entry_64.S 43.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7
 *
L
Linus Torvalds 已提交
8 9
 * entry.S contains the system-call and fault low-level handling routines.
 *
10 11
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
12
 * A note on terminology:
13 14
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
15 16
 *
 * Some macro usage:
17 18 19
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
20 21 22 23 24
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
25
#include "calling.h"
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <linux/err.h>
L
Linus Torvalds 已提交
41

42 43
.code64
.section .entry.text, "ax"
44

45
#ifdef CONFIG_PARAVIRT
46
ENTRY(native_usergs_sysret64)
47
	UNWIND_HINT_EMPTY
48 49
	swapgs
	sysretq
50
END(native_usergs_sysret64)
51 52
#endif /* CONFIG_PARAVIRT */

53
.macro TRACE_IRQS_IRETQ
54
#ifdef CONFIG_TRACE_IRQFLAGS
55 56
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
57 58 59 60 61
	TRACE_IRQS_ON
1:
#endif
.endm

62 63 64 65 66 67 68 69 70 71 72 73 74 75
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
76
	call	debug_stack_set_zero
77
	TRACE_IRQS_OFF
78
	call	debug_stack_reset
79 80 81
.endm

.macro TRACE_IRQS_ON_DEBUG
82
	call	debug_stack_set_zero
83
	TRACE_IRQS_ON
84
	call	debug_stack_reset
85 86
.endm

87
.macro TRACE_IRQS_IRETQ_DEBUG
88 89
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
90 91 92 93 94
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
95 96 97
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
98 99
#endif

L
Linus Torvalds 已提交
100
/*
101
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
102
 *
103 104 105 106 107 108 109 110 111 112
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
113
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
114 115 116 117 118 119
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
120
 * rax  system call number
121 122
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
123 124
 * rdi  arg0
 * rsi  arg1
125
 * rdx  arg2
126
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
127 128
 * r8   arg4
 * r9   arg5
129
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
130
 *
L
Linus Torvalds 已提交
131 132
 * Only called from user space.
 *
133
 * When user can change pt_regs->foo always force IRET. That is because
134 135
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
136
 */
L
Linus Torvalds 已提交
137

138
ENTRY(entry_SYSCALL_64)
139
	UNWIND_HINT_EMPTY
140 141 142 143 144
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
145

146
	swapgs
147 148
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
149

150 151
	TRACE_IRQS_OFF

152
	/* Construct struct pt_regs on stack */
153 154 155 156 157
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
158
GLOBAL(entry_SYSCALL_64_after_hwframe)
159 160 161 162 163 164 165 166 167 168 169
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */
170
	UNWIND_HINT_REGS extra=0
171

172 173 174 175
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
176 177
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
178 179
	jnz	entry_SYSCALL64_slow_path

180
entry_SYSCALL_64_fastpath:
181 182 183 184 185 186 187
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
188
#if __SYSCALL_MASK == ~0
189
	cmpq	$__NR_syscall_max, %rax
190
#else
191 192
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
193
#endif
194 195
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
196 197 198

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
199 200
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
201
	 */
202
	call	*sys_call_table(, %rax, 8)
203 204
.Lentry_SYSCALL_64_after_fastpath_call:

205
	movq	%rax, RAX(%rsp)
206
1:
207 208

	/*
209 210 211
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
212
	 */
213
	DISABLE_INTERRUPTS(CLBR_ANY)
214
	TRACE_IRQS_OFF
215 216
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
217
	jnz	1f
218

219 220
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
221 222
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
223
	addq	$6*8, %rsp	/* skip extra regs -- they were preserved */
224
	UNWIND_HINT_EMPTY
225
	jmp	.Lpop_c_regs_except_rcx_r11_and_sysret
L
Linus Torvalds 已提交
226

227 228 229 230 231 232
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
233
	TRACE_IRQS_ON
234
	ENABLE_INTERRUPTS(CLBR_ANY)
235
	SAVE_EXTRA_REGS
236
	movq	%rsp, %rdi
237 238
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
239

