entry_64.S 46.7 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
ENTRY(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_FLAGS flags:req
57
#ifdef CONFIG_TRACE_IRQFLAGS
58
	btl	$9, \flags		/* interrupts off? */
59
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_OFF
85
	call	debug_stack_reset
86 87 88
.endm

.macro TRACE_IRQS_ON_DEBUG
89
	call	debug_stack_set_zero
90
	TRACE_IRQS_ON
91
	call	debug_stack_reset
92 93
.endm

94
.macro TRACE_IRQS_IRETQ_DEBUG
95
	btl	$9, EFLAGS(%rsp)		/* interrupts off? */
96
	jnc	1f
97 98 99 100 101
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
102 103 104
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105 106
#endif

L
Linus Torvalds 已提交
107
/*
108
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
109
 *
110 111 112 113 114 115 116 117 118 119
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
120
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 122 123 124 125 126
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
127
 * rax  system call number
128 129
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
130 131
 * rdi  arg0
 * rsi  arg1
132
 * rdx  arg2
133
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
134 135
 * r8   arg4
 * r9   arg5
136
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137
 *
L
Linus Torvalds 已提交
138 139
 * Only called from user space.
 *
140
 * When user can change pt_regs->foo always force IRET. That is because
141 142
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
143
 */
L
Linus Torvalds 已提交
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	.pushsection .entry_trampoline, "ax"

/*
 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
 * that the assembler and linker have the wrong idea as to where this code
 * lives (and, in fact, it's mapped more than once, so it's not even at a
 * fixed address).  So we can't reference any symbols outside the entry
 * trampoline and expect it to work.
 *
 * Instead, we carefully abuse %rip-relative addressing.
 * _entry_trampoline(%rip) refers to the start of the remapped) entry
 * trampoline.  We can thus find cpu_entry_area with this macro:
 */

#define CPU_ENTRY_AREA \
	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)

/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
163 164
#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
165 166 167 168 169 170 171 172

ENTRY(entry_SYSCALL_64_trampoline)
	UNWIND_HINT_EMPTY
	swapgs

	/* Stash the user RSP. */
	movq	%rsp, RSP_SCRATCH

173 174 175
	/* Note: using %rsp as a scratch reg. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/* Load the top of the task stack into RSP */
	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp

	/* Start building the simulated IRET frame. */
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	RSP_SCRATCH			/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */

	/*
	 * x86 lacks a near absolute jump, and we can't jump to the real
	 * entry text with a relative jump.  We could push the target
	 * address and then use retq, but this destroys the pipeline on
	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
	 * spill RDI and restore it in a second-stage trampoline.
	 */
	pushq	%rdi
	movq	$entry_SYSCALL_64_stage2, %rdi
195
	JMP_NOSPEC %rdi
196 197 198 199 200 201 202 203 204 205
END(entry_SYSCALL_64_trampoline)

	.popsection

ENTRY(entry_SYSCALL_64_stage2)
	UNWIND_HINT_EMPTY
	popq	%rdi
	jmp	entry_SYSCALL_64_after_hwframe
END(entry_SYSCALL_64_stage2)

206
ENTRY(entry_SYSCALL_64)
207
	UNWIND_HINT_EMPTY
208 209 210 211 212
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
213

214
	swapgs
215
	/*
216
	 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
217 218
	 * is not required to switch CR3.
	 */
219 220
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
221 222

	/* Construct struct pt_regs on stack */
223 224 225 226 227
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
228
GLOBAL(entry_SYSCALL_64_after_hwframe)
229
	pushq	%rax				/* pt_regs->orig_ax */
230 231

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
232

233 234
	TRACE_IRQS_OFF

235
	/* IRQs are off. */
236 237
	movq	%rax, %rdi
	movq	%rsp, %rsi
238 239
	call	do_syscall_64		/* returns with IRQs disabled */

240
	TRACE_IRQS_IRETQ		/* we're about to change IF */
241 242 243

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
244 245
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
246
	 */
247 248
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
249 250 251

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
252 253 254 255

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
256
	 * the kernel, since userspace controls RSP.
257
	 *
258
	 * If width of "canonical tail" ever becomes variable, this will need
259
	 * to be updated to remain correct on both old and new CPUs.
260
	 *
261 262
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
263
	 */
264
#ifdef CONFIG_X86_5LEVEL
265 266
	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
267
#else
268 269
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
270
#endif
271

