entry_64.S 46.4 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
ENTRY(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_FLAGS flags:req
57
#ifdef CONFIG_TRACE_IRQFLAGS
58
	btl	$9, \flags		/* interrupts off? */
59
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_OFF
85
	call	debug_stack_reset
86 87 88
.endm

.macro TRACE_IRQS_ON_DEBUG
89
	call	debug_stack_set_zero
90
	TRACE_IRQS_ON
91
	call	debug_stack_reset
92 93
.endm

94
.macro TRACE_IRQS_IRETQ_DEBUG
95 96
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
97 98 99 100 101
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
102 103 104
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105 106
#endif

L
Linus Torvalds 已提交
107
/*
108
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
109
 *
110 111 112 113 114 115 116 117 118 119
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
120
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 122 123 124 125 126
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
127
 * rax  system call number
128 129
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
130 131
 * rdi  arg0
 * rsi  arg1
132
 * rdx  arg2
133
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
134 135
 * r8   arg4
 * r9   arg5
136
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137
 *
L
Linus Torvalds 已提交
138 139
 * Only called from user space.
 *
140
 * When user can change pt_regs->foo always force IRET. That is because
141 142
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
143
 */
L
Linus Torvalds 已提交
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	.pushsection .entry_trampoline, "ax"

/*
 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
 * that the assembler and linker have the wrong idea as to where this code
 * lives (and, in fact, it's mapped more than once, so it's not even at a
 * fixed address).  So we can't reference any symbols outside the entry
 * trampoline and expect it to work.
 *
 * Instead, we carefully abuse %rip-relative addressing.
 * _entry_trampoline(%rip) refers to the start of the remapped) entry
 * trampoline.  We can thus find cpu_entry_area with this macro:
 */

#define CPU_ENTRY_AREA \
	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)

/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
163 164
#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
165 166 167 168 169 170 171 172

ENTRY(entry_SYSCALL_64_trampoline)
	UNWIND_HINT_EMPTY
	swapgs

	/* Stash the user RSP. */
	movq	%rsp, RSP_SCRATCH

173 174 175
	/* Note: using %rsp as a scratch reg. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/* Load the top of the task stack into RSP */
	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp

	/* Start building the simulated IRET frame. */
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	RSP_SCRATCH			/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */

	/*
	 * x86 lacks a near absolute jump, and we can't jump to the real
	 * entry text with a relative jump.  We could push the target
	 * address and then use retq, but this destroys the pipeline on
	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
	 * spill RDI and restore it in a second-stage trampoline.
	 */
	pushq	%rdi
	movq	$entry_SYSCALL_64_stage2, %rdi
195
	JMP_NOSPEC %rdi
196 197 198 199 200 201 202 203 204 205
END(entry_SYSCALL_64_trampoline)

	.popsection

ENTRY(entry_SYSCALL_64_stage2)
	UNWIND_HINT_EMPTY
	popq	%rdi
	jmp	entry_SYSCALL_64_after_hwframe
END(entry_SYSCALL_64_stage2)

206
ENTRY(entry_SYSCALL_64)
207
	UNWIND_HINT_EMPTY
208 209 210 211 212
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
213

214
	swapgs
215
	/*
216
	 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
217 218
	 * is not required to switch CR3.
	 */
219 220
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
221 222

	/* Construct struct pt_regs on stack */
223 224 225 226 227
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
228
GLOBAL(entry_SYSCALL_64_after_hwframe)
229
	pushq	%rax				/* pt_regs->orig_ax */
230 231

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
232

233 234
	TRACE_IRQS_OFF

235
	/* IRQs are off. */
236 237
	movq	%rax, %rdi
	movq	%rsp, %rsi
238 239
	call	do_syscall_64		/* returns with IRQs disabled */

240
	TRACE_IRQS_IRETQ		/* we're about to change IF */
241 242 243

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
244 245
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
246
	 */
247 248
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
249 250 251

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
252 253 254 255

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
256
	 * the kernel, since userspace controls RSP.
257
	 *
258
	 * If width of "canonical tail" ever becomes variable, this will need
259
	 * to be updated to remain correct on both old and new CPUs.
260
	 *
261 262
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
263
	 */
264
#ifdef CONFIG_X86_5LEVEL
265 266
	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
267
#else
268 269
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
270
#endif
271

