entry_64.S 46.5 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
ENTRY(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_FLAGS flags:req
57
#ifdef CONFIG_TRACE_IRQFLAGS
58
	bt	$9, \flags		/* interrupts off? */
59
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_OFF
85
	call	debug_stack_reset
86 87 88
.endm

.macro TRACE_IRQS_ON_DEBUG
89
	call	debug_stack_set_zero
90
	TRACE_IRQS_ON
91
	call	debug_stack_reset
92 93
.endm

94
.macro TRACE_IRQS_IRETQ_DEBUG
95 96
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
97 98 99 100 101
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
102 103 104
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105 106
#endif

L
Linus Torvalds 已提交
107
/*
108
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
109
 *
110 111 112 113 114 115 116 117 118 119
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
120
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 122 123 124 125 126
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
127
 * rax  system call number
128 129
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
130 131
 * rdi  arg0
 * rsi  arg1
132
 * rdx  arg2
133
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
134 135
 * r8   arg4
 * r9   arg5
136
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137
 *
L
Linus Torvalds 已提交
138 139
 * Only called from user space.
 *
140
 * When user can change pt_regs->foo always force IRET. That is because
141 142
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
143
 */
L
Linus Torvalds 已提交
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	.pushsection .entry_trampoline, "ax"

/*
 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
 * that the assembler and linker have the wrong idea as to where this code
 * lives (and, in fact, it's mapped more than once, so it's not even at a
 * fixed address).  So we can't reference any symbols outside the entry
 * trampoline and expect it to work.
 *
 * Instead, we carefully abuse %rip-relative addressing.
 * _entry_trampoline(%rip) refers to the start of the remapped) entry
 * trampoline.  We can thus find cpu_entry_area with this macro:
 */

#define CPU_ENTRY_AREA \
	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)

/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
163 164
#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
165 166 167 168 169 170 171 172

ENTRY(entry_SYSCALL_64_trampoline)
	UNWIND_HINT_EMPTY
	swapgs

	/* Stash the user RSP. */
	movq	%rsp, RSP_SCRATCH

173 174 175
	/* Note: using %rsp as a scratch reg. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/* Load the top of the task stack into RSP */
	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp

	/* Start building the simulated IRET frame. */
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	RSP_SCRATCH			/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */

	/*
	 * x86 lacks a near absolute jump, and we can't jump to the real
	 * entry text with a relative jump.  We could push the target
	 * address and then use retq, but this destroys the pipeline on
	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
	 * spill RDI and restore it in a second-stage trampoline.
	 */
	pushq	%rdi
	movq	$entry_SYSCALL_64_stage2, %rdi
195
	JMP_NOSPEC %rdi
196 197 198 199 200 201 202 203 204 205
END(entry_SYSCALL_64_trampoline)

	.popsection

ENTRY(entry_SYSCALL_64_stage2)
	UNWIND_HINT_EMPTY
	popq	%rdi
	jmp	entry_SYSCALL_64_after_hwframe
END(entry_SYSCALL_64_stage2)

206
ENTRY(entry_SYSCALL_64)
207
	UNWIND_HINT_EMPTY
208 209 210 211 212
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
213

214
	swapgs
215 216 217 218
	/*
	 * This path is not taken when PAGE_TABLE_ISOLATION is disabled so it
	 * is not required to switch CR3.
	 */
219 220
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
221 222

	/* Construct struct pt_regs on stack */
223 224 225 226 227
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
228
GLOBAL(entry_SYSCALL_64_after_hwframe)
229 230 231 232 233 234 235 236 237 238
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
239 240 241 242 243 244 245
	pushq	%rbx				/* pt_regs->rbx */
	pushq	%rbp				/* pt_regs->rbp */
	pushq	%r12				/* pt_regs->r12 */
	pushq	%r13				/* pt_regs->r13 */
	pushq	%r14				/* pt_regs->r14 */
	pushq	%r15				/* pt_regs->r15 */
	UNWIND_HINT_REGS
246

