entry_64.S 46.0 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11 12
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18 19 20
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
40
#include <asm/nospec-branch.h>
41
#include <linux/err.h>
L
Linus Torvalds 已提交
42

43 44
#include "calling.h"

45 46
.code64
.section .entry.text, "ax"
47

48
#ifdef CONFIG_PARAVIRT
49
ENTRY(native_usergs_sysret64)
50
	UNWIND_HINT_EMPTY
51 52
	swapgs
	sysretq
53
END(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_FLAGS flags:req
57
#ifdef CONFIG_TRACE_IRQFLAGS
58
	bt	$9, \flags		/* interrupts off? */
59
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
83
	call	debug_stack_set_zero
84
	TRACE_IRQS_OFF
85
	call	debug_stack_reset
86 87 88
.endm

.macro TRACE_IRQS_ON_DEBUG
89
	call	debug_stack_set_zero
90
	TRACE_IRQS_ON
91
	call	debug_stack_reset
92 93
.endm

94
.macro TRACE_IRQS_IRETQ_DEBUG
95 96
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
97 98 99 100 101
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
102 103 104
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
105 106
#endif

L
Linus Torvalds 已提交
107
/*
108
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
109
 *
110 111 112 113 114 115 116 117 118 119
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
120
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 122 123 124 125 126
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
127
 * rax  system call number
128 129
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
130 131
 * rdi  arg0
 * rsi  arg1
132
 * rdx  arg2
133
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
134 135
 * r8   arg4
 * r9   arg5
136
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137
 *
L
Linus Torvalds 已提交
138 139
 * Only called from user space.
 *
140
 * When user can change pt_regs->foo always force IRET. That is because
141 142
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
143
 */
L
Linus Torvalds 已提交
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	.pushsection .entry_trampoline, "ax"

/*
 * The code in here gets remapped into cpu_entry_area's trampoline.  This means
 * that the assembler and linker have the wrong idea as to where this code
 * lives (and, in fact, it's mapped more than once, so it's not even at a
 * fixed address).  So we can't reference any symbols outside the entry
 * trampoline and expect it to work.
 *
 * Instead, we carefully abuse %rip-relative addressing.
 * _entry_trampoline(%rip) refers to the start of the remapped) entry
 * trampoline.  We can thus find cpu_entry_area with this macro:
 */

#define CPU_ENTRY_AREA \
	_entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)

/* The top word of the SYSENTER stack is hot and is usable as scratch space. */
163 164
#define RSP_SCRATCH	CPU_ENTRY_AREA_entry_stack + \
			SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
165 166 167 168 169 170 171 172

ENTRY(entry_SYSCALL_64_trampoline)
	UNWIND_HINT_EMPTY
	swapgs

	/* Stash the user RSP. */
	movq	%rsp, RSP_SCRATCH

173 174 175
	/* Note: using %rsp as a scratch reg. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/* Load the top of the task stack into RSP */
	movq	CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp

	/* Start building the simulated IRET frame. */
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	RSP_SCRATCH			/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */

	/*
	 * x86 lacks a near absolute jump, and we can't jump to the real
	 * entry text with a relative jump.  We could push the target
	 * address and then use retq, but this destroys the pipeline on
	 * many CPUs (wasting over 20 cycles on Sandy Bridge).  Instead,
	 * spill RDI and restore it in a second-stage trampoline.
	 */
	pushq	%rdi
	movq	$entry_SYSCALL_64_stage2, %rdi
195
	JMP_NOSPEC %rdi
196 197 198 199 200 201 202 203 204 205
END(entry_SYSCALL_64_trampoline)

	.popsection

ENTRY(entry_SYSCALL_64_stage2)
	UNWIND_HINT_EMPTY
	popq	%rdi
	jmp	entry_SYSCALL_64_after_hwframe
END(entry_SYSCALL_64_stage2)

206
ENTRY(entry_SYSCALL_64)
207
	UNWIND_HINT_EMPTY
208 209 210 211 212
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
213

214
	swapgs
215
	/*
216
	 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
217 218
	 * is not required to switch CR3.
	 */
219 220
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
221 222

	/* Construct struct pt_regs on stack */
223 224 225 226 227
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
228
GLOBAL(entry_SYSCALL_64_after_hwframe)
229
	pushq	%rax				/* pt_regs->orig_ax */
230 231

