

1638
	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1639 1640
		return -EINVAL;

1641 1642 1643
	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);

1644 1645 1646 1647 1648 1649 1650
	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
	    !rx_may_override_tx) {
		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
			  "RX and TX IRQ moderation must be equal\n");
		return -EINVAL;
	}

1651
	efx->irq_rx_adaptive = rx_adaptive;
1652
	efx->irq_rx_moderation = rx_ticks;
1653
	efx_for_each_channel(channel, efx) {
1654
		if (efx_channel_has_rx_queue(channel))
1655
			channel->irq_moderation = rx_ticks;
1656
		else if (efx_channel_has_tx_queues(channel))
1657 1658
			channel->irq_moderation = tx_ticks;
	}
1659 1660

	return 0;
1661 1662
}

1663 1664 1665
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
			    unsigned int *rx_usecs, bool *rx_adaptive)
{
1666 1667 1668 1669
	/* We must round up when converting ticks to microseconds
	 * because we round down when converting the other way.
	 */

1670
	*rx_adaptive = efx->irq_rx_adaptive;
1671 1672 1673
	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
				 efx->timer_quantum_ns,
				 1000);
1674 1675 1676 1677 1678 1679 1680 1681

	/* If channels are shared between RX and TX, so is IRQ
	 * moderation.  Otherwise, IRQ moderation is the same for all
	 * TX channels and is not adaptive.
	 */
	if (efx->tx_channel_offset == 0)
		*tx_usecs = *rx_usecs;
	else
1682
		*tx_usecs = DIV_ROUND_UP(
1683
			efx->channel[efx->tx_channel_offset]->irq_moderation *
1684 1685
			efx->timer_quantum_ns,
			1000);
1686 1687
}

1688 1689 1690 1691 1692 1693
/**************************************************************************
 *
 * Hardware monitor
 *
 **************************************************************************/

1694
/* Run periodically off the general workqueue */
1695 1696 1697 1698 1699
static void efx_monitor(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic,
					   monitor_work.work);

1700 1701 1702
	netif_vdbg(efx, timer, efx->net_dev,
		   "hardware monitor executing on CPU %d\n",
		   raw_smp_processor_id());
1703
	BUG_ON(efx->type->monitor == NULL);
1704 1705 1706

	/* If the mac_lock is already held then it is likely a port
	 * reconfiguration is already in place, which will likely do
1707 1708 1709 1710 1711 1712
	 * most of the work of monitor() anyway. */
	if (mutex_trylock(&efx->mac_lock)) {
		if (efx->port_enabled)
			efx->type->monitor(efx);
		mutex_unlock(&efx->mac_lock);
	}
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

	queue_delayed_work(efx->workqueue, &efx->monitor_work,
			   efx_monitor_interval);
}

/**************************************************************************
 *
 * ioctls
 *
 *************************************************************************/

/* Net device ioctl
 * Context: process, rtnl_lock() held.
 */
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
1729
	struct efx_nic *efx = netdev_priv(net_dev);
1730
	struct mii_ioctl_data *data = if_mii(ifr);
1731 1732 1733

	EFX_ASSERT_RESET_SERIALISED(efx);

1734 1735 1736 1737 1738 1739
	/* Convert phy_id from older PRTAD/DEVAD format */
	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
	    (data->phy_id & 0xfc00) == 0x0400)
		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;

	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1740 1741 1742 1743 1744 1745 1746 1747
}

/**************************************************************************
 *
 * NAPI interface
 *
 **************************************************************************/

1748 1749 1750 1751 1752 1753 1754 1755 1756
static void efx_init_napi_channel(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	channel->napi_dev = efx->net_dev;
	netif_napi_add(channel->napi_dev, &channel->napi_str,
		       efx_poll, napi_weight);
}

1757
static void efx_init_napi(struct efx_nic *efx)
1758 1759 1760
{
	struct efx_channel *channel;

1761 1762
	efx_for_each_channel(channel, efx)
		efx_init_napi_channel(channel);
1763 1764 1765 1766 1767 1768 1769
}

static void efx_fini_napi_channel(struct efx_channel *channel)
{
	if (channel->napi_dev)
		netif_napi_del(&channel->napi_str);
	channel->napi_dev = NULL;
1770 1771 1772 1773 1774 1775
}

static void efx_fini_napi(struct efx_nic *efx)
{
	struct efx_channel *channel;

1776 1777
	efx_for_each_channel(channel, efx)
		efx_fini_napi_channel(channel);
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
}

/**************************************************************************
 *
 * Kernel netpoll interface
 *
 *************************************************************************/

#ifdef CONFIG_NET_POLL_CONTROLLER

/* Although in the common case interrupts will be disabled, this is not
 * guaranteed. However, all our work happens inside the NAPI callback,
 * so no locking is required.
 */
static void efx_netpoll(struct net_device *net_dev)
{
1794
	struct efx_nic *efx = netdev_priv(net_dev);
1795 1796
	struct efx_channel *channel;

