entry_64.S 41.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7
 *
L
Linus Torvalds 已提交
8 9
 * entry.S contains the system-call and fault low-level handling routines.
 *
10 11
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
12
 * A note on terminology:
13 14
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
15 16
 *
 * Some macro usage:
17 18 19
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
20 21 22 23 24
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
25
#include "calling.h"
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <linux/err.h>
L
Linus Torvalds 已提交
39

R
Roland McGrath 已提交
40 41
/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this.  */
#include <linux/elf-em.h>
42 43 44
#define AUDIT_ARCH_X86_64			(EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
#define __AUDIT_ARCH_64BIT			0x80000000
#define __AUDIT_ARCH_LE				0x40000000
J
Jiri Olsa 已提交
45

46 47
.code64
.section .entry.text, "ax"
48

49
#ifdef CONFIG_PARAVIRT
50
ENTRY(native_usergs_sysret64)
51 52
	swapgs
	sysretq
53
ENDPROC(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_IRETQ
57
#ifdef CONFIG_TRACE_IRQFLAGS
58 59
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
79
	call	debug_stack_set_zero
80
	TRACE_IRQS_OFF
81
	call	debug_stack_reset
82 83 84
.endm

.macro TRACE_IRQS_ON_DEBUG
85
	call	debug_stack_set_zero
86
	TRACE_IRQS_ON
87
	call	debug_stack_reset
88 89
.endm

90
.macro TRACE_IRQS_IRETQ_DEBUG
91 92
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
93 94 95 96 97
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
98 99 100
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
101 102
#endif

L
Linus Torvalds 已提交
103
/*
104
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
105
 *
106 107 108 109 110 111 112 113 114 115
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
116
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
117 118 119 120 121 122
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
123
 * rax  system call number
124 125
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
126 127
 * rdi  arg0
 * rsi  arg1
128
 * rdx  arg2
129
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
130 131
 * r8   arg4
 * r9   arg5
132
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
133
 *
L
Linus Torvalds 已提交
134 135
 * Only called from user space.
 *
136
 * When user can change pt_regs->foo always force IRET. That is because
137 138
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
139
 */
L
Linus Torvalds 已提交
140

141
ENTRY(entry_SYSCALL_64)
142 143 144 145 146
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
147 148 149 150 151 152
	SWAPGS_UNSAFE_STACK
	/*
	 * A hypervisor implementation might want to use a label
	 * after the swapgs, so that it can do the swapgs
	 * for the guest and jump here on syscall.
	 */
153
GLOBAL(entry_SYSCALL_64_after_swapgs)
154

155 156
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
157

158 159
	TRACE_IRQS_OFF

160
	/* Construct struct pt_regs on stack */
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */

178 179 180 181 182 183 184
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
	jnz	entry_SYSCALL64_slow_path

185
entry_SYSCALL_64_fastpath:
186 187 188 189 190 191 192
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
193
#if __SYSCALL_MASK == ~0
194
	cmpq	$__NR_syscall_max, %rax
195
#else
196 197
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
198
#endif
199 200
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
201 202 203

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
204 205
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
206
	 */
207
	call	*sys_call_table(, %rax, 8)
208 209
.Lentry_SYSCALL_64_after_fastpath_call:

210
	movq	%rax, RAX(%rsp)
211
1:
212 213

	/*
214 215 216
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
217
	 */
218 219
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
220
	testl	$_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
221
	jnz	1f
222

223 224
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
225 226 227
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
	RESTORE_C_REGS_EXCEPT_RCX_R11
228
	movq	RSP(%rsp), %rsp
229
	USERGS_SYSRET64
L
Linus Torvalds 已提交
230

231 232 233 234 235 236
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
237 238
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
239
	SAVE_EXTRA_REGS
240
	movq	%rsp, %rdi
241 242
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
243