240 241
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
242
	SAVE_EXTRA_REGS
243
	movq	%rsp, %rdi
244 245 246
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
247
	TRACE_IRQS_IRETQ		/* we're about to change IF */
248 249 250

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
251 252
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
253
	 */
254 255
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
256 257 258

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
259 260 261 262

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
263
	 * the kernel, since userspace controls RSP.
264
	 *
265
	 * If width of "canonical tail" ever becomes variable, this will need
266
	 * to be updated to remain correct on both old and new CPUs.
267
	 *
268 269
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
270
	 */
271 272
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
273

274 275
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
276
	jne	swapgs_restore_regs_and_return_to_usermode
277

278
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
279
	jne	swapgs_restore_regs_and_return_to_usermode
280

281 282
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
283
	jne	swapgs_restore_regs_and_return_to_usermode
284 285

	/*
286 287 288 289 290 291 292 293 294
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
295
	 *
296
	 *           movq	$stuck_here, %rcx
297 298 299 300 301 302
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
303
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
304
	jnz	swapgs_restore_regs_and_return_to_usermode
305 306 307

	/* nothing to check for RSP */

308
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
309
	jne	swapgs_restore_regs_and_return_to_usermode
310 311

	/*
312 313
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
314 315
	 */
syscall_return_via_sysret:
316
	/* rcx and r11 are already restored (see code above) */
317
	UNWIND_HINT_EMPTY
318
	POP_EXTRA_REGS
319
.Lpop_c_regs_except_rcx_r11_and_sysret:
320 321 322 323 324 325 326 327 328 329
	popq	%rsi	/* skip r11 */
	popq	%r10
	popq	%r9
	popq	%r8
	popq	%rax
	popq	%rsi	/* skip rcx */
	popq	%rdx
	popq	%rsi
	popq	%rdi
	movq	RSP-ORIG_RAX(%rsp), %rsp
330
	USERGS_SYSRET64
331
END(entry_SYSCALL_64)
332

333 334 335
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
336 337 338
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
339 340
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
341
	 * IRQs are on.
342 343 344 345
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

346 347 348 349
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
350
	DISABLE_INTERRUPTS(CLBR_ANY)
351
	TRACE_IRQS_OFF
352
	popq	%rax
353
	UNWIND_HINT_REGS extra=0
354
	jmp	entry_SYSCALL64_slow_path
355 356

1:
357
	jmp	*%rax				/* Called from C */
358 359 360 361
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
362
	UNWIND_HINT_FUNC
363 364 365 366 367 368 369 370 371 372
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
373

374 375 376 377 378
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
379
	UNWIND_HINT_FUNC
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

411 412 413
/*
 * A newly forked process directly context switches into this address.
 *
414
 * rax: prev task we switched from
415 416
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
417 418
 */
ENTRY(ret_from_fork)
419
	UNWIND_HINT_EMPTY
420
	movq	%rax, %rdi
421
	call	schedule_tail			/* rdi: 'prev' task parameter */
422

423 424
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
425

426
2:
427
	UNWIND_HINT_REGS
428
	movq	%rsp, %rdi
429 430
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
431
	jmp	swapgs_restore_regs_and_return_to_usermode
432 433 434 435 436 437 438 439 440 441 442 443

1:
	/* kernel thread */
	movq	%r12, %rdi
	call	*%rbx
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
444 445
END(ret_from_fork)

446
/*
447 448
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
449
 */
450
	.align 8
451
ENTRY(irq_entries_start)
452 453
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
454
	UNWIND_HINT_IRET_REGS
455
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
456 457
	jmp	common_interrupt
	.align	8
458
	vector=vector+1
459
    .endr
460 461
END(irq_entries_start)

