entry_64.S 46.6 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
ENTRY(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_FLAGS flags:req
57
#ifdef CONFIG_TRACE_IRQFLAGS
58
	bt	$9, \flags		/* interrupts off? */
59
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_OFF
85
	call	debug_stack_reset
86 87 88
.endm

.macro TRACE_IRQS_ON_DEBUG
89
	call	debug_stack_set_zero
90
	TRACE_IRQS_ON
91
	call	debug_stack_reset
92 93
.endm

94
.macro TRACE_IRQS_IRETQ_DEBUG
95 96
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
97 98 99 100 101
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
102 103 104
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105 106
#endif

L
Linus Torvalds 已提交
107
/*
108
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
109
 *
110 111 112 113 114 115 116 117 118 119
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
120
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 122 123 124 125 126
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
127
 * rax  system call number
128 129
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
130 131
 * rdi  arg0
 * rsi  arg1
132
 * rdx  arg2
133
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
134 135
 * r8   arg4
 * r9   arg5
136
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137
 *
L
Linus Torvalds 已提交
138 139
 * Only called from user space.
 *
140
 * When user can change pt_regs->foo always force IRET. That is because
141 142
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
143
 */
L
Linus Torvalds 已提交
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	.pushsection .entry_trampoline, "ax"

/*
 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
 * that the assembler and linker have the wrong idea as to where this code
 * lives (and, in fact, it's mapped more than once, so it's not even at a
 * fixed address).  So we can't reference any symbols outside the entry
 * trampoline and expect it to work.
 *
 * Instead, we carefully abuse %rip-relative addressing.
 * _entry_trampoline(%rip) refers to the start of the remapped) entry
 * trampoline.  We can thus find cpu_entry_area with this macro:
 */

#define CPU_ENTRY_AREA \
	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)

/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
163 164
#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
165 166 167 168 169 170 171 172

ENTRY(entry_SYSCALL_64_trampoline)
	UNWIND_HINT_EMPTY
	swapgs

	/* Stash the user RSP. */
	movq	%rsp, RSP_SCRATCH

173 174 175
	/* Note: using %rsp as a scratch reg. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/* Load the top of the task stack into RSP */
	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp

	/* Start building the simulated IRET frame. */
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	RSP_SCRATCH			/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */

	/*
	 * x86 lacks a near absolute jump, and we can't jump to the real
	 * entry text with a relative jump.  We could push the target
	 * address and then use retq, but this destroys the pipeline on
	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
	 * spill RDI and restore it in a second-stage trampoline.
	 */
	pushq	%rdi
	movq	$entry_SYSCALL_64_stage2, %rdi
195
	JMP_NOSPEC %rdi
196 197 198 199 200 201 202 203 204 205
END(entry_SYSCALL_64_trampoline)

	.popsection

ENTRY(entry_SYSCALL_64_stage2)
	UNWIND_HINT_EMPTY
	popq	%rdi
	jmp	entry_SYSCALL_64_after_hwframe
END(entry_SYSCALL_64_stage2)

206
ENTRY(entry_SYSCALL_64)
207
	UNWIND_HINT_EMPTY
208 209 210 211 212
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
213

214
	swapgs
215 216 217 218
	/*
	 * This path is not taken when PAGE_TABLE_ISOLATION is disabled so it
	 * is not required to switch CR3.
	 */
219 220
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
221 222

	/* Construct struct pt_regs on stack */
223 224 225 226 227
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
228
GLOBAL(entry_SYSCALL_64_after_hwframe)
229 230 231 232 233 234 235 236 237 238
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
239 240 241 242 243 244 245
	pushq	%rbx				/* pt_regs->rbx */
	pushq	%rbp				/* pt_regs->rbp */
	pushq	%r12				/* pt_regs->r12 */
	pushq	%r13				/* pt_regs->r13 */
	pushq	%r14				/* pt_regs->r14 */
	pushq	%r15				/* pt_regs->r15 */
	UNWIND_HINT_REGS
246

247 248
	TRACE_IRQS_OFF

249
	/* IRQs are off. */
250
	movq	%rsp, %rdi
251 252
	call	do_syscall_64		/* returns with IRQs disabled */