1797
	efx_for_each_channel(channel, efx)
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
		efx_schedule_channel(channel);
}

#endif

/**************************************************************************
 *
 * Kernel net device interface
 *
 *************************************************************************/

/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
1812
	struct efx_nic *efx = netdev_priv(net_dev);
1813 1814
	EFX_ASSERT_RESET_SERIALISED(efx);

1815 1816
	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
		  raw_smp_processor_id());
1817

1818 1819
	if (efx->state == STATE_DISABLED)
		return -EIO;
1820 1821
	if (efx->phy_mode & PHY_MODE_SPECIAL)
		return -EBUSY;
1822 1823
	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
		return -EIO;
1824

1825 1826 1827 1828
	/* Notify the kernel of the link state polled during driver load,
	 * before the monitor starts running */
	efx_link_status_changed(efx);

1829
	efx_start_all(efx);
1830
	efx_selftest_async_start(efx);
1831 1832 1833 1834 1835 1836 1837 1838 1839
	return 0;
}

/* Context: process, rtnl_lock() held.
 * Note that the kernel will ignore our return code; this method
 * should really be a void.
 */
static int efx_net_stop(struct net_device *net_dev)
{
1840
	struct efx_nic *efx = netdev_priv(net_dev);
1841

1842 1843
	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
		  raw_smp_processor_id());
1844

1845 1846 1847 1848
	if (efx->state != STATE_DISABLED) {
		/* Stop the device and flush all the channels */
		efx_stop_all(efx);
	}
1849 1850 1851 1852

	return 0;
}

1853
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
B
Ben Hutchings 已提交
1854 1855
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
					       struct rtnl_link_stats64 *stats)
1856
{
1857
	struct efx_nic *efx = netdev_priv(net_dev);
1858 1859
	struct efx_mac_stats *mac_stats = &efx->mac_stats;

1860
	spin_lock_bh(&efx->stats_lock);
1861

1862
	efx->type->update_stats(efx);
1863 1864 1865 1866 1867

	stats->rx_packets = mac_stats->rx_packets;
	stats->tx_packets = mac_stats->tx_packets;
	stats->rx_bytes = mac_stats->rx_bytes;
	stats->tx_bytes = mac_stats->tx_bytes;
1868
	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	stats->multicast = mac_stats->rx_multicast;
	stats->collisions = mac_stats->tx_collision;
	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
				   mac_stats->rx_length_error);
	stats->rx_crc_errors = mac_stats->rx_bad;
	stats->rx_frame_errors = mac_stats->rx_align_error;
	stats->rx_fifo_errors = mac_stats->rx_overflow;
	stats->rx_missed_errors = mac_stats->rx_missed;
	stats->tx_window_errors = mac_stats->tx_late_collision;

	stats->rx_errors = (stats->rx_length_errors +
			    stats->rx_crc_errors +
			    stats->rx_frame_errors +
			    mac_stats->rx_symbol_error);
	stats->tx_errors = (stats->tx_window_errors +
			    mac_stats->tx_bad);

1886 1887
	spin_unlock_bh(&efx->stats_lock);

1888 1889 1890 1891 1892 1893
	return stats;
}

/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
1894
	struct efx_nic *efx = netdev_priv(net_dev);
1895

1896 1897 1898
	netif_err(efx, tx_err, efx->net_dev,
		  "TX stuck with port_enabled=%d: resetting channels\n",
		  efx->port_enabled);
1899

1900
	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1901 1902 1903 1904 1905 1906
}


/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
1907
	struct efx_nic *efx = netdev_priv(net_dev);
1908 1909 1910 1911 1912 1913 1914 1915

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (new_mtu > EFX_MAX_MTU)
		return -EINVAL;

	efx_stop_all(efx);

1916
	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1917

B
Ben Hutchings 已提交
1918 1919 1920
	mutex_lock(&efx->mac_lock);
	/* Reconfigure the MAC before enabling the dma queues so that
	 * the RX buffers don't overflow */
1921
	net_dev->mtu = new_mtu;
1922
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1923 1924
	mutex_unlock(&efx->mac_lock);

1925
	efx_start_all(efx);
1926
	return 0;
1927 1928 1929 1930
}

static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
1931
	struct efx_nic *efx = netdev_priv(net_dev);
1932 1933 1934 1935 1936 1937
	struct sockaddr *addr = data;
	char *new_addr = addr->sa_data;

	EFX_ASSERT_RESET_SERIALISED(efx);

	if (!is_valid_ether_addr(new_addr)) {
1938 1939 1940
		netif_err(efx, drv, efx->net_dev,
			  "invalid ethernet MAC address requested: %pM\n",
			  new_addr);
1941
		return -EADDRNOTAVAIL;
1942 1943 1944
	}

