entry_64.S 43.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7
 *
L
Linus Torvalds 已提交
8 9
 * entry.S contains the system-call and fault low-level handling routines.
 *
10 11
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
12
 * A note on terminology:
13 14
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
15 16
 *
 * Some macro usage:
17 18 19
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
20 21 22 23 24
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
25
#include "calling.h"
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <linux/err.h>
L
Linus Torvalds 已提交
40

41 42
.code64
.section .entry.text, "ax"
43

44
#ifdef CONFIG_PARAVIRT
45
ENTRY(native_usergs_sysret64)
46 47
	swapgs
	sysretq
48
ENDPROC(native_usergs_sysret64)
49 50
#endif /* CONFIG_PARAVIRT */

51
.macro TRACE_IRQS_IRETQ
52
#ifdef CONFIG_TRACE_IRQFLAGS
53 54
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
55 56 57 58 59
	TRACE_IRQS_ON
1:
#endif
.endm

60 61 62 63 64 65 66 67 68 69 70 71 72 73
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
74
	call	debug_stack_set_zero
75
	TRACE_IRQS_OFF
76
	call	debug_stack_reset
77 78 79
.endm

.macro TRACE_IRQS_ON_DEBUG
80
	call	debug_stack_set_zero
81
	TRACE_IRQS_ON
82
	call	debug_stack_reset
83 84
.endm

85
.macro TRACE_IRQS_IRETQ_DEBUG
86 87
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
88 89 90 91 92
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
93 94 95
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
96 97
#endif

L
Linus Torvalds 已提交
98
/*
99
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
100
 *
101 102 103 104 105 106 107 108 109 110
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
111
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
112 113 114 115 116 117
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
118
 * rax  system call number
119 120
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
121 122
 * rdi  arg0
 * rsi  arg1
123
 * rdx  arg2
124
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
125 126
 * r8   arg4
 * r9   arg5
127
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
128
 *
L
Linus Torvalds 已提交
129 130
 * Only called from user space.
 *
131
 * When user can change pt_regs->foo always force IRET. That is because
132 133
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
134
 */
L
Linus Torvalds 已提交
135

136
ENTRY(entry_SYSCALL_64)
137 138 139 140 141
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
142 143 144 145 146 147
	SWAPGS_UNSAFE_STACK
	/*
	 * A hypervisor implementation might want to use a label
	 * after the swapgs, so that it can do the swapgs
	 * for the guest and jump here on syscall.
	 */
148
GLOBAL(entry_SYSCALL_64_after_swapgs)
149

150 151
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
152

153 154
	TRACE_IRQS_OFF

155
	/* Construct struct pt_regs on stack */
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */

173 174 175 176
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
177 178
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
179 180
	jnz	entry_SYSCALL64_slow_path

181
entry_SYSCALL_64_fastpath:
182 183 184 185 186 187 188
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
189
#if __SYSCALL_MASK == ~0
190
	cmpq	$__NR_syscall_max, %rax
191
#else
192 193
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
194
#endif
195 196
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
197 198 199

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
200 201
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
202
	 */
203
	call	*sys_call_table(, %rax, 8)
204 205
.Lentry_SYSCALL_64_after_fastpath_call:

206
	movq	%rax, RAX(%rsp)
207
1:
208 209

	/*
210 211 212
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
213
	 */
214
	DISABLE_INTERRUPTS(CLBR_ANY)
215
	TRACE_IRQS_OFF
216 217
	movq	PER_CPU_VAR(current_task), %r11
	testl	$_TIF_ALLWORK_MASK, TASK_TI_flags(%r11)
218
	jnz	1f
219

220 221
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
222 223 224
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
	RESTORE_C_REGS_EXCEPT_RCX_R11
225
	movq	RSP(%rsp), %rsp
226
	USERGS_SYSRET64
L
Linus Torvalds 已提交
227

228 229 230 231 232 233
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
234
	TRACE_IRQS_ON
235
	ENABLE_INTERRUPTS(CLBR_ANY)
236
	SAVE_EXTRA_REGS
237
	movq	%rsp, %rdi
238 239
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
240

241 242
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
243
	SAVE_EXTRA_REGS
244
	movq	%rsp, %rdi
245 246 247
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
248
	RESTORE_EXTRA_REGS
249
	TRACE_IRQS_IRETQ		/* we're about to change IF */
250 251 252 253 254

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
	 * a completely clean 64-bit userspace context.
	 */
255 256 257 258
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
	cmpq	%rcx, %r11			/* RCX == RIP */
	jne	opportunistic_sysret_failed
259 260 261 262