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
	pushfq
	testl $X86_EFLAGS_IF, (%rsp)
	jz .Lokay_\@
	ud2
.Lokay_\@:
	addq $8, %rsp
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
480
.macro ENTER_IRQ_STACK regs=1 old_rsp
481 482
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	movq	%rsp, \old_rsp
483 484 485 486 487

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

488
	incl	PER_CPU_VAR(irq_count)
489
	jnz	.Lirq_stack_push_old_rsp_\@
490 491 492 493 494 495 496 497 498

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
515
	 */
516 517 518 519 520
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
521

522
.Lirq_stack_push_old_rsp_\@:
523
	pushq	\old_rsp
524 525 526 527

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
528 529 530 531 532
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
533
.macro LEAVE_IRQ_STACK regs=1
534 535 536 537
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

538 539 540 541
	.if \regs
	UNWIND_HINT_REGS
	.endif

542 543 544 545 546 547 548 549
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

550
/*
L
Linus Torvalds 已提交
551 552 553
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
554 555 556
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
557

558
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
559
	.macro interrupt func
560
	cld
561 562 563
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
564
	ENCODE_FRAME_POINTER
565

566
	testb	$3, CS(%rsp)
567
	jz	1f
568 569 570 571 572

	/*
	 * IRQ from user mode.  Switch to kernel gsbase and inform context
	 * tracking that we're in kernel mode.
	 */
573
	SWAPGS
574 575 576 577 578 579 580 581 582 583 584

	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

585
	CALL_enter_from_user_mode
586

587
1:
588
	ENTER_IRQ_STACK old_rsp=%rdi
589 590 591
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

592
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
593 594
	.endm

595 596 597 598
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
599 600
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
601
	ASM_CLAC
602
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
603
	interrupt do_IRQ
604
	/* 0(%rsp): old RSP */
605
ret_from_intr:
606
	DISABLE_INTERRUPTS(CLBR_ANY)
607
	TRACE_IRQS_OFF
608

609
	LEAVE_IRQ_STACK
610

611
	testb	$3, CS(%rsp)
612
	jz	retint_kernel
613

614 615 616 617
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
618
	TRACE_IRQS_IRETQ
619

620
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
621 622 623 624 625 626 627
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
	testl	$3, CS(%rsp)
	jnz	1f
	ud2
1:
#endif
628
	SWAPGS
629 630 631
	POP_EXTRA_REGS
	POP_C_REGS
	addq	$8, %rsp	/* skip regs->orig_ax */
632 633
	INTERRUPT_RETURN

634

635
/* Returning to kernel space */
636
retint_kernel:
637 638 639
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
640
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
641
	jnc	1f
642
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
643
	jnz	1f
644
	call	preempt_schedule_irq
645
	jmp	0b
646
1:
647
#endif
648 649 650 651
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
652

653 654 655 656 657 658 659 660
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
	testl	$3, CS(%rsp)
	jz	1f
	ud2
1:
#endif
661 662 663
	POP_EXTRA_REGS
	POP_C_REGS
	addq	$8, %rsp	/* skip regs->orig_ax */
664 665 666
	INTERRUPT_RETURN

ENTRY(native_iret)
667
	UNWIND_HINT_IRET_REGS
668 669 670 671
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
672
#ifdef CONFIG_X86_ESPFIX64
673 674
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
675
#endif
676

677
.global native_irq_return_iret
678
native_irq_return_iret:
A
Andy Lutomirski 已提交
679 680 681 682 683 684
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
685
	iretq
I
Ingo Molnar 已提交
686