	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1945
	efx_sriov_mac_address_changed(efx);
1946 1947

	/* Reconfigure the MAC */
B
Ben Hutchings 已提交
1948
	mutex_lock(&efx->mac_lock);
1949
	efx->type->reconfigure_mac(efx);
B
Ben Hutchings 已提交
1950
	mutex_unlock(&efx->mac_lock);
1951 1952 1953 1954

	return 0;
}

1955
/* Context: netif_addr_lock held, BHs disabled. */
1956
static void efx_set_rx_mode(struct net_device *net_dev)
1957
{
1958
	struct efx_nic *efx = netdev_priv(net_dev);
1959
	struct netdev_hw_addr *ha;
1960 1961 1962 1963
	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
	u32 crc;
	int bit;

1964
	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1965 1966

	/* Build multicast hash table */
1967
	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1968 1969 1970
		memset(mc_hash, 0xff, sizeof(*mc_hash));
	} else {
		memset(mc_hash, 0x00, sizeof(*mc_hash));
1971 1972
		netdev_for_each_mc_addr(ha, net_dev) {
			crc = ether_crc_le(ETH_ALEN, ha->addr);
1973 1974 1975 1976
			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
			set_bit_le(bit, mc_hash->byte);
		}

1977 1978 1979 1980 1981 1982
		/* Broadcast packets go through the multicast hash filter.
		 * ether_crc_le() of the broadcast address is 0xbe2612ff
		 * so we always add bit 0xff to the mask.
		 */
		set_bit_le(0xff, mc_hash->byte);
	}
1983

1984 1985 1986
	if (efx->port_enabled)
		queue_work(efx->workqueue, &efx->mac_work);
	/* Otherwise efx_start_port() will do this */
1987 1988
}

1989
static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
{
	struct efx_nic *efx = netdev_priv(net_dev);

	/* If disabling RX n-tuple filtering, clear existing filters */
	if (net_dev->features & ~data & NETIF_F_NTUPLE)
		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);

	return 0;
}

S
Stephen Hemminger 已提交
2000 2001 2002
static const struct net_device_ops efx_netdev_ops = {
	.ndo_open		= efx_net_open,
	.ndo_stop		= efx_net_stop,
2003
	.ndo_get_stats64	= efx_net_stats,
S
Stephen Hemminger 已提交
2004 2005 2006 2007 2008 2009
	.ndo_tx_timeout		= efx_watchdog,
	.ndo_start_xmit		= efx_hard_start_xmit,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl		= efx_ioctl,
	.ndo_change_mtu		= efx_change_mtu,
	.ndo_set_mac_address	= efx_set_mac_address,
2010
	.ndo_set_rx_mode	= efx_set_rx_mode,
2011
	.ndo_set_features	= efx_set_features,
2012 2013 2014 2015 2016 2017
#ifdef CONFIG_SFC_SRIOV
	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
	.ndo_get_vf_config	= efx_sriov_get_vf_config,
#endif
S
Stephen Hemminger 已提交
2018 2019 2020
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = efx_netpoll,
#endif
2021
	.ndo_setup_tc		= efx_setup_tc,
2022 2023 2024
#ifdef CONFIG_RFS_ACCEL
	.ndo_rx_flow_steer	= efx_filter_rfs,
#endif
S
Stephen Hemminger 已提交
2025 2026
};

2027 2028 2029 2030 2031 2032 2033
static void efx_update_name(struct efx_nic *efx)
{
	strcpy(efx->name, efx->net_dev->name);
	efx_mtd_rename(efx);
	efx_set_channel_names(efx);
}

2034 2035 2036
static int efx_netdev_event(struct notifier_block *this,
			    unsigned long event, void *ptr)
{
2037
	struct net_device *net_dev = ptr;
2038

2039 2040 2041
	if (net_dev->netdev_ops == &efx_netdev_ops &&
	    event == NETDEV_CHANGENAME)
		efx_update_name(netdev_priv(net_dev));
2042 2043 2044 2045 2046 2047 2048 2049

	return NOTIFY_DONE;
}

static struct notifier_block efx_netdev_notifier = {
	.notifier_call = efx_netdev_event,
};

B
Ben Hutchings 已提交
2050 2051 2052 2053 2054 2055 2056 2057
static ssize_t
show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
	return sprintf(buf, "%d\n", efx->phy_type);
}
static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);

2058 2059 2060
static int efx_register_netdev(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
2061
	struct efx_channel *channel;
2062 2063 2064 2065
	int rc;

	net_dev->watchdog_timeo = 5 * HZ;
	net_dev->irq = efx->pci_dev->irq;
S
Stephen Hemminger 已提交
2066
	net_dev->netdev_ops = &efx_netdev_ops;
2067 2068
	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);