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
263
	 * the kernel, since userspace controls RSP.
264
	 *
265
	 * If width of "canonical tail" ever becomes variable, this will need
266
	 * to be updated to remain correct on both old and new CPUs.
267
	 *
268 269
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
270
	 */
271 272
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
273

274 275 276
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
	jne	opportunistic_sysret_failed
277

278 279
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
	jne	opportunistic_sysret_failed
280

281 282 283
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
	jne	opportunistic_sysret_failed
284 285

	/*
286 287 288 289 290 291 292 293 294
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
295
	 *
296
	 *           movq	$stuck_here, %rcx
297 298 299 300 301 302
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
303 304
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
	jnz	opportunistic_sysret_failed
305 306 307

	/* nothing to check for RSP */

308 309
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
	jne	opportunistic_sysret_failed
310 311

	/*
312 313
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
314 315
	 */
syscall_return_via_sysret:
316 317
	/* rcx and r11 are already restored (see code above) */
	RESTORE_C_REGS_EXCEPT_RCX_R11
318
	movq	RSP(%rsp), %rsp
319 320 321 322 323
	USERGS_SYSRET64

opportunistic_sysret_failed:
	SWAPGS
	jmp	restore_c_regs_and_iret
324
END(entry_SYSCALL_64)
325

326 327 328
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
329 330 331
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
332 333
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
334
	 * IRQs are on.
335 336 337 338
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

339 340 341 342
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
343
	DISABLE_INTERRUPTS(CLBR_ANY)
344
	TRACE_IRQS_OFF
345
	popq	%rax
346
	jmp	entry_SYSCALL64_slow_path
347 348

1:
349
	jmp	*%rax				/* Called from C */
350 351 352 353 354 355 356 357 358 359 360 361 362 363
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
364

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

401 402 403
/*
 * A newly forked process directly context switches into this address.
 *
404
 * rax: prev task we switched from
405 406
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
407 408
 */
ENTRY(ret_from_fork)
409
	movq	%rax, %rdi
410
	call	schedule_tail			/* rdi: 'prev' task parameter */
411

412 413
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
414

415
2:
416
	movq	%rsp, %rdi
417 418 419 420
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
	SWAPGS
	jmp	restore_regs_and_iret
421 422 423 424 425 426 427 428 429 430 431 432

1:
	/* kernel thread */
	movq	%r12, %rdi
	call	*%rbx
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
433 434
END(ret_from_fork)

435
/*
436 437
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
438
 */
439
	.align 8
440
ENTRY(irq_entries_start)
441 442
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
443
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
444 445 446 447
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
448 449
END(irq_entries_start)

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
	pushfq
	testl $X86_EFLAGS_IF, (%rsp)
	jz .Lokay_\@
	ud2
.Lokay_\@:
	addq $8, %rsp
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
.macro ENTER_IRQ_STACK old_rsp
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	movq	%rsp, \old_rsp
	incl	PER_CPU_VAR(irq_count)
472
	jnz	.Lirq_stack_push_old_rsp_\@
473 474 475 476 477 478 479 480 481

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
498
	 */
499 500 501 502 503
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
504

505
.Lirq_stack_push_old_rsp_\@:
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	pushq	\old_rsp
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
.macro LEAVE_IRQ_STACK
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

525
/*
L
Linus Torvalds 已提交
526 527 528
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
529 530 531
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
532

533
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
534
	.macro interrupt func
535
	cld
536 537 538
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
539
	ENCODE_FRAME_POINTER
540

541
	testb	$3, CS(%rsp)
542
	jz	1f
543 544 545 546 547

	/*
	 * IRQ from user mode.  Switch to kernel gsbase and inform context
	 * tracking that we're in kernel mode.
	 */
548
	SWAPGS
549 550 551 552 553 554 555 556 557 558 559

	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

560
	CALL_enter_from_user_mode
561

562
1:
563
	ENTER_IRQ_STACK old_rsp=%rdi
564 565 566
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

567
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
568 569
	.endm

570 571 572 573
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
574 575
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
576
	ASM_CLAC
577
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
578
	interrupt do_IRQ
579
	/* 0(%rsp): old RSP */
580
ret_from_intr:
581
	DISABLE_INTERRUPTS(CLBR_ANY)
582
	TRACE_IRQS_OFF
583

