entry_64.S 45.8 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
ENTRY(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_FLAGS flags:req
57
#ifdef CONFIG_TRACE_IRQFLAGS
58
	bt	$9, \flags		/* interrupts off? */
59
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_OFF
85
	call	debug_stack_reset
86 87 88
.endm

.macro TRACE_IRQS_ON_DEBUG
89
	call	debug_stack_set_zero
90
	TRACE_IRQS_ON
91
	call	debug_stack_reset
92 93
.endm

94
.macro TRACE_IRQS_IRETQ_DEBUG
95 96
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
97 98 99 100 101
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
102 103 104
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105 106
#endif

L
Linus Torvalds 已提交
107
/*
108
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
109
 *
110 111 112 113 114 115 116 117 118 119
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
120
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 122 123 124 125 126
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
127
 * rax  system call number
128 129
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
130 131
 * rdi  arg0
 * rsi  arg1
132
 * rdx  arg2
133
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
134 135
 * r8   arg4
 * r9   arg5
136
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137
 *
L
Linus Torvalds 已提交
138 139
 * Only called from user space.
 *
140
 * When user can change pt_regs->foo always force IRET. That is because
141 142
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
143
 */
L
Linus Torvalds 已提交
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	.pushsection .entry_trampoline, "ax"

/*
 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
 * that the assembler and linker have the wrong idea as to where this code
 * lives (and, in fact, it's mapped more than once, so it's not even at a
 * fixed address).  So we can't reference any symbols outside the entry
 * trampoline and expect it to work.
 *
 * Instead, we carefully abuse %rip-relative addressing.
 * _entry_trampoline(%rip) refers to the start of the remapped) entry
 * trampoline.  We can thus find cpu_entry_area with this macro:
 */

#define CPU_ENTRY_AREA \
	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)

/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
163 164
#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
165 166 167 168 169 170 171 172

ENTRY(entry_SYSCALL_64_trampoline)
	UNWIND_HINT_EMPTY
	swapgs

	/* Stash the user RSP. */
	movq	%rsp, RSP_SCRATCH

173 174 175
	/* Note: using %rsp as a scratch reg. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/* Load the top of the task stack into RSP */
	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp

	/* Start building the simulated IRET frame. */
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	RSP_SCRATCH			/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */

	/*
	 * x86 lacks a near absolute jump, and we can't jump to the real
	 * entry text with a relative jump.  We could push the target
	 * address and then use retq, but this destroys the pipeline on
	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
	 * spill RDI and restore it in a second-stage trampoline.
	 */
	pushq	%rdi
	movq	$entry_SYSCALL_64_stage2, %rdi
195
	JMP_NOSPEC %rdi
196 197 198 199 200 201 202 203 204 205
END(entry_SYSCALL_64_trampoline)

	.popsection

ENTRY(entry_SYSCALL_64_stage2)
	UNWIND_HINT_EMPTY
	popq	%rdi
	jmp	entry_SYSCALL_64_after_hwframe
END(entry_SYSCALL_64_stage2)

206
ENTRY(entry_SYSCALL_64)
207
	UNWIND_HINT_EMPTY
208 209 210 211 212
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
213

214
	swapgs
215
	/*
216
	 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
217 218
	 * is not required to switch CR3.
	 */
219 220
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
221 222

	/* Construct struct pt_regs on stack */
223 224 225 226 227
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
228
GLOBAL(entry_SYSCALL_64_after_hwframe)
229
	pushq	%rax				/* pt_regs->orig_ax */
230 231

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
232

233 234
	TRACE_IRQS_OFF

235
	/* IRQs are off. */
236
	movq	%rsp, %rdi
237 238
	call	do_syscall_64		/* returns with IRQs disabled */

239
	TRACE_IRQS_IRETQ		/* we're about to change IF */
240 241 242

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
243 244
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
245
	 */
246 247
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
248 249 250