687
#ifdef CONFIG_X86_ESPFIX64
688
native_irq_return_ldt:
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
711
	SWAPGS
712
	movq	PER_CPU_VAR(espfix_waddr), %rdi
713 714
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
715
	movq	%rax, (1*8)(%rdi)
716
	movq	(2*8)(%rsp), %rax		/* user CS */
717
	movq	%rax, (2*8)(%rdi)
718
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
719
	movq	%rax, (3*8)(%rdi)
720
	movq	(5*8)(%rsp), %rax		/* user SS */
721
	movq	%rax, (5*8)(%rdi)
722
	movq	(4*8)(%rsp), %rax		/* user RSP */
723
	movq	%rax, (4*8)(%rdi)
724 725 726 727 728 729 730 731 732 733 734 735 736
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
	popq	%rdi				/* Restore user RDI */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
737
	orq	PER_CPU_VAR(espfix_stack), %rax
738
	SWAPGS
739
	movq	%rax, %rsp
740
	UNWIND_HINT_IRET_REGS offset=8
741 742 743 744 745 746 747 748 749 750 751 752

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
753
	jmp	native_irq_return_iret
754
#endif
755
END(common_interrupt)
756

L
Linus Torvalds 已提交
757 758
/*
 * APIC interrupts.
759
 */
760
.macro apicinterrupt3 num sym do_sym
761
ENTRY(\sym)
762
	UNWIND_HINT_IRET_REGS
763
	ASM_CLAC
764
	pushq	$~(\num)
765
.Lcommon_\sym:
766
	interrupt \do_sym
767
	jmp	ret_from_intr
768 769
END(\sym)
.endm
L
Linus Torvalds 已提交
770

771
/* Make sure APIC interrupt handlers end up in the irqentry section: */
772 773
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
774

775
.macro apicinterrupt num sym do_sym
776
PUSH_SECTION_IRQENTRY
777
apicinterrupt3 \num \sym \do_sym
778
POP_SECTION_IRQENTRY
779 780
.endm

781
#ifdef CONFIG_SMP
782 783
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
784
#endif
L
Linus Torvalds 已提交
785

N
Nick Piggin 已提交
786
#ifdef CONFIG_X86_UV
787
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
788
#endif
789 790 791

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
792

793
#ifdef CONFIG_HAVE_KVM
794 795
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
796
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
797 798
#endif

799
#ifdef CONFIG_X86_MCE_THRESHOLD
800
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
801 802
#endif

803
#ifdef CONFIG_X86_MCE_AMD
804
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
805 806
#endif

807
#ifdef CONFIG_X86_THERMAL_VECTOR
808
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
809
#endif
810

811
#ifdef CONFIG_SMP
812 813 814
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
815
#endif
L
Linus Torvalds 已提交
816

817 818
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
819

820
#ifdef CONFIG_IRQ_WORK
821
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
822 823
#endif

L
Linus Torvalds 已提交
824 825
/*
 * Exception entry points.
826
 */
827
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
828 829

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
830
ENTRY(\sym)
831
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
832

833 834 835 836 837
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

838
	ASM_CLAC
839

840
	.if \has_error_code == 0
841
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
842 843
	.endif

844
	ALLOC_PT_GPREGS_ON_STACK
845 846

	.if \paranoid
847
	.if \paranoid == 1
848 849
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
850
	.endif
851
	call	paranoid_entry
852
	.else
853
	call	error_entry
854
	.endif
855
	UNWIND_HINT_REGS
856
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
857 858

	.if \paranoid
859
	.if \shift_ist != -1
860
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
861
	.else
862
	TRACE_IRQS_OFF
863
	.endif
864
	.endif
865

866
	movq	%rsp, %rdi			/* pt_regs pointer */
867 868

	.if \has_error_code
869 870
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
871
	.else
872
	xorl	%esi, %esi			/* no error code */
873 874
	.endif

875
	.if \shift_ist != -1
876
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
877 878
	.endif

879
	call	\do_sym
880

881
	.if \shift_ist != -1
882
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
883 884
	.endif

885
	/* these procedures expect "no swapgs" flag in ebx */
886
	.if \paranoid
887
	jmp	paranoid_exit
888
	.else
889
	jmp	error_exit
890 891
	.endif

892 893 894 895 896 897 898
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
899
	call	error_entry
900 901