272 273
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
274
	jne	swapgs_restore_regs_and_return_to_usermode
275

276
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
277
	jne	swapgs_restore_regs_and_return_to_usermode
278

279 280
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
281
	jne	swapgs_restore_regs_and_return_to_usermode
282 283

	/*
284 285 286 287 288 289 290 291 292
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
293
	 *
294
	 *           movq	$stuck_here, %rcx
295 296 297 298 299 300
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
301
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
302
	jnz	swapgs_restore_regs_and_return_to_usermode
303 304 305

	/* nothing to check for RSP */

306
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
307
	jne	swapgs_restore_regs_and_return_to_usermode
308 309

	/*
310 311
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
312 313
	 */
syscall_return_via_sysret:
314
	/* rcx and r11 are already restored (see code above) */
315
	UNWIND_HINT_EMPTY
316
	POP_REGS pop_rdi=0 skip_r11rcx=1
317 318 319 320 321 322

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
323
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
324 325 326 327 328 329 330 331

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
332
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
333

334
	popq	%rdi
335
	popq	%rsp
336
	USERGS_SYSRET64
337
END(entry_SYSCALL_64)
338

339 340 341 342 343
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
344
	UNWIND_HINT_FUNC
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

360
#ifdef CONFIG_STACKPROTECTOR
361 362 363 364
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

365 366 367 368 369 370 371 372
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
373
	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
374 375
#endif

376 377 378 379 380 381 382 383 384 385 386
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

387 388 389
/*
 * A newly forked process directly context switches into this address.
 *
390
 * rax: prev task we switched from
391 392
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
393 394
 */
ENTRY(ret_from_fork)
395
	UNWIND_HINT_EMPTY
396
	movq	%rax, %rdi
397
	call	schedule_tail			/* rdi: 'prev' task parameter */
398

399 400
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
401

402
2:
403
	UNWIND_HINT_REGS
404
	movq	%rsp, %rdi
405 406
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
407
	jmp	swapgs_restore_regs_and_return_to_usermode
408 409 410

1:
	/* kernel thread */
411
	UNWIND_HINT_EMPTY
412
	movq	%r12, %rdi
413
	CALL_NOSPEC %rbx
414 415 416 417 418 419 420
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
421 422
END(ret_from_fork)

423
/*
424 425
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
426
 */
427
	.align 8
428
ENTRY(irq_entries_start)
429 430
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
431
	UNWIND_HINT_IRET_REGS
432
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
433 434
	jmp	common_interrupt
	.align	8
435
	vector=vector+1
436
    .endr
437 438
END(irq_entries_start)

439 440
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
441 442 443
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
444 445 446
	jz .Lokay_\@
	ud2
.Lokay_\@:
447
	popq %rax
448 449 450 451 452 453 454 455 456 457
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
458
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
459
	DEBUG_ENTRY_ASSERT_IRQS_OFF
460 461 462 463 464 465 466 467 468

	.if \save_ret
	/*
	 * If save_ret is set, the original stack contains one additional
	 * entry -- the return address. Therefore, move the address one
	 * entry below %rsp to \old_rsp.
	 */
	leaq	8(%rsp), \old_rsp
	.else
469
	movq	%rsp, \old_rsp
470
	.endif
471 472 473 474 475

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

476
	incl	PER_CPU_VAR(irq_count)
477
	jnz	.Lirq_stack_push_old_rsp_\@
478 479 480 481 482 483 484 485 486

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
503
	 */
504 505 506 507 508
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
509

510
.Lirq_stack_push_old_rsp_\@:
511
	pushq	\old_rsp
512 513 514 515

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
516 517 518 519 520 521 522 523 524

	.if \save_ret
	/*
	 * Push the return address to the stack. This return address can
	 * be found at the "real" original RSP, which was offset by 8 at
	 * the beginning of this macro.
	 */
	pushq	-8(\old_rsp)
	.endif
525 526 527 528 529
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
530
.macro LEAVE_IRQ_STACK regs=1
531 532 533 534
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