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
251 252 253 254

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
255
	 * the kernel, since userspace controls RSP.
256
	 *
257
	 * If width of "canonical tail" ever becomes variable, this will need
258
	 * to be updated to remain correct on both old and new CPUs.
259
	 *
260 261
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
262
	 */
263 264
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
265

266 267
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
268
	jne	swapgs_restore_regs_and_return_to_usermode
269

270
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
271
	jne	swapgs_restore_regs_and_return_to_usermode
272

273 274
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
275
	jne	swapgs_restore_regs_and_return_to_usermode
276 277

	/*
278 279 280 281 282 283 284 285 286
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
287
	 *
288
	 *           movq	$stuck_here, %rcx
289 290 291 292 293 294
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
295
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
296
	jnz	swapgs_restore_regs_and_return_to_usermode
297 298 299

	/* nothing to check for RSP */

300
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
301
	jne	swapgs_restore_regs_and_return_to_usermode
302 303

	/*
304 305
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
306 307
	 */
syscall_return_via_sysret:
308
	/* rcx and r11 are already restored (see code above) */
309
	UNWIND_HINT_EMPTY
310
	POP_REGS pop_rdi=0 skip_r11rcx=1
311 312 313 314 315 316

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
317
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
318 319 320 321 322 323 324 325

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
326
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
327

328
	popq	%rdi
329
	popq	%rsp
330
	USERGS_SYSRET64
331
END(entry_SYSCALL_64)
332

333 334 335 336 337
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
338
	UNWIND_HINT_FUNC
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

359 360 361 362 363 364 365 366
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
367
	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
368 369
#endif

370 371 372 373 374 375 376 377 378 379 380
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

381 382 383
/*
 * A newly forked process directly context switches into this address.
 *
384
 * rax: prev task we switched from
385 386
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
387 388
 */
ENTRY(ret_from_fork)
389
	UNWIND_HINT_EMPTY
390
	movq	%rax, %rdi
391
	call	schedule_tail			/* rdi: 'prev' task parameter */
392

393 394
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
395

396
2:
397
	UNWIND_HINT_REGS
398
	movq	%rsp, %rdi
399 400
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
401
	jmp	swapgs_restore_regs_and_return_to_usermode
402 403 404 405

1:
	/* kernel thread */
	movq	%r12, %rdi
406
	CALL_NOSPEC %rbx
407 408 409 410 411 412 413
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
414 415
END(ret_from_fork)

416
/*
417 418
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
419
 */
420
	.align 8
421
ENTRY(irq_entries_start)
422 423
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
424
	UNWIND_HINT_IRET_REGS
425
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
426 427
	jmp	common_interrupt
	.align	8
428
	vector=vector+1
429
    .endr
430 431
END(irq_entries_start)

432 433
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
434 435 436
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
437 438 439
	jz .Lokay_\@
	ud2
.Lokay_\@:
440
	popq %rax
441 442 443 444 445 446 447 448 449 450
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
451
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
452
	DEBUG_ENTRY_ASSERT_IRQS_OFF
453 454 455 456 457 458 459 460 461

	.if \save_ret
	/*
	 * If save_ret is set, the original stack contains one additional
	 * entry -- the return address. Therefore, move the address one
	 * entry below %rsp to \old_rsp.
	 */
	leaq	8(%rsp), \old_rsp
	.else
462
	movq	%rsp, \old_rsp
463
	.endif
464 465 466 467 468

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

469
	incl	PER_CPU_VAR(irq_count)
470
	jnz	.Lirq_stack_push_old_rsp_\@
471 472 473 474 475 476 477 478 479

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
496
	 */
497 498 499 500 501
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
502

503
.Lirq_stack_push_old_rsp_\@:
504
	pushq	\old_rsp
505 506 507 508

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
509 510 511 512 513 514 515 516 517

	.if \save_ret
	/*
	 * Push the return address to the stack. This return address can
	 * be found at the "real" original RSP, which was offset by 8 at
	 * the beginning of this macro.
	 */
	pushq	-8(\old_rsp)
	.endif
518 519 520 521 522
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
523
.macro LEAVE_IRQ_STACK regs=1
524 525 526 527
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