902 903 904
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
905

906
	movq	%rsp, %rdi			/* pt_regs pointer */
907 908

	.if \has_error_code
909 910
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
911
	.else
912
	xorl	%esi, %esi			/* no error code */
913 914
	.endif

915
	call	\do_sym
916

917
	jmp	error_exit			/* %ebx: no swapgs flag */
918
	.endif
919
END(\sym)
920
.endm
921

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
941
ENTRY(native_load_gs_index)
942
	FRAME_BEGIN
943
	pushfq
944
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
945
	SWAPGS
946
.Lgs_change:
947
	movl	%edi, %gs
948
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
949
	SWAPGS
950
	popfq
951
	FRAME_END
952
	ret
953
ENDPROC(native_load_gs_index)
954
EXPORT_SYMBOL(native_load_gs_index)
955

956
	_ASM_EXTABLE(.Lgs_change, bad_gs)
957
	.section .fixup, "ax"
L
Linus Torvalds 已提交
958
	/* running with kernelgs */
959
bad_gs:
960
	SWAPGS					/* switch back to user gs */
961 962 963 964 965 966
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
967 968 969
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
970
	.previous
971

972
/* Call softirq on interrupt stack. Interrupts are off. */
973
ENTRY(do_softirq_own_stack)
974 975
	pushq	%rbp
	mov	%rsp, %rbp
976
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
977
	call	__do_softirq
978
	LEAVE_IRQ_STACK regs=0
979
	leaveq
980
	ret
981
ENDPROC(do_softirq_own_stack)
982

983
#ifdef CONFIG_XEN
984
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
985 986

/*
987 988 989 990 991 992 993 994 995 996 997 998
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
999 1000
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1001 1002 1003 1004
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1005
	UNWIND_HINT_FUNC
1006
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1007
	UNWIND_HINT_REGS
1008 1009

	ENTER_IRQ_STACK old_rsp=%r10
1010
	call	xen_evtchn_do_upcall
1011 1012
	LEAVE_IRQ_STACK

1013
#ifndef CONFIG_PREEMPT
1014
	call	xen_maybe_preempt_hcall
1015
#endif
1016
	jmp	error_exit
1017
END(xen_do_hypervisor_callback)
1018 1019

/*
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1032
ENTRY(xen_failsafe_callback)
1033
	UNWIND_HINT_EMPTY
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1046
	/* All segments match their saved values => Category 2 (Bad IRET). */
1047 1048 1049 1050
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1051
	UNWIND_HINT_IRET_REGS offset=8
1052
	jmp	general_protection
1053
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1054 1055 1056
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1057
	UNWIND_HINT_IRET_REGS
1058
	pushq	$-1 /* orig_ax = -1 => not a system call */
1059 1060 1061
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
1062
	ENCODE_FRAME_POINTER
1063
	jmp	error_exit
1064 1065
END(xen_failsafe_callback)

1066
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1067 1068
	xen_hvm_callback_vector xen_evtchn_do_upcall

1069
#endif /* CONFIG_XEN */
1070

1071
#if IS_ENABLED(CONFIG_HYPERV)
1072
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1073 1074 1075
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

1076 1077 1078 1079
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1080
#ifdef CONFIG_XEN
1081 1082
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1083
#endif
1084 1085

idtentry general_protection	do_general_protection	has_error_code=1
1086
idtentry page_fault		do_page_fault		has_error_code=1
1087

G
Gleb Natapov 已提交
1088
#ifdef CONFIG_KVM_GUEST
1089
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1090
#endif
1091

1092
#ifdef CONFIG_X86_MCE
1093
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1094 1095
#endif