2069
	rtnl_lock();
2070 2071 2072 2073

	rc = dev_alloc_name(net_dev, net_dev->name);
	if (rc < 0)
		goto fail_locked;
2074
	efx_update_name(efx);
2075 2076 2077 2078 2079

	rc = register_netdevice(net_dev);
	if (rc)
		goto fail_locked;

2080 2081
	efx_for_each_channel(channel, efx) {
		struct efx_tx_queue *tx_queue;
2082 2083
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_init_tx_queue_core_txq(tx_queue);
2084 2085
	}

2086
	/* Always start with carrier off; PHY events will detect the link */
2087
	netif_carrier_off(net_dev);
2088

2089
	rtnl_unlock();
2090

B
Ben Hutchings 已提交
2091 2092
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	if (rc) {
2093 2094
		netif_err(efx, drv, efx->net_dev,
			  "failed to init net dev attributes\n");
B
Ben Hutchings 已提交
2095 2096 2097
		goto fail_registered;
	}

2098
	return 0;
B
Ben Hutchings 已提交
2099

2100 2101
fail_locked:
	rtnl_unlock();
2102
	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2103 2104
	return rc;

B
Ben Hutchings 已提交
2105 2106 2107
fail_registered:
	unregister_netdev(net_dev);
	return rc;
2108 2109 2110 2111
}

static void efx_unregister_netdev(struct efx_nic *efx)
{
2112
	struct efx_channel *channel;
2113 2114 2115 2116 2117
	struct efx_tx_queue *tx_queue;

	if (!efx->net_dev)
		return;

2118
	BUG_ON(netdev_priv(efx->net_dev) != efx);
2119 2120 2121 2122

	/* Free up any skbs still remaining. This has to happen before
	 * we try to unregister the netdev as running their destructors
	 * may be needed to get the device ref. count to 0. */
2123 2124 2125 2126
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel)
			efx_release_tx_buffers(tx_queue);
	}
2127

2128 2129 2130
	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
	unregister_netdev(efx->net_dev);
2131 2132 2133 2134 2135 2136 2137 2138
}

/**************************************************************************
 *
 * Device reset and suspend
 *
 **************************************************************************/

B
Ben Hutchings 已提交
2139 2140
/* Tears down the entire software state and most of the hardware state
 * before reset.  */
B
Ben Hutchings 已提交
2141
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2142 2143 2144
{
	EFX_ASSERT_RESET_SERIALISED(efx);

B
Ben Hutchings 已提交
2145 2146 2147
	efx_stop_all(efx);
	mutex_lock(&efx->mac_lock);

2148
	efx_stop_interrupts(efx, false);
2149 2150
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
		efx->phy_op->fini(efx);
2151
	efx->type->fini(efx);
2152 2153
}

B
Ben Hutchings 已提交
2154 2155 2156 2157 2158
/* This function will always ensure that the locks acquired in
 * efx_reset_down() are released. A failure return code indicates
 * that we were unable to reinitialise the hardware, and the
 * driver should be disabled. If ok is false, then the rx and tx
 * engines are not restarted, pending a RESET_DISABLE. */
B
Ben Hutchings 已提交
2159
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2160 2161 2162
{
	int rc;

B
Ben Hutchings 已提交
2163
	EFX_ASSERT_RESET_SERIALISED(efx);
2164

2165
	rc = efx->type->init(efx);
2166
	if (rc) {
2167
		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2168
		goto fail;
2169 2170
	}

2171 2172 2173
	if (!ok)
		goto fail;

2174
	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2175 2176 2177 2178
		rc = efx->phy_op->init(efx);
		if (rc)
			goto fail;
		if (efx->phy_op->reconfigure(efx))
2179 2180
			netif_err(efx, drv, efx->net_dev,
				  "could not restore PHY settings\n");
2181 2182
	}

2183
	efx->type->reconfigure_mac(efx);
2184

2185
	efx_start_interrupts(efx, false);
B
Ben Hutchings 已提交
2186
	efx_restore_filters(efx);
2187
	efx_sriov_reset(efx);
2188 2189 2190 2191 2192 2193 2194 2195 2196

	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	return 0;

fail:
	efx->port_initialized = false;
B
Ben Hutchings 已提交
2197 2198 2199

	mutex_unlock(&efx->mac_lock);

2200 2201 2202
	return rc;
}

2203 2204
/* Reset the NIC using the specified method.  Note that the reset may
 * fail, in which case the card will be left in an unusable state.
2205
 *
2206
 * Caller must hold the rtnl_lock.
2207
 */
2208
int efx_reset(struct efx_nic *efx, enum reset_type method)
2209
{
2210 2211
	int rc, rc2;
	bool disabled;
2212

2213 2214
	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
		   RESET_TYPE(method));
2215