535 536 537 538
	.if \regs
	UNWIND_HINT_REGS
	.endif

539 540 541 542 543 544 545 546
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

547
/*
548
 * Interrupt entry helper function.
549
 *
550 551 552 553 554 555 556 557 558 559 560 561
 * Entry runs with interrupts off. Stack layout at entry:
 * +----------------------------------------------------+
 * | regs->ss						|
 * | regs->rsp						|
 * | regs->eflags					|
 * | regs->cs						|
 * | regs->ip						|
 * +----------------------------------------------------+
 * | regs->orig_ax = ~(interrupt number)		|
 * +----------------------------------------------------+
 * | return address					|
 * +----------------------------------------------------+
562
 */
563 564 565
ENTRY(interrupt_entry)
	UNWIND_HINT_FUNC
	ASM_CLAC
566
	cld
567

568
	testb	$3, CS-ORIG_RAX+8(%rsp)
569 570
	jz	1f
	SWAPGS
571 572 573 574 575 576 577

	/*
	 * Switch to the thread stack. The IRET frame and orig_ax are
	 * on the stack, as well as the return address. RDI..R12 are
	 * not (yet) on the stack and space has not (yet) been
	 * allocated for them.
	 */
578
	pushq	%rdi
579

580 581 582 583
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
584 585 586 587 588 589

	 /*
	  * We have RDI, return address, and orig_ax on the stack on
	  * top of the IRET frame. That means offset=24
	  */
	UNWIND_HINT_IRET_REGS base=%rdi offset=24
590 591 592 593 594 595 596 597 598 599 600

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
601 602
1:

603 604
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
605

606
	testb	$3, CS+8(%rsp)
607
	jz	1f
608 609

	/*
610 611
	 * IRQ from user mode.
	 *
612 613
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
614
	 * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
615 616 617 618 619 620
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

621
	CALL_enter_from_user_mode
622

623
1:
624
	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
625 626 627
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

628 629
	ret
END(interrupt_entry)
630
_ASM_NOKPROBE(interrupt_entry)
631

632 633

/* Interrupt entry/exit. */
L
Linus Torvalds 已提交
634

635 636 637 638
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
639 640
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
641
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
642 643 644
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	do_IRQ	/* rdi points to pt_regs */
645
	/* 0(%rsp): old RSP */
646
ret_from_intr:
647
	DISABLE_INTERRUPTS(CLBR_ANY)
648
	TRACE_IRQS_OFF
649

650
	LEAVE_IRQ_STACK
651

652
	testb	$3, CS(%rsp)
653
	jz	retint_kernel
654

655 656 657 658
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
659
	TRACE_IRQS_IRETQ
660

661
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
662 663
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
664
	testb	$3, CS(%rsp)
665 666 667 668
	jnz	1f
	ud2
1:
#endif
669
	POP_REGS pop_rdi=0
670 671 672 673 674 675

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
676
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */

693
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
694

695 696 697
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
698 699
	INTERRUPT_RETURN

700

701
/* Returning to kernel space */
702
retint_kernel:
703 704 705
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
706
	btl	$9, EFLAGS(%rsp)		/* were interrupts off? */
707
	jnc	1f
708
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
709
	jnz	1f
710
	call	preempt_schedule_irq
711
	jmp	0b
712
1:
713
#endif
714 715 716 717
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
718

719 720 721
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
722
	testb	$3, CS(%rsp)
723 724 725 726
	jz	1f
	ud2
1:
#endif
727
	POP_REGS
728
	addq	$8, %rsp	/* skip regs->orig_ax */
729 730 731 732
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
733 734 735
	INTERRUPT_RETURN

ENTRY(native_iret)
736
	UNWIND_HINT_IRET_REGS
737 738 739 740
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
741
#ifdef CONFIG_X86_ESPFIX64
742 743
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
744
#endif
745

746
.global native_irq_return_iret
747
native_irq_return_iret:
A
Andy Lutomirski 已提交
748 749 750 751 752 753
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
754
	iretq
I
Ingo Molnar 已提交
755

756
#ifdef CONFIG_X86_ESPFIX64
757
native_irq_return_ldt:
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
780 781 782
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