244 245
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
246
	SAVE_EXTRA_REGS
247
	movq	%rsp, %rdi
248 249 250
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
251
	RESTORE_EXTRA_REGS
252
	TRACE_IRQS_IRETQ		/* we're about to change IF */
253 254 255 256 257

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
	 * a completely clean 64-bit userspace context.
	 */
258 259 260 261
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
	cmpq	%rcx, %r11			/* RCX == RIP */
	jne	opportunistic_sysret_failed
262 263 264 265

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
266
	 * the kernel, since userspace controls RSP.
267
	 *
268
	 * If width of "canonical tail" ever becomes variable, this will need
269 270 271 272 273
	 * to be updated to remain correct on both old and new CPUs.
	 */
	.ifne __VIRTUAL_MASK_SHIFT - 47
	.error "virtual address width changed -- SYSRET checks need update"
	.endif
274

275 276 277
	/* Change top 16 bits to be the sign-extension of 47th bit */
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
278

279 280 281
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
	jne	opportunistic_sysret_failed
282

283 284
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
	jne	opportunistic_sysret_failed
285

286 287 288
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
	jne	opportunistic_sysret_failed
289 290

	/*
291 292 293 294 295 296 297 298 299
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
300
	 *
301
	 *           movq	$stuck_here, %rcx
302 303 304 305 306 307
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
308 309
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
	jnz	opportunistic_sysret_failed
310 311 312

	/* nothing to check for RSP */

313 314
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
	jne	opportunistic_sysret_failed
315 316

	/*
317 318
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
319 320
	 */
syscall_return_via_sysret:
321 322
	/* rcx and r11 are already restored (see code above) */
	RESTORE_C_REGS_EXCEPT_RCX_R11
323
	movq	RSP(%rsp), %rsp
324 325 326 327 328
	USERGS_SYSRET64

opportunistic_sysret_failed:
	SWAPGS
	jmp	restore_c_regs_and_iret
329
END(entry_SYSCALL_64)
330

331 332 333
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
334 335 336
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
337 338
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
339
	 * IRQs are on.
340 341 342 343
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

344 345 346 347 348 349
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
350
	popq	%rax
351
	jmp	entry_SYSCALL64_slow_path
352 353

1:
354
	jmp	*%rax				/* Called from C */
355 356 357 358 359 360 361 362 363 364 365 366 367 368
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
369

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

406 407 408
/*
 * A newly forked process directly context switches into this address.
 *
409
 * rax: prev task we switched from
410 411
 */
ENTRY(ret_from_fork)
412
	movq	%rax, %rdi
413
	call	schedule_tail			/* rdi: 'prev' task parameter */
414

415
	testb	$3, CS(%rsp)			/* from kernel_thread? */
416
	jnz	1f
417

418
	/*
419 420 421 422 423 424
	 * We came from kernel_thread.  This code path is quite twisted, and
	 * someone should clean it up.
	 *
	 * copy_thread_tls stashes the function pointer in RBX and the
	 * parameter to be passed in RBP.  The called function is permitted
	 * to call do_execve and thereby jump to user mode.
425
	 */
426 427 428
	movq	RBP(%rsp), %rdi
	call	*RBX(%rsp)
	movl	$0, RAX(%rsp)
429

430
	/*
431 432
	 * Fall through as though we're exiting a syscall.  This makes a
	 * twisted sort of sense if we just called do_execve.
433
	 */
434 435 436 437 438 439 440

1:
	movq	%rsp, %rdi
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
	SWAPGS
	jmp	restore_regs_and_iret
441 442
END(ret_from_fork)

443
/*
444 445
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
446
 */
447
	.align 8
448
ENTRY(irq_entries_start)
449 450
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
451
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
452 453 454 455
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
456 457
END(irq_entries_start)

458
/*
L
Linus Torvalds 已提交
459 460 461
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
462 463 464
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
465

466
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
467
	.macro interrupt func
468
	cld
469 470 471
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
472

