core.c 174.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3
 *
I
Ingo Molnar 已提交
4
 *  Core kernel scheduler code and related syscalls
L
Linus Torvalds 已提交
5 6 7
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 */
8
#include "sched.h"
L
Linus Torvalds 已提交
9

10
#include <linux/nospec.h>
11

12 13
#include <linux/kcov.h>

14
#include <asm/switch_to.h>
15
#include <asm/tlb.h>
L
Linus Torvalds 已提交
16

17
#include "../workqueue_internal.h"
18
#include "../../fs/io-wq.h"
19
#include "../smpboot.h"
20

21 22
#include "pelt.h"

23
#define CREATE_TRACE_POINTS
24
#include <trace/events/sched.h>
25

26
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
27

28
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
I
Ingo Molnar 已提交
29 30
/*
 * Debugging: various feature bits
31 32 33 34
 *
 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
 * sysctl_sched_features, defined in sched.h, to allow constants propagation
 * at compile time and compiler optimization based on features default.
I
Ingo Molnar 已提交
35
 */
P
Peter Zijlstra 已提交
36 37
#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |
I
Ingo Molnar 已提交
38
const_debug unsigned int sysctl_sched_features =
39
#include "features.h"
P
Peter Zijlstra 已提交
40 41
	0;
#undef SCHED_FEAT
42
#endif
P
Peter Zijlstra 已提交
43

44 45 46 47 48 49
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
50
/*
I
Ingo Molnar 已提交
51
 * period over which we measure -rt task CPU usage in us.
P
Peter Zijlstra 已提交
52 53
 * default: 1s
 */
P
Peter Zijlstra 已提交
54
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
55

56
__read_mostly int scheduler_running;
57

P
Peter Zijlstra 已提交
58 59 60 61 62
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
63

64 65 66
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
67
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
68 69 70 71 72 73 74 75 76 77
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
78
			rq_pin_lock(rq, rf);
79 80 81 82 83 84 85 86 87 88 89 90
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
91
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
92 93 94 95 96 97
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
98
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
99 100 101 102 103 104 105 106 107 108 109 110
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
111
		 * If we observe the old CPU in task_rq_lock(), the acquire of
112 113
		 * the old rq->lock will fully serialize against the stores.
		 *
114 115 116
		 * If we observe the new CPU in task_rq_lock(), the address
		 * dependency headed by '[L] rq = task_rq()' and the acquire
		 * will pair with the WMB to ensure we then also see migrating.
117 118
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
119
			rq_pin_lock(rq, rf);
120 121 122
			return rq;
		}
		raw_spin_unlock(&rq->lock);
123
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
124 125 126 127 128 129

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

130 131 132 133 134 135 136 137 138 139
/*
 * RQ-clock updating methods:
 */

static void update_rq_clock_task(struct rq *rq, s64 delta)
{
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
140 141
	s64 __maybe_unused steal = 0, irq_delta = 0;

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_key_false((&paravirt_steal_rq_enabled))) {
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

	rq->clock_task += delta;

181
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
182
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
183
		update_irq_load_avg(rq, irq_delta + steal);
184 185 186 187 188 189 190 191 192 193 194 195 196
#endif
}

void update_rq_clock(struct rq *rq)
{
	s64 delta;

	lockdep_assert_held(&rq->lock);

	if (rq->clock_update_flags & RQCF_ACT_SKIP)
		return;

#ifdef CONFIG_SCHED_DEBUG
197 198
	if (sched_feat(WARN_DOUBLE_CLOCK))
		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
199 200
	rq->clock_update_flags |= RQCF_UPDATED;
#endif
201

202 203 204 205 206 207 208 209
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	if (delta < 0)
		return;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
}


P
Peter Zijlstra 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
228
	struct rq_flags rf;
P
Peter Zijlstra 已提交
229 230 231

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

232
	rq_lock(rq, &rf);
233
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
234
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
235
	rq_unlock(rq, &rf);
P
Peter Zijlstra 已提交
236 237 238 239

	return HRTIMER_NORESTART;
}

240
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
241

242
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
243 244 245
{
	struct hrtimer *timer = &rq->hrtick_timer;

246
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
247 248
}

249 250 251 252
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
253
{
254
	struct rq *rq = arg;
255
	struct rq_flags rf;
256

257
	rq_lock(rq, &rf);
P
Peter Zijlstra 已提交
258
	__hrtick_restart(rq);
259
	rq->hrtick_csd_pending = 0;
260
	rq_unlock(rq, &rf);
261 262
}

263 264 265 266 267
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
268
void hrtick_start(struct rq *rq, u64 delay)
269
{
270
	struct hrtimer *timer = &rq->hrtick_timer;
271 272 273 274 275 276 277 278 279
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
280

281
	hrtimer_set_expires(timer, time);
282 283

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
284
		__hrtick_restart(rq);
285
	} else if (!rq->hrtick_csd_pending) {
286
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
287 288
		rq->hrtick_csd_pending = 1;
	}
289 290
}

291 292 293 294 295 296
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
297
void hrtick_start(struct rq *rq, u64 delay)
298
{
W
Wanpeng Li 已提交
299 300 301 302 303
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
304 305
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
306 307
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
308

309
static void hrtick_rq_init(struct rq *rq)
P
Peter Zijlstra 已提交
310
{
311 312
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
313

314 315 316 317
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
318

319 320
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
321
}
A
Andrew Morton 已提交
322
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
323 324 325 326
static inline void hrtick_clear(struct rq *rq)
{
}

327
static inline void hrtick_rq_init(struct rq *rq)
P
Peter Zijlstra 已提交
328 329
{
}
A
Andrew Morton 已提交
330
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

350
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
351 352 353 354 355 356 357 358 359 360
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
361 362 363 364 365 366 367 368 369 370

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
371
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
372 373 374 375 376 377 378 379 380 381 382 383 384 385

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

386 387 388 389 390 391
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
392 393 394 395 396 397 398

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
399 400
#endif

401 402 403 404 405 406 407 408 409
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
410 411
	 * In order to ensure that a pending wakeup will observe our pending
	 * state, even in the failed case, an explicit smp_mb() must be used.
412
	 */
413 414
	smp_mb__before_atomic();
	if (cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
I
Ingo Molnar 已提交
435
		/* Task can safely be re-inserted now: */
436 437 438 439
		node = node->next;
		task->wake_q.next = NULL;

		/*
440 441
		 * wake_up_process() executes a full barrier, which pairs with
		 * the queueing in wake_q_add() so as not to miss wakeups.
442 443 444 445 446 447
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
448
/*
449
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
450 451 452 453 454
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
455
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
456
{
457
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
458 459
	int cpu;

460
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
461

462
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
463 464
		return;

465
	cpu = cpu_of(rq);
466

467
	if (cpu == smp_processor_id()) {
468
		set_tsk_need_resched(curr);
469
		set_preempt_need_resched();
I
Ingo Molnar 已提交
470
		return;
471
	}
I
Ingo Molnar 已提交
472

473
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
474
		smp_send_reschedule(cpu);
475 476
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
477 478
}

479
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
480 481 482 483
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

484
	raw_spin_lock_irqsave(&rq->lock, flags);
485 486
	if (cpu_online(cpu) || cpu == smp_processor_id())
		resched_curr(rq);
487
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
488
}
489

490
#ifdef CONFIG_SMP
491
#ifdef CONFIG_NO_HZ_COMMON
492
/*
I
Ingo Molnar 已提交
493 494
 * In the semi idle case, use the nearest busy CPU for migrating timers
 * from an idle CPU.  This is good for power-savings.
495 496
 *
 * We don't do similar optimization for completely idle system, as
I
Ingo Molnar 已提交
497 498
 * selecting an idle CPU will add more delays to the timers than intended
 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
499
 */
500
int get_nohz_timer_target(void)
501
{
502
	int i, cpu = smp_processor_id();
503 504
	struct sched_domain *sd;

505
	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
506 507
		return cpu;

508
	rcu_read_lock();
509
	for_each_domain(cpu, sd) {
510
		for_each_cpu(i, sched_domain_span(sd)) {
511 512 513
			if (cpu == i)
				continue;

514
			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
515 516 517 518
				cpu = i;
				goto unlock;
			}
		}
519
	}
520

521 522
	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
523 524
unlock:
	rcu_read_unlock();
525 526
	return cpu;
}
I
Ingo Molnar 已提交
527

528 529 530 531 532 533 534 535 536 537
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
538
static void wake_up_idle_cpu(int cpu)
539 540 541 542 543 544
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

545
	if (set_nr_and_not_polling(rq->idle))
546
		smp_send_reschedule(cpu);
547 548
	else
		trace_sched_wake_idle_without_ipi(cpu);
549 550
}

551
static bool wake_up_full_nohz_cpu(int cpu)
552
{
553 554 555 556 557 558
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
559 560
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
561
	if (tick_nohz_full_cpu(cpu)) {
562 563
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
564
			tick_nohz_full_kick_cpu(cpu);
565 566 567 568 569 570
		return true;
	}

	return false;
}

571 572 573 574 575
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
576 577
void wake_up_nohz_cpu(int cpu)
{
578
	if (!wake_up_full_nohz_cpu(cpu))
579 580 581
		wake_up_idle_cpu(cpu);
}

582
static inline bool got_nohz_idle_kick(void)
583
{
584
	int cpu = smp_processor_id();
585

P
Peter Zijlstra 已提交
586
	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
587 588 589 590 591 592 593 594 595
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
P
Peter Zijlstra 已提交
596
	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
597
	return false;
598 599
}

600
#else /* CONFIG_NO_HZ_COMMON */
601

602
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
603
{
604
	return false;
P
Peter Zijlstra 已提交
605 606
}

607
#endif /* CONFIG_NO_HZ_COMMON */
608

609
#ifdef CONFIG_NO_HZ_FULL
610
bool sched_can_stop_tick(struct rq *rq)
611
{
612 613 614 615 616 617
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

618
	/*
619 620
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
621
	 */
622 623 624 625 626
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
627 628
	}

629 630 631 632 633 634 635 636 637 638 639 640 641 642
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
643
		return false;
644

645
	return true;
646 647
}
#endif /* CONFIG_NO_HZ_FULL */
648
#endif /* CONFIG_SMP */
649

650 651
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652
/*
653 654 655 656
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
657
 */
658
int walk_tg_tree_from(struct task_group *from,
659
			     tg_visitor down, tg_visitor up, void *data)
660 661
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
662
	int ret;
663

664 665
	parent = from;

666
down:
P
Peter Zijlstra 已提交
667 668
	ret = (*down)(parent, data);
	if (ret)
669
		goto out;
670 671 672 673 674 675 676
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
677
	ret = (*up)(parent, data);
678 679
	if (ret || parent == from)
		goto out;
680 681 682 683 684