1096 1097 1098 1099 1100 1101
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1102
	UNWIND_HINT_FUNC
1103 1104 1105
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1106
	ENCODE_FRAME_POINTER 8
1107 1108
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1109
	rdmsr
1110 1111
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1112
	SWAPGS
1113
	xorl	%ebx, %ebx
1114
1:	ret
1115
END(paranoid_entry)
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1126 1127
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1128
 */
1129
ENTRY(paranoid_exit)
1130
	UNWIND_HINT_REGS
1131
	DISABLE_INTERRUPTS(CLBR_ANY)
1132
	TRACE_IRQS_OFF_DEBUG
1133
	testl	%ebx, %ebx			/* swapgs needed? */
1134
	jnz	.Lparanoid_exit_no_swapgs
1135
	TRACE_IRQS_IRETQ
1136
	SWAPGS_UNSAFE_STACK
1137 1138
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1139
	TRACE_IRQS_IRETQ_DEBUG
1140 1141
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1142 1143 1144
END(paranoid_exit)

/*
1145
 * Save all registers in pt_regs, and switch gs if needed.
1146
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1147 1148
 */
ENTRY(error_entry)
1149
	UNWIND_HINT_FUNC
1150
	cld
1151 1152
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1153
	ENCODE_FRAME_POINTER 8
1154
	xorl	%ebx, %ebx
1155
	testb	$3, CS+8(%rsp)
1156
	jz	.Lerror_kernelspace
1157

1158 1159 1160 1161
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1162
	SWAPGS
1163

1164
.Lerror_entry_from_usermode_after_swapgs:
1165 1166 1167 1168 1169 1170
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1171
	CALL_enter_from_user_mode
1172
	ret
1173

1174
.Lerror_entry_done:
1175 1176 1177
	TRACE_IRQS_OFF
	ret

1178 1179 1180 1181 1182 1183
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1184
.Lerror_kernelspace:
1185 1186 1187
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1188
	je	.Lerror_bad_iret
1189 1190
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1191
	je	.Lbstep_iret
1192
	cmpq	$.Lgs_change, RIP+8(%rsp)
1193
	jne	.Lerror_entry_done
1194 1195

	/*
1196
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1197
	 * gsbase and proceed.  We'll fix up the exception and land in
1198
	 * .Lgs_change's error handler with kernel gsbase.
1199
	 */
1200 1201
	SWAPGS
	jmp .Lerror_entry_done
1202

1203
.Lbstep_iret:
1204
	/* Fix truncated RIP */
1205
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1206 1207
	/* fall through */

1208
.Lerror_bad_iret:
1209 1210 1211 1212
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1213
	SWAPGS
1214 1215 1216 1217 1218 1219

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1220 1221 1222
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1223
	decl	%ebx
1224
	jmp	.Lerror_entry_from_usermode_after_swapgs
1225 1226 1227
END(error_entry)


1228
/*
1229
 * On entry, EBX is a "return to kernel mode" flag:
1230 1231 1232
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1233
ENTRY(error_exit)
1234
	UNWIND_HINT_REGS
1235
	DISABLE_INTERRUPTS(CLBR_ANY)
1236
	TRACE_IRQS_OFF
1237
	testl	%ebx, %ebx
1238 1239
	jnz	retint_kernel
	jmp	retint_user
1240 1241
END(error_exit)

1242
/* Runs on exception stack */
1243
/* XXX: broken on Xen PV */
1244
ENTRY(nmi)
1245
	UNWIND_HINT_IRET_REGS
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1263 1264 1265
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1266 1267
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1268
	 *    o Modify the "iret" location to jump to the repeat_nmi
1269 1270 1271 1272 1273 1274 1275 1276
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1277 1278 1279 1280 1281
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1282 1283
	 */

1284 1285
	ASM_CLAC

1286
	/* Use %rdx as our temp variable throughout */
1287
	pushq	%rdx
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1298 1299 1300
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1301 1302
	 */

1303
	SWAPGS_UNSAFE_STACK
1304 1305 1306
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1307
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1308 1309 1310 1311 1312
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1313
	UNWIND_HINT_IRET_REGS
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */
1330
	UNWIND_HINT_REGS
1331
	ENCODE_FRAME_POINTER
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1343
	/*
1344
	 * Return back to user mode.  We must *not* do the normal exit
1345
	 * work, because we don't want to enable interrupts.
1346
	 */
1347
	jmp	swapgs_restore_regs_and_return_to_usermode
1348