473
	testb	$3, CS(%rsp)
474
	jz	1f
475 476 477 478 479

	/*
	 * IRQ from user mode.  Switch to kernel gsbase and inform context
	 * tracking that we're in kernel mode.
	 */
480
	SWAPGS
481 482 483 484 485 486 487 488 489 490 491

	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

492
	CALL_enter_from_user_mode
493

494
1:
495
	/*
D
Denys Vlasenko 已提交
496
	 * Save previous stack pointer, optionally switch to interrupt stack.
497 498 499 500 501
	 * irq_count is used to check if a CPU is already on an interrupt stack
	 * or not. While this is essentially redundant with preempt_count it is
	 * a little cheaper to use a separate counter in the PDA (short of
	 * moving irq_enter into assembly, which would be too much work)
	 */
502
	movq	%rsp, %rdi
503 504
	incl	PER_CPU_VAR(irq_count)
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
505
	pushq	%rdi
506 507 508
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

509
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
510 511
	.endm

512 513 514 515
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
516 517
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
518
	ASM_CLAC
519
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
520
	interrupt do_IRQ
521
	/* 0(%rsp): old RSP */
522
ret_from_intr:
523
	DISABLE_INTERRUPTS(CLBR_NONE)
524
	TRACE_IRQS_OFF
525
	decl	PER_CPU_VAR(irq_count)
526

527
	/* Restore saved previous stack */
528
	popq	%rsp
529

530
	testb	$3, CS(%rsp)
531
	jz	retint_kernel
532

533 534 535 536
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
537
	TRACE_IRQS_IRETQ
538
	SWAPGS
539
	jmp	restore_regs_and_iret
540

541
/* Returning to kernel space */
542
retint_kernel:
543 544 545
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
546
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
547
	jnc	1f
548
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
549
	jnz	1f
550
	call	preempt_schedule_irq
551
	jmp	0b
552
1:
553
#endif
554 555 556 557
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
558 559 560 561 562

/*
 * At this label, code paths which return to kernel and to user,
 * which come from interrupts/exception and from syscalls, merge.
 */
563
GLOBAL(restore_regs_and_iret)
564
	RESTORE_EXTRA_REGS
565
restore_c_regs_and_iret:
566 567
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
568 569 570
	INTERRUPT_RETURN

ENTRY(native_iret)
571 572 573 574
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
575
#ifdef CONFIG_X86_ESPFIX64
576 577
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
578
#endif
579

580
.global native_irq_return_iret
581
native_irq_return_iret:
A
Andy Lutomirski 已提交
582 583 584 585 586 587
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
588
	iretq
I
Ingo Molnar 已提交
589

590
#ifdef CONFIG_X86_ESPFIX64
591
native_irq_return_ldt:
592 593
	pushq	%rax
	pushq	%rdi
594
	SWAPGS
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	movq	PER_CPU_VAR(espfix_waddr), %rdi
	movq	%rax, (0*8)(%rdi)		/* RAX */
	movq	(2*8)(%rsp), %rax		/* RIP */
	movq	%rax, (1*8)(%rdi)
	movq	(3*8)(%rsp), %rax		/* CS */
	movq	%rax, (2*8)(%rdi)
	movq	(4*8)(%rsp), %rax		/* RFLAGS */
	movq	%rax, (3*8)(%rdi)
	movq	(6*8)(%rsp), %rax		/* SS */
	movq	%rax, (5*8)(%rdi)
	movq	(5*8)(%rsp), %rax		/* RSP */
	movq	%rax, (4*8)(%rdi)
	andl	$0xffff0000, %eax
	popq	%rdi
	orq	PER_CPU_VAR(espfix_stack), %rax
610
	SWAPGS
611 612 613
	movq	%rax, %rsp
	popq	%rax
	jmp	native_irq_return_iret
614
#endif
615
END(common_interrupt)
616

