entry_64.S 39.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7
 *
L
Linus Torvalds 已提交
8 9
 * entry.S contains the system-call and fault low-level handling routines.
 *
10 11
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
12
 * A note on terminology:
13 14
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
15 16
 *
 * Some macro usage:
17 18 19
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
20 21 22 23 24
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
25
#include "calling.h"
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <linux/err.h>
L
Linus Torvalds 已提交
39

R
Roland McGrath 已提交
40 41
/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this.  */
#include <linux/elf-em.h>
42 43 44
#define AUDIT_ARCH_X86_64			(EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
#define __AUDIT_ARCH_64BIT			0x80000000
#define __AUDIT_ARCH_LE				0x40000000
J
Jiri Olsa 已提交
45

46 47
.code64
.section .entry.text, "ax"
48

49
#ifdef CONFIG_PARAVIRT
50
ENTRY(native_usergs_sysret64)
51 52
	swapgs
	sysretq
53
ENDPROC(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_IRETQ
57
#ifdef CONFIG_TRACE_IRQFLAGS
58 59
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
79
	call	debug_stack_set_zero
80
	TRACE_IRQS_OFF
81
	call	debug_stack_reset
82 83 84
.endm

.macro TRACE_IRQS_ON_DEBUG
85
	call	debug_stack_set_zero
86
	TRACE_IRQS_ON
87
	call	debug_stack_reset
88 89
.endm

90
.macro TRACE_IRQS_IRETQ_DEBUG
91 92
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
93 94 95 96 97
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
98 99 100
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
101 102
#endif

L
Linus Torvalds 已提交
103
/*
104
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
105
 *
106 107 108 109 110 111 112 113 114 115
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
116
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
117 118 119 120 121 122
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
123
 * rax  system call number
124 125
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
126 127
 * rdi  arg0
 * rsi  arg1
128
 * rdx  arg2
129
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
130 131
 * r8   arg4
 * r9   arg5
132
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
133
 *
L
Linus Torvalds 已提交
134 135
 * Only called from user space.
 *
136
 * When user can change pt_regs->foo always force IRET. That is because
137 138
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
139
 */
L
Linus Torvalds 已提交
140

141
ENTRY(entry_SYSCALL_64)
142 143 144 145 146
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
147 148 149 150 151 152
	SWAPGS_UNSAFE_STACK
	/*
	 * A hypervisor implementation might want to use a label
	 * after the swapgs, so that it can do the swapgs
	 * for the guest and jump here on syscall.
	 */
153
GLOBAL(entry_SYSCALL_64_after_swapgs)
154

155 156
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
157

158 159
	TRACE_IRQS_OFF

160
	/* Construct struct pt_regs on stack */
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */

178 179 180 181 182 183 184
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
	jnz	entry_SYSCALL64_slow_path

185
entry_SYSCALL_64_fastpath:
186 187 188 189 190 191 192
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
193
#if __SYSCALL_MASK == ~0
194
	cmpq	$__NR_syscall_max, %rax
195
#else
196 197
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
198
#endif
199 200
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
201 202 203

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
204 205
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
206
	 */
207
	call	*sys_call_table(, %rax, 8)
208 209
.Lentry_SYSCALL_64_after_fastpath_call:

210
	movq	%rax, RAX(%rsp)
211
1:
212 213

	/*
214 215 216
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
217
	 */
218 219
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
220
	testl	$_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
221
	jnz	1f
222

223 224
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
225 226 227
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
	RESTORE_C_REGS_EXCEPT_RCX_R11
228
	movq	RSP(%rsp), %rsp
229
	USERGS_SYSRET64
L
Linus Torvalds 已提交
230

231 232 233 234 235 236
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
237 238
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
239
	SAVE_EXTRA_REGS
240
	movq	%rsp, %rdi
241 242
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
243

244 245
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
246
	SAVE_EXTRA_REGS
247
	movq	%rsp, %rdi
248 249 250
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
251
	RESTORE_EXTRA_REGS
252
	TRACE_IRQS_IRETQ		/* we're about to change IF */
253 254 255 256 257

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
	 * a completely clean 64-bit userspace context.
	 */
258 259 260 261
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
	cmpq	%rcx, %r11			/* RCX == RIP */
	jne	opportunistic_sysret_failed
262 263 264 265

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
266
	 * the kernel, since userspace controls RSP.
267
	 *
268
	 * If width of "canonical tail" ever becomes variable, this will need
269 270 271 272 273
	 * to be updated to remain correct on both old and new CPUs.
	 */
	.ifne __VIRTUAL_MASK_SHIFT - 47
	.error "virtual address width changed -- SYSRET checks need update"
	.endif
274