253
	TRACE_IRQS_IRETQ		/* we're about to change IF */
254 255 256

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
257 258
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
259
	 */
260 261
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
262 263 264

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
265 266 267 268

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
269
	 * the kernel, since userspace controls RSP.
270
	 *
271
	 * If width of "canonical tail" ever becomes variable, this will need
272
	 * to be updated to remain correct on both old and new CPUs.
273
	 *
274 275
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
276
	 */
277 278 279 280 281 282 283 284 285 286 287
#ifdef CONFIG_X86_5LEVEL
	testl	$1, pgtable_l5_enabled(%rip)
	jz	1f
	shl	$(64 - 57), %rcx
	sar	$(64 - 57), %rcx
	jmp	2f
1:
	shl	$(64 - 48), %rcx
	sar	$(64 - 48), %rcx
2:
#else
288 289
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
290
#endif
291

292 293
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
294
	jne	swapgs_restore_regs_and_return_to_usermode
295

296
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
297
	jne	swapgs_restore_regs_and_return_to_usermode
298

299 300
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
301
	jne	swapgs_restore_regs_and_return_to_usermode
302 303

	/*
304 305 306 307 308 309 310 311 312
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
313
	 *
314
	 *           movq	$stuck_here, %rcx
315 316 317 318 319 320
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
321
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
322
	jnz	swapgs_restore_regs_and_return_to_usermode
323 324 325

	/* nothing to check for RSP */

326
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
327
	jne	swapgs_restore_regs_and_return_to_usermode
328 329

	/*
330 331
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
332 333
	 */
syscall_return_via_sysret:
334
	/* rcx and r11 are already restored (see code above) */
335
	UNWIND_HINT_EMPTY
336 337 338 339 340 341 342 343 344
	POP_EXTRA_REGS
	popq	%rsi	/* skip r11 */
	popq	%r10
	popq	%r9
	popq	%r8
	popq	%rax
	popq	%rsi	/* skip rcx */
	popq	%rdx
	popq	%rsi
345 346 347 348 349 350

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
351
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
352 353 354 355 356 357 358 359

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
360
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
361

362
	popq	%rdi
363
	popq	%rsp
364
	USERGS_SYSRET64
365
END(entry_SYSCALL_64)
366

367 368 369 370 371
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
372
	UNWIND_HINT_FUNC
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

393 394 395 396 397 398 399 400
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
401 402
	/* Clobbers %rbx */
	FILL_RETURN_BUFFER RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
403 404
#endif

405 406 407 408 409 410 411 412 413 414 415
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

416 417 418
/*
 * A newly forked process directly context switches into this address.
 *
419
 * rax: prev task we switched from
420 421
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
422 423
 */
ENTRY(ret_from_fork)
424
	UNWIND_HINT_EMPTY
425
	movq	%rax, %rdi
426
	call	schedule_tail			/* rdi: 'prev' task parameter */
427

428 429
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
430

431
2:
432
	UNWIND_HINT_REGS
433
	movq	%rsp, %rdi
434 435
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
436
	jmp	swapgs_restore_regs_and_return_to_usermode
437 438 439 440

1:
	/* kernel thread */
	movq	%r12, %rdi
441
	CALL_NOSPEC %rbx
442 443 444 445 446 447 448
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
449 450
END(ret_from_fork)

451
/*
452 453
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
454
 */
455
	.align 8
456
ENTRY(irq_entries_start)
457 458
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
459
	UNWIND_HINT_IRET_REGS
460
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
461 462
	jmp	common_interrupt
	.align	8
463
	vector=vector+1
464
    .endr
465 466
END(irq_entries_start)

467 468
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
469 470 471
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
472 473 474
	jz .Lokay_\@
	ud2
.Lokay_\@:
475
	popq %rax
476 477 478 479 480 481 482 483 484 485
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
486
.macro ENTER_IRQ_STACK regs=1 old_rsp
487 488
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	movq	%rsp, \old_rsp
489 490 491 492 493