L
Linus Torvalds 已提交
617 618
/*
 * APIC interrupts.
619
 */
620
.macro apicinterrupt3 num sym do_sym
621
ENTRY(\sym)
622
	ASM_CLAC
623
	pushq	$~(\num)
624
.Lcommon_\sym:
625
	interrupt \do_sym
626
	jmp	ret_from_intr
627 628
END(\sym)
.endm
L
Linus Torvalds 已提交
629

630 631 632 633 634 635 636 637 638 639 640 641
#ifdef CONFIG_TRACING
#define trace(sym) trace_##sym
#define smp_trace(sym) smp_trace_##sym

.macro trace_apicinterrupt num sym
apicinterrupt3 \num trace(\sym) smp_trace(\sym)
.endm
#else
.macro trace_apicinterrupt num sym do_sym
.endm
#endif

642 643 644 645 646 647 648 649 650
/* Make sure APIC interrupt handlers end up in the irqentry section: */
#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
# define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
# define POP_SECTION_IRQENTRY	.popsection
#else
# define PUSH_SECTION_IRQENTRY
# define POP_SECTION_IRQENTRY
#endif

651
.macro apicinterrupt num sym do_sym
652
PUSH_SECTION_IRQENTRY
653 654
apicinterrupt3 \num \sym \do_sym
trace_apicinterrupt \num \sym
655
POP_SECTION_IRQENTRY
656 657
.endm

658
#ifdef CONFIG_SMP
659 660
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
661
#endif
L
Linus Torvalds 已提交
662

N
Nick Piggin 已提交
663
#ifdef CONFIG_X86_UV
664
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
665
#endif
666 667 668

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
669

670
#ifdef CONFIG_HAVE_KVM
671 672
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
673 674
#endif

675
#ifdef CONFIG_X86_MCE_THRESHOLD
676
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
677 678
#endif

679
#ifdef CONFIG_X86_MCE_AMD
680
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
681 682
#endif

683
#ifdef CONFIG_X86_THERMAL_VECTOR
684
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
685
#endif
686

687
#ifdef CONFIG_SMP
688 689 690
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
691
#endif
L
Linus Torvalds 已提交
692

693 694
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
695

696
#ifdef CONFIG_IRQ_WORK
697
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
698 699
#endif

L
Linus Torvalds 已提交
700 701
/*
 * Exception entry points.
702
 */
703
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
704 705

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
706
ENTRY(\sym)
707 708 709 710 711
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

712
	ASM_CLAC
713
	PARAVIRT_ADJUST_EXCEPTION_FRAME
714 715

	.ifeq \has_error_code
716
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
717 718
	.endif

719
	ALLOC_PT_GPREGS_ON_STACK
720 721

	.if \paranoid
722
	.if \paranoid == 1
723 724
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
725
	.endif
726
	call	paranoid_entry
727
	.else
728
	call	error_entry
729
	.endif
730
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
731 732

	.if \paranoid
733
	.if \shift_ist != -1
734
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
735
	.else
736
	TRACE_IRQS_OFF
737
	.endif
738
	.endif
739

740
	movq	%rsp, %rdi			/* pt_regs pointer */
741 742

	.if \has_error_code
743 744
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
745
	.else
746
	xorl	%esi, %esi			/* no error code */
747 748
	.endif

749
	.if \shift_ist != -1
750
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
751 752
	.endif

753
	call	\do_sym
754

755
	.if \shift_ist != -1
756
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
757 758
	.endif

759
	/* these procedures expect "no swapgs" flag in ebx */
760
	.if \paranoid
761
	jmp	paranoid_exit
762
	.else
763
	jmp	error_exit
764 765
	.endif

766 767 768 769 770 771 772
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
773
	call	error_entry
774 775


776 777 778
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
779

780
	movq	%rsp, %rdi			/* pt_regs pointer */
781 782

	.if \has_error_code
783 784
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
785
	.else
786
	xorl	%esi, %esi			/* no error code */
787 788
	.endif