272 273
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
274
	jne	swapgs_restore_regs_and_return_to_usermode
275

276
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
277
	jne	swapgs_restore_regs_and_return_to_usermode
278

279 280
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
281
	jne	swapgs_restore_regs_and_return_to_usermode
282 283

	/*
284 285 286 287 288 289 290 291 292
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
293
	 *
294
	 *           movq	$stuck_here, %rcx
295 296 297 298 299 300
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
301
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
302
	jnz	swapgs_restore_regs_and_return_to_usermode
303 304 305

	/* nothing to check for RSP */

306
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
307
	jne	swapgs_restore_regs_and_return_to_usermode
308 309

	/*
310 311
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
312 313
	 */
syscall_return_via_sysret:
314
	/* rcx and r11 are already restored (see code above) */
315
	UNWIND_HINT_EMPTY
316
	POP_REGS pop_rdi=0 skip_r11rcx=1
317 318 319 320 321 322

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
323
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
324 325 326 327 328 329 330 331

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
332
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
333

334
	popq	%rdi
335
	popq	%rsp
336
	USERGS_SYSRET64
337
END(entry_SYSCALL_64)
338

339 340 341 342 343
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
344
	UNWIND_HINT_FUNC
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

360
#ifdef CONFIG_STACKPROTECTOR
361 362 363 364
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

365 366 367 368 369 370 371 372
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
373
	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
374 375
#endif

376 377 378 379 380 381 382 383 384 385 386
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

387 388 389
/*
 * A newly forked process directly context switches into this address.
 *
390
 * rax: prev task we switched from
391 392
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
393 394
 */
ENTRY(ret_from_fork)
395
	UNWIND_HINT_EMPTY
396
	movq	%rax, %rdi
397
	call	schedule_tail			/* rdi: 'prev' task parameter */
398

399 400
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
401

402
2:
403
	UNWIND_HINT_REGS
404
	movq	%rsp, %rdi
405 406
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
407
	jmp	swapgs_restore_regs_and_return_to_usermode
408 409 410 411

1:
	/* kernel thread */
	movq	%r12, %rdi
412
	CALL_NOSPEC %rbx
413 414 415 416 417 418 419
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
420 421
END(ret_from_fork)

422
/*
423 424
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
425
 */
426
	.align 8
427
ENTRY(irq_entries_start)
428 429
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
430
	UNWIND_HINT_IRET_REGS
431
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
432 433
	jmp	common_interrupt
	.align	8
434
	vector=vector+1
435
    .endr
436 437
END(irq_entries_start)

438 439
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
440 441 442
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
443 444 445
	jz .Lokay_\@
	ud2
.Lokay_\@:
446
	popq %rax
447 448 449 450 451 452 453 454 455 456
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
457
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
458
	DEBUG_ENTRY_ASSERT_IRQS_OFF
459 460 461 462 463 464 465 466 467

	.if \save_ret
	/*
	 * If save_ret is set, the original stack contains one additional
	 * entry -- the return address. Therefore, move the address one
	 * entry below %rsp to \old_rsp.
	 */
	leaq	8(%rsp), \old_rsp
	.else
468
	movq	%rsp, \old_rsp
469
	.endif
470 471 472 473 474

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

475
	incl	PER_CPU_VAR(irq_count)
476
	jnz	.Lirq_stack_push_old_rsp_\@
477 478 479 480 481 482 483 484 485

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
502
	 */
503 504 505 506 507
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
508

509
.Lirq_stack_push_old_rsp_\@:
510
	pushq	\old_rsp
511 512 513 514

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
515 516 517 518 519 520 521 522 523

	.if \save_ret
	/*
	 * Push the return address to the stack. This return address can
	 * be found at the "real" original RSP, which was offset by 8 at
	 * the beginning of this macro.
	 */
	pushq	-8(\old_rsp)
	.endif
524 525 526 527 528
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
529
.macro LEAVE_IRQ_STACK regs=1
530 531 532 533
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