247 248
	TRACE_IRQS_OFF

249
	/* IRQs are off. */
250
	movq	%rsp, %rdi
251 252
	call	do_syscall_64		/* returns with IRQs disabled */

253
	TRACE_IRQS_IRETQ		/* we're about to change IF */
254 255 256

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
257 258
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
259
	 */
260 261
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
262 263 264

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
265 266 267 268

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
269
	 * the kernel, since userspace controls RSP.
270
	 *
271
	 * If width of "canonical tail" ever becomes variable, this will need
272
	 * to be updated to remain correct on both old and new CPUs.
273
	 *
274 275
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
276
	 */
277 278
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
279

280 281
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
282
	jne	swapgs_restore_regs_and_return_to_usermode
283

284
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
285
	jne	swapgs_restore_regs_and_return_to_usermode
286

287 288
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
289
	jne	swapgs_restore_regs_and_return_to_usermode
290 291

	/*
292 293 294 295 296 297 298 299 300
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
301
	 *
302
	 *           movq	$stuck_here, %rcx
303 304 305 306 307 308
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
309
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
310
	jnz	swapgs_restore_regs_and_return_to_usermode
311 312 313

	/* nothing to check for RSP */

314
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
315
	jne	swapgs_restore_regs_and_return_to_usermode
316 317

	/*
318 319
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
320 321
	 */
syscall_return_via_sysret:
322
	/* rcx and r11 are already restored (see code above) */
323
	UNWIND_HINT_EMPTY
324 325 326 327 328 329 330 331 332
	POP_EXTRA_REGS
	popq	%rsi	/* skip r11 */
	popq	%r10
	popq	%r9
	popq	%r8
	popq	%rax
	popq	%rsi	/* skip rcx */
	popq	%rdx
	popq	%rsi
333 334 335 336 337 338

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
339
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
340 341 342 343 344 345 346 347

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
348
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
349

350
	popq	%rdi
351
	popq	%rsp
352
	USERGS_SYSRET64
353
END(entry_SYSCALL_64)
354

355 356 357 358 359
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
360
	UNWIND_HINT_FUNC
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

381 382 383 384 385 386 387 388
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
389 390
	/* Clobbers %rbx */
	FILL_RETURN_BUFFER RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
391 392
#endif

393 394 395 396 397 398 399 400 401 402 403
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

404 405 406
/*
 * A newly forked process directly context switches into this address.
 *
407
 * rax: prev task we switched from
408 409
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
410 411
 */
ENTRY(ret_from_fork)
412
	UNWIND_HINT_EMPTY
413
	movq	%rax, %rdi
414
	call	schedule_tail			/* rdi: 'prev' task parameter */
415

416 417
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
418

419
2:
420
	UNWIND_HINT_REGS
421
	movq	%rsp, %rdi
422 423
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
424
	jmp	swapgs_restore_regs_and_return_to_usermode
425 426 427 428

1:
	/* kernel thread */
	movq	%r12, %rdi
429
	CALL_NOSPEC %rbx
430 431 432 433 434 435 436
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
437 438
END(ret_from_fork)

439
/*
440 441
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
442
 */
443
	.align 8
444
ENTRY(irq_entries_start)
445 446
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
447
	UNWIND_HINT_IRET_REGS
448
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
449 450
	jmp	common_interrupt
	.align	8
451
	vector=vector+1
452
    .endr
453 454
END(irq_entries_start)

455 456
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
457 458 459
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
460 461 462
	jz .Lokay_\@
	ud2
.Lokay_\@:
463
	popq %rax
464 465 466 467 468 469 470 471 472 473
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
474
.macro ENTER_IRQ_STACK regs=1 old_rsp
475 476
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	movq	%rsp, \old_rsp
477 478 479 480 481

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

482
	incl	PER_CPU_VAR(irq_count)
483
	jnz	.Lirq_stack_push_old_rsp_\@
484 485 486 487 488 489 490 491 492

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
509
	 */
510 511 512 513 514
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
515