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
685
out:
P
Peter Zijlstra 已提交
686
	return ret;
687 688
}

689
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
690
{
691
	return 0;
P
Peter Zijlstra 已提交
692
}
693 694
#endif

695
static void set_load_weight(struct task_struct *p, bool update_load)
696
{
N
Nikhil Rao 已提交
697 698 699
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
700 701 702
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
703
	if (idle_policy(p->policy)) {
704
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
705
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
706 707
		return;
	}
708

709 710 711 712 713 714 715 716 717 718
	/*
	 * SCHED_OTHER tasks have to update their load when changing their
	 * weight
	 */
	if (update_load && p->sched_class == &fair_sched_class) {
		reweight_task(p, prio);
	} else {
		load->weight = scale_load(sched_prio_to_weight[prio]);
		load->inv_weight = sched_prio_to_wmult[prio];
	}
719 720
}

721
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
722
{
723 724 725
	if (!(flags & ENQUEUE_NOCLOCK))
		update_rq_clock(rq);

726
	if (!(flags & ENQUEUE_RESTORE)) {
727
		sched_info_queued(rq, p);
728 729
		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
	}
730

731
	p->sched_class->enqueue_task(rq, p, flags);
732 733
}

734
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
735
{
736 737 738
	if (!(flags & DEQUEUE_NOCLOCK))
		update_rq_clock(rq);

739
	if (!(flags & DEQUEUE_SAVE)) {
740
		sched_info_dequeued(rq, p);
741 742
		psi_dequeue(p, flags & DEQUEUE_SLEEP);
	}
743

744
	p->sched_class->dequeue_task(rq, p, flags);
745 746
}

747 748 749 750 751 752
static void update_nr_uninterruptible(struct task_struct *tsk, long inc)
{
	if (tsk->sched_class->update_nr_uninterruptible)
		tsk->sched_class->update_nr_uninterruptible(tsk, inc);
}

753
void activate_task(struct rq *rq, struct task_struct *p, int flags)
754
{
755 756
	if (task_contributes_to_load(p)) {
		update_nr_uninterruptible(p, -1);
757
		rq->nr_uninterruptible--;
758
	}
759

760
	enqueue_task(rq, p, flags);
761 762
}

763
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
764
{
765 766
	if (task_contributes_to_load(p)) {
		update_nr_uninterruptible(p, 1);
767
		rq->nr_uninterruptible++;
768
	}
769

770
	dequeue_task(rq, p, flags);
771 772
}

773
/*
I
Ingo Molnar 已提交
774
 * __normal_prio - return the priority that is based on the static prio
775 776 777
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
778
	return p->static_prio;
779 780
}

781 782 783 784 785 786 787
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
788
static inline int normal_prio(struct task_struct *p)
789 790 791
{
	int prio;

792 793 794
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
795 796 797 798 799 800 801 802 803 804 805 806 807
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
808
static int effective_prio(struct task_struct *p)
809 810 811 812 813 814 815 816 817 818 819 820
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
821 822 823
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
824 825
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
826
 */
827
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
828 829 830 831
{
	return cpu_curr(task_cpu(p)) == p;
}

832
/*
833 834 835 836 837
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
838
 */
839 840
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
841
				       int oldprio)
842 843 844
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
845
			prev_class->switched_from(rq, p);
846

P
Peter Zijlstra 已提交
847
		p->sched_class->switched_to(rq, p);
848
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
849
		p->sched_class->prio_changed(rq, p, oldprio);
850 851
}

852
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
853 854 855 856 857 858 859 860 861 862
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
863
				resched_curr(rq);
864 865 866 867 868 869 870 871 872
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
873
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
874
		rq_clock_skip_update(rq);
875 876
}

L
Linus Torvalds 已提交
877
#ifdef CONFIG_SMP
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904

static inline bool is_per_cpu_kthread(struct task_struct *p)
{
	if (!(p->flags & PF_KTHREAD))
		return false;

	if (p->nr_cpus_allowed != 1)
		return false;

	return true;
}

/*
 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
 * __set_cpus_allowed_ptr() and select_fallback_rq().
 */
static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
{
	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
		return false;

	if (is_per_cpu_kthread(p))
		return cpu_online(cpu);

	return cpu_active(cpu);
}

P
Peter Zijlstra 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
924 925
static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
				   struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
926 927 928
{
	lockdep_assert_held(&rq->lock);

929
	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
930
	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
931
	set_task_cpu(p, new_cpu);
932
	rq_unlock(rq, rf);
P
Peter Zijlstra 已提交
933 934 935

	rq = cpu_rq(new_cpu);

936
	rq_lock(rq, rf);
P
Peter Zijlstra 已提交
937 938
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
939
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
940 941 942 943 944 945 946 947 948 949 950
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
I
Ingo Molnar 已提交
951
 * Move (not current) task off this CPU, onto the destination CPU. We're doing
P
Peter Zijlstra 已提交
952 953 954 955 956 957 958
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
959 960
static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
				 struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
961 962
{
	/* Affinity changed (again). */
963
	if (!is_cpu_allowed(p, dest_cpu))
964
		return rq;
P
Peter Zijlstra 已提交
965

966
	update_rq_clock(rq);
967
	rq = move_queued_task(rq, rf, p, dest_cpu);
968 969

	return rq;
P
Peter Zijlstra 已提交
970 971 972 973 974 975 976 977 978 979
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
980 981
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
982
	struct rq_flags rf;
P
Peter Zijlstra 已提交
983 984

	/*
I
Ingo Molnar 已提交
985 986
	 * The original target CPU might have gone down and we might
	 * be on another CPU but it doesn't matter.
P
Peter Zijlstra 已提交
987 988 989 990 991 992 993 994
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
995 996

	raw_spin_lock(&p->pi_lock);
997
	rq_lock(rq, &rf);
998 999 1000 1001 1002
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
1003 1004
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
1005
			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1006 1007 1008
		else
			p->wake_cpu = arg->dest_cpu;
	}
1009
	rq_unlock(rq, &rf);
1010 1011
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1012 1013 1014 1015
	local_irq_enable();
	return 0;
}

1016 1017 1018 1019 1020
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1021 1022 1023 1024 1025
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1026 1027
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1028 1029 1030
	struct rq *rq = task_rq(p);
	bool queued, running;

1031
	lockdep_assert_held(&p->pi_lock);
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1042
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1043 1044 1045 1046
	}
	if (running)
		put_prev_task(rq, p);

1047
	p->sched_class->set_cpus_allowed(p, new_mask);
1048 1049

	if (queued)
1050
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1051
	if (running)
1052
		set_curr_task(rq, p);
1053 1054
}

P
Peter Zijlstra 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1064 1065
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1066
{
1067
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1068
	unsigned int dest_cpu;
1069 1070
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1071 1072
	int ret = 0;

1073
	rq = task_rq_lock(p, &rf);
1074
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1075

1076 1077 1078 1079 1080 1081 1082
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1083 1084 1085 1086 1087 1088 1089 1090 1091
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1092 1093 1094
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1095 1096
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
	if (dest_cpu >= nr_cpu_ids) {
P
Peter Zijlstra 已提交
1097 1098 1099 1100 1101 1102
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1103 1104 1105
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
I
Ingo Molnar 已提交
1106
		 * !active we want to ensure they are strict per-CPU threads.
1107 1108 1109 1110 1111 1112
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1113 1114 1115 1116 1117 1118 1119
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1120
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1121 1122 1123
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1124 1125 1126 1127 1128
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1129
		rq = move_queued_task(rq, &rf, p, dest_cpu);
1130
	}
P
Peter Zijlstra 已提交
1131
out:
1132
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1133 1134 1135

	return ret;
}
1136 1137 1138 1139 1140

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1141 1142
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1143
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1144
{
1145 1146 1147 1148 1149
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1150
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1151
			!p->on_rq);
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1162
#ifdef CONFIG_LOCKDEP
1163 1164 1165 1166 1167
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1168
	 * see task_group().
1169 1170 1171 1172
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1173 1174 1175
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1176 1177 1178 1179
	/*
	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
	 */
	WARN_ON_ONCE(!cpu_online(new_cpu));
1180 1181
#endif

1182
	trace_sched_migrate_task(p, new_cpu);
1183

1184
	if (task_cpu(p) != new_cpu) {
1185
		if (p->sched_class->migrate_task_rq)
1186
			p->sched_class->migrate_task_rq(p, new_cpu);
1187
		p->se.nr_migrations++;
1188
		rseq_migrate(p);
1189
		task_ca_increase_nr_migrations(p);
1190
		perf_event_task_migrate(p);
1191
	}
I
Ingo Molnar 已提交
1192 1193

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1194 1195
}

1196
#ifdef CONFIG_NUMA_BALANCING
1197 1198
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1199
	if (task_on_rq_queued(p)) {
1200
		struct rq *src_rq, *dst_rq;
1201
		struct rq_flags srf, drf;
1202 1203 1204 1205

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1206 1207 1208
		rq_pin_lock(src_rq, &srf);
		rq_pin_lock(dst_rq, &drf);

1209
		p->on_rq = TASK_ON_RQ_MIGRATING;
1210 1211 1212
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1213
		p->on_rq = TASK_ON_RQ_QUEUED;
1214
		check_preempt_curr(dst_rq, p, 0);
1215 1216 1217 1218

		rq_unpin_lock(dst_rq, &drf);
		rq_unpin_lock(src_rq, &srf);

1219 1220 1221 1222
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
I
Ingo Molnar 已提交
1223
		 * previous CPU our target instead of where it really is.
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1240 1241 1242
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1243 1244 1245
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1246 1247
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1248
	double_rq_lock(src_rq, dst_rq);
1249

1250 1251 1252 1253 1254 1255
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

1256
	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1257 1258
		goto unlock;

1259
	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1260 1261 1262 1263 1264 1265 1266 1267 1268
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1269 1270
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1271 1272 1273 1274 1275 1276 1277

	return ret;
}

/*
 * Cross migrate two tasks
 */
1278 1279
int migrate_swap(struct task_struct *cur, struct task_struct *p,
		int target_cpu, int curr_cpu)
1280 1281 1282 1283 1284 1285
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
1286
		.src_cpu = curr_cpu,
1287
		.dst_task = p,
1288
		.dst_cpu = target_cpu,
1289 1290 1291 1292 1293
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1294 1295 1296 1297
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1298 1299 1300
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

1301
	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1302 1303
		goto out;

1304
	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1305 1306
		goto out;

1307
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1308 1309 1310 1311 1312
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}
1313
#endif /* CONFIG_NUMA_BALANCING */
1314

L
Linus Torvalds 已提交
1315 1316 1317
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1318 1319 1320 1321 1322 1323 1324
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1325 1326 1327 1328 1329 1330
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1331
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1332
{
1333
	int running, queued;
1334
	struct rq_flags rf;
R
Roland McGrath 已提交
1335
	unsigned long ncsw;
1336
	struct rq *rq;
L
Linus Torvalds 已提交
1337