2216
	netif_device_detach(efx->net_dev);
B
Ben Hutchings 已提交
2217
	efx_reset_down(efx, method);
2218

2219
	rc = efx->type->reset(efx, method);
2220
	if (rc) {
2221
		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2222
		goto out;
2223 2224
	}

2225 2226 2227 2228
	/* Clear flags for the scopes we covered.  We assume the NIC and
	 * driver are now quiescent so that there is no race here.
	 */
	efx->reset_pending &= -(1 << (method + 1));
2229 2230 2231 2232 2233 2234 2235

	/* Reinitialise bus-mastering, which may have been turned off before
	 * the reset was scheduled. This is still appropriate, even in the
	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
	 * can respond to requests. */
	pci_set_master(efx->pci_dev);

2236
out:
2237
	/* Leave device stopped if necessary */
2238 2239 2240 2241 2242 2243
	disabled = rc || method == RESET_TYPE_DISABLE;
	rc2 = efx_reset_up(efx, method, !disabled);
	if (rc2) {
		disabled = true;
		if (!rc)
			rc = rc2;
2244 2245
	}

2246
	if (disabled) {
2247
		dev_close(efx->net_dev);
2248
		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2249 2250
		efx->state = STATE_DISABLED;
	} else {
2251
		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2252
		netif_device_attach(efx->net_dev);
2253
	}
2254 2255 2256 2257 2258 2259 2260 2261
	return rc;
}

/* The worker thread exists so that code that cannot sleep can
 * schedule a reset for later.
 */
static void efx_reset_work(struct work_struct *data)
{
2262
	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2263
	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2264

2265
	if (!pending)
2266 2267
		return;

2268
	/* If we're not RUNNING then don't reset. Leave the reset_pending
2269
	 * flags set so that efx_pci_probe_main will be retried */
2270
	if (efx->state != STATE_RUNNING) {
2271 2272
		netif_info(efx, drv, efx->net_dev,
			   "scheduled reset quenched. NIC not RUNNING\n");
2273 2274 2275 2276
		return;
	}

	rtnl_lock();
2277
	(void)efx_reset(efx, fls(pending) - 1);
2278
	rtnl_unlock();
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
}

void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
	enum reset_type method;

	switch (type) {
	case RESET_TYPE_INVISIBLE:
	case RESET_TYPE_ALL:
	case RESET_TYPE_WORLD:
	case RESET_TYPE_DISABLE:
		method = type;
2291 2292
		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
			  RESET_TYPE(method));
2293 2294
		break;
	default:
2295
		method = efx->type->map_reset_reason(type);
2296 2297 2298
		netif_dbg(efx, drv, efx->net_dev,
			  "scheduling %s reset for %s\n",
			  RESET_TYPE(method), RESET_TYPE(type));
2299 2300
		break;
	}
2301

2302
	set_bit(method, &efx->reset_pending);
2303

2304 2305 2306 2307
	/* efx_process_channel() will no longer read events once a
	 * reset is scheduled. So switch back to poll'd MCDI completions. */
	efx_mcdi_mode_poll(efx);

2308
	queue_work(reset_workqueue, &efx->reset_work);
2309 2310 2311 2312 2313 2314 2315 2316 2317
}

/**************************************************************************
 *
 * List of NICs we support
 *
 **************************************************************************/

/* PCI device ID table */
2318
static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2319 2320
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2321
	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2322 2323
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2324
	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2325
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2326
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2327
	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2328
	 .driver_data = (unsigned long) &siena_a0_nic_type},
2329 2330 2331 2332 2333
	{0}			/* end of list */
};

/**************************************************************************
 *
2334
 * Dummy PHY/MAC operations
2335
 *
2336
 * Can be used for some unimplemented operations
2337 2338 2339 2340 2341 2342 2343 2344 2345
 * Needed so all function pointers are valid and do not have to be tested
 * before use
 *
 **************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
	return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
S
stephen hemminger 已提交
2346 2347

static bool efx_port_dummy_op_poll(struct efx_nic *efx)
S
Steve Hodgson 已提交
2348 2349 2350
{
	return false;
}
2351

2352
static const struct efx_phy_operations efx_dummy_phy_operations = {
2353
	.init		 = efx_port_dummy_op_int,
B
Ben Hutchings 已提交
2354
	.reconfigure	 = efx_port_dummy_op_int,
S
Steve Hodgson 已提交
2355
	.poll		 = efx_port_dummy_op_poll,
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	.fini		 = efx_port_dummy_op_void,
};

/**************************************************************************
 *
 * Data housekeeping
 *
 **************************************************************************/

/* This zeroes out and then fills in the invariants in a struct
 * efx_nic (including all sub-structures).
 */
2368
static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2369 2370
			   struct pci_dev *pci_dev, struct net_device *net_dev)
{
2371
	int i;
2372 2373 2374 2375