534 535 536 537
	.if \regs
	UNWIND_HINT_REGS
	.endif

538 539 540 541 542 543 544 545
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

546
/*
547
 * Interrupt entry helper function.
548
 *
549 550 551 552 553 554 555 556 557 558 559 560
 * Entry runs with interrupts off. Stack layout at entry:
 * +----------------------------------------------------+
 * | regs->ss						|
 * | regs->rsp						|
 * | regs->eflags					|
 * | regs->cs						|
 * | regs->ip						|
 * +----------------------------------------------------+
 * | regs->orig_ax = ~(interrupt number)		|
 * +----------------------------------------------------+
 * | return address					|
 * +----------------------------------------------------+
561
 */
562 563 564
ENTRY(interrupt_entry)
	UNWIND_HINT_FUNC
	ASM_CLAC
565
	cld
566

567
	testb	$3, CS-ORIG_RAX+8(%rsp)
568 569
	jz	1f
	SWAPGS
570 571 572 573 574 575 576

	/*
	 * Switch to the thread stack. The IRET frame and orig_ax are
	 * on the stack, as well as the return address. RDI..R12 are
	 * not (yet) on the stack and space has not (yet) been
	 * allocated for them.
	 */
577
	pushq	%rdi
578

579 580 581 582
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
583 584 585 586 587 588

	 /*
	  * We have RDI, return address, and orig_ax on the stack on
	  * top of the IRET frame. That means offset=24
	  */
	UNWIND_HINT_IRET_REGS base=%rdi offset=24
589 590 591 592 593 594 595 596 597 598 599

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
600 601
1:

602 603
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
604

605
	testb	$3, CS+8(%rsp)
606
	jz	1f
607 608

	/*
609 610
	 * IRQ from user mode.
	 *
611 612
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
613
	 * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
614 615 616 617 618 619
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

620
	CALL_enter_from_user_mode
621

622
1:
623
	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
624 625 626
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

627 628 629
	ret
END(interrupt_entry)

630 631

/* Interrupt entry/exit. */
L
Linus Torvalds 已提交
632

633 634 635 636
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
637 638
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
639
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
640 641 642
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	do_IRQ	/* rdi points to pt_regs */
643
	/* 0(%rsp): old RSP */
644
ret_from_intr:
645
	DISABLE_INTERRUPTS(CLBR_ANY)
646
	TRACE_IRQS_OFF
647

648
	LEAVE_IRQ_STACK
649

650
	testb	$3, CS(%rsp)
651
	jz	retint_kernel
652

653 654 655 656
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
657
	TRACE_IRQS_IRETQ
658

659
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
660 661
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
662
	testb	$3, CS(%rsp)
663 664 665 666
	jnz	1f
	ud2
1:
#endif
667
	POP_REGS pop_rdi=0
668 669 670 671 672 673

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
674
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */

691
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
692

693 694 695
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
696 697
	INTERRUPT_RETURN

698

699
/* Returning to kernel space */
700
retint_kernel:
701 702 703
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
704
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
705
	jnc	1f
706
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
707
	jnz	1f
708
	call	preempt_schedule_irq
709
	jmp	0b
710
1:
711
#endif
712 713 714 715
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
716

717 718 719
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
720
	testb	$3, CS(%rsp)
721 722 723 724
	jz	1f
	ud2
1:
#endif
725
	POP_REGS
726
	addq	$8, %rsp	/* skip regs->orig_ax */
727 728 729 730
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
731 732 733
	INTERRUPT_RETURN

ENTRY(native_iret)
734
	UNWIND_HINT_IRET_REGS
735 736 737 738
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
739
#ifdef CONFIG_X86_ESPFIX64
740 741
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
742
#endif
743

744
.global native_irq_return_iret
745
native_irq_return_iret:
A
Andy Lutomirski 已提交
746 747 748 749 750 751
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
752
	iretq
I
Ingo Molnar 已提交
753

754
#ifdef CONFIG_X86_ESPFIX64
755
native_irq_return_ldt:
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
778 779 780
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