1338 1339 1340 1341 1342 1343 1344 1345
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1346

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1358 1359 1360
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1361
			cpu_relax();
R
Roland McGrath 已提交
1362
		}
1363

1364 1365 1366 1367 1368
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1369
		rq = task_rq_lock(p, &rf);
1370
		trace_sched_wait_task(p);
1371
		running = task_running(rq, p);
1372
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1373
		ncsw = 0;
1374
		if (!match_state || p->state == match_state)
1375
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1376
		task_rq_unlock(rq, p, &rf);
1377

R
Roland McGrath 已提交
1378 1379 1380 1381 1382 1383
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1394

1395 1396 1397 1398 1399
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1400
		 * So if it was still runnable (but just not actively
1401 1402 1403
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1404
		if (unlikely(queued)) {
T
Thomas Gleixner 已提交
1405
			ktime_t to = NSEC_PER_SEC / HZ;
1406 1407 1408

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1409 1410
			continue;
		}
1411

1412 1413 1414 1415 1416 1417 1418
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1419 1420

	return ncsw;
L
Linus Torvalds 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1430
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1431 1432 1433 1434 1435
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1436
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1446
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1447

1448
/*
1449
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1450 1451 1452 1453 1454
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
1455
 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1456
 *    see __set_cpus_allowed_ptr(). At this point the newly online
I
Ingo Molnar 已提交
1457
 *    CPU isn't yet part of the sched domains, and balancing will not
1458 1459
 *    see it.
 *
I
Ingo Molnar 已提交
1460
 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1461
 *    avoid the load balancer to place new tasks on the to be removed
I
Ingo Molnar 已提交
1462
 *    CPU. Existing tasks will remain running there and will be taken
1463 1464 1465 1466 1467 1468
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1469
 */
1470 1471
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1472 1473
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1474 1475
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1476

1477
	/*
I
Ingo Molnar 已提交
1478 1479 1480
	 * If the node that the CPU is on has been offlined, cpu_to_node()
	 * will return -1. There is no CPU on the node, and we should
	 * select the CPU on the other node.
1481 1482 1483 1484 1485 1486 1487 1488
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
1489
			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1490 1491
				return dest_cpu;
		}
1492
	}
1493

1494 1495
	for (;;) {
		/* Any allowed, online CPU? */
1496
		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1497
			if (!is_cpu_allowed(p, dest_cpu))
1498
				continue;
1499

1500 1501
			goto out;
		}
1502

1503
		/* No more Mr. Nice Guy. */
1504 1505
		switch (state) {
		case cpuset:
1506 1507 1508 1509 1510
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
I
Ingo Molnar 已提交
1511
			/* Fall-through */
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1531
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1532 1533
					task_pid_nr(p), p->comm, cpu);
		}
1534 1535 1536 1537 1538
	}

	return dest_cpu;
}

1539
/*
1540
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1541
 */
1542
static inline
1543
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1544
{
1545 1546
	lockdep_assert_held(&p->pi_lock);

1547
	if (p->nr_cpus_allowed > 1)
1548
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1549
	else
1550
		cpu = cpumask_any(&p->cpus_allowed);
1551 1552 1553 1554

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
I
Ingo Molnar 已提交
1555
	 * CPU.
1556 1557 1558 1559 1560 1561
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1562
	if (unlikely(!is_cpu_allowed(p, cpu)))
1563
		cpu = select_fallback_rq(task_cpu(p), p);
1564 1565

	return cpu;
1566
}
1567 1568 1569 1570 1571 1572

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1573

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1604 1605 1606 1607 1608 1609 1610 1611
#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1612
#endif /* CONFIG_SMP */
1613

P
Peter Zijlstra 已提交
1614
static void
1615
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1616
{
1617
	struct rq *rq;
1618

1619 1620 1621 1622
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1623

1624 1625
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1626 1627
		__schedstat_inc(rq->ttwu_local);
		__schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1628 1629 1630
	} else {
		struct sched_domain *sd;

1631
		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1632
		rcu_read_lock();
1633
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1634
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1635
				__schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1636 1637 1638
				break;
			}
		}
1639
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1640
	}
1641 1642

	if (wake_flags & WF_MIGRATED)
1643
		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1644 1645
#endif /* CONFIG_SMP */

1646 1647
	__schedstat_inc(rq->ttwu_count);
	__schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1648 1649

	if (wake_flags & WF_SYNC)
1650
		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1651 1652
}

1653
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1654
{
T
Tejun Heo 已提交
1655
	activate_task(rq, p, en_flags);
1656
	p->on_rq = TASK_ON_RQ_QUEUED;
T
Tejun Heo 已提交
1657 1658
}

1659 1660 1661
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1662
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1663
			   struct rq_flags *rf)
T
Tejun Heo 已提交
1664 1665 1666
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1667 1668
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1669
#ifdef CONFIG_SMP
1670 1671
	if (p->sched_class->task_woken) {
		/*
1672 1673
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1674
		 */
1675
		rq_unpin_lock(rq, rf);
T
Tejun Heo 已提交
1676
		p->sched_class->task_woken(rq, p);
1677
		rq_repin_lock(rq, rf);
1678
	}
T
Tejun Heo 已提交
1679

1680
	if (rq->idle_stamp) {
1681
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1682
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1683

1684 1685 1686
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1687
			rq->avg_idle = max;
1688

T
Tejun Heo 已提交
1689 1690 1691 1692 1693
		rq->idle_stamp = 0;
	}
#endif
}

1694
static void
1695
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1696
		 struct rq_flags *rf)
1697
{
1698
	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1699

1700 1701
	lockdep_assert_held(&rq->lock);

1702
#ifdef CONFIG_SMP
1703 1704
	if (p->sched_contributes_to_load) {
		update_nr_uninterruptible(p, -1);
1705
		rq->nr_uninterruptible--;
1706
	}
1707 1708

	if (wake_flags & WF_MIGRATED)
1709
		en_flags |= ENQUEUE_MIGRATED;
1710 1711
#endif

1712
	ttwu_activate(rq, p, en_flags);
1713
	ttwu_do_wakeup(rq, p, wake_flags, rf);
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1724
	struct rq_flags rf;
1725 1726 1727
	struct rq *rq;
	int ret = 0;

1728
	rq = __task_rq_lock(p, &rf);
1729
	if (task_on_rq_queued(p)) {
1730 1731
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1732
		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1733 1734
		ret = 1;
	}
1735
	__task_rq_unlock(rq, &rf);
1736 1737 1738 1739

	return ret;
}

1740
#ifdef CONFIG_SMP
1741
void sched_ttwu_pending(void)
1742 1743
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1744
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1745
	struct task_struct *p, *t;
1746
	struct rq_flags rf;
1747

1748 1749 1750
	if (!llist)
		return;

1751
	rq_lock_irqsave(rq, &rf);
1752
	update_rq_clock(rq);
1753

1754 1755
	llist_for_each_entry_safe(p, t, llist, wake_entry)
		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1756

1757
	rq_unlock_irqrestore(rq, &rf);
1758 1759 1760 1761
}

void scheduler_ipi(void)
{
1762 1763 1764 1765 1766
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1767
	preempt_fold_need_resched();
1768

1769
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1786
	sched_ttwu_pending();
1787 1788 1789 1790

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1791
	if (unlikely(got_nohz_idle_kick())) {
1792
		this_rq()->idle_balance = 1;
1793
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1794
	}
1795
	irq_exit();
1796 1797
}

P
Peter Zijlstra 已提交
1798
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1799
{
1800 1801
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1802 1803
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1804 1805 1806 1807 1808 1809
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1810
}
1811

1812 1813 1814
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1815
	struct rq_flags rf;
1816

1817 1818 1819 1820
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1821 1822 1823 1824

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
1825
		rq_lock_irqsave(rq, &rf);
1826 1827
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
I
Ingo Molnar 已提交
1828
		/* Else CPU is not idle, do nothing here: */
1829
		rq_unlock_irqrestore(rq, &rf);
1830
	}
1831 1832 1833

out:
	rcu_read_unlock();
1834 1835
}

1836
bool cpus_share_cache(int this_cpu, int that_cpu)
1837 1838 1839
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1840
#endif /* CONFIG_SMP */
1841

1842
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1843 1844
{
	struct rq *rq = cpu_rq(cpu);
1845
	struct rq_flags rf;
1846

1847
#if defined(CONFIG_SMP)
1848
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
I
Ingo Molnar 已提交
1849
		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
P
Peter Zijlstra 已提交
1850
		ttwu_queue_remote(p, cpu, wake_flags);
1851 1852 1853 1854
		return;
	}
#endif

1855
	rq_lock(rq, &rf);
1856
	update_rq_clock(rq);
1857
	ttwu_do_activate(rq, p, wake_flags, &rf);
1858
	rq_unlock(rq, &rf);
T
Tejun Heo 已提交
1859 1860
}

1861 1862 1863 1864 1865 1866
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
I
Ingo Molnar 已提交
1867 1868
 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 * execution on its new CPU [c1].
1869 1870 1871 1872 1873 1874 1875 1876
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
1877
 * Release/acquire chaining guarantees that B happens after A and C after B.
I
Ingo Molnar 已提交
1878
 * Note: the CPU doing B need not be c0 or c1
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1910
 *   2) smp_cond_load_acquire(!X->on_cpu)
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1921
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
1939 1940 1941
 * However, for wakeups there is a second guarantee we must provide, namely we
 * must ensure that CONDITION=1 done by the caller can not be reordered with
 * accesses to the task state; see try_to_wake_up() and set_current_state().
1942 1943
 */

T
Tejun Heo 已提交
1944
/**
L
Linus Torvalds 已提交
1945
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1946
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1947
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1948
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1949
 *
1950
 * If (@state & @p->state) @p->state = TASK_RUNNING.
L
Linus Torvalds 已提交
1951
 *
1952 1953 1954 1955 1956
 * If the task was not queued/runnable, also place it back on a runqueue.
 *
 * Atomic against schedule() which would dequeue a task, also see
 * set_current_state().
 *
1957 1958 1959
 * This function executes a full memory barrier before accessing the task
 * state; see set_current_state().
 *
1960 1961
 * Return: %true if @p->state changes (an actual wakeup was done),
 *	   %false otherwise.
L
Linus Torvalds 已提交
1962
 */
1963 1964
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1965 1966
{
	unsigned long flags;
1967
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1968

1969 1970 1971 1972 1973 1974
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
1975
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1976
	smp_mb__after_spinlock();
P
Peter Zijlstra 已提交
1977
	if (!(p->state & state))
L
Linus Torvalds 已提交
1978 1979
		goto out;

1980 1981
	trace_sched_waking(p);