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
232

233 234
	TRACE_IRQS_OFF

235
	/* IRQs are off. */
236
	movq	%rsp, %rdi
237 238
	call	do_syscall_64		/* returns with IRQs disabled */

239
	TRACE_IRQS_IRETQ		/* we're about to change IF */
240 241 242

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
243 244
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
245
	 */
246 247
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
248 249 250

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
251 252 253 254

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
255
	 * the kernel, since userspace controls RSP.
256
	 *
257
	 * If width of "canonical tail" ever becomes variable, this will need
258
	 * to be updated to remain correct on both old and new CPUs.
259
	 *
260 261
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
262
	 */
263 264
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
265

266 267
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
268
	jne	swapgs_restore_regs_and_return_to_usermode
269

270
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
271
	jne	swapgs_restore_regs_and_return_to_usermode
272

273 274
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
275
	jne	swapgs_restore_regs_and_return_to_usermode
276 277

	/*
278 279 280 281 282 283 284 285 286
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
287
	 *
288
	 *           movq	$stuck_here, %rcx
289 290 291 292 293 294
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
295
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
296
	jnz	swapgs_restore_regs_and_return_to_usermode
297 298 299

	/* nothing to check for RSP */

300
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
301
	jne	swapgs_restore_regs_and_return_to_usermode
302 303

	/*
304 305
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
306 307
	 */
syscall_return_via_sysret:
308
	/* rcx and r11 are already restored (see code above) */
309
	UNWIND_HINT_EMPTY
310
	POP_REGS pop_rdi=0 skip_r11rcx=1
311 312 313 314 315 316

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
317
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
318 319 320 321 322 323 324 325

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
326
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
327

328
	popq	%rdi
329
	popq	%rsp
330
	USERGS_SYSRET64
331
END(entry_SYSCALL_64)
332

333 334 335 336 337
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
338
	UNWIND_HINT_FUNC
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

359 360 361 362 363 364 365 366
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
367
	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
368 369
#endif

370 371 372 373 374 375 376 377 378 379 380
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

381 382 383
/*
 * A newly forked process directly context switches into this address.
 *
384
 * rax: prev task we switched from
385 386
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
387 388
 */
ENTRY(ret_from_fork)
389
	UNWIND_HINT_EMPTY
390
	movq	%rax, %rdi
391
	call	schedule_tail			/* rdi: 'prev' task parameter */
392

393 394
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
395

396
2:
397
	UNWIND_HINT_REGS
398
	movq	%rsp, %rdi
399 400
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
401
	jmp	swapgs_restore_regs_and_return_to_usermode
402 403 404 405

1:
	/* kernel thread */
	movq	%r12, %rdi
406
	CALL_NOSPEC %rbx
407 408 409 410 411 412 413
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
414 415
END(ret_from_fork)

416
/*
417 418
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
419
 */
420
	.align 8
421
ENTRY(irq_entries_start)
422 423
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
424
	UNWIND_HINT_IRET_REGS
425
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
426 427
	jmp	common_interrupt
	.align	8
428
	vector=vector+1
429
    .endr
430 431
END(irq_entries_start)

432 433
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
434 435 436
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
437 438 439
	jz .Lokay_\@
	ud2
.Lokay_\@:
440
	popq %rax
441 442 443 444 445 446 447 448 449 450
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
451
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
452
	DEBUG_ENTRY_ASSERT_IRQS_OFF
453 454 455 456 457 458 459 460 461

	.if \save_ret
	/*
	 * If save_ret is set, the original stack contains one additional
	 * entry -- the return address. Therefore, move the address one
	 * entry below %rsp to \old_rsp.
	 */
	leaq	8(%rsp), \old_rsp
	.else
462
	movq	%rsp, \old_rsp
463
	.endif
464 465 466 467 468

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

469
	incl	PER_CPU_VAR(irq_count)
470
	jnz	.Lirq_stack_push_old_rsp_\@
471 472 473 474 475 476 477 478 479

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

	movq	\old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
	movq	PER_CPU_VAR(irq_stack_ptr), %rsp

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
496
	 */
497 498 499 500 501
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
502

503
.Lirq_stack_push_old_rsp_\@:
504
	pushq	\old_rsp
505 506 507 508

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
509 510 511 512 513 514 515 516 517