516
.Lirq_stack_push_old_rsp_\@:
517
	pushq	\old_rsp
518 519 520 521

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
522 523 524 525 526
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
527
.macro LEAVE_IRQ_STACK regs=1
528 529 530 531
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

532 533 534 535
	.if \regs
	UNWIND_HINT_REGS
	.endif

536 537 538 539 540 541 542 543
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

544
/*
L
Linus Torvalds 已提交
545 546 547
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
548 549 550
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
551

552
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
553
	.macro interrupt func
554
	cld
555 556 557 558 559 560 561

	testb	$3, CS-ORIG_RAX(%rsp)
	jz	1f
	SWAPGS
	call	switch_to_thread_stack
1:

562 563 564
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
565
	ENCODE_FRAME_POINTER
566

567
	testb	$3, CS(%rsp)
568
	jz	1f
569 570

	/*
571 572
	 * IRQ from user mode.
	 *
573 574 575 576 577 578 579 580 581
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

582
	CALL_enter_from_user_mode
583

584
1:
585
	ENTER_IRQ_STACK old_rsp=%rdi
586 587 588
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

589
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
590 591
	.endm

592 593 594 595
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
596 597
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
598
	ASM_CLAC
599
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
600
	interrupt do_IRQ
601
	/* 0(%rsp): old RSP */
602
ret_from_intr:
603
	DISABLE_INTERRUPTS(CLBR_ANY)
604
	TRACE_IRQS_OFF
605

606
	LEAVE_IRQ_STACK
607

608
	testb	$3, CS(%rsp)
609
	jz	retint_kernel
610

611 612 613 614
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
615
	TRACE_IRQS_IRETQ
616

617
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
618 619
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
620
	testb	$3, CS(%rsp)
621 622 623 624
	jnz	1f
	ud2
1:
#endif
625
	POP_EXTRA_REGS
626 627 628 629 630 631 632 633 634 635 636 637 638 639
	popq	%r11
	popq	%r10
	popq	%r9
	popq	%r8
	popq	%rax
	popq	%rcx
	popq	%rdx
	popq	%rsi

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
640
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */

657
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
658

659 660 661
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
662 663
	INTERRUPT_RETURN

664

665
/* Returning to kernel space */
666
retint_kernel:
667 668 669
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
670
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
671
	jnc	1f
672
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
673
	jnz	1f
674
	call	preempt_schedule_irq
675
	jmp	0b
676
1:
677
#endif
678 679 680 681
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
682

683 684 685
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
686
	testb	$3, CS(%rsp)
687 688 689 690
	jz	1f
	ud2
1:
#endif
691 692 693
	POP_EXTRA_REGS
	POP_C_REGS
	addq	$8, %rsp	/* skip regs->orig_ax */
694 695 696 697
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
698 699 700
	INTERRUPT_RETURN

ENTRY(native_iret)
701
	UNWIND_HINT_IRET_REGS
702 703 704 705
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
706
#ifdef CONFIG_X86_ESPFIX64
707 708
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
709
#endif
710

711
.global native_irq_return_iret
712
native_irq_return_iret:
A
Andy Lutomirski 已提交
713 714 715 716 717 718
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
719
	iretq
I
Ingo Molnar 已提交
720

721
#ifdef CONFIG_X86_ESPFIX64
722
native_irq_return_ldt:
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
745 746 747
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

748
	movq	PER_CPU_VAR(espfix_waddr), %rdi
749 750
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
751
	movq	%rax, (1*8)(%rdi)
752
	movq	(2*8)(%rsp), %rax		/* user CS */
753
	movq	%rax, (2*8)(%rdi)
754
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
755
	movq	%rax, (3*8)(%rdi)
756
	movq	(5*8)(%rsp), %rax		/* user SS */
757
	movq	%rax, (5*8)(%rdi)
758
	movq	(4*8)(%rsp), %rax		/* user RSP */
759
	movq	%rax, (4*8)(%rdi)
760 761 762 763 764 765 766 767 768 769 770 771
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
772
	orq	PER_CPU_VAR(espfix_stack), %rax
773

774
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
775 776 777
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