275 276 277
	/* Change top 16 bits to be the sign-extension of 47th bit */
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
278

279 280 281
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
	jne	opportunistic_sysret_failed
282

283 284
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
	jne	opportunistic_sysret_failed
285

286 287 288
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
	jne	opportunistic_sysret_failed
289 290 291 292 293 294 295 296

	/*
	 * SYSRET can't restore RF.  SYSRET can restore TF, but unlike IRET,
	 * restoring TF results in a trap from userspace immediately after
	 * SYSRET.  This would cause an infinite loop whenever #DB happens
	 * with register state that satisfies the opportunistic SYSRET
	 * conditions.  For example, single-stepping this user code:
	 *
297
	 *           movq	$stuck_here, %rcx
298 299 300 301 302 303
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
304 305
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
	jnz	opportunistic_sysret_failed
306 307 308

	/* nothing to check for RSP */

309 310
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
	jne	opportunistic_sysret_failed
311 312

	/*
313 314
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
315 316
	 */
syscall_return_via_sysret:
317 318
	/* rcx and r11 are already restored (see code above) */
	RESTORE_C_REGS_EXCEPT_RCX_R11
319
	movq	RSP(%rsp), %rsp
320 321 322 323 324
	USERGS_SYSRET64

opportunistic_sysret_failed:
	SWAPGS
	jmp	restore_c_regs_and_iret
325
END(entry_SYSCALL_64)
326

327 328 329
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
330 331 332
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
333 334
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
335
	 * IRQs are on.
336 337 338 339
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

340 341 342 343 344 345
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
346
	popq	%rax
347
	jmp	entry_SYSCALL64_slow_path
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

1:
	/* Called from C */
	jmp	*%rax				/* called from C */
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
366

367 368 369 370 371 372
/*
 * A newly forked process directly context switches into this address.
 *
 * rdi: prev task we switched from
 */
ENTRY(ret_from_fork)
373
	LOCK ; btr $TIF_FORK, TI_flags(%r8)
374

375 376
	pushq	$0x0002
	popfq					/* reset kernel eflags */
377

378
	call	schedule_tail			/* rdi: 'prev' task parameter */
379

380
	testb	$3, CS(%rsp)			/* from kernel_thread? */
381
	jnz	1f
382

383
	/*
384 385 386 387 388 389
	 * We came from kernel_thread.  This code path is quite twisted, and
	 * someone should clean it up.
	 *
	 * copy_thread_tls stashes the function pointer in RBX and the
	 * parameter to be passed in RBP.  The called function is permitted
	 * to call do_execve and thereby jump to user mode.
390
	 */
391 392 393
	movq	RBP(%rsp), %rdi
	call	*RBX(%rsp)
	movl	$0, RAX(%rsp)
394

395
	/*
396 397
	 * Fall through as though we're exiting a syscall.  This makes a
	 * twisted sort of sense if we just called do_execve.
398
	 */
399 400 401 402 403 404 405

1:
	movq	%rsp, %rdi
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
	SWAPGS
	jmp	restore_regs_and_iret
406 407
END(ret_from_fork)

408
/*
409 410
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
411
 */
412
	.align 8
413
ENTRY(irq_entries_start)
414 415
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
416
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
417 418 419 420
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
421 422
END(irq_entries_start)

423
/*
L
Linus Torvalds 已提交
424 425 426
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
427 428 429
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
430

431
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
432
	.macro interrupt func
433
	cld
434 435 436
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
437

438
	testb	$3, CS(%rsp)
439
	jz	1f
440 441 442 443 444

	/*
	 * IRQ from user mode.  Switch to kernel gsbase and inform context
	 * tracking that we're in kernel mode.
	 */
445
	SWAPGS
446 447 448 449 450 451 452 453 454 455 456

	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

457
	CALL_enter_from_user_mode
458

459
1:
460
	/*
D
Denys Vlasenko 已提交
461
	 * Save previous stack pointer, optionally switch to interrupt stack.
462 463 464 465 466
	 * irq_count is used to check if a CPU is already on an interrupt stack
	 * or not. While this is essentially redundant with preempt_count it is
	 * a little cheaper to use a separate counter in the PDA (short of
	 * moving irq_enter into assembly, which would be too much work)
	 */
467
	movq	%rsp, %rdi
468 469
	incl	PER_CPU_VAR(irq_count)
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
470
	pushq	%rdi
471 472 473
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