	/* Initialise common structures */
	memset(efx, 0, sizeof(*efx));
	spin_lock_init(&efx->biu_lock);
2376 2377 2378
#ifdef CONFIG_SFC_MTD
	INIT_LIST_HEAD(&efx->mtd_list);
#endif
2379 2380
	INIT_WORK(&efx->reset_work, efx_reset_work);
	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2381
	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2382
	efx->pci_dev = pci_dev;
2383
	efx->msg_enable = debug;
2384 2385 2386 2387 2388 2389 2390
	efx->state = STATE_INIT;
	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));

	efx->net_dev = net_dev;
	spin_lock_init(&efx->stats_lock);
	mutex_init(&efx->mac_lock);
	efx->phy_op = &efx_dummy_phy_operations;
2391
	efx->mdio.dev = net_dev;
2392
	INIT_WORK(&efx->mac_work, efx_mac_work);
2393
	init_waitqueue_head(&efx->flush_wq);
2394 2395

	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2396 2397 2398
		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
		if (!efx->channel[i])
			goto fail;
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
	}

	efx->type = type;

	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);

	/* Higher numbered interrupt modes are less capable! */
	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
				  interrupt_mode);

2409 2410 2411 2412
	/* Would be good to use the net_dev name, but we're too early */
	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
		 pci_name(pci_dev));
	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2413
	if (!efx->workqueue)
2414
		goto fail;
2415

2416
	return 0;
2417 2418 2419 2420

fail:
	efx_fini_struct(efx);
	return -ENOMEM;
2421 2422 2423 2424
}

static void efx_fini_struct(struct efx_nic *efx)
{
2425 2426 2427 2428 2429
	int i;

	for (i = 0; i < EFX_MAX_CHANNELS; i++)
		kfree(efx->channel[i]);

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
	if (efx->workqueue) {
		destroy_workqueue(efx->workqueue);
		efx->workqueue = NULL;
	}
}

/**************************************************************************
 *
 * PCI interface
 *
 **************************************************************************/

/* Main body of final NIC shutdown code
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove_main(struct efx_nic *efx)
{
2447 2448 2449 2450
#ifdef CONFIG_RFS_ACCEL
	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
	efx->net_dev->rx_cpu_rmap = NULL;
#endif
2451
	efx_stop_interrupts(efx, false);
2452
	efx_nic_fini_interrupt(efx);
2453
	efx_fini_port(efx);
2454
	efx->type->fini(efx);
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	efx_fini_napi(efx);
	efx_remove_all(efx);
}

/* Final NIC shutdown
 * This is called only at module unload (or hotplug removal).
 */
static void efx_pci_remove(struct pci_dev *pci_dev)
{
	struct efx_nic *efx;

	efx = pci_get_drvdata(pci_dev);
	if (!efx)
		return;

	/* Mark the NIC as fini, then stop the interface */
	rtnl_lock();
	efx->state = STATE_FINI;
	dev_close(efx->net_dev);

	/* Allow any queued efx_resets() to complete */
	rtnl_unlock();

2478
	efx_stop_interrupts(efx, false);
2479
	efx_sriov_fini(efx);
2480 2481
	efx_unregister_netdev(efx);

2482 2483
	efx_mtd_remove(efx);

2484 2485 2486 2487
	/* Wait for any scheduled resets to complete. No more will be
	 * scheduled from this point because efx_stop_all() has been
	 * called, we are no longer registered with driverlink, and
	 * the net_device's have been removed. */
2488
	cancel_work_sync(&efx->reset_work);
2489 2490 2491 2492

	efx_pci_remove_main(efx);

	efx_fini_io(efx);
2493
	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2494 2495 2496 2497 2498 2499

	pci_set_drvdata(pci_dev, NULL);
	efx_fini_struct(efx);
	free_netdev(efx->net_dev);
};

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
/* NIC VPD information
 * Called during probe to display the part number of the
 * installed NIC.  VPD is potentially very large but this should
 * always appear within the first 512 bytes.
 */
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
	struct pci_dev *dev = efx->pci_dev;
	char vpd_data[SFC_VPD_LEN];
	ssize_t vpd_size;
	int i, j;

	/* Get the vpd data from the device */
	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
	if (vpd_size <= 0) {
		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
		return;
	}

	/* Get the Read only section */
	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
		return;
	}

	j = pci_vpd_lrdt_size(&vpd_data[i]);
	i += PCI_VPD_LRDT_TAG_SIZE;
	if (i + j > vpd_size)
		j = vpd_size - i;

	/* Get the Part number */
	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
	if (i < 0) {
		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
		return;
	}

	j = pci_vpd_info_field_size(&vpd_data[i]);
	i += PCI_VPD_INFO_FLD_HDR_SIZE;
	if (i + j > vpd_size) {
		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
		return;
	}

	netif_info(efx, drv, efx->net_dev,
		   "Part Number : %.*s\n", j, &vpd_data[i]);
}