528 529 530 531
	.if \regs
	UNWIND_HINT_REGS
	.endif

532 533 534 535 536 537 538 539
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

540
/*
L
Linus Torvalds 已提交
541 542 543
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
544 545 546
 *
 * Entry runs with interrupts off.
 */
547 548 549 550 551 552
ENTRY(interrupt_entry)
	UNWIND_HINT_FUNC

	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8

553
	testb	$3, CS+8(%rsp)
554
	jz	1f
555 556

	/*
557 558
	 * IRQ from user mode.
	 *
559 560 561 562 563 564 565 566 567
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

568
	CALL_enter_from_user_mode
569

570
1:
571
	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
572 573 574
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	ret
END(interrupt_entry)

/* 0(%rsp): ~(interrupt number) */
	.macro interrupt func
	cld

	testb	$3, CS-ORIG_RAX(%rsp)
	jz	1f
	SWAPGS
	call	switch_to_thread_stack
1:

	call	interrupt_entry

	UNWIND_HINT_REGS indirect=1
591
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
592 593
	.endm

594 595 596 597
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
598 599
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
600
	ASM_CLAC
601
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
602
	interrupt do_IRQ
603
	/* 0(%rsp): old RSP */
604
ret_from_intr:
605
	DISABLE_INTERRUPTS(CLBR_ANY)
606
	TRACE_IRQS_OFF
607

608
	LEAVE_IRQ_STACK
609

610
	testb	$3, CS(%rsp)
611
	jz	retint_kernel
612

613 614 615 616
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
617
	TRACE_IRQS_IRETQ
618

619
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
620 621
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
622
	testb	$3, CS(%rsp)
623 624 625 626
	jnz	1f
	ud2
1:
#endif
627
	POP_REGS pop_rdi=0
628 629 630 631 632 633

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
634
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */

651
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
652

653 654 655
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
656 657
	INTERRUPT_RETURN

658

659
/* Returning to kernel space */
660
retint_kernel:
661 662 663
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
664
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
665
	jnc	1f
666
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
667
	jnz	1f
668
	call	preempt_schedule_irq
669
	jmp	0b
670
1:
671
#endif
672 673 674 675
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
676

677 678 679
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
680
	testb	$3, CS(%rsp)
681 682 683 684
	jz	1f
	ud2
1:
#endif
685
	POP_REGS
686
	addq	$8, %rsp	/* skip regs->orig_ax */
687 688 689 690
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
691 692 693
	INTERRUPT_RETURN

ENTRY(native_iret)
694
	UNWIND_HINT_IRET_REGS
695 696 697 698
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
699
#ifdef CONFIG_X86_ESPFIX64
700 701
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
702
#endif
703

704
.global native_irq_return_iret
705
native_irq_return_iret:
A
Andy Lutomirski 已提交
706 707 708 709 710 711
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
712
	iretq
I
Ingo Molnar 已提交
713

714
#ifdef CONFIG_X86_ESPFIX64
715
native_irq_return_ldt:
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
738 739 740
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

741
	movq	PER_CPU_VAR(espfix_waddr), %rdi
742 743
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
744
	movq	%rax, (1*8)(%rdi)
745
	movq	(2*8)(%rsp), %rax		/* user CS */
746
	movq	%rax, (2*8)(%rdi)
747
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
748
	movq	%rax, (3*8)(%rdi)
749
	movq	(5*8)(%rsp), %rax		/* user SS */
750
	movq	%rax, (5*8)(%rdi)
751
	movq	(4*8)(%rsp), %rax		/* user RSP */
752
	movq	%rax, (4*8)(%rdi)
753 754 755 756 757 758 759 760 761 762 763 764
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
765
	orq	PER_CPU_VAR(espfix_stack), %rax
766

767
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
768 769 770
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

771
	movq	%rax, %rsp
772
	UNWIND_HINT_IRET_REGS offset=8
773 774 775 776 777 778 779 780 781 782 783 784