474
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
475 476
	.endm

477 478 479 480
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
481 482
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
483
	ASM_CLAC
484
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
485
	interrupt do_IRQ
486
	/* 0(%rsp): old RSP */
487
ret_from_intr:
488
	DISABLE_INTERRUPTS(CLBR_NONE)
489
	TRACE_IRQS_OFF
490
	decl	PER_CPU_VAR(irq_count)
491

492
	/* Restore saved previous stack */
493
	popq	%rsp
494

495
	testb	$3, CS(%rsp)
496
	jz	retint_kernel
497

498 499 500 501
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
502
	TRACE_IRQS_IRETQ
503
	SWAPGS
504
	jmp	restore_regs_and_iret
505

506
/* Returning to kernel space */
507
retint_kernel:
508 509 510
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
511
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
512
	jnc	1f
513
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
514
	jnz	1f
515
	call	preempt_schedule_irq
516
	jmp	0b
517
1:
518
#endif
519 520 521 522
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
523 524 525 526 527

/*
 * At this label, code paths which return to kernel and to user,
 * which come from interrupts/exception and from syscalls, merge.
 */
528
GLOBAL(restore_regs_and_iret)
529
	RESTORE_EXTRA_REGS
530
restore_c_regs_and_iret:
531 532
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
533 534 535
	INTERRUPT_RETURN

ENTRY(native_iret)
536 537 538 539
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
540
#ifdef CONFIG_X86_ESPFIX64
541 542
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
543
#endif
544

545
.global native_irq_return_iret
546
native_irq_return_iret:
A
Andy Lutomirski 已提交
547 548 549 550 551 552
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
553
	iretq
I
Ingo Molnar 已提交
554

555
#ifdef CONFIG_X86_ESPFIX64
556
native_irq_return_ldt:
557 558
	pushq	%rax
	pushq	%rdi
559
	SWAPGS
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	movq	PER_CPU_VAR(espfix_waddr), %rdi
	movq	%rax, (0*8)(%rdi)		/* RAX */
	movq	(2*8)(%rsp), %rax		/* RIP */
	movq	%rax, (1*8)(%rdi)
	movq	(3*8)(%rsp), %rax		/* CS */
	movq	%rax, (2*8)(%rdi)
	movq	(4*8)(%rsp), %rax		/* RFLAGS */
	movq	%rax, (3*8)(%rdi)
	movq	(6*8)(%rsp), %rax		/* SS */
	movq	%rax, (5*8)(%rdi)
	movq	(5*8)(%rsp), %rax		/* RSP */
	movq	%rax, (4*8)(%rdi)
	andl	$0xffff0000, %eax
	popq	%rdi
	orq	PER_CPU_VAR(espfix_stack), %rax
575
	SWAPGS
576 577 578
	movq	%rax, %rsp
	popq	%rax
	jmp	native_irq_return_iret
579
#endif
580
END(common_interrupt)
581

L
Linus Torvalds 已提交
582 583
/*
 * APIC interrupts.
584
 */
585
.macro apicinterrupt3 num sym do_sym
586
ENTRY(\sym)
587
	ASM_CLAC
588
	pushq	$~(\num)
589
.Lcommon_\sym:
590
	interrupt \do_sym
591
	jmp	ret_from_intr
592 593
END(\sym)
.endm
L
Linus Torvalds 已提交
594

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
#ifdef CONFIG_TRACING
#define trace(sym) trace_##sym
#define smp_trace(sym) smp_trace_##sym

.macro trace_apicinterrupt num sym
apicinterrupt3 \num trace(\sym) smp_trace(\sym)
.endm
#else
.macro trace_apicinterrupt num sym do_sym
.endm
#endif

.macro apicinterrupt num sym do_sym
apicinterrupt3 \num \sym \do_sym
trace_apicinterrupt \num \sym
.endm

612
#ifdef CONFIG_SMP
613 614
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
615
#endif
L
Linus Torvalds 已提交
616

N
Nick Piggin 已提交
617
#ifdef CONFIG_X86_UV
618
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
619
#endif
620 621 622

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
623

624
#ifdef CONFIG_HAVE_KVM
625 626
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
627 628
#endif

629
#ifdef CONFIG_X86_MCE_THRESHOLD
630
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
631 632
#endif

633
#ifdef CONFIG_X86_MCE_AMD
634
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
635 636
#endif

637
#ifdef CONFIG_X86_THERMAL_VECTOR
638
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
639
#endif
640