584
	LEAVE_IRQ_STACK
585

586
	testb	$3, CS(%rsp)
587
	jz	retint_kernel
588

589 590 591 592
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
593
	TRACE_IRQS_IRETQ
594
	SWAPGS
595
	jmp	restore_regs_and_iret
596

597
/* Returning to kernel space */
598
retint_kernel:
599 600 601
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
602
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
603
	jnc	1f
604
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
605
	jnz	1f
606
	call	preempt_schedule_irq
607
	jmp	0b
608
1:
609
#endif
610 611 612 613
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
614 615 616 617 618

/*
 * At this label, code paths which return to kernel and to user,
 * which come from interrupts/exception and from syscalls, merge.
 */
619
GLOBAL(restore_regs_and_iret)
620
	RESTORE_EXTRA_REGS
621
restore_c_regs_and_iret:
622 623
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
624 625 626
	INTERRUPT_RETURN

ENTRY(native_iret)
627 628 629 630
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
631
#ifdef CONFIG_X86_ESPFIX64
632 633
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
634
#endif
635

636
.global native_irq_return_iret
637
native_irq_return_iret:
A
Andy Lutomirski 已提交
638 639 640 641 642 643
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
644
	iretq
I
Ingo Molnar 已提交
645

646
#ifdef CONFIG_X86_ESPFIX64
647
native_irq_return_ldt:
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
670
	SWAPGS
671
	movq	PER_CPU_VAR(espfix_waddr), %rdi
672 673
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
674
	movq	%rax, (1*8)(%rdi)
675
	movq	(2*8)(%rsp), %rax		/* user CS */
676
	movq	%rax, (2*8)(%rdi)
677
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
678
	movq	%rax, (3*8)(%rdi)
679
	movq	(5*8)(%rsp), %rax		/* user SS */
680
	movq	%rax, (5*8)(%rdi)
681
	movq	(4*8)(%rsp), %rax		/* user RSP */
682
	movq	%rax, (4*8)(%rdi)
683 684 685 686 687 688 689 690 691 692 693 694 695
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
	popq	%rdi				/* Restore user RDI */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
696
	orq	PER_CPU_VAR(espfix_stack), %rax
697
	SWAPGS
698
	movq	%rax, %rsp
699 700 701 702 703 704 705 706 707 708 709 710

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
711
	jmp	native_irq_return_iret
712
#endif
713
END(common_interrupt)
714

L
Linus Torvalds 已提交
715 716
/*
 * APIC interrupts.
717
 */
718
.macro apicinterrupt3 num sym do_sym
719
ENTRY(\sym)
720
	ASM_CLAC
721
	pushq	$~(\num)
722
.Lcommon_\sym:
723
	interrupt \do_sym
724
	jmp	ret_from_intr
725 726
END(\sym)
.endm
L
Linus Torvalds 已提交
727

728 729 730 731 732 733 734 735 736 737 738 739
#ifdef CONFIG_TRACING
#define trace(sym) trace_##sym
#define smp_trace(sym) smp_trace_##sym

.macro trace_apicinterrupt num sym
apicinterrupt3 \num trace(\sym) smp_trace(\sym)
.endm
#else
.macro trace_apicinterrupt num sym do_sym
.endm
#endif

740 741 742 743 744 745 746 747 748
/* Make sure APIC interrupt handlers end up in the irqentry section: */
#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
# define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
# define POP_SECTION_IRQENTRY	.popsection
#else
# define PUSH_SECTION_IRQENTRY
# define POP_SECTION_IRQENTRY
#endif

749
.macro apicinterrupt num sym do_sym
750
PUSH_SECTION_IRQENTRY
751 752
apicinterrupt3 \num \sym \do_sym
trace_apicinterrupt \num \sym
753
POP_SECTION_IRQENTRY
754 755
.endm

756
#ifdef CONFIG_SMP
757 758
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
759
#endif
L
Linus Torvalds 已提交
760

N
Nick Piggin 已提交
761
#ifdef CONFIG_X86_UV
762
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
763
#endif
764 765 766

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
767

768
#ifdef CONFIG_HAVE_KVM
769 770
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
771 772
#endif

773
#ifdef CONFIG_X86_MCE_THRESHOLD
774
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
775 776
#endif

777
#ifdef CONFIG_X86_MCE_AMD
778
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
779 780
#endif

781
#ifdef CONFIG_X86_THERMAL_VECTOR
782
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
783
#endif
784

785
#ifdef CONFIG_SMP
786 787 788
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
789
#endif
L
Linus Torvalds 已提交
790