778
	movq	%rax, %rsp
779
	UNWIND_HINT_IRET_REGS offset=8
780 781 782 783 784 785 786 787 788 789 790 791

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
792
	jmp	native_irq_return_iret
793
#endif
794
END(common_interrupt)
795

L
Linus Torvalds 已提交
796 797
/*
 * APIC interrupts.
798
 */
799
.macro apicinterrupt3 num sym do_sym
800
ENTRY(\sym)
801
	UNWIND_HINT_IRET_REGS
802
	ASM_CLAC
803
	pushq	$~(\num)
804
.Lcommon_\sym:
805
	interrupt \do_sym
806
	jmp	ret_from_intr
807 808
END(\sym)
.endm
L
Linus Torvalds 已提交
809

810
/* Make sure APIC interrupt handlers end up in the irqentry section: */
811 812
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
813

814
.macro apicinterrupt num sym do_sym
815
PUSH_SECTION_IRQENTRY
816
apicinterrupt3 \num \sym \do_sym
817
POP_SECTION_IRQENTRY
818 819
.endm

820
#ifdef CONFIG_SMP
821 822
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
823
#endif
L
Linus Torvalds 已提交
824

N
Nick Piggin 已提交
825
#ifdef CONFIG_X86_UV
826
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
827
#endif
828 829 830

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
831

832
#ifdef CONFIG_HAVE_KVM
833 834
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
835
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
836 837
#endif

838
#ifdef CONFIG_X86_MCE_THRESHOLD
839
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
840 841
#endif

842
#ifdef CONFIG_X86_MCE_AMD
843
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
844 845
#endif

846
#ifdef CONFIG_X86_THERMAL_VECTOR
847
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
848
#endif
849

850
#ifdef CONFIG_SMP
851 852 853
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
854
#endif
L
Linus Torvalds 已提交
855

856 857
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
858

859
#ifdef CONFIG_IRQ_WORK
860
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
861 862
#endif

L
Linus Torvalds 已提交
863 864
/*
 * Exception entry points.
865
 */
866
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
867

868 869 870 871 872 873 874 875 876
/*
 * Switch to the thread stack.  This is called with the IRET frame and
 * orig_ax on the stack.  (That is, RDI..R12 are not on the stack and
 * space has not been allocated for them.)
 */
ENTRY(switch_to_thread_stack)
	UNWIND_HINT_FUNC

	pushq	%rdi
877 878
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
	ret
END(switch_to_thread_stack)
895 896

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
897
ENTRY(\sym)
898
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
899

900 901 902 903 904
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

905
	ASM_CLAC
906

907
	.if \has_error_code == 0
908
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
909 910
	.endif

911
	ALLOC_PT_GPREGS_ON_STACK
912

913
	.if \paranoid < 2
914
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
915
	jnz	.Lfrom_usermode_switch_stack_\@
916
	.endif
917 918

	.if \paranoid
919
	call	paranoid_entry
920
	.else
921
	call	error_entry
922
	.endif
923
	UNWIND_HINT_REGS
924
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
925 926

	.if \paranoid
927
	.if \shift_ist != -1
928
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
929
	.else
930
	TRACE_IRQS_OFF
931
	.endif
932
	.endif
933

934
	movq	%rsp, %rdi			/* pt_regs pointer */
935 936

	.if \has_error_code
937 938
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
939
	.else
940
	xorl	%esi, %esi			/* no error code */
941 942
	.endif

943
	.if \shift_ist != -1
944
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
945 946
	.endif

947
	call	\do_sym
948

949
	.if \shift_ist != -1
950
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
951 952
	.endif

953
	/* these procedures expect "no swapgs" flag in ebx */
954
	.if \paranoid
955
	jmp	paranoid_exit
956
	.else
957
	jmp	error_exit
958 959
	.endif

960
	.if \paranoid < 2
961
	/*
962
	 * Entry from userspace.  Switch stacks and treat it
963 964 965
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
966
.Lfrom_usermode_switch_stack_\@:
967
	call	error_entry
968