783
	movq	PER_CPU_VAR(espfix_waddr), %rdi
784 785
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
786
	movq	%rax, (1*8)(%rdi)
787
	movq	(2*8)(%rsp), %rax		/* user CS */
788
	movq	%rax, (2*8)(%rdi)
789
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
790
	movq	%rax, (3*8)(%rdi)
791
	movq	(5*8)(%rsp), %rax		/* user SS */
792
	movq	%rax, (5*8)(%rdi)
793
	movq	(4*8)(%rsp), %rax		/* user RSP */
794
	movq	%rax, (4*8)(%rdi)
795 796 797 798 799 800 801 802 803 804 805 806
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
807
	orq	PER_CPU_VAR(espfix_stack), %rax
808

809
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
810 811 812
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

813
	movq	%rax, %rsp
814
	UNWIND_HINT_IRET_REGS offset=8
815 816 817 818 819 820 821 822 823 824 825 826

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
827
	jmp	native_irq_return_iret
828
#endif
829
END(common_interrupt)
830
_ASM_NOKPROBE(common_interrupt)
831

L
Linus Torvalds 已提交
832 833
/*
 * APIC interrupts.
834
 */
835
.macro apicinterrupt3 num sym do_sym
836
ENTRY(\sym)
837
	UNWIND_HINT_IRET_REGS
838
	pushq	$~(\num)
839
.Lcommon_\sym:
840 841 842
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	\do_sym	/* rdi points to pt_regs */
843
	jmp	ret_from_intr
844
END(\sym)
845
_ASM_NOKPROBE(\sym)
846
.endm
L
Linus Torvalds 已提交
847

848
/* Make sure APIC interrupt handlers end up in the irqentry section: */
849 850
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
851

852
.macro apicinterrupt num sym do_sym
853
PUSH_SECTION_IRQENTRY
854
apicinterrupt3 \num \sym \do_sym
855
POP_SECTION_IRQENTRY
856 857
.endm

858
#ifdef CONFIG_SMP
859 860
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
861
#endif
L
Linus Torvalds 已提交
862

N
Nick Piggin 已提交
863
#ifdef CONFIG_X86_UV
864
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
865
#endif
866 867 868

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
869

870
#ifdef CONFIG_HAVE_KVM
871 872
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
873
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
874 875
#endif

876
#ifdef CONFIG_X86_MCE_THRESHOLD
877
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
878 879
#endif

880
#ifdef CONFIG_X86_MCE_AMD
881
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
882 883
#endif

884
#ifdef CONFIG_X86_THERMAL_VECTOR
885
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
886
#endif
887

888
#ifdef CONFIG_SMP
889 890 891
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
892
#endif
L
Linus Torvalds 已提交
893

894 895
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
896

897
#ifdef CONFIG_IRQ_WORK
898
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
899 900
#endif

L
Linus Torvalds 已提交
901 902
/*
 * Exception entry points.
903
 */
904
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
905 906

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
907
ENTRY(\sym)
908
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
909

910 911 912 913 914
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

915
	ASM_CLAC
916

917
	.if \has_error_code == 0
918
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
919 920
	.endif

921
	.if \paranoid == 1
922
	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
923
	jnz	.Lfrom_usermode_switch_stack_\@
924
	.endif
925 926

	.if \paranoid
927
	call	paranoid_entry
928
	.else
929
	call	error_entry
930
	.endif
931
	UNWIND_HINT_REGS
932
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
933 934

	.if \paranoid
935
	.if \shift_ist != -1
936
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
937
	.else
938
	TRACE_IRQS_OFF
939
	.endif
940
	.endif
941

942
	movq	%rsp, %rdi			/* pt_regs pointer */
943 944

	.if \has_error_code
945 946
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
947
	.else
948
	xorl	%esi, %esi			/* no error code */
949 950
	.endif

951
	.if \shift_ist != -1
952
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
953 954
	.endif

955
	call	\do_sym
956

957
	.if \shift_ist != -1
958
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
959 960
	.endif

961
	/* these procedures expect "no swapgs" flag in ebx */
962
	.if \paranoid
963
	jmp	paranoid_exit
964
	.else
965
	jmp	error_exit
966 967
	.endif

968
	.if \paranoid == 1
969
	/*
970
	 * Entry from userspace.  Switch stacks and treat it
971 972 973
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
974
.Lfrom_usermode_switch_stack_\@:
975
	call	error_entry
976