I
Ingo Molnar 已提交
1982 1983
	/* We're going to change ->state: */
	success = 1;
L
Linus Torvalds 已提交
1984 1985
	cpu = task_cpu(p);

1986 1987 1988 1989 1990
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
1991 1992 1993 1994 1995 1996 1997 1998
	 * sched_ttwu_pending()			try_to_wake_up()
	 *   STORE p->on_rq = 1			  LOAD p->state
	 *   UNLOCK rq->lock
	 *
	 * __schedule() (switch to task 'p')
	 *   LOCK rq->lock			  smp_rmb();
	 *   smp_mb__after_spinlock();
	 *   UNLOCK rq->lock
1999 2000
	 *
	 * [task p]
2001
	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2002
	 *
2003 2004
	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
	 * __schedule().  See the comment for smp_mb__after_spinlock().
2005 2006
	 */
	smp_rmb();
2007 2008
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2009 2010

#ifdef CONFIG_SMP
2011 2012 2013 2014 2015 2016 2017
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
2018 2019 2020 2021 2022 2023 2024 2025
	 * __schedule() (switch to task 'p')	try_to_wake_up()
	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
	 *   UNLOCK rq->lock
	 *
	 * __schedule() (put 'p' to sleep)
	 *   LOCK rq->lock			  smp_rmb();
	 *   smp_mb__after_spinlock();
	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2026
	 *
2027 2028
	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
	 * __schedule().  See the comment for smp_mb__after_spinlock().
2029 2030 2031
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2032
	/*
I
Ingo Molnar 已提交
2033
	 * If the owning (remote) CPU is still in the middle of schedule() with
2034
	 * this task as prev, wait until its done referencing the task.
2035
	 *
2036
	 * Pairs with the smp_store_release() in finish_task().
2037 2038 2039
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2040
	 */
2041
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2042

2043
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2044
	p->state = TASK_WAKING;
2045

2046
	if (p->in_iowait) {
2047
		delayacct_blkio_end(p);
2048
		atomic_dec(&task_rq(p)->nr_iowait);
2049
		update_nr_iowait(p, -1);
2050 2051
	}

2052
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2053 2054
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2055
		psi_ttwu_dequeue(p);
2056
		set_task_cpu(p, cpu);
2057
	}
2058 2059 2060 2061

#else /* CONFIG_SMP */

	if (p->in_iowait) {
2062
		delayacct_blkio_end(p);
2063
		atomic_dec(&task_rq(p)->nr_iowait);
2064
		update_nr_iowait(p, -1);
2065 2066
	}

L
Linus Torvalds 已提交
2067 2068
#endif /* CONFIG_SMP */

2069
	ttwu_queue(p, cpu, wake_flags);
2070
stat:
2071
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2072
out:
2073
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2074 2075 2076 2077

	return success;
}

2078 2079 2080 2081 2082
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2083 2084 2085
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2086
 *
2087
 * This function executes a full memory barrier before accessing the task state.
2088
 */
2089
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2090
{
2091
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2092 2093 2094
}
EXPORT_SYMBOL(wake_up_process);

2095
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2096 2097 2098 2099 2100 2101 2102
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2103 2104 2105
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2106
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2107
{
P
Peter Zijlstra 已提交
2108 2109 2110
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2111 2112
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2113
	p->se.prev_sum_exec_runtime	= 0;
2114
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2115
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2116
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2117

2118 2119 2120 2121
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2122
#ifdef CONFIG_SCHEDSTATS
2123
	/* Even if schedstat is disabled, there should not be garbage */
2124
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2125
#endif
N
Nick Piggin 已提交
2126

2127
	RB_CLEAR_NODE(&p->dl.rb_node);
2128
	init_dl_task_timer(&p->dl);
2129
	init_dl_inactive_task_timer(&p->dl);
2130
	__dl_clear_params(p);
2131

P
Peter Zijlstra 已提交
2132
	INIT_LIST_HEAD(&p->rt.run_list);
2133 2134 2135 2136
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2137

2138 2139 2140
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2141

2142 2143 2144
#ifdef CONFIG_COMPACTION
	p->capture_control = NULL;
#endif
2145
	init_numa_balancing(clone_flags, p);
I
Ingo Molnar 已提交
2146 2147
}

2148 2149
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2150
#ifdef CONFIG_NUMA_BALANCING
2151

2152 2153 2154
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2155
		static_branch_enable(&sched_numa_balancing);
2156
	else
2157
		static_branch_disable(&sched_numa_balancing);
2158
}
2159 2160 2161 2162 2163 2164 2165

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2166
	int state = static_branch_likely(&sched_numa_balancing);
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2182

2183 2184
#ifdef CONFIG_SCHEDSTATS

2185
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2186
static bool __initdata __sched_schedstats = false;
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2210 2211 2212 2213 2214
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2215
	if (!strcmp(str, "enable")) {
2216
		__sched_schedstats = true;
2217 2218
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2219
		__sched_schedstats = false;
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2230 2231 2232 2233 2234
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2255 2256 2257 2258
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2259 2260 2261 2262

/*
 * fork()/clone()-time setup:
 */
2263
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2264
{
2265
	unsigned long flags;
I
Ingo Molnar 已提交
2266

2267
	__sched_fork(clone_flags, p);
2268
	/*
2269
	 * We mark the process as NEW here. This guarantees that
2270 2271 2272
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2273
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2274

2275 2276 2277 2278 2279
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2280 2281 2282 2283
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2284
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2285
			p->policy = SCHED_NORMAL;
2286
			p->static_prio = NICE_TO_PRIO(0);
2287 2288 2289 2290 2291
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
2292
		set_load_weight(p, false);
2293

2294 2295 2296 2297 2298 2299
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2300

2301
	if (dl_prio(p->prio))
2302
		return -EAGAIN;
2303
	else if (rt_prio(p->prio))
2304
		p->sched_class = &rt_sched_class;
2305
	else
H
Hiroshi Shimamoto 已提交
2306
		p->sched_class = &fair_sched_class;
2307

2308
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2309

2310 2311 2312 2313 2314 2315 2316
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2317
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2318
	/*
I
Ingo Molnar 已提交
2319
	 * We're setting the CPU for the first time, we don't migrate,
2320 2321
	 * so use __set_task_cpu().
	 */
2322
	__set_task_cpu(p, smp_processor_id());
2323 2324
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2325
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2326

2327
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2328
	if (likely(sched_info_on()))
2329
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2330
#endif
P
Peter Zijlstra 已提交
2331 2332
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2333
#endif
2334
	init_task_preempt_count(p);
2335
#ifdef CONFIG_SMP
2336
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2337
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2338
#endif
2339
	return 0;
L
Linus Torvalds 已提交
2340 2341
}

2342 2343 2344
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
2345
		return BW_UNIT;
2346 2347 2348 2349 2350 2351 2352 2353 2354

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

2355
	return div64_u64(runtime << BW_SHIFT, period);
2356 2357
}

L
Linus Torvalds 已提交
2358 2359 2360 2361 2362 2363 2364
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2365
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2366
{
2367
	struct rq_flags rf;
I
Ingo Molnar 已提交
2368
	struct rq *rq;
2369

2370
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2371
	p->state = TASK_RUNNING;
2372 2373 2374 2375
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
I
Ingo Molnar 已提交
2376
	 *  - any previously selected CPU might disappear through hotplug
2377 2378 2379
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2380
	 */
2381
	p->recent_used_cpu = task_cpu(p);
2382
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2383
#endif
2384
	rq = __task_rq_lock(p, &rf);
2385
	update_rq_clock(rq);
2386
	post_init_entity_util_avg(&p->se);
2387

2388
	activate_task(rq, p, ENQUEUE_NOCLOCK);
2389
	p->on_rq = TASK_ON_RQ_QUEUED;
2390
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2391
	check_preempt_curr(rq, p, WF_FORK);
2392
#ifdef CONFIG_SMP
2393 2394 2395 2396 2397
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2398
		rq_unpin_lock(rq, &rf);
2399
		p->sched_class->task_woken(rq, p);
2400
		rq_repin_lock(rq, &rf);
2401
	}
2402
#endif
2403
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2404 2405
}

2406 2407
#ifdef CONFIG_PREEMPT_NOTIFIERS

2408
static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2409

2410 2411
void preempt_notifier_inc(void)
{
2412
	static_branch_inc(&preempt_notifier_key);
2413 2414 2415 2416 2417
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
2418
	static_branch_dec(&preempt_notifier_key);
2419 2420 2421
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2422
/**
2423
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2424
 * @notifier: notifier struct to register
2425 2426 2427
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2428
	if (!static_branch_unlikely(&preempt_notifier_key))
2429 2430
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2431 2432 2433 2434 2435 2436
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2437
 * @notifier: notifier struct to unregister
2438
 *
2439
 * This is *not* safe to call from within a preemption notifier.
2440 2441 2442 2443 2444 2445 2446
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2447
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2448 2449 2450
{
	struct preempt_notifier *notifier;

2451
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2452 2453 2454
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2455 2456
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
2457
	if (static_branch_unlikely(&preempt_notifier_key))
2458 2459 2460
		__fire_sched_in_preempt_notifiers(curr);
}

2461
static void
2462 2463
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2464 2465 2466
{
	struct preempt_notifier *notifier;

2467
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2468 2469 2470
		notifier->ops->sched_out(notifier, next);
}

2471 2472 2473 2474
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
2475
	if (static_branch_unlikely(&preempt_notifier_key))
2476 2477 2478
		__fire_sched_out_preempt_notifiers(curr, next);
}

2479
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2480

2481
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2482 2483 2484
{
}

2485
static inline void
2486 2487 2488 2489 2490
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2491
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2492

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
static inline void prepare_task(struct task_struct *next)
{
#ifdef CONFIG_SMP
	/*
	 * Claim the task as running, we do this before switching to it
	 * such that any running task will have this set.
	 */
	next->on_cpu = 1;
#endif
}

static inline void finish_task(struct task_struct *prev)
{
#ifdef CONFIG_SMP
	/*
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 *
	 * In particular, the load of prev->state in finish_task_switch() must
	 * happen before this.
	 *
	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
	 */
	smp_store_release(&prev->on_cpu, 0);
#endif
}

2521 2522
static inline void
prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2523
{
2524 2525 2526 2527 2528 2529 2530 2531
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
	rq_unpin_lock(rq, rf);
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2532 2533
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
2534
	rq->lock.owner = next;
2535
#endif
2536 2537 2538 2539
}

static inline void finish_lock_switch(struct rq *rq)
{
2540 2541 2542 2543 2544 2545 2546 2547 2548
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
	raw_spin_unlock_irq(&rq->lock);
}

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
/*
 * NOP if the arch has not defined these:
 */

#ifndef prepare_arch_switch
# define prepare_arch_switch(next)	do { } while (0)
#endif