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

494
	incl	PER_CPU_VAR(irq_count)
495
	jnz	.Lirq_stack_push_old_rsp_\@
496 497 498 499 500 501 502 503 504

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
521
	 */
522 523 524 525 526
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
527

528
.Lirq_stack_push_old_rsp_\@:
529
	pushq	\old_rsp
530 531 532 533

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
534 535 536 537 538
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
539
.macro LEAVE_IRQ_STACK regs=1
540 541 542 543
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

544 545 546 547
	.if \regs
	UNWIND_HINT_REGS
	.endif

548 549 550 551 552 553 554 555
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

556
/*
L
Linus Torvalds 已提交
557 558 559
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
560 561 562
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
563

564
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
565
	.macro interrupt func
566
	cld
567 568 569 570 571 572 573

	testb	$3, CS-ORIG_RAX(%rsp)
	jz	1f
	SWAPGS
	call	switch_to_thread_stack
1:

574 575 576
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
577
	ENCODE_FRAME_POINTER
578

579
	testb	$3, CS(%rsp)
580
	jz	1f
581 582

	/*
583 584
	 * IRQ from user mode.
	 *
585 586 587 588 589 590 591 592 593
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

594
	CALL_enter_from_user_mode
595

596
1:
597
	ENTER_IRQ_STACK old_rsp=%rdi
598 599 600
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

601
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
602 603
	.endm

604 605 606 607
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
608 609
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
610
	ASM_CLAC
611
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
612
	interrupt do_IRQ
613
	/* 0(%rsp): old RSP */
614
ret_from_intr:
615
	DISABLE_INTERRUPTS(CLBR_ANY)
616
	TRACE_IRQS_OFF
617

618
	LEAVE_IRQ_STACK
619

620
	testb	$3, CS(%rsp)
621
	jz	retint_kernel
622

623 624 625 626
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
627
	TRACE_IRQS_IRETQ
628

629
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
630 631
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
632
	testb	$3, CS(%rsp)
633 634 635 636
	jnz	1f
	ud2
1:
#endif
637
	POP_EXTRA_REGS
638 639 640 641 642 643 644 645 646 647 648 649 650 651
	popq	%r11
	popq	%r10
	popq	%r9
	popq	%r8
	popq	%rax
	popq	%rcx
	popq	%rdx
	popq	%rsi

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
652
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */

669
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
670

671 672 673
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
674 675
	INTERRUPT_RETURN

676

677
/* Returning to kernel space */
678
retint_kernel:
679 680 681
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
682
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
683
	jnc	1f
684
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
685
	jnz	1f
686
	call	preempt_schedule_irq
687
	jmp	0b
688
1:
689
#endif
690 691 692 693
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
694

695 696 697
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
698
	testb	$3, CS(%rsp)
699 700 701 702
	jz	1f
	ud2
1:
#endif
703 704 705
	POP_EXTRA_REGS
	POP_C_REGS
	addq	$8, %rsp	/* skip regs->orig_ax */
706 707 708 709
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
710 711 712
	INTERRUPT_RETURN

ENTRY(native_iret)
713
	UNWIND_HINT_IRET_REGS
714 715 716 717
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
718
#ifdef CONFIG_X86_ESPFIX64
719 720
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
721
#endif
722

723
.global native_irq_return_iret
724
native_irq_return_iret:
A
Andy Lutomirski 已提交
725 726 727 728 729 730
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
731
	iretq
I
Ingo Molnar 已提交
732

733
#ifdef CONFIG_X86_ESPFIX64
734
native_irq_return_ldt:
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
757 758 759
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

760
	movq	PER_CPU_VAR(espfix_waddr), %rdi
761 762
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
763
	movq	%rax, (1*8)(%rdi)
764
	movq	(2*8)(%rsp), %rax		/* user CS */
765
	movq	%rax, (2*8)(%rdi)
766
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
767
	movq	%rax, (3*8)(%rdi)
768
	movq	(5*8)(%rsp), %rax		/* user SS */
769
	movq	%rax, (5*8)(%rdi)
770
	movq	(4*8)(%rsp), %rax		/* user RSP */
771
	movq	%rax, (4*8)(%rdi)
772 773 774 775 776 777 778 779 780 781 782 783
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
784
	orq	PER_CPU_VAR(espfix_stack), %rax
785