977
	movq	%rsp, %rdi			/* pt_regs pointer */
978 979

	.if \has_error_code
980 981
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
982
	.else
983
	xorl	%esi, %esi			/* no error code */
984 985
	.endif

986
	call	\do_sym
987

988
	jmp	error_exit
989
	.endif
990
_ASM_NOKPROBE(\sym)
991
END(\sym)
992
.endm
993

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
1013
ENTRY(native_load_gs_index)
1014
	FRAME_BEGIN
1015
	pushfq
1016
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1017
	TRACE_IRQS_OFF
1018
	SWAPGS
1019
.Lgs_change:
1020
	movl	%edi, %gs
1021
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1022
	SWAPGS
1023
	TRACE_IRQS_FLAGS (%rsp)
1024
	popfq
1025
	FRAME_END
1026
	ret
1027
ENDPROC(native_load_gs_index)
1028
EXPORT_SYMBOL(native_load_gs_index)
1029

1030
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1031
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1032
	/* running with kernelgs */
1033
bad_gs:
1034
	SWAPGS					/* switch back to user gs */
1035 1036 1037 1038 1039 1040
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1041 1042 1043
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1044
	.previous
1045

1046
/* Call softirq on interrupt stack. Interrupts are off. */
1047
ENTRY(do_softirq_own_stack)
1048 1049
	pushq	%rbp
	mov	%rsp, %rbp
1050
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1051
	call	__do_softirq
1052
	LEAVE_IRQ_STACK regs=0
1053
	leaveq
1054
	ret
1055
ENDPROC(do_softirq_own_stack)
1056

1057
#ifdef CONFIG_XEN
1058
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1059 1060

/*
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1073 1074
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1075 1076 1077 1078
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1079
	UNWIND_HINT_FUNC
1080
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1081
	UNWIND_HINT_REGS
1082 1083

	ENTER_IRQ_STACK old_rsp=%r10
1084
	call	xen_evtchn_do_upcall
1085 1086
	LEAVE_IRQ_STACK

1087
#ifndef CONFIG_PREEMPT
1088
	call	xen_maybe_preempt_hcall
1089
#endif
1090
	jmp	error_exit
1091
END(xen_do_hypervisor_callback)
1092 1093

/*
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1106
ENTRY(xen_failsafe_callback)
1107
	UNWIND_HINT_EMPTY
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1120
	/* All segments match their saved values => Category 2 (Bad IRET). */
1121 1122 1123 1124
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1125
	UNWIND_HINT_IRET_REGS offset=8
1126
	jmp	general_protection
1127
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1128 1129 1130
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1131
	UNWIND_HINT_IRET_REGS
1132
	pushq	$-1 /* orig_ax = -1 => not a system call */
1133
	PUSH_AND_CLEAR_REGS
1134
	ENCODE_FRAME_POINTER
1135
	jmp	error_exit
1136 1137
END(xen_failsafe_callback)

1138
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1139 1140
	xen_hvm_callback_vector xen_evtchn_do_upcall

1141
#endif /* CONFIG_XEN */
1142

1143
#if IS_ENABLED(CONFIG_HYPERV)
1144
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1145
	hyperv_callback_vector hyperv_vector_handler
1146 1147 1148

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1149 1150 1151

apicinterrupt3 HYPERV_STIMER0_VECTOR \
	hv_stimer0_callback_vector hv_stimer0_vector_handler
1152 1153
#endif /* CONFIG_HYPERV */

1154
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1155
idtentry int3			do_int3			has_error_code=0
1156 1157
idtentry stack_segment		do_stack_segment	has_error_code=1

1158
#ifdef CONFIG_XEN
1159
idtentry xennmi			do_nmi			has_error_code=0
1160 1161
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1162
#endif
1163 1164

idtentry general_protection	do_general_protection	has_error_code=1
1165
idtentry page_fault		do_page_fault		has_error_code=1
1166

G
Gleb Natapov 已提交
1167
#ifdef CONFIG_KVM_GUEST
1168
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1169
#endif
1170

1171
#ifdef CONFIG_X86_MCE
1172
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1173 1174
#endif