641
#ifdef CONFIG_SMP
642 643 644
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
645
#endif
L
Linus Torvalds 已提交
646

647 648
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
649

650
#ifdef CONFIG_IRQ_WORK
651
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
652 653
#endif

L
Linus Torvalds 已提交
654 655
/*
 * Exception entry points.
656
 */
657
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
658 659

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
660
ENTRY(\sym)
661 662 663 664 665
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

666
	ASM_CLAC
667
	PARAVIRT_ADJUST_EXCEPTION_FRAME
668 669

	.ifeq \has_error_code
670
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
671 672
	.endif

673
	ALLOC_PT_GPREGS_ON_STACK
674 675

	.if \paranoid
676
	.if \paranoid == 1
677 678
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
679
	.endif
680
	call	paranoid_entry
681
	.else
682
	call	error_entry
683
	.endif
684
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
685 686

	.if \paranoid
687
	.if \shift_ist != -1
688
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
689
	.else
690
	TRACE_IRQS_OFF
691
	.endif
692
	.endif
693

694
	movq	%rsp, %rdi			/* pt_regs pointer */
695 696

	.if \has_error_code
697 698
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
699
	.else
700
	xorl	%esi, %esi			/* no error code */
701 702
	.endif

703
	.if \shift_ist != -1
704
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
705 706
	.endif

707
	call	\do_sym
708

709
	.if \shift_ist != -1
710
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
711 712
	.endif

713
	/* these procedures expect "no swapgs" flag in ebx */
714
	.if \paranoid
715
	jmp	paranoid_exit
716
	.else
717
	jmp	error_exit
718 719
	.endif

720 721 722 723 724 725 726
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
727
	call	error_entry
728 729


730 731 732
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
733

734
	movq	%rsp, %rdi			/* pt_regs pointer */
735 736

	.if \has_error_code
737 738
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
739
	.else
740
	xorl	%esi, %esi			/* no error code */
741 742
	.endif

743
	call	\do_sym
744

745
	jmp	error_exit			/* %ebx: no swapgs flag */
746
	.endif
747
END(\sym)
748
.endm
749

750
#ifdef CONFIG_TRACING
751 752 753
.macro trace_idtentry sym do_sym has_error_code:req
idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
idtentry \sym \do_sym has_error_code=\has_error_code
754 755
.endm
#else
756 757
.macro trace_idtentry sym do_sym has_error_code:req
idtentry \sym \do_sym has_error_code=\has_error_code
758 759 760
.endm
#endif

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
780
ENTRY(native_load_gs_index)
781
	pushfq
782
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
783
	SWAPGS
784
gs_change:
785
	movl	%edi, %gs
786
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
787
	SWAPGS
788
	popfq
789
	ret
790
END(native_load_gs_index)
791

792 793
	_ASM_EXTABLE(gs_change, bad_gs)
	.section .fixup, "ax"
L
Linus Torvalds 已提交
794
	/* running with kernelgs */
795
bad_gs:
796 797 798 799
	SWAPGS					/* switch back to user gs */
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
800
	.previous
801

802
/* Call softirq on interrupt stack. Interrupts are off. */
803
ENTRY(do_softirq_own_stack)
804 805 806 807 808 809
	pushq	%rbp
	mov	%rsp, %rbp
	incl	PER_CPU_VAR(irq_count)
	cmove	PER_CPU_VAR(irq_stack_ptr), %rsp
	push	%rbp				/* frame pointer backlink */
	call	__do_softirq
810
	leaveq
811
	decl	PER_CPU_VAR(irq_count)
812
	ret
813
END(do_softirq_own_stack)
814

815
#ifdef CONFIG_XEN
816
idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
817 818

/*
819 820 821 822 823 824 825 826 827 828 829 830
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
831 832
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

833 834 835 836
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
837 838 839 840 841 842 843 844
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
11:	incl	PER_CPU_VAR(irq_count)
	movq	%rsp, %rbp
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
	pushq	%rbp				/* frame pointer backlink */
	call	xen_evtchn_do_upcall
	popq	%rsp
	decl	PER_CPU_VAR(irq_count)
845
#ifndef CONFIG_PREEMPT
846
	call	xen_maybe_preempt_hcall
847
#endif
848
	jmp	error_exit
849
END(xen_do_hypervisor_callback)
850 851