#ifndef finish_arch_post_lock_switch
# define finish_arch_post_lock_switch()	do { } while (0)
#endif

2561 2562 2563
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2564
 * @prev: the current task that is being switched out
2565 2566 2567 2568 2569 2570 2571 2572 2573
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2574 2575 2576
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2577
{
2578
	kcov_prepare_switch(prev);
2579
	sched_info_switch(rq, prev, next);
2580
	perf_event_task_sched_out(prev, next);
2581
	rseq_preempt(prev);
2582
	fire_sched_out_preempt_notifiers(prev, next);
2583
	prepare_task(next);
2584 2585 2586
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2587 2588 2589 2590
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2591 2592 2593 2594
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2595 2596
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2597
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2598 2599
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2600 2601 2602 2603 2604
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2605
 */
2606
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2607 2608
	__releases(rq->lock)
{
2609
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2610
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2611
	long prev_state;
L
Linus Torvalds 已提交
2612

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2624 2625 2626 2627
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2628

L
Linus Torvalds 已提交
2629 2630 2631 2632
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2633
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2634 2635
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2636 2637
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
2638
	 * finish_task), otherwise a concurrent wakeup can get prev
2639 2640
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2641
	 */
O
Oleg Nesterov 已提交
2642
	prev_state = prev->state;
2643
	vtime_task_switch(prev);
2644
	perf_event_task_sched_in(prev, current);
2645 2646
	finish_task(prev);
	finish_lock_switch(rq);
2647
	finish_arch_post_lock_switch();
2648
	kcov_finish_switch(current);
S
Steven Rostedt 已提交
2649

2650
	fire_sched_in_preempt_notifiers(current);
2651
	/*
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
	 * When switching through a kernel thread, the loop in
	 * membarrier_{private,global}_expedited() may have observed that
	 * kernel thread and not issued an IPI. It is therefore possible to
	 * schedule between user->kernel->user threads without passing though
	 * switch_mm(). Membarrier requires a barrier after storing to
	 * rq->curr, before returning to userspace, so provide them here:
	 *
	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
	 *   provided by mmdrop(),
	 * - a sync_core for SYNC_CORE.
2662
	 */
2663 2664
	if (mm) {
		membarrier_mm_sync_core_before_usermode(mm);
L
Linus Torvalds 已提交
2665
		mmdrop(mm);
2666
	}
2667 2668 2669
	if (unlikely(prev_state == TASK_DEAD)) {
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);
2670

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
		 */
		kprobe_flush_task(prev);

		/* Task is done with its stack. */
		put_task_stack(prev);

		put_task_struct(prev);
2681
	}
2682

2683
	tick_nohz_task_switch();
2684
	return rq;
L
Linus Torvalds 已提交
2685 2686
}

2687 2688 2689
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2690
static void __balance_callback(struct rq *rq)
2691
{
2692 2693 2694
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2695

2696 2697 2698 2699 2700 2701 2702 2703
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2704

2705
		func(rq);
2706
	}
2707 2708 2709 2710 2711 2712 2713
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2714 2715 2716
}

#else
2717

2718
static inline void balance_callback(struct rq *rq)
2719
{
L
Linus Torvalds 已提交
2720 2721
}

2722 2723
#endif

L
Linus Torvalds 已提交
2724 2725 2726 2727
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2728
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2729 2730
	__releases(rq->lock)
{
2731
	struct rq *rq;
2732

2733 2734 2735 2736 2737 2738 2739 2740 2741
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2742
	rq = finish_task_switch(prev);
2743
	balance_callback(rq);
2744
	preempt_enable();
2745

L
Linus Torvalds 已提交
2746
	if (current->set_child_tid)
2747
		put_user(task_pid_vnr(current), current->set_child_tid);
2748 2749

	calculate_sigpending();
L
Linus Torvalds 已提交
2750 2751 2752
}

/*
2753
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2754
 */
2755
static __always_inline struct rq *
2756
context_switch(struct rq *rq, struct task_struct *prev,
2757
	       struct task_struct *next, struct rq_flags *rf)
L
Linus Torvalds 已提交
2758
{
I
Ingo Molnar 已提交
2759
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2760

2761
	prepare_task_switch(rq, prev, next);
2762

I
Ingo Molnar 已提交
2763 2764
	mm = next->mm;
	oldmm = prev->active_mm;
2765 2766 2767 2768 2769
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2770
	arch_start_context_switch(prev);
2771

2772 2773 2774 2775 2776 2777 2778
	/*
	 * If mm is non-NULL, we pass through switch_mm(). If mm is
	 * NULL, we will pass through mmdrop() in finish_task_switch().
	 * Both of these contain the full memory barrier required by
	 * membarrier after storing to rq->curr, before returning to
	 * user-space.
	 */
2779
	if (!mm) {
L
Linus Torvalds 已提交
2780
		next->active_mm = oldmm;
V
Vegard Nossum 已提交
2781
		mmgrab(oldmm);
L
Linus Torvalds 已提交
2782 2783
		enter_lazy_tlb(oldmm, next);
	} else
2784
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2785

2786
	if (!prev->mm) {
L
Linus Torvalds 已提交
2787 2788 2789
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2790

2791
	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2792

2793
	prepare_lock_switch(rq, next, rf);
L
Linus Torvalds 已提交
2794 2795 2796

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2797
	barrier();
2798 2799

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2800 2801 2802
}

/*
2803
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2804 2805
 *
 * externally visible scheduler statistics: current number of runnable
2806
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2807 2808 2809 2810 2811 2812 2813 2814 2815
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2816
}
L
Linus Torvalds 已提交
2817

2818
/*
I
Ingo Molnar 已提交
2819
 * Check if only the current task is running on the CPU.
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2830 2831 2832
 */
bool single_task_running(void)
{
2833
	return raw_rq()->nr_running == 1;
2834 2835 2836
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2837
unsigned long long nr_context_switches(void)
2838
{
2839 2840
	int i;
	unsigned long long sum = 0;
2841

2842
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2843
		sum += cpu_rq(i)->nr_switches;
2844

L
Linus Torvalds 已提交
2845 2846
	return sum;
}
2847

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
/*
 * IO-wait accounting, and how its mostly bollocks (on SMP).
 *
 * The idea behind IO-wait account is to account the idle time that we could
 * have spend running if it were not for IO. That is, if we were to improve the
 * storage performance, we'd have a proportional reduction in IO-wait time.
 *
 * This all works nicely on UP, where, when a task blocks on IO, we account
 * idle time as IO-wait, because if the storage were faster, it could've been
 * running and we'd not be idle.
 *
 * This has been extended to SMP, by doing the same for each CPU. This however
 * is broken.
 *
 * Imagine for instance the case where two tasks block on one CPU, only the one
 * CPU will have IO-wait accounted, while the other has regular idle. Even
 * though, if the storage were faster, both could've ran at the same time,
 * utilising both CPUs.
 *
 * This means, that when looking globally, the current IO-wait accounting on
 * SMP is a lower bound, by reason of under accounting.
 *
 * Worse, since the numbers are provided per CPU, they are sometimes
 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 * associated with any one particular CPU, it can wake to another CPU than it
 * blocked on. This means the per CPU IO-wait number is meaningless.
 *
 * Task CPU affinities can make all that even more 'interesting'.
 */

L
Linus Torvalds 已提交
2878 2879 2880
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2881

2882
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2883
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2884

L
Linus Torvalds 已提交
2885 2886
	return sum;
}
2887

2888 2889 2890 2891 2892 2893 2894
/*
 * Consumers of these two interfaces, like for example the cpufreq menu
 * governor are using nonsensical data. Boosting frequency for a CPU that has
 * IO-wait which might not even end up running the task when it does become
 * runnable.
 */

2895
unsigned long nr_iowait_cpu(int cpu)
2896
{
2897
	struct rq *this = cpu_rq(cpu);
2898 2899
	return atomic_read(&this->nr_iowait);
}
2900

2901 2902
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2903 2904 2905
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2906 2907
}

I
Ingo Molnar 已提交
2908
#ifdef CONFIG_SMP
2909

2910
/*
P
Peter Zijlstra 已提交
2911 2912
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2913
 */
P
Peter Zijlstra 已提交
2914
void sched_exec(void)
2915
{
P
Peter Zijlstra 已提交
2916
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2917
	unsigned long flags;
2918
	int dest_cpu;
2919

2920
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2921
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2922 2923
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2924

2925
	if (likely(cpu_active(dest_cpu))) {
2926
		struct migration_arg arg = { p, dest_cpu };
2927

2928 2929
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2930 2931
		return;
	}
2932
unlock:
2933
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2934
}
I
Ingo Molnar 已提交
2935

L
Linus Torvalds 已提交
2936 2937 2938
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2939
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2940 2941

EXPORT_PER_CPU_SYMBOL(kstat);
2942
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2943

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

2961 2962 2963 2964 2965 2966 2967
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
2968
	struct rq_flags rf;
2969
	struct rq *rq;
2970
	u64 ns;
2971

2972 2973
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
2974
	 * 64-bit doesn't need locks to atomically read a 64-bit value.
2975 2976 2977
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
I
Ingo Molnar 已提交
2978 2979
	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
	 * If we race with it entering CPU, unaccounted time is 0. This is
2980
	 * indistinguishable from the read occurring a few cycles earlier.
2981 2982
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2983
	 */
2984
	if (!p->on_cpu || !task_on_rq_queued(p))
2985 2986 2987
		return p->se.sum_exec_runtime;
#endif

2988
	rq = task_rq_lock(p, &rf);
2989 2990 2991 2992 2993 2994
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
2995
		prefetch_curr_exec_start(p);
2996 2997 2998 2999
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3000
	task_rq_unlock(rq, p, &rf);
3001 3002 3003

	return ns;
}
3004

3005 3006 3007 3008 3009 3010 3011 3012
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3013
	struct task_struct *curr = rq->curr;
3014
	struct rq_flags rf;
3015 3016

	sched_clock_tick();
I
Ingo Molnar 已提交
3017

3018 3019
	rq_lock(rq, &rf);

3020
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3021
	curr->sched_class->task_tick(rq, curr, 0);
3022
	cpu_load_update_active(rq);
3023
	calc_global_load_tick(rq);
3024
	psi_task_tick(rq);
3025 3026

	rq_unlock(rq, &rf);
3027

3028
	perf_event_task_tick();
3029

3030
#ifdef CONFIG_SMP
3031
	rq->idle_balance = idle_cpu(cpu);
3032
	trigger_load_balance(rq);
3033
#endif
L
Linus Torvalds 已提交
3034 3035
}

3036
#ifdef CONFIG_NO_HZ_FULL
3037 3038 3039

struct tick_work {
	int			cpu;
3040
	atomic_t		state;
3041 3042
	struct delayed_work	work;
};
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
/* Values for ->state, see diagram below. */
#define TICK_SCHED_REMOTE_OFFLINE	0
#define TICK_SCHED_REMOTE_OFFLINING	1
#define TICK_SCHED_REMOTE_RUNNING	2