969
	movq	%rsp, %rdi			/* pt_regs pointer */
970 971

	.if \has_error_code
972 973
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
974
	.else
975
	xorl	%esi, %esi			/* no error code */
976 977
	.endif

978
	call	\do_sym
979

980
	jmp	error_exit			/* %ebx: no swapgs flag */
981
	.endif
982
END(\sym)
983
.endm
984

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
1004
ENTRY(native_load_gs_index)
1005
	FRAME_BEGIN
1006
	pushfq
1007
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1008
	TRACE_IRQS_OFF
1009
	SWAPGS
1010
.Lgs_change:
1011
	movl	%edi, %gs
1012
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1013
	SWAPGS
1014
	TRACE_IRQS_FLAGS (%rsp)
1015
	popfq
1016
	FRAME_END
1017
	ret
1018
ENDPROC(native_load_gs_index)
1019
EXPORT_SYMBOL(native_load_gs_index)
1020

1021
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1022
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1023
	/* running with kernelgs */
1024
bad_gs:
1025
	SWAPGS					/* switch back to user gs */
1026 1027 1028 1029 1030 1031
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1032 1033 1034
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1035
	.previous
1036

1037
/* Call softirq on interrupt stack. Interrupts are off. */
1038
ENTRY(do_softirq_own_stack)
1039 1040
	pushq	%rbp
	mov	%rsp, %rbp
1041
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1042
	call	__do_softirq
1043
	LEAVE_IRQ_STACK regs=0
1044
	leaveq
1045
	ret
1046
ENDPROC(do_softirq_own_stack)
1047

1048
#ifdef CONFIG_XEN
1049
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1050 1051

/*
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1064 1065
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1066 1067 1068 1069
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1070
	UNWIND_HINT_FUNC
1071
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1072
	UNWIND_HINT_REGS
1073 1074

	ENTER_IRQ_STACK old_rsp=%r10
1075
	call	xen_evtchn_do_upcall
1076 1077
	LEAVE_IRQ_STACK

1078
#ifndef CONFIG_PREEMPT
1079
	call	xen_maybe_preempt_hcall
1080
#endif
1081
	jmp	error_exit
1082
END(xen_do_hypervisor_callback)
1083 1084

/*
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1097
ENTRY(xen_failsafe_callback)
1098
	UNWIND_HINT_EMPTY
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1111
	/* All segments match their saved values => Category 2 (Bad IRET). */
1112 1113 1114 1115
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1116
	UNWIND_HINT_IRET_REGS offset=8
1117
	jmp	general_protection
1118
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1119 1120 1121
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1122
	UNWIND_HINT_IRET_REGS
1123
	pushq	$-1 /* orig_ax = -1 => not a system call */
1124 1125 1126
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
1127
	ENCODE_FRAME_POINTER
1128
	jmp	error_exit
1129 1130
END(xen_failsafe_callback)

1131
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1132 1133
	xen_hvm_callback_vector xen_evtchn_do_upcall

1134
#endif /* CONFIG_XEN */
1135

1136
#if IS_ENABLED(CONFIG_HYPERV)
1137
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1138
	hyperv_callback_vector hyperv_vector_handler
1139 1140 1141

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1142 1143
#endif /* CONFIG_HYPERV */

1144 1145 1146 1147
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1148
#ifdef CONFIG_XEN
1149
idtentry xennmi			do_nmi			has_error_code=0
1150 1151
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1152
#endif
1153 1154

idtentry general_protection	do_general_protection	has_error_code=1
1155
idtentry page_fault		do_page_fault		has_error_code=1
1156

G
Gleb Natapov 已提交
1157
#ifdef CONFIG_KVM_GUEST
1158
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1159
#endif
1160

1161
#ifdef CONFIG_X86_MCE
1162
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1163 1164
#endif

1165 1166 1167 1168 1169 1170
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1171
	UNWIND_HINT_FUNC
1172 1173 1174
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1175
	ENCODE_FRAME_POINTER 8
1176 1177
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1178
	rdmsr
1179 1180
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1181
	SWAPGS
1182
	xorl	%ebx, %ebx
1183 1184 1185 1186 1187