789
	call	\do_sym
790

791
	jmp	error_exit			/* %ebx: no swapgs flag */
792
	.endif
793
END(\sym)
794
.endm
795

796
#ifdef CONFIG_TRACING
797 798 799
.macro trace_idtentry sym do_sym has_error_code:req
idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
idtentry \sym \do_sym has_error_code=\has_error_code
800 801
.endm
#else
802 803
.macro trace_idtentry sym do_sym has_error_code:req
idtentry \sym \do_sym has_error_code=\has_error_code
804 805 806
.endm
#endif

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
826
ENTRY(native_load_gs_index)
827
	pushfq
828
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
829
	SWAPGS
830
.Lgs_change:
831
	movl	%edi, %gs
832
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
833
	SWAPGS
834
	popfq
835
	ret
836
END(native_load_gs_index)
837

838
	_ASM_EXTABLE(.Lgs_change, bad_gs)
839
	.section .fixup, "ax"
L
Linus Torvalds 已提交
840
	/* running with kernelgs */
841
bad_gs:
842
	SWAPGS					/* switch back to user gs */
843 844 845 846 847 848
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
849 850 851
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
852
	.previous
853

854
/* Call softirq on interrupt stack. Interrupts are off. */
855
ENTRY(do_softirq_own_stack)
856 857 858 859 860 861
	pushq	%rbp
	mov	%rsp, %rbp
	incl	PER_CPU_VAR(irq_count)
	cmove	PER_CPU_VAR(irq_stack_ptr), %rsp
	push	%rbp				/* frame pointer backlink */
	call	__do_softirq
862
	leaveq
863
	decl	PER_CPU_VAR(irq_count)
864
	ret
865
END(do_softirq_own_stack)
866

867
#ifdef CONFIG_XEN
868
idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
869 870

/*
871 872 873 874 875 876 877 878 879 880 881 882
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
883 884
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

885 886 887 888
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
889 890 891 892 893 894 895 896
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
11:	incl	PER_CPU_VAR(irq_count)
	movq	%rsp, %rbp
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
	pushq	%rbp				/* frame pointer backlink */
	call	xen_evtchn_do_upcall
	popq	%rsp
	decl	PER_CPU_VAR(irq_count)
897
#ifndef CONFIG_PREEMPT
898
	call	xen_maybe_preempt_hcall
899
#endif
900
	jmp	error_exit
901
END(xen_do_hypervisor_callback)
902 903

/*
904 905 906 907 908 909 910 911 912 913 914 915
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
916
ENTRY(xen_failsafe_callback)
917 918 919 920 921 922 923 924 925 926 927 928
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
929
	/* All segments match their saved values => Category 2 (Bad IRET). */
930 931 932 933 934 935 936
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
	pushq	%r11
	pushq	%rcx
	jmp	general_protection
937
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
938 939 940 941
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$-1 /* orig_ax = -1 => not a system call */
942 943 944
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
945
	jmp	error_exit
946 947
END(xen_failsafe_callback)

948
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
949 950
	xen_hvm_callback_vector xen_evtchn_do_upcall

951
#endif /* CONFIG_XEN */
952

953
#if IS_ENABLED(CONFIG_HYPERV)
954
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
955 956 957
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

958 959 960 961
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

962
#ifdef CONFIG_XEN
963 964 965
idtentry xen_debug		do_debug		has_error_code=0
idtentry xen_int3		do_int3			has_error_code=0
idtentry xen_stack_segment	do_stack_segment	has_error_code=1
966
#endif
967 968 969 970

idtentry general_protection	do_general_protection	has_error_code=1
trace_idtentry page_fault	do_page_fault		has_error_code=1

G
Gleb Natapov 已提交
971
#ifdef CONFIG_KVM_GUEST
972
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
973
#endif
974

975
#ifdef CONFIG_X86_MCE
976
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
977 978
#endif