/*
 * State diagram for ->state:
 *
 *
 *          TICK_SCHED_REMOTE_OFFLINE
 *                    |   ^
 *                    |   |
 *                    |   | sched_tick_remote()
 *                    |   |
 *                    |   |
 *                    +--TICK_SCHED_REMOTE_OFFLINING
 *                    |   ^
 *                    |   |
 * sched_tick_start() |   | sched_tick_stop()
 *                    |   |
 *                    V   |
 *          TICK_SCHED_REMOTE_RUNNING
 *
 *
 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
 * and sched_tick_start() are happy to leave the state in RUNNING.
 */
3070 3071 3072 3073 3074 3075 3076 3077 3078

static struct tick_work __percpu *tick_work_cpu;

static void sched_tick_remote(struct work_struct *work)
{
	struct delayed_work *dwork = to_delayed_work(work);
	struct tick_work *twork = container_of(dwork, struct tick_work, work);
	int cpu = twork->cpu;
	struct rq *rq = cpu_rq(cpu);
3079
	struct task_struct *curr;
3080
	struct rq_flags rf;
3081
	u64 delta;
3082
	int os;
3083 3084 3085 3086 3087 3088 3089 3090

	/*
	 * Handle the tick only if it appears the remote CPU is running in full
	 * dynticks mode. The check is racy by nature, but missing a tick or
	 * having one too much is no big deal because the scheduler tick updates
	 * statistics and checks timeslices in a time-independent way, regardless
	 * of when exactly it is running.
	 */
3091 3092
	if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
		goto out_requeue;
3093

3094 3095
	rq_lock_irq(rq, &rf);
	curr = rq->curr;
3096
	if (is_idle_task(curr) || cpu_is_offline(cpu))
3097
		goto out_unlock;
3098

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
	update_rq_clock(rq);
	delta = rq_clock_task(rq) - curr->se.exec_start;

	/*
	 * Make sure the next tick runs within a reasonable
	 * amount of time.
	 */
	WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
	curr->sched_class->task_tick(rq, curr, 0);

out_unlock:
	rq_unlock_irq(rq, &rf);
3111

3112
out_requeue:
3113 3114 3115
	/*
	 * Run the remote tick once per second (1Hz). This arbitrary
	 * frequency is large enough to avoid overload but short enough
3116 3117
	 * to keep scheduler internal stats reasonably up to date.  But
	 * first update state to reflect hotplug activity if required.
3118
	 */
3119 3120 3121 3122
	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
	if (os == TICK_SCHED_REMOTE_RUNNING)
		queue_delayed_work(system_unbound_wq, dwork, HZ);
3123 3124 3125 3126
}

static void sched_tick_start(int cpu)
{
3127
	int os;
3128 3129 3130 3131 3132 3133 3134 3135
	struct tick_work *twork;

	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
		return;

	WARN_ON_ONCE(!tick_work_cpu);

	twork = per_cpu_ptr(tick_work_cpu, cpu);
3136 3137 3138 3139 3140 3141 3142
	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
	if (os == TICK_SCHED_REMOTE_OFFLINE) {
		twork->cpu = cpu;
		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
	}
3143 3144 3145 3146 3147 3148
}

#ifdef CONFIG_HOTPLUG_CPU
static void sched_tick_stop(int cpu)
{
	struct tick_work *twork;
3149
	int os;
3150 3151 3152 3153 3154 3155 3156

	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
		return;

	WARN_ON_ONCE(!tick_work_cpu);

	twork = per_cpu_ptr(tick_work_cpu, cpu);
3157 3158 3159 3160
	/* There cannot be competing actions, but don't rely on stop-machine. */
	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
	/* Don't cancel, as this would mess up the state machine. */
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
}
#endif /* CONFIG_HOTPLUG_CPU */

int __init sched_tick_offload_init(void)
{
	tick_work_cpu = alloc_percpu(struct tick_work);
	BUG_ON(!tick_work_cpu);
	return 0;
}

#else /* !CONFIG_NO_HZ_FULL */
static inline void sched_tick_start(int cpu) { }
static inline void sched_tick_stop(int cpu) { }
3174
#endif
L
Linus Torvalds 已提交
3175

3176
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3177
				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3192

3193
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3194
{
3195
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3196 3197 3198
	/*
	 * Underflow?
	 */
3199 3200
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3201
#endif
3202
	__preempt_count_add(val);
3203
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3204 3205 3206
	/*
	 * Spinlock count overflowing soon?
	 */
3207 3208
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3209
#endif
3210
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3211
}
3212
EXPORT_SYMBOL(preempt_count_add);
3213
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3214

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3225
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3226
{
3227
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3228 3229 3230
	/*
	 * Underflow?
	 */
3231
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3232
		return;
L
Linus Torvalds 已提交
3233 3234 3235
	/*
	 * Is the spinlock portion underflowing?
	 */
3236 3237 3238
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3239
#endif
3240

3241
	preempt_latency_stop(val);
3242
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3243
}
3244
EXPORT_SYMBOL(preempt_count_sub);
3245
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3246

3247 3248 3249
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3250 3251
#endif

3252 3253 3254 3255 3256 3257 3258 3259 3260
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
	return p->preempt_disable_ip;
#else
	return 0;
#endif
}

L
Linus Torvalds 已提交
3261
/*
I
Ingo Molnar 已提交
3262
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3263
 */
I
Ingo Molnar 已提交
3264
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3265
{
3266 3267 3268
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3269 3270 3271
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3272 3273
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3274

I
Ingo Molnar 已提交
3275
	debug_show_held_locks(prev);
3276
	print_modules();
I
Ingo Molnar 已提交
3277 3278
	if (irqs_disabled())
		print_irqtrace_events(prev);
3279 3280
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3281
		pr_err("Preemption disabled at:");
3282
		print_ip_sym(preempt_disable_ip);
3283 3284
		pr_cont("\n");
	}
3285 3286 3287
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3288
	dump_stack();
3289
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3290
}
L
Linus Torvalds 已提交
3291

I
Ingo Molnar 已提交
3292 3293 3294 3295 3296
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3297
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3298 3299
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3300
#endif
3301

3302
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3303
		__schedule_bug(prev);
3304 3305
		preempt_count_set(PREEMPT_DISABLED);
	}
3306
	rcu_sleep_check();
I
Ingo Molnar 已提交
3307

L
Linus Torvalds 已提交
3308 3309
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3310
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3311 3312 3313 3314 3315 3316
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3317
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
I
Ingo Molnar 已提交
3318
{
3319
	const struct sched_class *class;
I
Ingo Molnar 已提交
3320
	struct task_struct *p;
L
Linus Torvalds 已提交
3321 3322

	/*
3323 3324 3325 3326
	 * Optimization: we know that if all tasks are in the fair class we can
	 * call that function directly, but only if the @prev task wasn't of a
	 * higher scheduling class, because otherwise those loose the
	 * opportunity to pull in more work from other CPUs.
L
Linus Torvalds 已提交
3327
	 */
3328 3329 3330 3331
	if (likely((prev->sched_class == &idle_sched_class ||
		    prev->sched_class == &fair_sched_class) &&
		   rq->nr_running == rq->cfs.h_nr_running)) {

3332
		p = fair_sched_class.pick_next_task(rq, prev, rf);
3333 3334 3335
		if (unlikely(p == RETRY_TASK))
			goto again;

I
Ingo Molnar 已提交
3336
		/* Assumes fair_sched_class->next == idle_sched_class */
3337
		if (unlikely(!p))
3338
			p = idle_sched_class.pick_next_task(rq, prev, rf);
3339 3340

		return p;
L
Linus Torvalds 已提交
3341 3342
	}

3343
again:
3344
	for_each_class(class) {
3345
		p = class->pick_next_task(rq, prev, rf);
3346 3347 3348
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3349
			return p;
3350
		}
I
Ingo Molnar 已提交
3351
	}
3352

I
Ingo Molnar 已提交
3353 3354
	/* The idle class should always have a runnable task: */
	BUG();
I
Ingo Molnar 已提交
3355
}
L
Linus Torvalds 已提交
3356

I
Ingo Molnar 已提交
3357
/*
3358
 * __schedule() is the main scheduler function.
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3393
 *
3394
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3395
 */
3396
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3397 3398
{
	struct task_struct *prev, *next;
3399
	unsigned long *switch_count;
3400
	struct rq_flags rf;
I
Ingo Molnar 已提交
3401
	struct rq *rq;
3402
	int cpu;
I
Ingo Molnar 已提交
3403 3404 3405 3406 3407 3408

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3409

3410
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3411
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3412

3413
	local_irq_disable();
3414
	rcu_note_context_switch(preempt);
3415

3416 3417 3418 3419
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
3420 3421 3422
	 *
	 * The membarrier system call requires a full memory barrier
	 * after coming from user-space, before storing to rq->curr.
3423
	 */
3424
	rq_lock(rq, &rf);
3425
	smp_mb__after_spinlock();
L
Linus Torvalds 已提交
3426

I
Ingo Molnar 已提交
3427 3428
	/* Promote REQ to ACT */
	rq->clock_update_flags <<= 1;
3429
	update_rq_clock(rq);
3430

3431
	switch_count = &prev->nivcsw;
3432
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3433
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3434
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3435
		} else {
3436
			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3437 3438
			prev->on_rq = 0;

3439 3440
			if (prev->in_iowait) {
				atomic_inc(&rq->nr_iowait);
3441
				update_nr_iowait(prev, 1);
3442 3443
				delayacct_blkio_start();
			}
T
Tejun Heo 已提交
3444
		}
I
Ingo Molnar 已提交
3445
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3446 3447
	}

3448
	next = pick_next_task(rq, prev, &rf);
3449
	clear_tsk_need_resched(prev);
3450
	clear_preempt_need_resched();
L
Linus Torvalds 已提交
3451 3452 3453 3454

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
3455 3456 3457
		/*
		 * The membarrier system call requires each architecture
		 * to have a full memory barrier after updating
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
		 * rq->curr, before returning to user-space.
		 *
		 * Here are the schemes providing that barrier on the
		 * various architectures:
		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
		 * - finish_lock_switch() for weakly-ordered
		 *   architectures where spin_unlock is a full barrier,
		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
		 *   is a RELEASE barrier),
3468
		 */
L
Linus Torvalds 已提交
3469 3470
		++*switch_count;

3471
		trace_sched_switch(preempt, prev, next);
I
Ingo Molnar 已提交
3472 3473 3474

		/* Also unlocks the rq: */
		rq = context_switch(rq, prev, next, &rf);
3475
	} else {
3476
		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3477
		rq_unlock_irq(rq, &rf);
3478
	}
L
Linus Torvalds 已提交
3479