781
	movq	PER_CPU_VAR(espfix_waddr), %rdi
782 783
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
784
	movq	%rax, (1*8)(%rdi)
785
	movq	(2*8)(%rsp), %rax		/* user CS */
786
	movq	%rax, (2*8)(%rdi)
787
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
788
	movq	%rax, (3*8)(%rdi)
789
	movq	(5*8)(%rsp), %rax		/* user SS */
790
	movq	%rax, (5*8)(%rdi)
791
	movq	(4*8)(%rsp), %rax		/* user RSP */
792
	movq	%rax, (4*8)(%rdi)
793 794 795 796 797 798 799 800 801 802 803 804
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
805
	orq	PER_CPU_VAR(espfix_stack), %rax
806

807
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
808 809 810
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

811
	movq	%rax, %rsp
812
	UNWIND_HINT_IRET_REGS offset=8
813 814 815 816 817 818 819 820 821 822 823 824

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
825
	jmp	native_irq_return_iret
826
#endif
827
END(common_interrupt)
828

L
Linus Torvalds 已提交
829 830
/*
 * APIC interrupts.
831
 */
832
.macro apicinterrupt3 num sym do_sym
833
ENTRY(\sym)
834
	UNWIND_HINT_IRET_REGS
835
	pushq	$~(\num)
836
.Lcommon_\sym:
837 838 839
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	\do_sym	/* rdi points to pt_regs */
840
	jmp	ret_from_intr
841 842
END(\sym)
.endm
L
Linus Torvalds 已提交
843

844
/* Make sure APIC interrupt handlers end up in the irqentry section: */
845 846
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
847

848
.macro apicinterrupt num sym do_sym
849
PUSH_SECTION_IRQENTRY
850
apicinterrupt3 \num \sym \do_sym
851
POP_SECTION_IRQENTRY
852 853
.endm

854
#ifdef CONFIG_SMP
855 856
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
857
#endif
L
Linus Torvalds 已提交
858

N
Nick Piggin 已提交
859
#ifdef CONFIG_X86_UV
860
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
861
#endif
862 863 864

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
865

866
#ifdef CONFIG_HAVE_KVM
867 868
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
869
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
870 871
#endif

872
#ifdef CONFIG_X86_MCE_THRESHOLD
873
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
874 875
#endif

876
#ifdef CONFIG_X86_MCE_AMD
877
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
878 879
#endif

880
#ifdef CONFIG_X86_THERMAL_VECTOR
881
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
882
#endif
883

884
#ifdef CONFIG_SMP
885 886 887
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
888
#endif
L
Linus Torvalds 已提交
889

890 891
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
892

893
#ifdef CONFIG_IRQ_WORK
894
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
895 896
#endif

L
Linus Torvalds 已提交
897 898
/*
 * Exception entry points.
899
 */
900
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
901 902

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
903
ENTRY(\sym)
904
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
905

906 907 908 909 910
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

911
	ASM_CLAC
912

913
	.if \has_error_code == 0
914
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
915 916
	.endif

917
	.if \paranoid == 1
918
	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
919
	jnz	.Lfrom_usermode_switch_stack_\@
920
	.endif
921 922

	.if \paranoid
923
	call	paranoid_entry
924
	.else
925
	call	error_entry
926
	.endif
927
	UNWIND_HINT_REGS
928
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
929 930

	.if \paranoid
931
	.if \shift_ist != -1
932
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
933
	.else
934
	TRACE_IRQS_OFF
935
	.endif
936
	.endif
937

938
	movq	%rsp, %rdi			/* pt_regs pointer */
939 940

	.if \has_error_code
941 942
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
943
	.else
944
	xorl	%esi, %esi			/* no error code */
945 946
	.endif

947
	.if \shift_ist != -1
948
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
949 950
	.endif

951
	call	\do_sym
952

953
	.if \shift_ist != -1
954
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
955 956
	.endif

957
	/* these procedures expect "no swapgs" flag in ebx */
958
	.if \paranoid
959
	jmp	paranoid_exit
960
	.else
961
	jmp	error_exit
962 963
	.endif

964
	.if \paranoid == 1
965
	/*
966
	 * Entry from userspace.  Switch stacks and treat it
967 968 969
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
970
.Lfrom_usermode_switch_stack_\@:
971
	call	error_entry
972