	.if \save_ret
	/*
	 * Push the return address to the stack. This return address can
	 * be found at the "real" original RSP, which was offset by 8 at
	 * the beginning of this macro.
	 */
	pushq	-8(\old_rsp)
	.endif
518 519 520 521 522
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
523
.macro LEAVE_IRQ_STACK regs=1
524 525 526 527
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

528 529 530 531
	.if \regs
	UNWIND_HINT_REGS
	.endif

532 533 534 535 536 537 538 539
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
/*
 * Switch to the thread stack.  This is called with the IRET frame and
 * orig_ax on the stack.  (That is, RDI..R12 are not on the stack and
 * space has not been allocated for them.)
 */
.macro DO_SWITCH_TO_THREAD_STACK
	pushq	%rdi
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	UNWIND_HINT sp_offset=16 sp_reg=ORC_REG_DI

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */
	UNWIND_HINT_FUNC

	movq	(%rdi), %rdi
.endm

565
/*
L
Linus Torvalds 已提交
566 567 568
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
569 570 571
 *
 * Entry runs with interrupts off.
 */
572
/* 8(%rsp): ~(interrupt number) */
573 574
ENTRY(interrupt_entry)
	UNWIND_HINT_FUNC
575
	ASM_CLAC
576 577 578 579 580 581 582
	cld

	testb	$3, CS-ORIG_RAX+8(%rsp)
	jz	1f
	SWAPGS
	DO_SWITCH_TO_THREAD_STACK
1:
583 584 585 586

	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8

587
	testb	$3, CS+8(%rsp)
588
	jz	1f
589 590

	/*
591 592
	 * IRQ from user mode.
	 *
593 594 595 596 597 598 599 600 601
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

602
	CALL_enter_from_user_mode
603

604
1:
605
	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
606 607 608
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

609 610 611
	ret
END(interrupt_entry)

612 613 614 615
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
616 617
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
618
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
619 620 621
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	do_IRQ	/* rdi points to pt_regs */
622
	/* 0(%rsp): old RSP */
623
ret_from_intr:
624
	DISABLE_INTERRUPTS(CLBR_ANY)
625
	TRACE_IRQS_OFF
626

627
	LEAVE_IRQ_STACK
628

629
	testb	$3, CS(%rsp)
630
	jz	retint_kernel
631

632 633 634 635
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
636
	TRACE_IRQS_IRETQ
637

638
GLOBAL(swapgs_restore_regs_and_return_to_usermode)
639 640
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
641
	testb	$3, CS(%rsp)
642 643 644 645
	jnz	1f
	ud2
1:
#endif
646
	POP_REGS pop_rdi=0
647 648 649 650 651 652

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
653
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */

670
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
671

672 673 674
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
675 676
	INTERRUPT_RETURN

677

678
/* Returning to kernel space */
679
retint_kernel:
680 681 682
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
683
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
684
	jnc	1f
685
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
686
	jnz	1f
687
	call	preempt_schedule_irq
688
	jmp	0b
689
1:
690
#endif
691 692 693 694
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
695

696 697 698
GLOBAL(restore_regs_and_return_to_kernel)
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
699
	testb	$3, CS(%rsp)
700 701 702 703
	jz	1f
	ud2
1:
#endif
704
	POP_REGS
705
	addq	$8, %rsp	/* skip regs->orig_ax */
706 707 708 709
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
710 711 712
	INTERRUPT_RETURN

ENTRY(native_iret)
713
	UNWIND_HINT_IRET_REGS
714 715 716 717
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
718
#ifdef CONFIG_X86_ESPFIX64
719 720
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
721
#endif
722

723
.global native_irq_return_iret
724
native_irq_return_iret:
A
Andy Lutomirski 已提交
725 726 727 728 729 730
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
731
	iretq
I
Ingo Molnar 已提交
732

733
#ifdef CONFIG_X86_ESPFIX64
734
native_irq_return_ldt:
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
757 758 759
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