3480
	balance_callback(rq);
L
Linus Torvalds 已提交
3481
}
3482

3483 3484
void __noreturn do_task_dead(void)
{
I
Ingo Molnar 已提交
3485
	/* Causes final put_task_struct in finish_task_switch(): */
3486
	set_special_state(TASK_DEAD);
I
Ingo Molnar 已提交
3487 3488 3489 3490

	/* Tell freezer to ignore us: */
	current->flags |= PF_NOFREEZE;

3491 3492
	__schedule(false);
	BUG();
I
Ingo Molnar 已提交
3493 3494

	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3495
	for (;;)
I
Ingo Molnar 已提交
3496
		cpu_relax();
3497 3498
}

3499 3500
static inline void sched_submit_work(struct task_struct *tsk)
{
3501
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3502
		return;
3503 3504 3505 3506 3507 3508 3509 3510

	/*
	 * If a worker went to sleep, notify and ask workqueue whether
	 * it wants to wake up a task to maintain concurrency.
	 * As this function is called inside the schedule() context,
	 * we disable preemption to avoid it calling schedule() again
	 * in the possible wakeup of a kworker.
	 */
3511
	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
3512
		preempt_disable();
3513 3514 3515 3516
		if (tsk->flags & PF_WQ_WORKER)
			wq_worker_sleeping(tsk);
		else
			io_wq_worker_sleeping(tsk);
3517 3518 3519
		preempt_enable_no_resched();
	}

3520 3521 3522 3523 3524 3525 3526 3527
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3528 3529
static void sched_update_worker(struct task_struct *tsk)
{
3530 3531 3532 3533 3534 3535
	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
		if (tsk->flags & PF_WQ_WORKER)
			wq_worker_running(tsk);
		else
			io_wq_worker_running(tsk);
	}
3536 3537
}

3538
asmlinkage __visible void __sched schedule(void)
3539
{
3540 3541 3542
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3543
	do {
3544
		preempt_disable();
3545
		__schedule(false);
3546
		sched_preempt_enable_no_resched();
3547
	} while (need_resched());
3548
	sched_update_worker(tsk);
3549
}
L
Linus Torvalds 已提交
3550 3551
EXPORT_SYMBOL(schedule);

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
/*
 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 * state (have scheduled out non-voluntarily) by making sure that all
 * tasks have either left the run queue or have gone into user space.
 * As idle tasks do not do either, they must not ever be preempted
 * (schedule out non-voluntarily).
 *
 * schedule_idle() is similar to schedule_preempt_disable() except that it
 * never enables preemption because it does not call sched_submit_work().
 */
void __sched schedule_idle(void)
{
	/*
	 * As this skips calling sched_submit_work(), which the idle task does
	 * regardless because that function is a nop when the task is in a
	 * TASK_RUNNING state, make sure this isn't used someplace that the
	 * current task can be in any other state. Note, idle is always in the
	 * TASK_RUNNING state.
	 */
	WARN_ON_ONCE(current->state);
	do {
		__schedule(false);
	} while (need_resched());
}

3577
#ifdef CONFIG_CONTEXT_TRACKING
3578
asmlinkage __visible void __sched schedule_user(void)
3579 3580 3581 3582 3583 3584
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3585 3586
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3587
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3588
	 * too frequently to make sense yet.
3589
	 */
3590
	enum ctx_state prev_state = exception_enter();
3591
	schedule();
3592
	exception_exit(prev_state);
3593 3594 3595
}
#endif

3596 3597 3598 3599 3600 3601 3602
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3603
	sched_preempt_enable_no_resched();
3604 3605 3606 3607
	schedule();
	preempt_disable();
}

3608
static void __sched notrace preempt_schedule_common(void)
3609 3610
{
	do {
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3624
		preempt_disable_notrace();
3625
		preempt_latency_start(1);
3626
		__schedule(true);
3627
		preempt_latency_stop(1);
3628
		preempt_enable_no_resched_notrace();
3629 3630 3631 3632 3633 3634 3635 3636

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3637 3638
#ifdef CONFIG_PREEMPT
/*
3639
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3640
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3641 3642
 * occur there and call schedule directly.
 */
3643
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3644 3645 3646
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3647
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3648
	 */
3649
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3650 3651
		return;

3652
	preempt_schedule_common();
L
Linus Torvalds 已提交
3653
}
3654
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3655
EXPORT_SYMBOL(preempt_schedule);
3656 3657

/**
3658
 * preempt_schedule_notrace - preempt_schedule called by tracing
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3671
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3672 3673 3674 3675 3676 3677 3678
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3692
		preempt_disable_notrace();
3693
		preempt_latency_start(1);
3694 3695 3696 3697 3698 3699
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3700
		__schedule(true);
3701 3702
		exception_exit(prev_ctx);

3703
		preempt_latency_stop(1);
3704
		preempt_enable_no_resched_notrace();
3705 3706
	} while (need_resched());
}
3707
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3708

3709
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3710 3711

/*
3712
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3713 3714 3715 3716
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3717
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3718
{
3719
	enum ctx_state prev_state;
3720

3721
	/* Catch callers which need to be fixed */
3722
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3723

3724 3725
	prev_state = exception_enter();

3726
	do {
3727
		preempt_disable();
3728
		local_irq_enable();
3729
		__schedule(true);
3730
		local_irq_disable();
3731
		sched_preempt_enable_no_resched();
3732
	} while (need_resched());
3733 3734

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3735 3736
}

3737
int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3738
			  void *key)
L
Linus Torvalds 已提交
3739
{
P
Peter Zijlstra 已提交
3740
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3741 3742 3743
}
EXPORT_SYMBOL(default_wake_function);

3744 3745
#ifdef CONFIG_RT_MUTEXES

3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
{
	if (pi_task)
		prio = min(prio, pi_task->prio);

	return prio;
}

static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	struct task_struct *pi_task = rt_mutex_get_top_task(p);

	return __rt_effective_prio(pi_task, prio);
}

3761 3762
/*
 * rt_mutex_setprio - set the current priority of a task
3763 3764
 * @p: task to boost
 * @pi_task: donor task
3765 3766 3767 3768
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3769 3770
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3771
 */
3772
void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3773
{
3774
	int prio, oldprio, queued, running, queue_flag =
3775
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3776
	const struct sched_class *prev_class;
3777 3778
	struct rq_flags rf;
	struct rq *rq;
3779

3780 3781 3782 3783 3784 3785 3786 3787
	/* XXX used to be waiter->prio, not waiter->task->prio */
	prio = __rt_effective_prio(pi_task, p->normal_prio);

	/*
	 * If nothing changed; bail early.
	 */
	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
		return;
3788

3789
	rq = __task_rq_lock(p, &rf);
3790
	update_rq_clock(rq);
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
	/*
	 * Set under pi_lock && rq->lock, such that the value can be used under
	 * either lock.
	 *
	 * Note that there is loads of tricky to make this pointer cache work
	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
	 * ensure a task is de-boosted (pi_task is set to NULL) before the
	 * task is allowed to run again (and can exit). This ensures the pointer
	 * points to a blocked task -- which guaratees the task is present.
	 */
	p->pi_top_task = pi_task;

	/*
	 * For FIFO/RR we only need to set prio, if that matches we're done.
	 */
	if (prio == p->prio && !dl_prio(prio))
		goto out_unlock;
3808

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3827
	trace_sched_pi_setprio(p, pi_task);
3828
	oldprio = p->prio;
3829 3830 3831 3832

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3833
	prev_class = p->sched_class;
3834
	queued = task_on_rq_queued(p);
3835
	running = task_current(rq, p);
3836
	if (queued)
3837
		dequeue_task(rq, p, queue_flag);
3838
	if (running)
3839
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3840

3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3851 3852
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3853
			p->dl.dl_boosted = 1;
3854
			queue_flag |= ENQUEUE_REPLENISH;
3855 3856
		} else
			p->dl.dl_boosted = 0;
3857
		p->sched_class = &dl_sched_class;
3858 3859 3860 3861
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3862
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3863
		p->sched_class = &rt_sched_class;
3864 3865 3866
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3867 3868
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3869
		p->sched_class = &fair_sched_class;
3870
	}
I
Ingo Molnar 已提交
3871

3872 3873
	p->prio = prio;

3874
	if (queued)
3875
		enqueue_task(rq, p, queue_flag);
3876
	if (running)
3877
		set_curr_task(rq, p);
3878

P
Peter Zijlstra 已提交
3879
	check_class_changed(rq, p, prev_class, oldprio);
3880
out_unlock:
I
Ingo Molnar 已提交
3881 3882
	/* Avoid rq from going away on us: */
	preempt_disable();
3883
	__task_rq_unlock(rq, &rf);
3884 3885 3886

	balance_callback(rq);
	preempt_enable();
3887
}
3888 3889 3890 3891 3892
#else
static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	return prio;
}
3893
#endif
3894

3895
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3896
{
P
Peter Zijlstra 已提交
3897 3898
	bool queued, running;
	int old_prio, delta;
3899
	struct rq_flags rf;
3900
	struct rq *rq;
L
Linus Torvalds 已提交
3901

3902
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3903 3904 3905 3906 3907
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3908
	rq = task_rq_lock(p, &rf);
3909 3910
	update_rq_clock(rq);

L
Linus Torvalds 已提交
3911 3912 3913 3914
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3915
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3916
	 */
3917
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3918 3919 3920
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3921
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3922
	running = task_current(rq, p);
3923
	if (queued)
3924
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
3925 3926
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3927 3928

	p->static_prio = NICE_TO_PRIO(nice);
3929
	set_load_weight(p, true);
3930 3931 3932
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3933

3934
	if (queued) {
3935
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
L
Linus Torvalds 已提交
3936
		/*
3937 3938
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3939
		 */
3940
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3941
			resched_curr(rq);
L
Linus Torvalds 已提交
3942
	}
P
Peter Zijlstra 已提交
3943 3944
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3945
out_unlock:
3946
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3947 3948 3949
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3950 3951 3952 3953 3954
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3955
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3956
{
I
Ingo Molnar 已提交
3957
	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3958
	int nice_rlim = nice_to_rlimit(nice);
3959

3960
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3961 3962 3963
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3964 3965 3966 3967 3968 3969 3970 3971 3972
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3973
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3974
{
3975
	long nice, retval;
L
Linus Torvalds 已提交
3976 3977 3978 3979 3980 3981

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3982
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3983
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3984

3985
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3986 3987 3988
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
4003
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
4004 4005 4006
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4007
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4008 4009 4010 4011 4012
{
	return p->prio - MAX_RT_PRIO;
}

/**
I
Ingo Molnar 已提交
4013
 * idle_cpu - is a given CPU idle currently?
L
Linus Torvalds 已提交
4014
 * @cpu: the processor in question.
4015 4016
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
4017 4018 4019
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
4034 4035
}