973
	movq	%rsp, %rdi			/* pt_regs pointer */
974 975

	.if \has_error_code
976 977
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
978
	.else
979
	xorl	%esi, %esi			/* no error code */
980 981
	.endif

982
	call	\do_sym
983

984
	jmp	error_exit			/* %ebx: no swapgs flag */
985
	.endif
986
END(\sym)
987
.endm
988

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
1008
ENTRY(native_load_gs_index)
1009
	FRAME_BEGIN
1010
	pushfq
1011
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1012
	TRACE_IRQS_OFF
1013
	SWAPGS
1014
.Lgs_change:
1015
	movl	%edi, %gs
1016
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1017
	SWAPGS
1018
	TRACE_IRQS_FLAGS (%rsp)
1019
	popfq
1020
	FRAME_END
1021
	ret
1022
ENDPROC(native_load_gs_index)
1023
EXPORT_SYMBOL(native_load_gs_index)
1024

1025
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1026
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1027
	/* running with kernelgs */
1028
bad_gs:
1029
	SWAPGS					/* switch back to user gs */
1030 1031 1032 1033 1034 1035
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1036 1037 1038
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1039
	.previous
1040

1041
/* Call softirq on interrupt stack. Interrupts are off. */
1042
ENTRY(do_softirq_own_stack)
1043 1044
	pushq	%rbp
	mov	%rsp, %rbp
1045
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1046
	call	__do_softirq
1047
	LEAVE_IRQ_STACK regs=0
1048
	leaveq
1049
	ret
1050
ENDPROC(do_softirq_own_stack)
1051

1052
#ifdef CONFIG_XEN
1053
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1054 1055

/*
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1068 1069
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1070 1071 1072 1073
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1074
	UNWIND_HINT_FUNC
1075
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1076
	UNWIND_HINT_REGS
1077 1078

	ENTER_IRQ_STACK old_rsp=%r10
1079
	call	xen_evtchn_do_upcall
1080 1081
	LEAVE_IRQ_STACK

1082
#ifndef CONFIG_PREEMPT
1083
	call	xen_maybe_preempt_hcall
1084
#endif
1085
	jmp	error_exit
1086
END(xen_do_hypervisor_callback)
1087 1088

/*
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1101
ENTRY(xen_failsafe_callback)
1102
	UNWIND_HINT_EMPTY
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1115
	/* All segments match their saved values => Category 2 (Bad IRET). */
1116 1117 1118 1119
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1120
	UNWIND_HINT_IRET_REGS offset=8
1121
	jmp	general_protection
1122
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1123 1124 1125
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1126
	UNWIND_HINT_IRET_REGS
1127
	pushq	$-1 /* orig_ax = -1 => not a system call */
1128
	PUSH_AND_CLEAR_REGS
1129
	ENCODE_FRAME_POINTER
1130
	jmp	error_exit
1131 1132
END(xen_failsafe_callback)

1133
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1134 1135
	xen_hvm_callback_vector xen_evtchn_do_upcall

1136
#endif /* CONFIG_XEN */
1137

1138
#if IS_ENABLED(CONFIG_HYPERV)
1139
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1140
	hyperv_callback_vector hyperv_vector_handler
1141 1142 1143

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1144 1145 1146

apicinterrupt3 HYPERV_STIMER0_VECTOR \
	hv_stimer0_callback_vector hv_stimer0_vector_handler
1147 1148
#endif /* CONFIG_HYPERV */

1149
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
1150
idtentry int3			do_int3			has_error_code=0
1151 1152
idtentry stack_segment		do_stack_segment	has_error_code=1

1153
#ifdef CONFIG_XEN
1154
idtentry xennmi			do_nmi			has_error_code=0
1155 1156
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1157
#endif
1158 1159

idtentry general_protection	do_general_protection	has_error_code=1
1160
idtentry page_fault		do_page_fault		has_error_code=1
1161

G
Gleb Natapov 已提交
1162
#ifdef CONFIG_KVM_GUEST
1163
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1164
#endif
1165