760
	movq	PER_CPU_VAR(espfix_waddr), %rdi
761 762
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
763
	movq	%rax, (1*8)(%rdi)
764
	movq	(2*8)(%rsp), %rax		/* user CS */
765
	movq	%rax, (2*8)(%rdi)
766
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
767
	movq	%rax, (3*8)(%rdi)
768
	movq	(5*8)(%rsp), %rax		/* user SS */
769
	movq	%rax, (5*8)(%rdi)
770
	movq	(4*8)(%rsp), %rax		/* user RSP */
771
	movq	%rax, (4*8)(%rdi)
772 773 774 775 776 777 778 779 780 781 782 783
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
784
	orq	PER_CPU_VAR(espfix_stack), %rax
785

786
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
787 788 789
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

790
	movq	%rax, %rsp
791
	UNWIND_HINT_IRET_REGS offset=8
792 793 794 795 796 797 798 799 800 801 802 803

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
804
	jmp	native_irq_return_iret
805
#endif
806
END(common_interrupt)
807

L
Linus Torvalds 已提交
808 809
/*
 * APIC interrupts.
810
 */
811
.macro apicinterrupt3 num sym do_sym
812
ENTRY(\sym)
813
	UNWIND_HINT_IRET_REGS
814
	pushq	$~(\num)
815
.Lcommon_\sym:
816 817 818
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	\do_sym	/* rdi points to pt_regs */
819
	jmp	ret_from_intr
820 821
END(\sym)
.endm
L
Linus Torvalds 已提交
822

823
/* Make sure APIC interrupt handlers end up in the irqentry section: */
824 825
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
826

827
.macro apicinterrupt num sym do_sym
828
PUSH_SECTION_IRQENTRY
829
apicinterrupt3 \num \sym \do_sym
830
POP_SECTION_IRQENTRY
831 832
.endm

833
#ifdef CONFIG_SMP
834 835
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
836
#endif
L
Linus Torvalds 已提交
837

N
Nick Piggin 已提交
838
#ifdef CONFIG_X86_UV
839
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
840
#endif
841 842 843

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
844

845
#ifdef CONFIG_HAVE_KVM
846 847
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
848
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
849 850
#endif

851
#ifdef CONFIG_X86_MCE_THRESHOLD
852
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
853 854
#endif

855
#ifdef CONFIG_X86_MCE_AMD
856
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
857 858
#endif

859
#ifdef CONFIG_X86_THERMAL_VECTOR
860
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
861
#endif
862

863
#ifdef CONFIG_SMP
864 865 866
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
867
#endif
L
Linus Torvalds 已提交
868

869 870
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
871

872
#ifdef CONFIG_IRQ_WORK
873
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
874 875
#endif

L
Linus Torvalds 已提交
876 877
/*
 * Exception entry points.
878
 */
879
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
880

881 882
#if defined(CONFIG_IA32_EMULATION)
/* entry_64_compat.S::entry_INT80_compat expects this to be an ASM function */
883 884 885
ENTRY(switch_to_thread_stack)
	UNWIND_HINT_FUNC

886
	DO_SWITCH_TO_THREAD_STACK
887 888 889

	ret
END(switch_to_thread_stack)
890
#endif
891 892

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
893
ENTRY(\sym)
894
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
895

896 897 898 899 900
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

901
	ASM_CLAC
902

903
	.if \has_error_code == 0
904
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
905 906
	.endif

907
	.if \paranoid < 2
908
	testb	$3, CS-ORIG_RAX(%rsp)		/* If coming from userspace, switch stacks */
909
	jnz	.Lfrom_usermode_switch_stack_\@
910
	.endif
911 912

	.if \paranoid
913
	call	paranoid_entry
914
	.else
915
	call	error_entry
916
	.endif
917
	UNWIND_HINT_REGS
918
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
919 920

	.if \paranoid
921
	.if \shift_ist != -1
922
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
923
	.else
924
	TRACE_IRQS_OFF
925
	.endif
926
	.endif
927

928
	movq	%rsp, %rdi			/* pt_regs pointer */
929 930

	.if \has_error_code
931 932
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
933
	.else
934
	xorl	%esi, %esi			/* no error code */
935 936
	.endif

937
	.if \shift_ist != -1
938
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
939 940
	.endif

941
	call	\do_sym
942

943
	.if \shift_ist != -1
944
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
945 946
	.endif

947
	/* these procedures expect "no swapgs" flag in ebx */
948
	.if \paranoid
949
	jmp	paranoid_exit
950
	.else
951
	jmp	error_exit
952 953
	.endif