1:
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

	ret
1188
END(paranoid_entry)
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1199 1200
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1201
 */
1202
ENTRY(paranoid_exit)
1203
	UNWIND_HINT_REGS
1204
	DISABLE_INTERRUPTS(CLBR_ANY)
1205
	TRACE_IRQS_OFF_DEBUG
1206
	testl	%ebx, %ebx			/* swapgs needed? */
1207
	jnz	.Lparanoid_exit_no_swapgs
1208
	TRACE_IRQS_IRETQ
P
Peter Zijlstra 已提交
1209
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1210
	SWAPGS_UNSAFE_STACK
1211 1212
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1213
	TRACE_IRQS_IRETQ_DEBUG
1214 1215
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1216 1217 1218
END(paranoid_exit)

/*
1219
 * Save all registers in pt_regs, and switch gs if needed.
1220
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1221 1222
 */
ENTRY(error_entry)
1223
	UNWIND_HINT_FUNC
1224
	cld
1225 1226
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1227
	ENCODE_FRAME_POINTER 8
1228
	xorl	%ebx, %ebx
1229
	testb	$3, CS+8(%rsp)
1230
	jz	.Lerror_kernelspace
1231

1232 1233 1234 1235
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1236
	SWAPGS
1237 1238
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1239

1240
.Lerror_entry_from_usermode_after_swapgs:
1241 1242 1243 1244 1245 1246 1247 1248
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1249 1250 1251 1252 1253 1254
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1255
	CALL_enter_from_user_mode
1256
	ret
1257

1258
.Lerror_entry_done:
1259 1260 1261
	TRACE_IRQS_OFF
	ret

1262 1263 1264 1265 1266 1267
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1268
.Lerror_kernelspace:
1269 1270 1271
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1272
	je	.Lerror_bad_iret
1273 1274
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1275
	je	.Lbstep_iret
1276
	cmpq	$.Lgs_change, RIP+8(%rsp)
1277
	jne	.Lerror_entry_done
1278 1279

	/*
1280
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1281
	 * gsbase and proceed.  We'll fix up the exception and land in
1282
	 * .Lgs_change's error handler with kernel gsbase.
1283
	 */
1284
	SWAPGS
1285
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1286
	jmp .Lerror_entry_done
1287

1288
.Lbstep_iret:
1289
	/* Fix truncated RIP */
1290
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1291 1292
	/* fall through */

1293
.Lerror_bad_iret:
1294
	/*
1295 1296
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1297
	 */
A
Andy Lutomirski 已提交
1298
	SWAPGS
1299
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1300 1301 1302 1303 1304 1305

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1306 1307 1308
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1309
	decl	%ebx
1310
	jmp	.Lerror_entry_from_usermode_after_swapgs
1311 1312 1313
END(error_entry)


1314
/*
1315
 * On entry, EBX is a "return to kernel mode" flag:
1316 1317 1318
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1319
ENTRY(error_exit)
1320
	UNWIND_HINT_REGS
1321
	DISABLE_INTERRUPTS(CLBR_ANY)
1322
	TRACE_IRQS_OFF
1323
	testl	%ebx, %ebx
1324 1325
	jnz	retint_kernel
	jmp	retint_user
1326 1327
END(error_exit)

1328 1329 1330
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1331 1332 1333 1334
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1335
 */
1336
ENTRY(nmi)
1337
	UNWIND_HINT_IRET_REGS
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1356 1357 1358
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1359 1360
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1361
	 *    o Modify the "iret" location to jump to the repeat_nmi
1362 1363 1364 1365 1366 1367 1368 1369
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1370 1371 1372 1373 1374
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1375 1376
	 */

1377 1378
	ASM_CLAC

1379
	/* Use %rdx as our temp variable throughout */
1380
	pushq	%rdx
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1391 1392 1393
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1394 1395
	 */