1166
#ifdef CONFIG_X86_MCE
1167
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1168 1169
#endif

1170
/*
1171
 * Save all registers in pt_regs, and switch gs if needed.
1172 1173 1174 1175
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1176
	UNWIND_HINT_FUNC
1177
	cld
1178 1179
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1180 1181
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1182
	rdmsr
1183 1184
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1185
	SWAPGS
1186
	xorl	%ebx, %ebx
1187 1188 1189 1190 1191

1:
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

	ret
1192
END(paranoid_entry)
1193

1194 1195 1196 1197 1198 1199 1200 1201 1202
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1203 1204
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1205
 */
1206
ENTRY(paranoid_exit)
1207
	UNWIND_HINT_REGS
1208
	DISABLE_INTERRUPTS(CLBR_ANY)
1209
	TRACE_IRQS_OFF_DEBUG
1210
	testl	%ebx, %ebx			/* swapgs needed? */
1211
	jnz	.Lparanoid_exit_no_swapgs
1212
	TRACE_IRQS_IRETQ
P
Peter Zijlstra 已提交
1213
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1214
	SWAPGS_UNSAFE_STACK
1215 1216
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1217
	TRACE_IRQS_IRETQ_DEBUG
1218
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1219 1220
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1221 1222 1223
END(paranoid_exit)

/*
1224
 * Save all registers in pt_regs, and switch GS if needed.
1225
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1226 1227
 */
ENTRY(error_entry)
1228
	UNWIND_HINT_FUNC
1229
	cld
1230 1231
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1232
	testb	$3, CS+8(%rsp)
1233
	jz	.Lerror_kernelspace
1234

1235 1236 1237 1238
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1239
	SWAPGS
1240 1241
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1242

1243
.Lerror_entry_from_usermode_after_swapgs:
1244 1245 1246 1247 1248 1249 1250 1251
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1252 1253 1254 1255 1256 1257
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1258
	CALL_enter_from_user_mode
1259
	ret
1260

1261
.Lerror_entry_done:
1262 1263 1264
	TRACE_IRQS_OFF
	ret

1265 1266 1267 1268 1269 1270
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1271
.Lerror_kernelspace:
1272 1273 1274
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1275
	je	.Lerror_bad_iret
1276 1277
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1278
	je	.Lbstep_iret
1279
	cmpq	$.Lgs_change, RIP+8(%rsp)
1280
	jne	.Lerror_entry_done
1281 1282

	/*
1283
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1284
	 * gsbase and proceed.  We'll fix up the exception and land in
1285
	 * .Lgs_change's error handler with kernel gsbase.
1286
	 */
1287
	SWAPGS
1288
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1289
	jmp .Lerror_entry_done
1290

1291
.Lbstep_iret:
1292
	/* Fix truncated RIP */
1293
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1294 1295
	/* fall through */

1296
.Lerror_bad_iret:
1297
	/*
1298 1299
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1300
	 */
A
Andy Lutomirski 已提交
1301
	SWAPGS
1302
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1303 1304 1305 1306 1307 1308

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1309 1310 1311
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1312
	decl	%ebx
1313
	jmp	.Lerror_entry_from_usermode_after_swapgs
1314 1315 1316
END(error_entry)


1317
/*
1318
 * On entry, EBX is a "return to kernel mode" flag:
1319 1320 1321
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1322
ENTRY(error_exit)
1323
	UNWIND_HINT_REGS
1324
	DISABLE_INTERRUPTS(CLBR_ANY)
1325
	TRACE_IRQS_OFF
1326
	testl	%ebx, %ebx
1327 1328
	jnz	retint_kernel
	jmp	retint_user
1329 1330
END(error_exit)

1331 1332 1333
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1334 1335 1336 1337
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1338
 */
1339
ENTRY(nmi)
1340
	UNWIND_HINT_IRET_REGS
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1359 1360 1361
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1362 1363
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1364
	 *    o Modify the "iret" location to jump to the repeat_nmi
1365 1366 1367 1368 1369 1370 1371 1372
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1373 1374 1375 1376 1377
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1378 1379
	 */