1175
/*
1176
 * Save all registers in pt_regs, and switch gs if needed.
1177 1178 1179 1180
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1181
	UNWIND_HINT_FUNC
1182
	cld
1183 1184
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1185 1186
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1187
	rdmsr
1188 1189
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1190
	SWAPGS
1191
	xorl	%ebx, %ebx
1192 1193

1:
1194 1195
	/*
	 * Always stash CR3 in %r14.  This value will be restored,
1196 1197 1198
	 * verbatim, at exit.  Needed if paranoid_entry interrupted
	 * another entry that already switched to the user CR3 value
	 * but has not yet returned to userspace.
1199 1200 1201
	 *
	 * This is also why CS (stashed in the "iret frame" by the
	 * hardware at entry) can not be used: this may be a return
1202
	 * to kernel code, but with a user CR3 value.
1203
	 */
1204 1205 1206
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

	ret
1207
END(paranoid_entry)
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1218 1219
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1220
 */
1221
ENTRY(paranoid_exit)
1222
	UNWIND_HINT_REGS
1223
	DISABLE_INTERRUPTS(CLBR_ANY)
1224
	TRACE_IRQS_OFF_DEBUG
1225
	testl	%ebx, %ebx			/* swapgs needed? */
1226
	jnz	.Lparanoid_exit_no_swapgs
1227
	TRACE_IRQS_IRETQ
1228
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1229
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1230
	SWAPGS_UNSAFE_STACK
1231 1232
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1233
	TRACE_IRQS_IRETQ_DEBUG
1234
	/* Always restore stashed CR3 value (see paranoid_entry) */
1235
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1236 1237
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1238 1239 1240
END(paranoid_exit)

/*
1241
 * Save all registers in pt_regs, and switch GS if needed.
1242 1243
 */
ENTRY(error_entry)
1244
	UNWIND_HINT_FUNC
1245
	cld
1246 1247
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1248
	testb	$3, CS+8(%rsp)
1249
	jz	.Lerror_kernelspace
1250

1251 1252 1253 1254
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1255
	SWAPGS
1256 1257
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1258

1259
.Lerror_entry_from_usermode_after_swapgs:
1260 1261 1262 1263 1264 1265 1266 1267
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1268 1269 1270 1271 1272 1273
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1274
	CALL_enter_from_user_mode
1275
	ret
1276

1277
.Lerror_entry_done:
1278 1279 1280
	TRACE_IRQS_OFF
	ret

1281 1282 1283 1284 1285 1286
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1287
.Lerror_kernelspace:
1288 1289
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1290
	je	.Lerror_bad_iret
1291 1292
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1293
	je	.Lbstep_iret
1294
	cmpq	$.Lgs_change, RIP+8(%rsp)
1295
	jne	.Lerror_entry_done
1296 1297

	/*
1298
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1299
	 * gsbase and proceed.  We'll fix up the exception and land in
1300
	 * .Lgs_change's error handler with kernel gsbase.
1301
	 */
1302
	SWAPGS
1303
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1304
	jmp .Lerror_entry_done
1305

1306
.Lbstep_iret:
1307
	/* Fix truncated RIP */
1308
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1309 1310
	/* fall through */

1311
.Lerror_bad_iret:
1312
	/*
1313 1314
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1315
	 */
A
Andy Lutomirski 已提交
1316
	SWAPGS
1317
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1318 1319 1320

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
1321
	 * as if we faulted immediately after IRET.
1322
	 */
1323 1324 1325
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1326
	jmp	.Lerror_entry_from_usermode_after_swapgs
1327 1328 1329
END(error_entry)

ENTRY(error_exit)
1330
	UNWIND_HINT_REGS
1331
	DISABLE_INTERRUPTS(CLBR_ANY)
1332
	TRACE_IRQS_OFF
1333 1334
	testb	$3, CS(%rsp)
	jz	retint_kernel
1335
	jmp	retint_user
1336 1337
END(error_exit)

1338 1339 1340
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1341 1342 1343 1344
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1345
 */
1346
ENTRY(nmi)
1347
	UNWIND_HINT_IRET_REGS
1348

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1366 1367 1368
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1369 1370
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1371
	 *    o Modify the "iret" location to jump to the repeat_nmi
1372 1373 1374 1375 1376 1377 1378 1379
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1380 1381 1382 1383 1384
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1385 1386
	 */