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
785
	jmp	native_irq_return_iret
786
#endif
787
END(common_interrupt)
788

L
Linus Torvalds 已提交
789 790
/*
 * APIC interrupts.
791
 */
792
.macro apicinterrupt3 num sym do_sym
793
ENTRY(\sym)
794
	UNWIND_HINT_IRET_REGS
795
	ASM_CLAC
796
	pushq	$~(\num)
797
.Lcommon_\sym:
798
	interrupt \do_sym
799
	jmp	ret_from_intr
800 801
END(\sym)
.endm
L
Linus Torvalds 已提交
802

803
/* Make sure APIC interrupt handlers end up in the irqentry section: */
804 805
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
806

807
.macro apicinterrupt num sym do_sym
808
PUSH_SECTION_IRQENTRY
809
apicinterrupt3 \num \sym \do_sym
810
POP_SECTION_IRQENTRY
811 812
.endm

813
#ifdef CONFIG_SMP
814 815
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
816
#endif
L
Linus Torvalds 已提交
817

N
Nick Piggin 已提交
818
#ifdef CONFIG_X86_UV
819
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
820
#endif
821 822 823

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
824

825
#ifdef CONFIG_HAVE_KVM
826 827
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
828
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
829 830
#endif

831
#ifdef CONFIG_X86_MCE_THRESHOLD
832
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
833 834
#endif

835
#ifdef CONFIG_X86_MCE_AMD
836
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
837 838
#endif

839
#ifdef CONFIG_X86_THERMAL_VECTOR
840
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
841
#endif
842

843
#ifdef CONFIG_SMP
844 845 846
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
847
#endif
L
Linus Torvalds 已提交
848

849 850
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
851

852
#ifdef CONFIG_IRQ_WORK
853
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
854 855
#endif

L
Linus Torvalds 已提交
856 857
/*
 * Exception entry points.
858
 */
859
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
860

861 862 863 864 865 866 867 868 869
/*
 * Switch to the thread stack.  This is called with the IRET frame and
 * orig_ax on the stack.  (That is, RDI..R12 are not on the stack and
 * space has not been allocated for them.)
 */
ENTRY(switch_to_thread_stack)
	UNWIND_HINT_FUNC

	pushq	%rdi
870 871
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
	ret
END(switch_to_thread_stack)
888 889

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
890
ENTRY(\sym)
891
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
892

893 894 895 896 897
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

898
	ASM_CLAC
899

900
	.if \has_error_code == 0
901
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
902 903
	.endif

904
	.if \paranoid < 2
905
	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
906
	jnz	.Lfrom_usermode_switch_stack_\@
907
	.endif
908 909

	.if \paranoid
910
	call	paranoid_entry
911
	.else
912
	call	error_entry
913
	.endif
914
	UNWIND_HINT_REGS
915
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
916 917

	.if \paranoid
918
	.if \shift_ist != -1
919
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
920
	.else
921
	TRACE_IRQS_OFF
922
	.endif
923
	.endif
924

925
	movq	%rsp, %rdi			/* pt_regs pointer */
926 927

	.if \has_error_code
928 929
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
930
	.else
931
	xorl	%esi, %esi			/* no error code */
932 933
	.endif

934
	.if \shift_ist != -1
935
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
936 937
	.endif

938
	call	\do_sym
939

940
	.if \shift_ist != -1
941
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
942 943
	.endif

944
	/* these procedures expect "no swapgs" flag in ebx */
945
	.if \paranoid
946
	jmp	paranoid_exit
947
	.else
948
	jmp	error_exit
949 950
	.endif

951
	.if \paranoid < 2
952
	/*
953
	 * Entry from userspace.  Switch stacks and treat it
954 955 956
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
957
.Lfrom_usermode_switch_stack_\@:
958
	call	error_entry
959

960
	movq	%rsp, %rdi			/* pt_regs pointer */
961 962

	.if \has_error_code
963 964
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
965
	.else
966
	xorl	%esi, %esi			/* no error code */
967 968
	.endif