786
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
787 788 789
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

790
	movq	%rax, %rsp
791
	UNWIND_HINT_IRET_REGS offset=8
792 793 794 795 796 797 798 799 800 801 802 803

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
804
	jmp	native_irq_return_iret
805
#endif
806
END(common_interrupt)
807

L
Linus Torvalds 已提交
808 809
/*
 * APIC interrupts.
810
 */
811
.macro apicinterrupt3 num sym do_sym
812
ENTRY(\sym)
813
	UNWIND_HINT_IRET_REGS
814
	ASM_CLAC
815
	pushq	$~(\num)
816
.Lcommon_\sym:
817
	interrupt \do_sym
818
	jmp	ret_from_intr
819 820
END(\sym)
.endm
L
Linus Torvalds 已提交
821

822
/* Make sure APIC interrupt handlers end up in the irqentry section: */
823 824
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
825

826
.macro apicinterrupt num sym do_sym
827
PUSH_SECTION_IRQENTRY
828
apicinterrupt3 \num \sym \do_sym
829
POP_SECTION_IRQENTRY
830 831
.endm

832
#ifdef CONFIG_SMP
833 834
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
835
#endif
L
Linus Torvalds 已提交
836

N
Nick Piggin 已提交
837
#ifdef CONFIG_X86_UV
838
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
839
#endif
840 841 842

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
843

844
#ifdef CONFIG_HAVE_KVM
845 846
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
847
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
848 849
#endif

850
#ifdef CONFIG_X86_MCE_THRESHOLD
851
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
852 853
#endif

854
#ifdef CONFIG_X86_MCE_AMD
855
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
856 857
#endif

858
#ifdef CONFIG_X86_THERMAL_VECTOR
859
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
860
#endif
861

862
#ifdef CONFIG_SMP
863 864 865
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
866
#endif
L
Linus Torvalds 已提交
867

868 869
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
870

871
#ifdef CONFIG_IRQ_WORK
872
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
873 874
#endif

L
Linus Torvalds 已提交
875 876
/*
 * Exception entry points.
877
 */
878
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
879

880 881 882 883 884 885 886 887 888
/*
 * Switch to the thread stack.  This is called with the IRET frame and
 * orig_ax on the stack.  (That is, RDI..R12 are not on the stack and
 * space has not been allocated for them.)
 */
ENTRY(switch_to_thread_stack)
	UNWIND_HINT_FUNC

	pushq	%rdi
889 890
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
	ret
END(switch_to_thread_stack)
907 908

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
909
ENTRY(\sym)
910
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
911

912 913 914 915 916
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

917
	ASM_CLAC
918

919
	.if \has_error_code == 0
920
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
921 922
	.endif

923
	ALLOC_PT_GPREGS_ON_STACK
924

925
	.if \paranoid < 2
926
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
927
	jnz	.Lfrom_usermode_switch_stack_\@
928
	.endif
929 930

	.if \paranoid
931
	call	paranoid_entry
932
	.else
933
	call	error_entry
934
	.endif
935
	UNWIND_HINT_REGS
936
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
937 938

	.if \paranoid
939
	.if \shift_ist != -1
940
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
941
	.else
942
	TRACE_IRQS_OFF
943
	.endif
944
	.endif
945

946
	movq	%rsp, %rdi			/* pt_regs pointer */
947 948

	.if \has_error_code
949 950
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
951
	.else
952
	xorl	%esi, %esi			/* no error code */
953 954
	.endif

955
	.if \shift_ist != -1
956
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
957 958
	.endif

959
	call	\do_sym
960

961
	.if \shift_ist != -1
962
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
963 964
	.endif

965
	/* these procedures expect "no swapgs" flag in ebx */
966
	.if \paranoid
967
	jmp	paranoid_exit
968
	.else
969
	jmp	error_exit
970 971
	.endif

972
	.if \paranoid < 2
973
	/*
974
	 * Entry from userspace.  Switch stacks and treat it
975 976 977
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
978
.Lfrom_usermode_switch_stack_\@:
979
	call	error_entry
980