2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
/* Main body of NIC initialisation
 * This is called at module load (or hotplug insertion, theoretically).
 */
static int efx_pci_probe_main(struct efx_nic *efx)
{
	int rc;

	/* Do start-of-day initialisation */
	rc = efx_probe_all(efx);
	if (rc)
		goto fail1;

2563
	efx_init_napi(efx);
2564

2565
	rc = efx->type->init(efx);
2566
	if (rc) {
2567 2568
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise NIC\n");
2569
		goto fail3;
2570 2571 2572 2573
	}

	rc = efx_init_port(efx);
	if (rc) {
2574 2575
		netif_err(efx, probe, efx->net_dev,
			  "failed to initialise port\n");
2576
		goto fail4;
2577 2578
	}

2579
	rc = efx_nic_init_interrupt(efx);
2580
	if (rc)
2581
		goto fail5;
2582
	efx_start_interrupts(efx, false);
2583 2584 2585

	return 0;

2586
 fail5:
2587 2588
	efx_fini_port(efx);
 fail4:
2589
	efx->type->fini(efx);
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
 fail3:
	efx_fini_napi(efx);
	efx_remove_all(efx);
 fail1:
	return rc;
}

/* NIC initialisation
 *
 * This is called at module load (or hotplug insertion,
2600
 * theoretically).  It sets up PCI mappings, resets the NIC,
2601 2602 2603 2604 2605 2606 2607 2608
 * sets up and registers the network devices with the kernel and hooks
 * the interrupt service routine.  It does not prepare the device for
 * transmission; this is left to the first time one of the network
 * interfaces is brought up (i.e. efx_net_open).
 */
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
				   const struct pci_device_id *entry)
{
2609
	const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2610 2611
	struct net_device *net_dev;
	struct efx_nic *efx;
2612
	int rc;
2613 2614

	/* Allocate and initialise a struct net_device and struct efx_nic */
2615 2616
	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
				     EFX_MAX_RX_QUEUES);
2617 2618
	if (!net_dev)
		return -ENOMEM;
2619
	net_dev->features |= (type->offload_features | NETIF_F_SG |
B
Ben Hutchings 已提交
2620
			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2621
			      NETIF_F_RXCSUM);
B
Ben Hutchings 已提交
2622 2623
	if (type->offload_features & NETIF_F_V6_CSUM)
		net_dev->features |= NETIF_F_TSO6;
2624 2625
	/* Mask for features that also apply to VLAN devices */
	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2626 2627 2628 2629
				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
				   NETIF_F_RXCSUM);
	/* All offloads can be toggled */
	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2630
	efx = netdev_priv(net_dev);
2631
	pci_set_drvdata(pci_dev, efx);
2632
	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2633 2634 2635 2636
	rc = efx_init_struct(efx, type, pci_dev, net_dev);
	if (rc)
		goto fail1;

2637
	netif_info(efx, probe, efx->net_dev,
2638
		   "Solarflare NIC detected\n");
2639

2640 2641
	efx_print_product_vpd(efx);

2642 2643 2644 2645 2646
	/* Set up basic I/O (BAR mappings etc) */
	rc = efx_init_io(efx);
	if (rc)
		goto fail2;

2647
	rc = efx_pci_probe_main(efx);
2648

2649 2650 2651 2652 2653
	/* Serialise against efx_reset(). No more resets will be
	 * scheduled since efx_stop_all() has been called, and we have
	 * not and never have been registered.
	 */
	cancel_work_sync(&efx->reset_work);
2654

2655 2656
	if (rc)
		goto fail3;
2657

2658 2659 2660 2661 2662
	/* If there was a scheduled reset during probe, the NIC is
	 * probably hosed anyway.
	 */
	if (efx->reset_pending) {
		rc = -EIO;
2663 2664 2665
		goto fail4;
	}

2666 2667
	/* Switch to the running state before we expose the device to the OS,
	 * so that dev_open()|efx_start_all() will actually start the device */
2668
	efx->state = STATE_RUNNING;
2669

2670 2671
	rc = efx_register_netdev(efx);
	if (rc)
2672
		goto fail4;
2673

2674 2675 2676 2677 2678
	rc = efx_sriov_init(efx);
	if (rc)
		netif_err(efx, probe, efx->net_dev,
			  "SR-IOV can't be enabled rc %d\n", rc);

2679
	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2680

2681
	/* Try to create MTDs, but allow this to fail */
2682
	rtnl_lock();
2683
	rc = efx_mtd_probe(efx);
2684
	rtnl_unlock();
2685 2686 2687 2688
	if (rc)
		netif_warn(efx, probe, efx->net_dev,
			   "failed to create MTDs (%d)\n", rc);