/*
852 853 854 855 856 857 858 859 860 861 862 863
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
864
ENTRY(xen_failsafe_callback)
865 866 867 868 869 870 871 872 873 874 875 876
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
877
	/* All segments match their saved values => Category 2 (Bad IRET). */
878 879 880 881 882 883 884
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
	pushq	%r11
	pushq	%rcx
	jmp	general_protection
885
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
886 887 888 889
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$-1 /* orig_ax = -1 => not a system call */
890 891 892
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
893
	jmp	error_exit
894 895
END(xen_failsafe_callback)

896
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
897 898
	xen_hvm_callback_vector xen_evtchn_do_upcall

899
#endif /* CONFIG_XEN */
900

901
#if IS_ENABLED(CONFIG_HYPERV)
902
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
903 904 905
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

906 907 908 909
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

910
#ifdef CONFIG_XEN
911 912 913
idtentry xen_debug		do_debug		has_error_code=0
idtentry xen_int3		do_int3			has_error_code=0
idtentry xen_stack_segment	do_stack_segment	has_error_code=1
914
#endif
915 916 917 918

idtentry general_protection	do_general_protection	has_error_code=1
trace_idtentry page_fault	do_page_fault		has_error_code=1

G
Gleb Natapov 已提交
919
#ifdef CONFIG_KVM_GUEST
920
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
921
#endif
922

923
#ifdef CONFIG_X86_MCE
924
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
925 926
#endif

927 928 929 930 931 932
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
933 934 935
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
936 937
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
938
	rdmsr
939 940
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
941
	SWAPGS
942
	xorl	%ebx, %ebx
943
1:	ret
944
END(paranoid_entry)
945

946 947 948 949 950 951 952 953 954
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
955 956
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
957
 */
958 959
ENTRY(paranoid_exit)
	DISABLE_INTERRUPTS(CLBR_NONE)
960
	TRACE_IRQS_OFF_DEBUG
961 962
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	paranoid_exit_no_swapgs
963
	TRACE_IRQS_IRETQ
964
	SWAPGS_UNSAFE_STACK
965
	jmp	paranoid_exit_restore
966
paranoid_exit_no_swapgs:
967
	TRACE_IRQS_IRETQ_DEBUG
968
paranoid_exit_restore:
969 970 971
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
972
	INTERRUPT_RETURN
973 974 975
END(paranoid_exit)

/*
976
 * Save all registers in pt_regs, and switch gs if needed.
977
 * Return: EBX=0: came from user mode; EBX=1: otherwise
978 979 980
 */
ENTRY(error_entry)
	cld
981 982
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
983
	xorl	%ebx, %ebx
984
	testb	$3, CS+8(%rsp)
985
	jz	.Lerror_kernelspace
986

987 988 989 990 991
.Lerror_entry_from_usermode_swapgs:
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
992
	SWAPGS
993

994
.Lerror_entry_from_usermode_after_swapgs:
995 996 997 998 999 1000
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1001
	CALL_enter_from_user_mode
1002
	ret
1003

1004
.Lerror_entry_done:
1005 1006 1007
	TRACE_IRQS_OFF
	ret

1008 1009 1010 1011 1012 1013
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1014
.Lerror_kernelspace:
1015 1016 1017
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1018
	je	.Lerror_bad_iret
1019 1020
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1021
	je	.Lbstep_iret
1022
	cmpq	$gs_change, RIP+8(%rsp)
1023
	jne	.Lerror_entry_done
1024 1025 1026 1027 1028 1029

	/*
	 * hack: gs_change can fail with user gsbase.  If this happens, fix up
	 * gsbase and proceed.  We'll fix up the exception and land in
	 * gs_change's error handler with kernel gsbase.
	 */
1030
	jmp	.Lerror_entry_from_usermode_swapgs
1031

1032
.Lbstep_iret:
1033
	/* Fix truncated RIP */
1034
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1035 1036
	/* fall through */

1037
.Lerror_bad_iret:
1038 1039 1040 1041
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1042
	SWAPGS
1043 1044 1045 1046 1047 1048

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1049 1050 1051
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1052
	decl	%ebx
1053
	jmp	.Lerror_entry_from_usermode_after_swapgs
1054 1055 1056
END(error_entry)


1057 1058 1059 1060 1061
/*
 * On entry, EBS is a "return to kernel mode" flag:
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1062
ENTRY(error_exit)
1063
	movl	%ebx, %eax
1064 1065
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
1066 1067 1068
	testl	%eax, %eax
	jnz	retint_kernel
	jmp	retint_user
1069 1070
END(error_exit)