954
	.if \paranoid < 2
955
	/*
956
	 * Entry from userspace.  Switch stacks and treat it
957 958 959
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
960
.Lfrom_usermode_switch_stack_\@:
961
	call	error_entry
962

963
	movq	%rsp, %rdi			/* pt_regs pointer */
964 965

	.if \has_error_code
966 967
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
968
	.else
969
	xorl	%esi, %esi			/* no error code */
970 971
	.endif

972
	call	\do_sym
973

974
	jmp	error_exit			/* %ebx: no swapgs flag */
975
	.endif
976
END(\sym)
977
.endm
978

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
998
ENTRY(native_load_gs_index)
999
	FRAME_BEGIN
1000
	pushfq
1001
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1002
	TRACE_IRQS_OFF
1003
	SWAPGS
1004
.Lgs_change:
1005
	movl	%edi, %gs
1006
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1007
	SWAPGS
1008
	TRACE_IRQS_FLAGS (%rsp)
1009
	popfq
1010
	FRAME_END
1011
	ret
1012
ENDPROC(native_load_gs_index)
1013
EXPORT_SYMBOL(native_load_gs_index)
1014

1015
	_ASM_EXTABLE(.Lgs_change, bad_gs)
1016
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1017
	/* running with kernelgs */
1018
bad_gs:
1019
	SWAPGS					/* switch back to user gs */
1020 1021 1022 1023 1024 1025
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1026 1027 1028
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1029
	.previous
1030

1031
/* Call softirq on interrupt stack. Interrupts are off. */
1032
ENTRY(do_softirq_own_stack)
1033 1034
	pushq	%rbp
	mov	%rsp, %rbp
1035
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1036
	call	__do_softirq
1037
	LEAVE_IRQ_STACK regs=0
1038
	leaveq
1039
	ret
1040
ENDPROC(do_softirq_own_stack)
1041

1042
#ifdef CONFIG_XEN
1043
idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1044 1045

/*
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
1058 1059
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

1060 1061 1062 1063
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1064
	UNWIND_HINT_FUNC
1065
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1066
	UNWIND_HINT_REGS
1067 1068

	ENTER_IRQ_STACK old_rsp=%r10
1069
	call	xen_evtchn_do_upcall
1070 1071
	LEAVE_IRQ_STACK

1072
#ifndef CONFIG_PREEMPT
1073
	call	xen_maybe_preempt_hcall
1074
#endif
1075
	jmp	error_exit
1076
END(xen_do_hypervisor_callback)
1077 1078

/*
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1091
ENTRY(xen_failsafe_callback)
1092
	UNWIND_HINT_EMPTY
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1105
	/* All segments match their saved values => Category 2 (Bad IRET). */
1106 1107 1108 1109
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1110
	UNWIND_HINT_IRET_REGS offset=8
1111
	jmp	general_protection
1112
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1113 1114 1115
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1116
	UNWIND_HINT_IRET_REGS
1117
	pushq	$-1 /* orig_ax = -1 => not a system call */
1118
	PUSH_AND_CLEAR_REGS
1119
	ENCODE_FRAME_POINTER
1120
	jmp	error_exit
1121 1122
END(xen_failsafe_callback)

1123
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1124 1125
	xen_hvm_callback_vector xen_evtchn_do_upcall

1126
#endif /* CONFIG_XEN */
1127

1128
#if IS_ENABLED(CONFIG_HYPERV)
1129
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1130
	hyperv_callback_vector hyperv_vector_handler
1131 1132 1133

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1134 1135
#endif /* CONFIG_HYPERV */

1136 1137 1138 1139
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1140
#ifdef CONFIG_XEN
1141
idtentry xennmi			do_nmi			has_error_code=0
1142 1143
idtentry xendebug		do_debug		has_error_code=0
idtentry xenint3		do_int3			has_error_code=0
1144
#endif
1145 1146

idtentry general_protection	do_general_protection	has_error_code=1
1147
idtentry page_fault		do_page_fault		has_error_code=1
1148

G
Gleb Natapov 已提交
1149
#ifdef CONFIG_KVM_GUEST
1150
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1151
#endif
1152

1153
#ifdef CONFIG_X86_MCE
1154
idtentry machine_check		do_mce			has_error_code=0	paranoid=1
1155 1156
#endif