969
	call	\do_sym
970

971
	jmp	error_exit			/* %ebx: no swapgs flag */
972
	.endif
973
END(\sym)
974
.endm
975

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
995
ENTRY(native_load_gs_index)
996
	FRAME_BEGIN
997
	pushfq
998
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
999
	TRACE_IRQS_OFF
1000
	SWAPGS
1001
.Lgs_change:
1002
	movl	%edi, %gs
1003
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1004
	SWAPGS
1005
	TRACE_IRQS_FLAGS (%rsp)
1006
	popfq
1007
	FRAME_END
1008
	ret
1009
ENDPROC(native_load_gs_index)
1010
EXPORT_SYMBOL(native_load_gs_index)
1011

1012
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1013
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1014
	/* running with kernelgs */
1015
bad_gs:
1016
	SWAPGS					/* switch back to user gs */
1017 1018 1019 1020 1021 1022
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1023 1024 1025
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1026
	.previous
1027

1028
/* Call softirq on interrupt stack. Interrupts are off. */
1029
ENTRY(do_softirq_own_stack)
1030 1031
	pushq	%rbp
	mov	%rsp, %rbp
1032
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1033
	call	__do_softirq
1034
	LEAVE_IRQ_STACK regs=0
1035
	leaveq
1036
	ret
1037
ENDPROC(do_softirq_own_stack)
1038

1039
#ifdef CONFIG_XEN
1040
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1041 1042

/*
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1055 1056
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1057 1058 1059 1060
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1061
	UNWIND_HINT_FUNC
1062
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1063
	UNWIND_HINT_REGS
1064 1065

	ENTER_IRQ_STACK old_rsp=%r10
1066
	call	xen_evtchn_do_upcall
1067 1068
	LEAVE_IRQ_STACK

1069
#ifndef CONFIG_PREEMPT
1070
	call	xen_maybe_preempt_hcall
1071
#endif
1072
	jmp	error_exit
1073
END(xen_do_hypervisor_callback)
1074 1075

/*
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1088
ENTRY(xen_failsafe_callback)
1089
	UNWIND_HINT_EMPTY
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1102
	/* All segments match their saved values => Category 2 (Bad IRET). */
1103 1104 1105 1106
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1107
	UNWIND_HINT_IRET_REGS offset=8
1108
	jmp	general_protection
1109
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1110 1111 1112
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1113
	UNWIND_HINT_IRET_REGS
1114
	pushq	$-1 /* orig_ax = -1 => not a system call */
1115
	PUSH_AND_CLEAR_REGS
1116
	ENCODE_FRAME_POINTER
1117
	jmp	error_exit
1118 1119
END(xen_failsafe_callback)

1120
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1121 1122
	xen_hvm_callback_vector xen_evtchn_do_upcall

1123
#endif /* CONFIG_XEN */
1124

1125
#if IS_ENABLED(CONFIG_HYPERV)
1126
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1127
	hyperv_callback_vector hyperv_vector_handler
1128 1129 1130

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1131 1132
#endif /* CONFIG_HYPERV */

1133 1134 1135 1136
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1137
#ifdef CONFIG_XEN
1138
idtentry xennmi			do_nmi			has_error_code=0
1139 1140
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1141
#endif
1142 1143

idtentry general_protection	do_general_protection	has_error_code=1
1144
idtentry page_fault		do_page_fault		has_error_code=1
1145

G
Gleb Natapov 已提交
1146
#ifdef CONFIG_KVM_GUEST
1147
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1148
#endif
1149

1150
#ifdef CONFIG_X86_MCE
1151
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1152 1153
#endif

1154
/*
1155
 * Save all registers in pt_regs, and switch gs if needed.
1156 1157 1158 1159
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1160
	UNWIND_HINT_FUNC
1161
	cld
1162 1163
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1164 1165
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1166
	rdmsr
1167 1168
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1169
	SWAPGS
1170
	xorl	%ebx, %ebx
1171 1172 1173 1174 1175