1396
	swapgs
1397
	cld
1398
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1399 1400
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1401
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1402 1403 1404 1405 1406
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1407
	UNWIND_HINT_IRET_REGS
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */
1424
	UNWIND_HINT_REGS
1425
	ENCODE_FRAME_POINTER
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1437
	/*
1438
	 * Return back to user mode.  We must *not* do the normal exit
1439
	 * work, because we don't want to enable interrupts.
1440
	 */
1441
	jmp	swapgs_restore_regs_and_return_to_usermode
1442

1443
.Lnmi_from_kernel:
1444
	/*
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1485
	/*
1486 1487
	 * Determine whether we're a nested NMI.
	 *
1488 1489 1490 1491 1492 1493
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1494
	 */
1495 1496 1497 1498 1499 1500 1501 1502

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1503

1504
	/*
1505
	 * Now check "NMI executing".  If it's set, then we're nested.
1506 1507
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1508
	 */
1509 1510
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1511 1512

	/*
1513 1514
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1515 1516 1517 1518 1519 1520 1521 1522
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1523
	 */
1524 1525 1526 1527 1528
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1529

1530 1531 1532 1533
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1534 1535 1536 1537 1538 1539 1540

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1541

1542 1543
nested_nmi:
	/*
1544 1545
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1546
	 */
1547
	subq	$8, %rsp
1548 1549 1550
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1551
	pushfq
1552 1553
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1554 1555

	/* Put stack back */
1556
	addq	$(6*8), %rsp
1557 1558

nested_nmi_out:
1559
	popq	%rdx
1560

1561
	/* We are returning to kernel mode, so this cannot result in a fault. */
1562
	iretq
1563 1564

first_nmi:
1565
	/* Restore rdx. */
1566
	movq	(%rsp), %rdx
1567

1568 1569
	/* Make room for "NMI executing". */
	pushq	$0
1570

1571
	/* Leave room for the "iret" frame */
1572
	subq	$(5*8), %rsp
1573

1574
	/* Copy the "original" frame to the "outermost" frame */
1575
	.rept 5
1576
	pushq	11*8(%rsp)
1577
	.endr
1578
	UNWIND_HINT_IRET_REGS
1579

1580 1581
	/* Everything up to here is safe from nested NMIs */

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1593
	iretq			/* continues at repeat_nmi below */
1594
	UNWIND_HINT_IRET_REGS
1595 1596 1597
1:
#endif

1598
repeat_nmi:
1599 1600 1601 1602 1603 1604 1605 1606
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1607 1608 1609 1610
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1611 1612
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1613
	 */
1614
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1615

1616
	/*
1617 1618 1619
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1620
	 */
1621
	addq	$(10*8), %rsp
1622
	.rept 5
1623
	pushq	-6*8(%rsp)
1624
	.endr
1625
	subq	$(5*8), %rsp
1626
end_repeat_nmi:
1627 1628

	/*
1629 1630 1631
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1632
	 */
1633
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1634 1635
	ALLOC_PT_GPREGS_ON_STACK

1636
	/*
1637
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1638 1639 1640 1641 1642
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1643
	call	paranoid_entry
1644
	UNWIND_HINT_REGS
1645

1646
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1647 1648 1649
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1650

P
Peter Zijlstra 已提交
1651
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1652

1653 1654
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1655 1656 1657
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1658 1659
	POP_EXTRA_REGS
	POP_C_REGS
1660

1661 1662 1663 1664 1665
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1666

1667 1668 1669
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1670 1671 1672 1673 1674
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1675 1676 1677
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1678 1679

	/*
1680 1681 1682 1683
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1684
	 */
1685
	iretq
1686 1687 1688
END(nmi)

ENTRY(ignore_sysret)
1689
	UNWIND_HINT_EMPTY
1690
	mov	$-ENOSYS, %eax
1691 1692
	sysret
END(ignore_sysret)
1693 1694

ENTRY(rewind_stack_do_exit)
1695
	UNWIND_HINT_FUNC
1696 1697 1698 1699
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1700 1701
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1702 1703 1704

	call	do_exit
END(rewind_stack_do_exit)