791 792
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
793

794
#ifdef CONFIG_IRQ_WORK
795
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
796 797
#endif

L
Linus Torvalds 已提交
798 799
/*
 * Exception entry points.
800
 */
801
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
802 803

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
804
ENTRY(\sym)
805 806 807 808 809
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

810
	ASM_CLAC
811
	PARAVIRT_ADJUST_EXCEPTION_FRAME
812 813

	.ifeq \has_error_code
814
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
815 816
	.endif

817
	ALLOC_PT_GPREGS_ON_STACK
818 819

	.if \paranoid
820
	.if \paranoid == 1
821 822
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
823
	.endif
824
	call	paranoid_entry
825
	.else
826
	call	error_entry
827
	.endif
828
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
829 830

	.if \paranoid
831
	.if \shift_ist != -1
832
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
833
	.else
834
	TRACE_IRQS_OFF
835
	.endif
836
	.endif
837

838
	movq	%rsp, %rdi			/* pt_regs pointer */
839 840

	.if \has_error_code
841 842
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
843
	.else
844
	xorl	%esi, %esi			/* no error code */
845 846
	.endif

847
	.if \shift_ist != -1
848
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
849 850
	.endif

851
	call	\do_sym
852

853
	.if \shift_ist != -1
854
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
855 856
	.endif

857
	/* these procedures expect "no swapgs" flag in ebx */
858
	.if \paranoid
859
	jmp	paranoid_exit
860
	.else
861
	jmp	error_exit
862 863
	.endif

864 865 866 867 868 869 870
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
871
	call	error_entry
872 873


874 875 876
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
877

878
	movq	%rsp, %rdi			/* pt_regs pointer */
879 880

	.if \has_error_code
881 882
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
883
	.else
884
	xorl	%esi, %esi			/* no error code */
885 886
	.endif

887
	call	\do_sym
888

889
	jmp	error_exit			/* %ebx: no swapgs flag */
890
	.endif
891
END(\sym)
892
.endm
893

894
#ifdef CONFIG_TRACING
895 896 897
.macro trace_idtentry sym do_sym has_error_code:req
idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
idtentry \sym \do_sym has_error_code=\has_error_code
898 899
.endm
#else
900 901
.macro trace_idtentry sym do_sym has_error_code:req
idtentry \sym \do_sym has_error_code=\has_error_code
902 903 904
.endm
#endif

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
924
ENTRY(native_load_gs_index)
925
	pushfq
926
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
927
	SWAPGS
928
.Lgs_change:
929
	movl	%edi, %gs
930
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
931
	SWAPGS
932
	popfq
933
	ret
934
END(native_load_gs_index)
935
EXPORT_SYMBOL(native_load_gs_index)
936

937
	_ASM_EXTABLE(.Lgs_change, bad_gs)
938
	.section .fixup, "ax"
L
Linus Torvalds 已提交
939
	/* running with kernelgs */
940
bad_gs:
941
	SWAPGS					/* switch back to user gs */
942 943 944 945 946 947
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
948 949 950
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
951
	.previous
952

953
/* Call softirq on interrupt stack. Interrupts are off. */
954
ENTRY(do_softirq_own_stack)
955 956
	pushq	%rbp
	mov	%rsp, %rbp
957
	ENTER_IRQ_STACK old_rsp=%r11
958
	call	__do_softirq
959
	LEAVE_IRQ_STACK
960
	leaveq
961
	ret
962
END(do_softirq_own_stack)
963

964
#ifdef CONFIG_XEN
965
idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
966 967

/*
968 969 970 971 972 973 974 975 976 977 978 979
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
980 981
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

982 983 984 985
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
986
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
987 988

	ENTER_IRQ_STACK old_rsp=%r10
989
	call	xen_evtchn_do_upcall
990 991
	LEAVE_IRQ_STACK

992
#ifndef CONFIG_PREEMPT
993
	call	xen_maybe_preempt_hcall
994
#endif
995
	jmp	error_exit
996
END(xen_do_hypervisor_callback)
997 998

/*
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1011
ENTRY(xen_failsafe_callback)
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1024
	/* All segments match their saved values => Category 2 (Bad IRET). */
1025 1026 1027 1028 1029 1030 1031
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
	pushq	%r11
	pushq	%rcx
	jmp	general_protection
1032
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1033 1034 1035 1036
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$-1 /* orig_ax = -1 => not a system call */
1037 1038 1039
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
1040
	ENCODE_FRAME_POINTER
1041
	jmp	error_exit
1042 1043
END(xen_failsafe_callback)