1157
/*
1158
 * Save all registers in pt_regs, and switch gs if needed.
1159 1160 1161 1162
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1163
	UNWIND_HINT_FUNC
1164
	cld
1165 1166
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1167 1168
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1169
	rdmsr
1170 1171
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1172
	SWAPGS
1173
	xorl	%ebx, %ebx
1174 1175 1176 1177 1178

1:
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

	ret
1179
END(paranoid_entry)
1180

1181 1182 1183 1184 1185 1186 1187 1188 1189
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1190 1191
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1192
 */
1193
ENTRY(paranoid_exit)
1194
	UNWIND_HINT_REGS
1195
	DISABLE_INTERRUPTS(CLBR_ANY)
1196
	TRACE_IRQS_OFF_DEBUG
1197
	testl	%ebx, %ebx			/* swapgs needed? */
1198
	jnz	.Lparanoid_exit_no_swapgs
1199
	TRACE_IRQS_IRETQ
P
Peter Zijlstra 已提交
1200
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1201
	SWAPGS_UNSAFE_STACK
1202 1203
	jmp	.Lparanoid_exit_restore
.Lparanoid_exit_no_swapgs:
1204
	TRACE_IRQS_IRETQ_DEBUG
1205
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1206 1207
.Lparanoid_exit_restore:
	jmp restore_regs_and_return_to_kernel
1208 1209 1210
END(paranoid_exit)

/*
1211
 * Save all registers in pt_regs, and switch GS if needed.
1212
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1213 1214
 */
ENTRY(error_entry)
1215
	UNWIND_HINT_FUNC
1216
	cld
1217 1218
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1219
	testb	$3, CS+8(%rsp)
1220
	jz	.Lerror_kernelspace
1221

1222 1223 1224 1225
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1226
	SWAPGS
1227 1228
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1229

1230
.Lerror_entry_from_usermode_after_swapgs:
1231 1232 1233 1234 1235 1236 1237 1238
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12

1239 1240 1241 1242 1243 1244
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1245
	CALL_enter_from_user_mode
1246
	ret
1247

1248
.Lerror_entry_done:
1249 1250 1251
	TRACE_IRQS_OFF
	ret

1252 1253 1254 1255 1256 1257
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1258
.Lerror_kernelspace:
1259 1260 1261
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1262
	je	.Lerror_bad_iret
1263 1264
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1265
	je	.Lbstep_iret
1266
	cmpq	$.Lgs_change, RIP+8(%rsp)
1267
	jne	.Lerror_entry_done
1268 1269

	/*
1270
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1271
	 * gsbase and proceed.  We'll fix up the exception and land in
1272
	 * .Lgs_change's error handler with kernel gsbase.
1273
	 */
1274
	SWAPGS
1275
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1276
	jmp .Lerror_entry_done
1277

1278
.Lbstep_iret:
1279
	/* Fix truncated RIP */
1280
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1281 1282
	/* fall through */

1283
.Lerror_bad_iret:
1284
	/*
1285 1286
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1287
	 */
A
Andy Lutomirski 已提交
1288
	SWAPGS
1289
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1290 1291 1292 1293 1294 1295

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1296 1297 1298
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1299
	decl	%ebx
1300
	jmp	.Lerror_entry_from_usermode_after_swapgs
1301 1302 1303
END(error_entry)


1304
/*
1305
 * On entry, EBX is a "return to kernel mode" flag:
1306 1307 1308
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1309
ENTRY(error_exit)
1310
	UNWIND_HINT_REGS
1311
	DISABLE_INTERRUPTS(CLBR_ANY)
1312
	TRACE_IRQS_OFF
1313
	testl	%ebx, %ebx
1314 1315
	jnz	retint_kernel
	jmp	retint_user
1316 1317
END(error_exit)

1318 1319 1320
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1321 1322 1323 1324
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1325
 */
1326
ENTRY(nmi)
1327
	UNWIND_HINT_IRET_REGS
1328

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1346 1347 1348
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1349 1350
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1351
	 *    o Modify the "iret" location to jump to the repeat_nmi
1352 1353 1354 1355 1356 1357 1358 1359
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1360 1361 1362 1363 1364
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1365 1366
	 */