1349
.Lnmi_from_kernel:
1350
	/*
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1391
	/*
1392 1393
	 * Determine whether we're a nested NMI.
	 *
1394 1395 1396 1397 1398 1399
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1400
	 */
1401 1402 1403 1404 1405 1406 1407 1408

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1409

1410
	/*
1411
	 * Now check "NMI executing".  If it's set, then we're nested.
1412 1413
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1414
	 */
1415 1416
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1417 1418

	/*
1419 1420
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1421 1422 1423 1424 1425 1426 1427 1428
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1429
	 */
1430 1431 1432 1433 1434
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1435

1436 1437 1438 1439
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1440 1441 1442 1443 1444 1445 1446

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1447

1448 1449
nested_nmi:
	/*
1450 1451
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1452
	 */
1453
	subq	$8, %rsp
1454 1455 1456
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1457
	pushfq
1458 1459
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1460 1461

	/* Put stack back */
1462
	addq	$(6*8), %rsp
1463 1464

nested_nmi_out:
1465
	popq	%rdx
1466

1467
	/* We are returning to kernel mode, so this cannot result in a fault. */
1468 1469 1470
	INTERRUPT_RETURN

first_nmi:
1471
	/* Restore rdx. */
1472
	movq	(%rsp), %rdx
1473

1474 1475
	/* Make room for "NMI executing". */
	pushq	$0
1476

1477
	/* Leave room for the "iret" frame */
1478
	subq	$(5*8), %rsp
1479

1480
	/* Copy the "original" frame to the "outermost" frame */
1481
	.rept 5
1482
	pushq	11*8(%rsp)
1483
	.endr
1484
	UNWIND_HINT_IRET_REGS
1485

1486 1487
	/* Everything up to here is safe from nested NMIs */

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1500
	UNWIND_HINT_IRET_REGS
1501 1502 1503
1:
#endif

1504
repeat_nmi:
1505 1506 1507 1508 1509 1510 1511 1512
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1513 1514 1515 1516
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1517 1518
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1519
	 */
1520
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1521

1522
	/*
1523 1524 1525
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1526
	 */
1527
	addq	$(10*8), %rsp
1528
	.rept 5
1529
	pushq	-6*8(%rsp)
1530
	.endr
1531
	subq	$(5*8), %rsp
1532
end_repeat_nmi:
1533 1534

	/*
1535 1536 1537
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1538
	 */
1539
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1540 1541
	ALLOC_PT_GPREGS_ON_STACK

1542
	/*
1543
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1544 1545 1546 1547 1548
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1549
	call	paranoid_entry
1550
	UNWIND_HINT_REGS
1551

1552
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1553 1554 1555
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1556

1557 1558
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1559 1560 1561
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1562 1563
	POP_EXTRA_REGS
	POP_C_REGS
1564

1565 1566 1567 1568 1569
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1570

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
	 * the SYSCALL entry and exit paths.  On a native kernel, we
	 * could just inspect RIP, but, on paravirt kernels,
	 * INTERRUPT_RETURN can translate into a jump into a
	 * hypercall page.
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1581 1582 1583 1584 1585 1586

	/*
	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
	 * stack in a single instruction.  We are returning to kernel
	 * mode, so this cannot result in a fault.
	 */
1587
	INTERRUPT_RETURN
1588 1589 1590
END(nmi)

ENTRY(ignore_sysret)
1591
	UNWIND_HINT_EMPTY
1592
	mov	$-ENOSYS, %eax
1593 1594
	sysret
END(ignore_sysret)
1595 1596

ENTRY(rewind_stack_do_exit)
1597
	UNWIND_HINT_FUNC
1598 1599 1600 1601
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1602 1603
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1604 1605 1606

	call	do_exit
END(rewind_stack_do_exit)