1:
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

	ret
1176
END(paranoid_entry)
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1187 1188
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1189
 */
1190
ENTRY(paranoid_exit)
1191
	UNWIND_HINT_REGS
1192
	DISABLE_INTERRUPTS(CLBR_ANY)
1193
	TRACE_IRQS_OFF_DEBUG
1194
	testl	%ebx, %ebx			/* swapgs needed? */
1195
	jnz	.Lparanoid_exit_no_swapgs
1196
	TRACE_IRQS_IRETQ
P
Peter Zijlstra 已提交
1197
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1198
	SWAPGS_UNSAFE_STACK
1199 1200
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1201
	TRACE_IRQS_IRETQ_DEBUG
1202
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1203 1204
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1205 1206 1207
END(paranoid_exit)

/*
1208
 * Save all registers in pt_regs, and switch GS if needed.
1209
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1210 1211
 */
ENTRY(error_entry)
1212
	UNWIND_HINT_FUNC
1213
	cld
1214 1215
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1216
	testb	$3, CS+8(%rsp)
1217
	jz	.Lerror_kernelspace
1218

1219 1220 1221 1222
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1223
	SWAPGS
1224 1225
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1226

1227
.Lerror_entry_from_usermode_after_swapgs:
1228 1229 1230 1231 1232 1233 1234 1235
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1236 1237 1238 1239 1240 1241
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1242
	CALL_enter_from_user_mode
1243
	ret
1244

1245
.Lerror_entry_done:
1246 1247 1248
	TRACE_IRQS_OFF
	ret

1249 1250 1251 1252 1253 1254
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1255
.Lerror_kernelspace:
1256 1257 1258
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1259
	je	.Lerror_bad_iret
1260 1261
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1262
	je	.Lbstep_iret
1263
	cmpq	$.Lgs_change, RIP+8(%rsp)
1264
	jne	.Lerror_entry_done
1265 1266

	/*
1267
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1268
	 * gsbase and proceed.  We'll fix up the exception and land in
1269
	 * .Lgs_change's error handler with kernel gsbase.
1270
	 */
1271
	SWAPGS
1272
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1273
	jmp .Lerror_entry_done
1274

1275
.Lbstep_iret:
1276
	/* Fix truncated RIP */
1277
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1278 1279
	/* fall through */

1280
.Lerror_bad_iret:
1281
	/*
1282 1283
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1284
	 */
A
Andy Lutomirski 已提交
1285
	SWAPGS
1286
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1287 1288 1289 1290 1291 1292

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1293 1294 1295
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1296
	decl	%ebx
1297
	jmp	.Lerror_entry_from_usermode_after_swapgs
1298 1299 1300
END(error_entry)


1301
/*
1302
 * On entry, EBX is a "return to kernel mode" flag:
1303 1304 1305
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1306
ENTRY(error_exit)
1307
	UNWIND_HINT_REGS
1308
	DISABLE_INTERRUPTS(CLBR_ANY)
1309
	TRACE_IRQS_OFF
1310
	testl	%ebx, %ebx
1311 1312
	jnz	retint_kernel
	jmp	retint_user
1313 1314
END(error_exit)

1315 1316 1317
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1318 1319 1320 1321
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1322
 */
1323
ENTRY(nmi)
1324
	UNWIND_HINT_IRET_REGS
1325

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1343 1344 1345
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1346 1347
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1348
	 *    o Modify the "iret" location to jump to the repeat_nmi
1349 1350 1351 1352 1353 1354 1355 1356
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1357 1358 1359 1360 1361
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1362 1363
	 */

1364 1365
	ASM_CLAC

1366
	/* Use %rdx as our temp variable throughout */
1367
	pushq	%rdx
1368

1369 1370 1371 1372 1373 1374 1375 1376 1377
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1378 1379 1380
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1381 1382
	 */