1387 1388
	ASM_CLAC

1389
	/* Use %rdx as our temp variable throughout */
1390
	pushq	%rdx
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1401 1402 1403
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1404 1405
	 */

1406
	swapgs
1407
	cld
1408
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1409 1410
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1411
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1412 1413 1414 1415 1416
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1417
	UNWIND_HINT_IRET_REGS
1418
	pushq   $-1		/* pt_regs->orig_ax */
1419
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1420
	ENCODE_FRAME_POINTER
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1432
	/*
1433
	 * Return back to user mode.  We must *not* do the normal exit
1434
	 * work, because we don't want to enable interrupts.
1435
	 */
1436
	jmp	swapgs_restore_regs_and_return_to_usermode
1437

1438
.Lnmi_from_kernel:
1439
	/*
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1480
	/*
1481 1482
	 * Determine whether we're a nested NMI.
	 *
1483 1484 1485 1486 1487 1488
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1489
	 */
1490 1491 1492 1493 1494 1495 1496 1497

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1498

1499
	/*
1500
	 * Now check "NMI executing".  If it's set, then we're nested.
1501 1502
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1503
	 */
1504 1505
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1506 1507

	/*
1508 1509
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1510 1511 1512 1513 1514 1515 1516 1517
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1518
	 */
1519 1520 1521 1522 1523
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1524

1525 1526 1527 1528
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1529 1530 1531 1532 1533 1534 1535

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1536

1537 1538
nested_nmi:
	/*
1539 1540
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1541
	 */
1542
	subq	$8, %rsp
1543 1544 1545
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1546
	pushfq
1547 1548
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1549 1550

	/* Put stack back */
1551
	addq	$(6*8), %rsp
1552 1553

nested_nmi_out:
1554
	popq	%rdx
1555

1556
	/* We are returning to kernel mode, so this cannot result in a fault. */
1557
	iretq
1558 1559

first_nmi:
1560
	/* Restore rdx. */
1561
	movq	(%rsp), %rdx
1562

1563 1564
	/* Make room for "NMI executing". */
	pushq	$0
1565

1566
	/* Leave room for the "iret" frame */
1567
	subq	$(5*8), %rsp
1568

1569
	/* Copy the "original" frame to the "outermost" frame */
1570
	.rept 5
1571
	pushq	11*8(%rsp)
1572
	.endr
1573
	UNWIND_HINT_IRET_REGS
1574

1575 1576
	/* Everything up to here is safe from nested NMIs */

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1588
	iretq			/* continues at repeat_nmi below */
1589
	UNWIND_HINT_IRET_REGS
1590 1591 1592
1:
#endif

1593
repeat_nmi:
1594 1595 1596 1597 1598 1599 1600 1601
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1602 1603 1604 1605
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1606 1607
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1608
	 */
1609
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1610

1611
	/*
1612 1613 1614
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1615
	 */
1616
	addq	$(10*8), %rsp
1617
	.rept 5
1618
	pushq	-6*8(%rsp)
1619
	.endr
1620
	subq	$(5*8), %rsp
1621
end_repeat_nmi:
1622 1623

	/*
1624 1625 1626
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1627
	 */
1628
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1629

1630
	/*
1631
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1632 1633 1634 1635 1636
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1637
	call	paranoid_entry
1638
	UNWIND_HINT_REGS
1639

1640
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1641 1642 1643
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1644

1645
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1646
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1647

1648 1649
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1650 1651 1652
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1653
	POP_REGS
1654

1655 1656 1657 1658 1659
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1660

1661 1662 1663
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1664 1665 1666 1667 1668
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1669 1670 1671
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1672 1673

	/*
1674 1675 1676 1677
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1678
	 */
1679
	iretq
1680 1681 1682
END(nmi)

ENTRY(ignore_sysret)
1683
	UNWIND_HINT_EMPTY
1684
	mov	$-ENOSYS, %eax
1685 1686
	sysret
END(ignore_sysret)
1687 1688

ENTRY(rewind_stack_do_exit)
1689
	UNWIND_HINT_FUNC
1690 1691 1692 1693
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1694 1695
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1696 1697 1698

	call	do_exit
END(rewind_stack_do_exit)