979 980 981 982 983 984
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
985 986 987
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
988 989
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
990
	rdmsr
991 992
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
993
	SWAPGS
994
	xorl	%ebx, %ebx
995
1:	ret
996
END(paranoid_entry)
997

998 999 1000 1001 1002 1003 1004 1005 1006
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1007 1008
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1009
 */
1010 1011
ENTRY(paranoid_exit)
	DISABLE_INTERRUPTS(CLBR_NONE)
1012
	TRACE_IRQS_OFF_DEBUG
1013 1014
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	paranoid_exit_no_swapgs
1015
	TRACE_IRQS_IRETQ
1016
	SWAPGS_UNSAFE_STACK
1017
	jmp	paranoid_exit_restore
1018
paranoid_exit_no_swapgs:
1019
	TRACE_IRQS_IRETQ_DEBUG
1020
paranoid_exit_restore:
1021 1022 1023
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
1024
	INTERRUPT_RETURN
1025 1026 1027
END(paranoid_exit)

/*
1028
 * Save all registers in pt_regs, and switch gs if needed.
1029
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1030 1031 1032
 */
ENTRY(error_entry)
	cld
1033 1034
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1035
	xorl	%ebx, %ebx
1036
	testb	$3, CS+8(%rsp)
1037
	jz	.Lerror_kernelspace
1038

1039 1040 1041 1042 1043
.Lerror_entry_from_usermode_swapgs:
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1044
	SWAPGS
1045

1046
.Lerror_entry_from_usermode_after_swapgs:
1047 1048 1049 1050 1051 1052
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1053
	CALL_enter_from_user_mode
1054
	ret
1055

1056
.Lerror_entry_done:
1057 1058 1059
	TRACE_IRQS_OFF
	ret

1060 1061 1062 1063 1064 1065
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1066
.Lerror_kernelspace:
1067 1068 1069
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1070
	je	.Lerror_bad_iret
1071 1072
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1073
	je	.Lbstep_iret
1074
	cmpq	$.Lgs_change, RIP+8(%rsp)
1075
	jne	.Lerror_entry_done
1076 1077

	/*
1078
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1079
	 * gsbase and proceed.  We'll fix up the exception and land in
1080
	 * .Lgs_change's error handler with kernel gsbase.
1081
	 */
1082
	jmp	.Lerror_entry_from_usermode_swapgs
1083

1084
.Lbstep_iret:
1085
	/* Fix truncated RIP */
1086
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1087 1088
	/* fall through */

1089
.Lerror_bad_iret:
1090 1091 1092 1093
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1094
	SWAPGS
1095 1096 1097 1098 1099 1100

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1101 1102 1103
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1104
	decl	%ebx
1105
	jmp	.Lerror_entry_from_usermode_after_swapgs
1106 1107 1108
END(error_entry)


1109 1110 1111 1112 1113
/*
 * On entry, EBS is a "return to kernel mode" flag:
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1114
ENTRY(error_exit)
1115
	movl	%ebx, %eax
1116 1117
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
1118 1119 1120
	testl	%eax, %eax
	jnz	retint_kernel
	jmp	retint_user
1121 1122
END(error_exit)

1123
/* Runs on exception stack */
1124
ENTRY(nmi)
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	/*
	 * Fix up the exception frame if we're on Xen.
	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
	 * one value to the stack on native, so it may clobber the rdx
	 * scratch slot, but it won't clobber any of the important
	 * slots past it.
	 *
	 * Xen is a different story, because the Xen frame itself overlaps
	 * the "NMI executing" variable.
	 */
1135
	PARAVIRT_ADJUST_EXCEPTION_FRAME
1136

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1154 1155 1156
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1157 1158
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1159
	 *    o Modify the "iret" location to jump to the repeat_nmi
1160 1161 1162 1163 1164 1165 1166 1167
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1168 1169 1170 1171 1172
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1173 1174
	 */

1175
	/* Use %rdx as our temp variable throughout */
1176
	pushq	%rdx
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1187 1188 1189
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1190 1191
	 */