1071
/* Runs on exception stack */
1072
ENTRY(nmi)
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	/*
	 * Fix up the exception frame if we're on Xen.
	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
	 * one value to the stack on native, so it may clobber the rdx
	 * scratch slot, but it won't clobber any of the important
	 * slots past it.
	 *
	 * Xen is a different story, because the Xen frame itself overlaps
	 * the "NMI executing" variable.
	 */
1083
	PARAVIRT_ADJUST_EXCEPTION_FRAME
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1102 1103 1104
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1105 1106
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1107
	 *    o Modify the "iret" location to jump to the repeat_nmi
1108 1109 1110 1111 1112 1113 1114 1115
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1116 1117 1118 1119 1120
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1121 1122
	 */

1123
	/* Use %rdx as our temp variable throughout */
1124
	pushq	%rdx
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1135 1136 1137
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1138 1139
	 */

1140
	SWAPGS_UNSAFE_STACK
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1176
	/*
1177 1178 1179
	 * Return back to user mode.  We must *not* do the normal exit
	 * work, because we don't want to enable interrupts.  Fortunately,
	 * do_nmi doesn't modify pt_regs.
1180
	 */
1181 1182
	SWAPGS
	jmp	restore_c_regs_and_iret
1183

1184
.Lnmi_from_kernel:
1185
	/*
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1226
	/*
1227 1228
	 * Determine whether we're a nested NMI.
	 *
1229 1230 1231 1232 1233 1234
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1235
	 */
1236 1237 1238 1239 1240 1241 1242 1243

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1244

1245
	/*
1246
	 * Now check "NMI executing".  If it's set, then we're nested.
1247 1248
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1249
	 */
1250 1251
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1252 1253

	/*
1254 1255
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1256 1257 1258 1259 1260 1261 1262 1263
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1264
	 */
1265 1266 1267 1268 1269
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1270

1271 1272 1273 1274
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1275 1276 1277 1278 1279 1280 1281

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1282

1283 1284
nested_nmi:
	/*
1285 1286
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1287
	 */
1288
	subq	$8, %rsp
1289 1290 1291
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1292
	pushfq
1293 1294
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1295 1296

	/* Put stack back */
1297
	addq	$(6*8), %rsp
1298 1299

nested_nmi_out:
1300
	popq	%rdx
1301

1302
	/* We are returning to kernel mode, so this cannot result in a fault. */
1303 1304 1305
	INTERRUPT_RETURN

first_nmi:
1306
	/* Restore rdx. */
1307
	movq	(%rsp), %rdx
1308

1309 1310
	/* Make room for "NMI executing". */
	pushq	$0
1311

1312
	/* Leave room for the "iret" frame */
1313
	subq	$(5*8), %rsp
1314

1315
	/* Copy the "original" frame to the "outermost" frame */
1316
	.rept 5
1317
	pushq	11*8(%rsp)
1318
	.endr
1319

1320 1321
	/* Everything up to here is safe from nested NMIs */

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1:
#endif

1337
repeat_nmi:
1338 1339 1340 1341 1342 1343 1344 1345
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1346 1347 1348 1349
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1350 1351
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1352
	 */
1353
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1354

1355
	/*
1356 1357 1358
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1359
	 */
1360
	addq	$(10*8), %rsp
1361
	.rept 5
1362
	pushq	-6*8(%rsp)
1363
	.endr
1364
	subq	$(5*8), %rsp
1365
end_repeat_nmi:
1366 1367

	/*
1368 1369 1370
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1371
	 */
1372
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1373 1374
	ALLOC_PT_GPREGS_ON_STACK

1375
	/*
1376
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1377 1378 1379 1380 1381
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1382
	call	paranoid_entry
1383

1384
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1385 1386 1387
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1388

1389 1390
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1391 1392 1393
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1394 1395
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
1396 1397

	/* Point RSP at the "iret" frame. */
1398
	REMOVE_PT_GPREGS_FROM_STACK 6*8
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
	 * the SYSCALL entry and exit paths.  On a native kernel, we
	 * could just inspect RIP, but, on paravirt kernels,
	 * INTERRUPT_RETURN can translate into a jump into a
	 * hypercall page.
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1410 1411 1412 1413 1414 1415

	/*
	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
	 * stack in a single instruction.  We are returning to kernel
	 * mode, so this cannot result in a fault.
	 */
1416
	INTERRUPT_RETURN
1417 1418 1419
END(nmi)

ENTRY(ignore_sysret)
1420
	mov	$-ENOSYS, %eax
1421 1422
	sysret
END(ignore_sysret)