1380 1381
	ASM_CLAC

1382
	/* Use %rdx as our temp variable throughout */
1383
	pushq	%rdx
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1394 1395 1396
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1397 1398
	 */

1399
	swapgs
1400
	cld
1401
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1402 1403
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1404
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1405 1406 1407 1408 1409
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1410
	UNWIND_HINT_IRET_REGS
1411
	pushq   $-1		/* pt_regs->orig_ax */
1412
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1413
	ENCODE_FRAME_POINTER
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1425
	/*
1426
	 * Return back to user mode.  We must *not* do the normal exit
1427
	 * work, because we don't want to enable interrupts.
1428
	 */
1429
	jmp	swapgs_restore_regs_and_return_to_usermode
1430

1431
.Lnmi_from_kernel:
1432
	/*
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1473
	/*
1474 1475
	 * Determine whether we're a nested NMI.
	 *
1476 1477 1478 1479 1480 1481
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1482
	 */
1483 1484 1485 1486 1487 1488 1489 1490

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1491

1492
	/*
1493
	 * Now check "NMI executing".  If it's set, then we're nested.
1494 1495
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1496
	 */
1497 1498
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1499 1500

	/*
1501 1502
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1503 1504 1505 1506 1507 1508 1509 1510
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1511
	 */
1512 1513 1514 1515 1516
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1517

1518 1519 1520 1521
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1522 1523 1524 1525 1526 1527 1528

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1529

1530 1531
nested_nmi:
	/*
1532 1533
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1534
	 */
1535
	subq	$8, %rsp
1536 1537 1538
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1539
	pushfq
1540 1541
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1542 1543

	/* Put stack back */
1544
	addq	$(6*8), %rsp
1545 1546

nested_nmi_out:
1547
	popq	%rdx
1548

1549
	/* We are returning to kernel mode, so this cannot result in a fault. */
1550
	iretq
1551 1552

first_nmi:
1553
	/* Restore rdx. */
1554
	movq	(%rsp), %rdx
1555

1556 1557
	/* Make room for "NMI executing". */
	pushq	$0
1558

1559
	/* Leave room for the "iret" frame */
1560
	subq	$(5*8), %rsp
1561

1562
	/* Copy the "original" frame to the "outermost" frame */
1563
	.rept 5
1564
	pushq	11*8(%rsp)
1565
	.endr
1566
	UNWIND_HINT_IRET_REGS
1567

1568 1569
	/* Everything up to here is safe from nested NMIs */

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1581
	iretq			/* continues at repeat_nmi below */
1582
	UNWIND_HINT_IRET_REGS
1583 1584 1585
1:
#endif

1586
repeat_nmi:
1587 1588 1589 1590 1591 1592 1593 1594
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1595 1596 1597 1598
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1599 1600
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1601
	 */
1602
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1603

1604
	/*
1605 1606 1607
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1608
	 */
1609
	addq	$(10*8), %rsp
1610
	.rept 5
1611
	pushq	-6*8(%rsp)
1612
	.endr
1613
	subq	$(5*8), %rsp
1614
end_repeat_nmi:
1615 1616

	/*
1617 1618 1619
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1620
	 */
1621
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1622

1623
	/*
1624
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1625 1626 1627 1628 1629
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1630
	call	paranoid_entry
1631
	UNWIND_HINT_REGS
1632

1633
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1634 1635 1636
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1637

P
Peter Zijlstra 已提交
1638
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1639

1640 1641
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1642 1643 1644
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1645
	POP_REGS
1646

1647 1648 1649 1650 1651
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1652

1653 1654 1655
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1656 1657 1658 1659 1660
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1661 1662 1663
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1664 1665

	/*
1666 1667 1668 1669
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1670
	 */
1671
	iretq
1672 1673 1674
END(nmi)

ENTRY(ignore_sysret)
1675
	UNWIND_HINT_EMPTY
1676
	mov	$-ENOSYS, %eax
1677 1678
	sysret
END(ignore_sysret)
1679 1680

ENTRY(rewind_stack_do_exit)
1681
	UNWIND_HINT_FUNC
1682 1683 1684 1685
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1686 1687
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1688 1689 1690

	call	do_exit
END(rewind_stack_do_exit)