981
	movq	%rsp, %rdi			/* pt_regs pointer */
982 983

	.if \has_error_code
984 985
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
986
	.else
987
	xorl	%esi, %esi			/* no error code */
988 989
	.endif

990
	call	\do_sym
991

992
	jmp	error_exit			/* %ebx: no swapgs flag */
993
	.endif
994
END(\sym)
995
.endm
996

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
1016
ENTRY(native_load_gs_index)
1017
	FRAME_BEGIN
1018
	pushfq
1019
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1020
	TRACE_IRQS_OFF
1021
	SWAPGS
1022
.Lgs_change:
1023
	movl	%edi, %gs
1024
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1025
	SWAPGS
1026
	TRACE_IRQS_FLAGS (%rsp)
1027
	popfq
1028
	FRAME_END
1029
	ret
1030
ENDPROC(native_load_gs_index)
1031
EXPORT_SYMBOL(native_load_gs_index)
1032

1033
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1034
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1035
	/* running with kernelgs */
1036
bad_gs:
1037
	SWAPGS					/* switch back to user gs */
1038 1039 1040 1041 1042 1043
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1044 1045 1046
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1047
	.previous
1048

1049
/* Call softirq on interrupt stack. Interrupts are off. */
1050
ENTRY(do_softirq_own_stack)
1051 1052
	pushq	%rbp
	mov	%rsp, %rbp
1053
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1054
	call	__do_softirq
1055
	LEAVE_IRQ_STACK regs=0
1056
	leaveq
1057
	ret
1058
ENDPROC(do_softirq_own_stack)
1059

1060
#ifdef CONFIG_XEN
1061
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1062 1063

/*
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1076 1077
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1078 1079 1080 1081
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1082
	UNWIND_HINT_FUNC
1083
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1084
	UNWIND_HINT_REGS
1085 1086

	ENTER_IRQ_STACK old_rsp=%r10
1087
	call	xen_evtchn_do_upcall
1088 1089
	LEAVE_IRQ_STACK

1090
#ifndef CONFIG_PREEMPT
1091
	call	xen_maybe_preempt_hcall
1092
#endif
1093
	jmp	error_exit
1094
END(xen_do_hypervisor_callback)
1095 1096

/*
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1109
ENTRY(xen_failsafe_callback)
1110
	UNWIND_HINT_EMPTY
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1123
	/* All segments match their saved values => Category 2 (Bad IRET). */
1124 1125 1126 1127
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1128
	UNWIND_HINT_IRET_REGS offset=8
1129
	jmp	general_protection
1130
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1131 1132 1133
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1134
	UNWIND_HINT_IRET_REGS
1135
	pushq	$-1 /* orig_ax = -1 => not a system call */
1136 1137 1138
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
1139
	ENCODE_FRAME_POINTER
1140
	jmp	error_exit
1141 1142
END(xen_failsafe_callback)

1143
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1144 1145
	xen_hvm_callback_vector xen_evtchn_do_upcall

1146
#endif /* CONFIG_XEN */
1147

1148
#if IS_ENABLED(CONFIG_HYPERV)
1149
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1150
	hyperv_callback_vector hyperv_vector_handler
1151 1152 1153

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1154 1155
#endif /* CONFIG_HYPERV */

1156 1157 1158 1159
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1160
#ifdef CONFIG_XEN
1161
idtentry xennmi			do_nmi			has_error_code=0
1162 1163
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1164
#endif
1165 1166

idtentry general_protection	do_general_protection	has_error_code=1
1167
idtentry page_fault		do_page_fault		has_error_code=1
1168

G
Gleb Natapov 已提交
1169
#ifdef CONFIG_KVM_GUEST
1170
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1171
#endif
1172

1173
#ifdef CONFIG_X86_MCE
1174
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1175 1176
#endif

1177 1178 1179 1180 1181 1182
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1183
	UNWIND_HINT_FUNC
1184 1185 1186
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1187
	ENCODE_FRAME_POINTER 8
1188 1189
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1190
	rdmsr
1191 1192
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1193
	SWAPGS
1194
	xorl	%ebx, %ebx
1195 1196 1197 1198 1199