1044
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1045 1046
	xen_hvm_callback_vector xen_evtchn_do_upcall

1047
#endif /* CONFIG_XEN */
1048

1049
#if IS_ENABLED(CONFIG_HYPERV)
1050
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1051 1052 1053
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

1054 1055 1056 1057
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1058
#ifdef CONFIG_XEN
1059 1060 1061
idtentry xen_debug		do_debug		has_error_code=0
idtentry xen_int3		do_int3			has_error_code=0
idtentry xen_stack_segment	do_stack_segment	has_error_code=1
1062
#endif
1063 1064 1065 1066

idtentry general_protection	do_general_protection	has_error_code=1
trace_idtentry page_fault	do_page_fault		has_error_code=1

G
Gleb Natapov 已提交
1067
#ifdef CONFIG_KVM_GUEST
1068
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1069
#endif
1070

1071
#ifdef CONFIG_X86_MCE
1072
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1073 1074
#endif

1075 1076 1077 1078 1079 1080
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1081 1082 1083
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1084
	ENCODE_FRAME_POINTER 8
1085 1086
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1087
	rdmsr
1088 1089
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1090
	SWAPGS
1091
	xorl	%ebx, %ebx
1092
1:	ret
1093
END(paranoid_entry)
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1104 1105
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1106
 */
1107
ENTRY(paranoid_exit)
1108
	DISABLE_INTERRUPTS(CLBR_ANY)
1109
	TRACE_IRQS_OFF_DEBUG
1110 1111
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	paranoid_exit_no_swapgs
1112
	TRACE_IRQS_IRETQ
1113
	SWAPGS_UNSAFE_STACK
1114
	jmp	paranoid_exit_restore
1115
paranoid_exit_no_swapgs:
1116
	TRACE_IRQS_IRETQ_DEBUG
1117
paranoid_exit_restore:
1118 1119 1120
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
1121
	INTERRUPT_RETURN
1122 1123 1124
END(paranoid_exit)

/*
1125
 * Save all registers in pt_regs, and switch gs if needed.
1126
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1127 1128 1129
 */
ENTRY(error_entry)
	cld
1130 1131
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1132
	ENCODE_FRAME_POINTER 8
1133
	xorl	%ebx, %ebx
1134
	testb	$3, CS+8(%rsp)
1135
	jz	.Lerror_kernelspace
1136

1137 1138 1139 1140
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1141
	SWAPGS
1142

1143
.Lerror_entry_from_usermode_after_swapgs:
1144 1145 1146 1147 1148 1149
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1150
	CALL_enter_from_user_mode
1151
	ret
1152

1153
.Lerror_entry_done:
1154 1155 1156
	TRACE_IRQS_OFF
	ret

1157 1158 1159 1160 1161 1162
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1163
.Lerror_kernelspace:
1164 1165 1166
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1167
	je	.Lerror_bad_iret
1168 1169
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1170
	je	.Lbstep_iret
1171
	cmpq	$.Lgs_change, RIP+8(%rsp)
1172
	jne	.Lerror_entry_done
1173 1174

	/*
1175
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1176
	 * gsbase and proceed.  We'll fix up the exception and land in
1177
	 * .Lgs_change's error handler with kernel gsbase.
1178
	 */
1179 1180
	SWAPGS
	jmp .Lerror_entry_done
1181

1182
.Lbstep_iret:
1183
	/* Fix truncated RIP */
1184
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1185 1186
	/* fall through */

1187
.Lerror_bad_iret:
1188 1189 1190 1191
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1192
	SWAPGS
1193 1194 1195 1196 1197 1198

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1199 1200 1201
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1202
	decl	%ebx
1203
	jmp	.Lerror_entry_from_usermode_after_swapgs
1204 1205 1206
END(error_entry)


1207
/*
1208
 * On entry, EBX is a "return to kernel mode" flag:
1209 1210 1211
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1212
ENTRY(error_exit)
1213
	DISABLE_INTERRUPTS(CLBR_ANY)
1214
	TRACE_IRQS_OFF
1215
	testl	%ebx, %ebx
1216 1217
	jnz	retint_kernel
	jmp	retint_user
1218 1219
END(error_exit)