2689 2690 2691
	return 0;

 fail4:
2692
	efx_pci_remove_main(efx);
2693 2694 2695 2696 2697
 fail3:
	efx_fini_io(efx);
 fail2:
	efx_fini_struct(efx);
 fail1:
S
Steve Hodgson 已提交
2698
	WARN_ON(rc > 0);
2699
	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2700 2701 2702 2703
	free_netdev(net_dev);
	return rc;
}

2704 2705 2706 2707 2708 2709 2710 2711 2712
static int efx_pm_freeze(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_FINI;

	netif_device_detach(efx->net_dev);

	efx_stop_all(efx);
2713
	efx_stop_interrupts(efx, false);
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723

	return 0;
}

static int efx_pm_thaw(struct device *dev)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	efx->state = STATE_INIT;

2724
	efx_start_interrupts(efx, false);
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737

	mutex_lock(&efx->mac_lock);
	efx->phy_op->reconfigure(efx);
	mutex_unlock(&efx->mac_lock);

	efx_start_all(efx);

	netif_device_attach(efx->net_dev);

	efx->state = STATE_RUNNING;

	efx->type->resume_wol(efx);

2738 2739 2740
	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
	queue_work(reset_workqueue, &efx->reset_work);

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	return 0;
}

static int efx_pm_poweroff(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);

	efx->type->fini(efx);

2751
	efx->reset_pending = 0;
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792

	pci_save_state(pci_dev);
	return pci_set_power_state(pci_dev, PCI_D3hot);
}

/* Used for both resume and restore */
static int efx_pm_resume(struct device *dev)
{
	struct pci_dev *pci_dev = to_pci_dev(dev);
	struct efx_nic *efx = pci_get_drvdata(pci_dev);
	int rc;

	rc = pci_set_power_state(pci_dev, PCI_D0);
	if (rc)
		return rc;
	pci_restore_state(pci_dev);
	rc = pci_enable_device(pci_dev);
	if (rc)
		return rc;
	pci_set_master(efx->pci_dev);
	rc = efx->type->reset(efx, RESET_TYPE_ALL);
	if (rc)
		return rc;
	rc = efx->type->init(efx);
	if (rc)
		return rc;
	efx_pm_thaw(dev);
	return 0;
}

static int efx_pm_suspend(struct device *dev)
{
	int rc;

	efx_pm_freeze(dev);
	rc = efx_pm_poweroff(dev);
	if (rc)
		efx_pm_resume(dev);
	return rc;
}

2793
static const struct dev_pm_ops efx_pm_ops = {
2794 2795 2796 2797 2798 2799 2800 2801
	.suspend	= efx_pm_suspend,
	.resume		= efx_pm_resume,
	.freeze		= efx_pm_freeze,
	.thaw		= efx_pm_thaw,
	.poweroff	= efx_pm_poweroff,
	.restore	= efx_pm_resume,
};

2802
static struct pci_driver efx_pci_driver = {
2803
	.name		= KBUILD_MODNAME,
2804 2805 2806
	.id_table	= efx_pci_table,
	.probe		= efx_pci_probe,
	.remove		= efx_pci_remove,
2807
	.driver.pm	= &efx_pm_ops,
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
};

/**************************************************************************
 *
 * Kernel module interface
 *
 *************************************************************************/

module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");

static int __init efx_init_module(void)
{
	int rc;

	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");

	rc = register_netdevice_notifier(&efx_netdev_notifier);
	if (rc)
		goto err_notifier;

2830 2831 2832 2833
	rc = efx_init_sriov();
	if (rc)
		goto err_sriov;

2834 2835 2836 2837 2838
	reset_workqueue = create_singlethread_workqueue("sfc_reset");
	if (!reset_workqueue) {
		rc = -ENOMEM;
		goto err_reset;
	}
2839 2840 2841 2842 2843 2844 2845 2846

	rc = pci_register_driver(&efx_pci_driver);
	if (rc < 0)
		goto err_pci;

	return 0;

 err_pci:
2847 2848
	destroy_workqueue(reset_workqueue);
 err_reset:
2849 2850
	efx_fini_sriov();
 err_sriov:
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	unregister_netdevice_notifier(&efx_netdev_notifier);
 err_notifier:
	return rc;
}

static void __exit efx_exit_module(void)
{
	printk(KERN_INFO "Solarflare NET driver unloading\n");

	pci_unregister_driver(&efx_pci_driver);
2861
	destroy_workqueue(reset_workqueue);
2862
	efx_fini_sriov();
2863 2864 2865 2866 2867 2868 2869
	unregister_netdevice_notifier(&efx_netdev_notifier);

}

module_init(efx_init_module);
module_exit(efx_exit_module);

2870 2871
MODULE_AUTHOR("Solarflare Communications and "
	      "Michael Brown <mbrown@fensystems.co.uk>");
2872 2873 2874
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);