1:
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

	ret
1200
END(paranoid_entry)
1201

1202 1203 1204 1205 1206 1207 1208 1209 1210
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1211 1212
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1213
 */
1214
ENTRY(paranoid_exit)
1215
	UNWIND_HINT_REGS
1216
	DISABLE_INTERRUPTS(CLBR_ANY)
1217
	TRACE_IRQS_OFF_DEBUG
1218
	testl	%ebx, %ebx			/* swapgs needed? */
1219
	jnz	.Lparanoid_exit_no_swapgs
1220
	TRACE_IRQS_IRETQ
P
Peter Zijlstra 已提交
1221
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1222
	SWAPGS_UNSAFE_STACK
1223 1224
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1225
	TRACE_IRQS_IRETQ_DEBUG
1226 1227
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1228 1229 1230
END(paranoid_exit)

/*
1231
 * Save all registers in pt_regs, and switch gs if needed.
1232
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1233 1234
 */
ENTRY(error_entry)
1235
	UNWIND_HINT_FUNC
1236
	cld
1237 1238
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1239
	ENCODE_FRAME_POINTER 8
1240
	xorl	%ebx, %ebx
1241
	testb	$3, CS+8(%rsp)
1242
	jz	.Lerror_kernelspace
1243

1244 1245 1246 1247
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1248
	SWAPGS
1249 1250
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1251

1252
.Lerror_entry_from_usermode_after_swapgs:
1253 1254 1255 1256 1257 1258 1259 1260
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1261 1262 1263 1264 1265 1266
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1267
	CALL_enter_from_user_mode
1268
	ret
1269

1270
.Lerror_entry_done:
1271 1272 1273
	TRACE_IRQS_OFF
	ret

1274 1275 1276 1277 1278 1279
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1280
.Lerror_kernelspace:
1281 1282 1283
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1284
	je	.Lerror_bad_iret
1285 1286
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1287
	je	.Lbstep_iret
1288
	cmpq	$.Lgs_change, RIP+8(%rsp)
1289
	jne	.Lerror_entry_done
1290 1291

	/*
1292
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1293
	 * gsbase and proceed.  We'll fix up the exception and land in
1294
	 * .Lgs_change's error handler with kernel gsbase.
1295
	 */
1296
	SWAPGS
1297
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1298
	jmp .Lerror_entry_done
1299

1300
.Lbstep_iret:
1301
	/* Fix truncated RIP */
1302
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1303 1304
	/* fall through */

1305
.Lerror_bad_iret:
1306
	/*
1307 1308
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1309
	 */
A
Andy Lutomirski 已提交
1310
	SWAPGS
1311
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1312 1313 1314 1315 1316 1317

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1318 1319 1320
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1321
	decl	%ebx
1322
	jmp	.Lerror_entry_from_usermode_after_swapgs
1323 1324 1325
END(error_entry)


1326
/*
1327
 * On entry, EBX is a "return to kernel mode" flag:
1328 1329 1330
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1331
ENTRY(error_exit)
1332
	UNWIND_HINT_REGS
1333
	DISABLE_INTERRUPTS(CLBR_ANY)
1334
	TRACE_IRQS_OFF
1335
	testl	%ebx, %ebx
1336 1337
	jnz	retint_kernel
	jmp	retint_user
1338 1339
END(error_exit)

1340 1341 1342
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1343 1344 1345 1346
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1347
 */
1348
ENTRY(nmi)
1349
	UNWIND_HINT_IRET_REGS
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1368 1369 1370
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1371 1372
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1373
	 *    o Modify the "iret" location to jump to the repeat_nmi
1374 1375 1376 1377 1378 1379 1380 1381
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1382 1383 1384 1385 1386
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1387 1388
	 */

1389 1390
	ASM_CLAC

1391
	/* Use %rdx as our temp variable throughout */
1392
	pushq	%rdx
1393

1394 1395 1396 1397 1398 1399 1400 1401 1402
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1403 1404 1405
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1406 1407
	 */