1367 1368
	ASM_CLAC

1369
	/* Use %rdx as our temp variable throughout */
1370
	pushq	%rdx
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1381 1382 1383
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1384 1385
	 */

1386
	swapgs
1387
	cld
1388
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1389 1390
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1391
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1392 1393 1394 1395 1396
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1397
	UNWIND_HINT_IRET_REGS
1398
	pushq   $-1		/* pt_regs->orig_ax */
1399
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1400
	ENCODE_FRAME_POINTER
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1412
	/*
1413
	 * Return back to user mode.  We must *not* do the normal exit
1414
	 * work, because we don't want to enable interrupts.
1415
	 */
1416
	jmp	swapgs_restore_regs_and_return_to_usermode
1417

1418
.Lnmi_from_kernel:
1419
	/*
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1460
	/*
1461 1462
	 * Determine whether we're a nested NMI.
	 *
1463 1464 1465 1466 1467 1468
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1469
	 */
1470 1471 1472 1473 1474 1475 1476 1477

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1478

1479
	/*
1480
	 * Now check "NMI executing".  If it's set, then we're nested.
1481 1482
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1483
	 */
1484 1485
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1486 1487

	/*
1488 1489
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1490 1491 1492 1493 1494 1495 1496 1497
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1498
	 */
1499 1500 1501 1502 1503
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1504

1505 1506 1507 1508
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1509 1510 1511 1512 1513 1514 1515

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1516

1517 1518
nested_nmi:
	/*
1519 1520
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1521
	 */
1522
	subq	$8, %rsp
1523 1524 1525
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1526
	pushfq
1527 1528
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1529 1530

	/* Put stack back */
1531
	addq	$(6*8), %rsp
1532 1533

nested_nmi_out:
1534
	popq	%rdx
1535

1536
	/* We are returning to kernel mode, so this cannot result in a fault. */
1537
	iretq
1538 1539

first_nmi:
1540
	/* Restore rdx. */
1541
	movq	(%rsp), %rdx
1542

1543 1544
	/* Make room for "NMI executing". */
	pushq	$0
1545

1546
	/* Leave room for the "iret" frame */
1547
	subq	$(5*8), %rsp
1548

1549
	/* Copy the "original" frame to the "outermost" frame */
1550
	.rept 5
1551
	pushq	11*8(%rsp)
1552
	.endr
1553
	UNWIND_HINT_IRET_REGS
1554

1555 1556
	/* Everything up to here is safe from nested NMIs */

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1568
	iretq			/* continues at repeat_nmi below */
1569
	UNWIND_HINT_IRET_REGS
1570 1571 1572
1:
#endif

1573
repeat_nmi:
1574 1575 1576 1577 1578 1579 1580 1581
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1582 1583 1584 1585
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1586 1587
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1588
	 */
1589
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1590

1591
	/*
1592 1593 1594
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1595
	 */
1596
	addq	$(10*8), %rsp
1597
	.rept 5
1598
	pushq	-6*8(%rsp)
1599
	.endr
1600
	subq	$(5*8), %rsp
1601
end_repeat_nmi:
1602 1603

	/*
1604 1605 1606
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1607
	 */
1608
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1609

1610
	/*
1611
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1612 1613 1614 1615 1616
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1617
	call	paranoid_entry
1618
	UNWIND_HINT_REGS
1619

1620
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1621 1622 1623
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1624

P
Peter Zijlstra 已提交
1625
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1626

1627 1628
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1629 1630 1631
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1632
	POP_REGS
1633

1634 1635 1636 1637 1638
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1639

1640 1641 1642
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1643 1644 1645 1646 1647
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1648 1649 1650
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1651 1652

	/*
1653 1654 1655 1656
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1657
	 */
1658
	iretq
1659 1660 1661
END(nmi)

ENTRY(ignore_sysret)
1662
	UNWIND_HINT_EMPTY
1663
	mov	$-ENOSYS, %eax
1664 1665
	sysret
END(ignore_sysret)
1666 1667

ENTRY(rewind_stack_do_exit)
1668
	UNWIND_HINT_FUNC
1669 1670 1671 1672
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1673 1674
	leaq	-PTREGS_SIZE(%rax), %rsp
	UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1675 1676 1677

	call	do_exit
END(rewind_stack_do_exit)