1383
	swapgs
1384
	cld
1385
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1386 1387
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1388
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1389 1390 1391 1392 1393
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1394
	UNWIND_HINT_IRET_REGS
1395
	pushq   $-1		/* pt_regs->orig_ax */
1396
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1397
	ENCODE_FRAME_POINTER
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1409
	/*
1410
	 * Return back to user mode.  We must *not* do the normal exit
1411
	 * work, because we don't want to enable interrupts.
1412
	 */
1413
	jmp	swapgs_restore_regs_and_return_to_usermode
1414

1415
.Lnmi_from_kernel:
1416
	/*
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1457
	/*
1458 1459
	 * Determine whether we're a nested NMI.
	 *
1460 1461 1462 1463 1464 1465
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1466
	 */
1467 1468 1469 1470 1471 1472 1473 1474

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1475

1476
	/*
1477
	 * Now check "NMI executing".  If it's set, then we're nested.
1478 1479
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1480
	 */
1481 1482
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1483 1484

	/*
1485 1486
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1487 1488 1489 1490 1491 1492 1493 1494
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1495
	 */
1496 1497 1498 1499 1500
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1501

1502 1503 1504 1505
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1506 1507 1508 1509 1510 1511 1512

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1513

1514 1515
nested_nmi:
	/*
1516 1517
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1518
	 */
1519
	subq	$8, %rsp
1520 1521 1522
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1523
	pushfq
1524 1525
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1526 1527

	/* Put stack back */
1528
	addq	$(6*8), %rsp
1529 1530

nested_nmi_out:
1531
	popq	%rdx
1532

1533
	/* We are returning to kernel mode, so this cannot result in a fault. */
1534
	iretq
1535 1536

first_nmi:
1537
	/* Restore rdx. */
1538
	movq	(%rsp), %rdx
1539

1540 1541
	/* Make room for "NMI executing". */
	pushq	$0
1542

1543
	/* Leave room for the "iret" frame */
1544
	subq	$(5*8), %rsp
1545

1546
	/* Copy the "original" frame to the "outermost" frame */
1547
	.rept 5
1548
	pushq	11*8(%rsp)
1549
	.endr
1550
	UNWIND_HINT_IRET_REGS
1551

1552 1553
	/* Everything up to here is safe from nested NMIs */

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1565
	iretq			/* continues at repeat_nmi below */
1566
	UNWIND_HINT_IRET_REGS
1567 1568 1569
1:
#endif

1570
repeat_nmi:
1571 1572 1573 1574 1575 1576 1577 1578
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1579 1580 1581 1582
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1583 1584
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1585
	 */
1586
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1587

1588
	/*
1589 1590 1591
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1592
	 */
1593
	addq	$(10*8), %rsp
1594
	.rept 5
1595
	pushq	-6*8(%rsp)
1596
	.endr
1597
	subq	$(5*8), %rsp
1598
end_repeat_nmi:
1599 1600

	/*
1601 1602 1603
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1604
	 */
1605
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1606

1607
	/*
1608
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1609 1610 1611 1612 1613
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1614
	call	paranoid_entry
1615
	UNWIND_HINT_REGS
1616

1617
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1618 1619 1620
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1621

P
Peter Zijlstra 已提交
1622
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1623

1624 1625
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1626 1627 1628
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1629
	POP_REGS
1630

1631 1632 1633 1634 1635
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1636

1637 1638 1639
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1640 1641 1642 1643 1644
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1645 1646 1647
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1648 1649

	/*
1650 1651 1652 1653
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1654
	 */
1655
	iretq
1656 1657 1658
END(nmi)

ENTRY(ignore_sysret)
1659
	UNWIND_HINT_EMPTY
1660
	mov	$-ENOSYS, %eax
1661 1662
	sysret
END(ignore_sysret)
1663 1664

ENTRY(rewind_stack_do_exit)
1665
	UNWIND_HINT_FUNC
1666 1667 1668 1669
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1670 1671
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1672 1673 1674

	call	do_exit
END(rewind_stack_do_exit)