1408
	swapgs
1409
	cld
1410
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1411 1412
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1413
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1414 1415 1416 1417 1418
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1419
	UNWIND_HINT_IRET_REGS
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */
1436
	UNWIND_HINT_REGS
1437
	ENCODE_FRAME_POINTER
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1449
	/*
1450
	 * Return back to user mode.  We must *not* do the normal exit
1451
	 * work, because we don't want to enable interrupts.
1452
	 */
1453
	jmp	swapgs_restore_regs_and_return_to_usermode
1454

1455
.Lnmi_from_kernel:
1456
	/*
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1497
	/*
1498 1499
	 * Determine whether we're a nested NMI.
	 *
1500 1501 1502 1503 1504 1505
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1506
	 */
1507 1508 1509 1510 1511 1512 1513 1514

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1515

1516
	/*
1517
	 * Now check "NMI executing".  If it's set, then we're nested.
1518 1519
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1520
	 */
1521 1522
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1523 1524

	/*
1525 1526
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1527 1528 1529 1530 1531 1532 1533 1534
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1535
	 */
1536 1537 1538 1539 1540
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1541

1542 1543 1544 1545
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1546 1547 1548 1549 1550 1551 1552

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1553

1554 1555
nested_nmi:
	/*
1556 1557
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1558
	 */
1559
	subq	$8, %rsp
1560 1561 1562
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1563
	pushfq
1564 1565
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1566 1567

	/* Put stack back */
1568
	addq	$(6*8), %rsp
1569 1570

nested_nmi_out:
1571
	popq	%rdx
1572

1573
	/* We are returning to kernel mode, so this cannot result in a fault. */
1574
	iretq
1575 1576

first_nmi:
1577
	/* Restore rdx. */
1578
	movq	(%rsp), %rdx
1579

1580 1581
	/* Make room for "NMI executing". */
	pushq	$0
1582

1583
	/* Leave room for the "iret" frame */
1584
	subq	$(5*8), %rsp
1585

1586
	/* Copy the "original" frame to the "outermost" frame */
1587
	.rept 5
1588
	pushq	11*8(%rsp)
1589
	.endr
1590
	UNWIND_HINT_IRET_REGS
1591

1592 1593
	/* Everything up to here is safe from nested NMIs */

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1605
	iretq			/* continues at repeat_nmi below */
1606
	UNWIND_HINT_IRET_REGS
1607 1608 1609
1:
#endif

1610
repeat_nmi:
1611 1612 1613 1614 1615 1616 1617 1618
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1619 1620 1621 1622
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1623 1624
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1625
	 */
1626
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1627

1628
	/*
1629 1630 1631
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1632
	 */
1633
	addq	$(10*8), %rsp
1634
	.rept 5
1635
	pushq	-6*8(%rsp)
1636
	.endr
1637
	subq	$(5*8), %rsp
1638
end_repeat_nmi:
1639 1640

	/*
1641 1642 1643
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1644
	 */
1645
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1646 1647
	ALLOC_PT_GPREGS_ON_STACK

1648
	/*
1649
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1650 1651 1652 1653 1654
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1655
	call	paranoid_entry
1656
	UNWIND_HINT_REGS
1657

1658
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1659 1660 1661
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1662

P
Peter Zijlstra 已提交
1663
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1664

1665 1666
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1667 1668 1669
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1670 1671
	POP_EXTRA_REGS
	POP_C_REGS
1672

1673 1674 1675 1676 1677
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1678

1679 1680 1681
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1682 1683 1684 1685 1686
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1687 1688 1689
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1690 1691

	/*
1692 1693 1694 1695
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1696
	 */
1697
	iretq
1698 1699 1700
END(nmi)

ENTRY(ignore_sysret)
1701
	UNWIND_HINT_EMPTY
1702
	mov	$-ENOSYS, %eax
1703 1704
	sysret
END(ignore_sysret)
1705 1706

ENTRY(rewind_stack_do_exit)
1707
	UNWIND_HINT_FUNC
1708 1709 1710 1711
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1712 1713
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1714 1715 1716

	call	do_exit
END(rewind_stack_do_exit)