1220
/* Runs on exception stack */
1221
ENTRY(nmi)
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	/*
	 * Fix up the exception frame if we're on Xen.
	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
	 * one value to the stack on native, so it may clobber the rdx
	 * scratch slot, but it won't clobber any of the important
	 * slots past it.
	 *
	 * Xen is a different story, because the Xen frame itself overlaps
	 * the "NMI executing" variable.
	 */
1232
	PARAVIRT_ADJUST_EXCEPTION_FRAME
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1251 1252 1253
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1254 1255
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1256
	 *    o Modify the "iret" location to jump to the repeat_nmi
1257 1258 1259 1260 1261 1262 1263 1264
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1265 1266 1267 1268 1269
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1270 1271
	 */

1272
	/* Use %rdx as our temp variable throughout */
1273
	pushq	%rdx
1274

1275 1276 1277 1278 1279 1280 1281 1282 1283
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1284 1285 1286
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1287 1288
	 */

1289
	SWAPGS_UNSAFE_STACK
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */
1314
	ENCODE_FRAME_POINTER
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1326
	/*
1327
	 * Return back to user mode.  We must *not* do the normal exit
1328
	 * work, because we don't want to enable interrupts.
1329
	 */
1330
	SWAPGS
1331
	jmp	restore_regs_and_iret
1332

1333
.Lnmi_from_kernel:
1334
	/*
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1375
	/*
1376 1377
	 * Determine whether we're a nested NMI.
	 *
1378 1379 1380 1381 1382 1383
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1384
	 */
1385 1386 1387 1388 1389 1390 1391 1392

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1393

1394
	/*
1395
	 * Now check "NMI executing".  If it's set, then we're nested.
1396 1397
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1398
	 */
1399 1400
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1401 1402

	/*
1403 1404
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1405 1406 1407 1408 1409 1410 1411 1412
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1413
	 */
1414 1415 1416 1417 1418
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1419

1420 1421 1422 1423
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1424 1425 1426 1427 1428 1429 1430

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1431

1432 1433
nested_nmi:
	/*
1434 1435
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1436
	 */
1437
	subq	$8, %rsp
1438 1439 1440
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1441
	pushfq
1442 1443
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1444 1445

	/* Put stack back */
1446
	addq	$(6*8), %rsp
1447 1448

nested_nmi_out:
1449
	popq	%rdx
1450

1451
	/* We are returning to kernel mode, so this cannot result in a fault. */
1452 1453 1454
	INTERRUPT_RETURN

first_nmi:
1455
	/* Restore rdx. */
1456
	movq	(%rsp), %rdx
1457

1458 1459
	/* Make room for "NMI executing". */
	pushq	$0
1460

1461
	/* Leave room for the "iret" frame */
1462
	subq	$(5*8), %rsp
1463

1464
	/* Copy the "original" frame to the "outermost" frame */
1465
	.rept 5
1466
	pushq	11*8(%rsp)
1467
	.endr
1468

1469 1470
	/* Everything up to here is safe from nested NMIs */

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1:
#endif

1486
repeat_nmi:
1487 1488 1489 1490 1491 1492 1493 1494
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1495 1496 1497 1498
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1499 1500
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1501
	 */
1502
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1503

1504
	/*
1505 1506 1507
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1508
	 */
1509
	addq	$(10*8), %rsp
1510
	.rept 5
1511
	pushq	-6*8(%rsp)
1512
	.endr
1513
	subq	$(5*8), %rsp
1514
end_repeat_nmi:
1515 1516

	/*
1517 1518 1519
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1520
	 */
1521
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1522 1523
	ALLOC_PT_GPREGS_ON_STACK

1524
	/*
1525
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1526 1527 1528 1529 1530
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1531
	call	paranoid_entry
1532

1533
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1534 1535 1536
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1537

1538 1539
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1540 1541 1542
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1543 1544
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
1545 1546

	/* Point RSP at the "iret" frame. */
1547
	REMOVE_PT_GPREGS_FROM_STACK 6*8
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
	 * the SYSCALL entry and exit paths.  On a native kernel, we
	 * could just inspect RIP, but, on paravirt kernels,
	 * INTERRUPT_RETURN can translate into a jump into a
	 * hypercall page.
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1559 1560 1561 1562 1563 1564

	/*
	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
	 * stack in a single instruction.  We are returning to kernel
	 * mode, so this cannot result in a fault.
	 */
1565
	INTERRUPT_RETURN
1566 1567 1568
END(nmi)

ENTRY(ignore_sysret)
1569
	mov	$-ENOSYS, %eax
1570 1571
	sysret
END(ignore_sysret)
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

ENTRY(rewind_stack_do_exit)
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
	leaq	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp

	call	do_exit
1:	jmp 1b
END(rewind_stack_do_exit)