1192
	SWAPGS_UNSAFE_STACK
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1228
	/*
1229 1230 1231
	 * Return back to user mode.  We must *not* do the normal exit
	 * work, because we don't want to enable interrupts.  Fortunately,
	 * do_nmi doesn't modify pt_regs.
1232
	 */
1233 1234
	SWAPGS
	jmp	restore_c_regs_and_iret
1235

1236
.Lnmi_from_kernel:
1237
	/*
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1278
	/*
1279 1280
	 * Determine whether we're a nested NMI.
	 *
1281 1282 1283 1284 1285 1286
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1287
	 */
1288 1289 1290 1291 1292 1293 1294 1295

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1296

1297
	/*
1298
	 * Now check "NMI executing".  If it's set, then we're nested.
1299 1300
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1301
	 */
1302 1303
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1304 1305

	/*
1306 1307
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1308 1309 1310 1311 1312 1313 1314 1315
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1316
	 */
1317 1318 1319 1320 1321
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1322

1323 1324 1325 1326
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1327 1328 1329 1330 1331 1332 1333

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1334

1335 1336
nested_nmi:
	/*
1337 1338
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1339
	 */
1340
	subq	$8, %rsp
1341 1342 1343
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1344
	pushfq
1345 1346
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1347 1348

	/* Put stack back */
1349
	addq	$(6*8), %rsp
1350 1351

nested_nmi_out:
1352
	popq	%rdx
1353

1354
	/* We are returning to kernel mode, so this cannot result in a fault. */
1355 1356 1357
	INTERRUPT_RETURN

first_nmi:
1358
	/* Restore rdx. */
1359
	movq	(%rsp), %rdx
1360

1361 1362
	/* Make room for "NMI executing". */
	pushq	$0
1363

1364
	/* Leave room for the "iret" frame */
1365
	subq	$(5*8), %rsp
1366

1367
	/* Copy the "original" frame to the "outermost" frame */
1368
	.rept 5
1369
	pushq	11*8(%rsp)
1370
	.endr
1371

1372 1373
	/* Everything up to here is safe from nested NMIs */

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1:
#endif

1389
repeat_nmi:
1390 1391 1392 1393 1394 1395 1396 1397
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1398 1399 1400 1401
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1402 1403
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1404
	 */
1405
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1406

1407
	/*
1408 1409 1410
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1411
	 */
1412
	addq	$(10*8), %rsp
1413
	.rept 5
1414
	pushq	-6*8(%rsp)
1415
	.endr
1416
	subq	$(5*8), %rsp
1417
end_repeat_nmi:
1418 1419

	/*
1420 1421 1422
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1423
	 */
1424
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1425 1426
	ALLOC_PT_GPREGS_ON_STACK

1427
	/*
1428
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1429 1430 1431 1432 1433
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1434
	call	paranoid_entry
1435

1436
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1437 1438 1439
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1440

1441 1442
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1443 1444 1445
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1446 1447
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
1448 1449

	/* Point RSP at the "iret" frame. */
1450
	REMOVE_PT_GPREGS_FROM_STACK 6*8
1451

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
	 * the SYSCALL entry and exit paths.  On a native kernel, we
	 * could just inspect RIP, but, on paravirt kernels,
	 * INTERRUPT_RETURN can translate into a jump into a
	 * hypercall page.
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1462 1463 1464 1465 1466 1467

	/*
	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
	 * stack in a single instruction.  We are returning to kernel
	 * mode, so this cannot result in a fault.
	 */
1468
	INTERRUPT_RETURN
1469 1470 1471
END(nmi)

ENTRY(ignore_sysret)
1472
	mov	$-ENOSYS, %eax
1473 1474
	sysret
END(ignore_sysret)
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

ENTRY(rewind_stack_do_exit)
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
	leaq	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp

	call	do_exit
1:	jmp 1b
END(rewind_stack_do_exit)