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
/**
 * available_idle_cpu - is a given CPU idle for enqueuing work.
 * @cpu: the CPU in question.
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
 */
int available_idle_cpu(int cpu)
{
	if (!idle_cpu(cpu))
		return 0;

4047 4048 4049
	if (vcpu_is_preempted(cpu))
		return 0;

T
Thomas Gleixner 已提交
4050
	return 1;
L
Linus Torvalds 已提交
4051 4052 4053
}

/**
I
Ingo Molnar 已提交
4054
 * idle_task - return the idle task for a given CPU.
L
Linus Torvalds 已提交
4055
 * @cpu: the processor in question.
4056
 *
I
Ingo Molnar 已提交
4057
 * Return: The idle task for the CPU @cpu.
L
Linus Torvalds 已提交
4058
 */
4059
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4060 4061 4062 4063 4064 4065 4066
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
4067 4068
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
4069
 */
A
Alexey Dobriyan 已提交
4070
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4071
{
4072
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4073 4074
}

4075 4076 4077 4078 4079 4080
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

4081 4082
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
4083
{
4084 4085
	int policy = attr->sched_policy;

4086
	if (policy == SETPARAM_POLICY)
4087 4088
		policy = p->policy;

L
Linus Torvalds 已提交
4089
	p->policy = policy;
4090

4091 4092
	if (dl_policy(policy))
		__setparam_dl(p, attr);
4093
	else if (fair_policy(policy))
4094 4095
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

4096 4097 4098 4099 4100 4101
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
4102
	p->normal_prio = normal_prio(p);
4103
	set_load_weight(p, true);
4104
}
4105

4106 4107
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
4108
			   const struct sched_attr *attr, bool keep_boost)
4109 4110
{
	__setscheduler_params(p, attr);
4111

4112
	/*
4113 4114
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
4115
	 */
4116
	p->prio = normal_prio(p);
4117
	if (keep_boost)
4118
		p->prio = rt_effective_prio(p, p->prio);
4119

4120 4121 4122
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
4123 4124 4125
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
4126
}
4127

4128
/*
I
Ingo Molnar 已提交
4129
 * Check the target process has a UID that matches the current process's:
4130 4131 4132 4133 4134 4135 4136 4137
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4138 4139
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4140 4141 4142 4143
	rcu_read_unlock();
	return match;
}

4144 4145
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4146
				bool user, bool pi)
L
Linus Torvalds 已提交
4147
{
4148 4149
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4150
	int retval, oldprio, oldpolicy = -1, queued, running;
4151
	int new_effective_prio, policy = attr->sched_policy;
4152
	const struct sched_class *prev_class;
4153
	struct rq_flags rf;
4154
	int reset_on_fork;
4155
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4156
	struct rq *rq;
L
Linus Torvalds 已提交
4157

4158 4159
	/* The pi code expects interrupts enabled */
	BUG_ON(pi && in_interrupt());
L
Linus Torvalds 已提交
4160
recheck:
I
Ingo Molnar 已提交
4161
	/* Double check policy once rq lock held: */
4162 4163
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4164
		policy = oldpolicy = p->policy;
4165
	} else {
4166
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4167

4168
		if (!valid_policy(policy))
4169 4170 4171
			return -EINVAL;
	}

4172
	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4173 4174
		return -EINVAL;

L
Linus Torvalds 已提交
4175 4176
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4177 4178
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4179
	 */
4180
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4181
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4182
		return -EINVAL;
4183 4184
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4185 4186
		return -EINVAL;

4187 4188 4189
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4190
	if (user && !capable(CAP_SYS_NICE)) {
4191
		if (fair_policy(policy)) {
4192
			if (attr->sched_nice < task_nice(p) &&
4193
			    !can_nice(p, attr->sched_nice))
4194 4195 4196
				return -EPERM;
		}

4197
		if (rt_policy(policy)) {
4198 4199
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4200

I
Ingo Molnar 已提交
4201
			/* Can't set/change the rt policy: */
4202 4203 4204
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

I
Ingo Molnar 已提交
4205
			/* Can't increase priority: */
4206 4207
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4208 4209
				return -EPERM;
		}
4210

4211 4212 4213 4214 4215 4216 4217 4218 4219
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4220
		/*
4221 4222
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4223
		 */
4224
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4225
			if (!can_nice(p, task_nice(p)))
4226 4227
				return -EPERM;
		}
4228

I
Ingo Molnar 已提交
4229
		/* Can't change other user's priorities: */
4230
		if (!check_same_owner(p))
4231
			return -EPERM;
4232

I
Ingo Molnar 已提交
4233
		/* Normal users shall not reset the sched_reset_on_fork flag: */
4234 4235
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4236
	}
L
Linus Torvalds 已提交
4237

4238
	if (user) {
4239 4240 4241
		if (attr->sched_flags & SCHED_FLAG_SUGOV)
			return -EINVAL;

4242
		retval = security_task_setscheduler(p);
4243 4244 4245 4246
		if (retval)
			return retval;
	}

4247
	/*
I
Ingo Molnar 已提交
4248
	 * Make sure no PI-waiters arrive (or leave) while we are
4249
	 * changing the priority of the task:
4250
	 *
L
Lucas De Marchi 已提交
4251
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4252 4253
	 * runqueue lock must be held.
	 */
4254
	rq = task_rq_lock(p, &rf);
4255
	update_rq_clock(rq);
4256

4257
	/*
I
Ingo Molnar 已提交
4258
	 * Changing the policy of the stop threads its a very bad idea:
4259 4260
	 */
	if (p == rq->stop) {
4261
		task_rq_unlock(rq, p, &rf);
4262 4263 4264
		return -EINVAL;
	}

4265
	/*
4266 4267
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4268
	 */
4269
	if (unlikely(policy == p->policy)) {
4270
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4271 4272 4273
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4274
		if (dl_policy(policy) && dl_param_changed(p, attr))
4275
			goto change;
4276

4277
		p->sched_reset_on_fork = reset_on_fork;
4278
		task_rq_unlock(rq, p, &rf);
4279 4280
		return 0;
	}
4281
change:
4282

4283
	if (user) {
4284
#ifdef CONFIG_RT_GROUP_SCHED
4285 4286 4287 4288 4289
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4290 4291
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4292
			task_rq_unlock(rq, p, &rf);
4293 4294 4295
			return -EPERM;
		}
#endif
4296
#ifdef CONFIG_SMP
4297 4298
		if (dl_bandwidth_enabled() && dl_policy(policy) &&
				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4299 4300 4301 4302 4303 4304 4305
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4306 4307
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4308
				task_rq_unlock(rq, p, &rf);
4309 4310 4311 4312 4313
				return -EPERM;
			}
		}
#endif
	}
4314

I
Ingo Molnar 已提交
4315
	/* Re-check policy now with rq lock held: */
L
Linus Torvalds 已提交
4316 4317
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4318
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4319 4320
		goto recheck;
	}
4321 4322 4323 4324 4325 4326

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4327
	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4328
		task_rq_unlock(rq, p, &rf);
4329 4330 4331
		return -EBUSY;
	}

4332 4333 4334
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4335 4336 4337 4338 4339 4340 4341 4342
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
4343
		new_effective_prio = rt_effective_prio(p, newprio);
4344 4345
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4346 4347
	}

4348
	queued = task_on_rq_queued(p);
4349
	running = task_current(rq, p);
4350
	if (queued)
4351
		dequeue_task(rq, p, queue_flags);
4352
	if (running)
4353
		put_prev_task(rq, p);
4354

4355
	prev_class = p->sched_class;
4356
	__setscheduler(rq, p, attr, pi);
4357

4358
	if (queued) {
4359 4360 4361 4362
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4363 4364
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4365

4366
		enqueue_task(rq, p, queue_flags);
4367
	}
4368
	if (running)
4369
		set_curr_task(rq, p);
4370

P
Peter Zijlstra 已提交
4371
	check_class_changed(rq, p, prev_class, oldprio);
I
Ingo Molnar 已提交
4372 4373 4374

	/* Avoid rq from going away on us: */
	preempt_disable();
4375
	task_rq_unlock(rq, p, &rf);
4376

4377 4378
	if (pi)
		rt_mutex_adjust_pi(p);
4379

I
Ingo Molnar 已提交
4380
	/* Run balance callbacks after we've adjusted the PI chain: */
4381 4382
	balance_callback(rq);
	preempt_enable();
4383

L
Linus Torvalds 已提交
4384 4385
	return 0;
}
4386

4387 4388 4389 4390 4391 4392 4393 4394 4395
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4396 4397
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4398 4399 4400 4401 4402
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4403
	return __sched_setscheduler(p, &attr, check, true);
4404
}
4405 4406 4407 4408 4409 4410
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4411 4412
 * Return: 0 on success. An error code otherwise.
 *
4413 4414 4415
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4416
		       const struct sched_param *param)
4417
{
4418
	return _sched_setscheduler(p, policy, param, true);
4419
}
L
Linus Torvalds 已提交
4420 4421
EXPORT_SYMBOL_GPL(sched_setscheduler);

4422 4423
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4424
	return __sched_setscheduler(p, attr, true, true);
4425 4426 4427
}
EXPORT_SYMBOL_GPL(sched_setattr);

4428 4429 4430 4431 4432
int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, false, true);
}

4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4443 4444
 *
 * Return: 0 on success. An error code otherwise.
4445 4446
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4447
			       const struct sched_param *param)
4448
{
4449
	return _sched_setscheduler(p, policy, param, false);
4450
}
4451
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4452

I
Ingo Molnar 已提交
4453 4454
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4455 4456 4457
{
	struct sched_param lparam;
	struct task_struct *p;
4458
	int retval;
L
Linus Torvalds 已提交
4459 4460 4461 4462 4463

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4464 4465 4466

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4467
	p = find_process_by_pid(pid);
4468 4469 4470
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4471

L
Linus Torvalds 已提交
4472 4473 4474
	return retval;
}

4475 4476 4477
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
I
Ingo Molnar 已提交
4478
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4479 4480 4481 4482 4483 4484 4485
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

I
Ingo Molnar 已提交
4486
	/* Zero the full structure, so that a short copy will be nice: */
4487 4488 4489 4490 4491 4492
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

I
Ingo Molnar 已提交
4493 4494
	/* Bail out on silly large: */
	if (size > PAGE_SIZE)
4495 4496
		goto err_size;

I
Ingo Molnar 已提交
4497 4498
	/* ABI compatibility quirk: */
	if (!size)
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
I
Ingo Molnar 已提交
4533
	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4534 4535
	 * to be strict and return an error on out-of-bounds values?
	 */
4536
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4537

4538
	return 0;
4539 4540 4541

err_size:
	put_user(sizeof(*attr), &uattr->size);
4542
	return -E2BIG;
4543 4544
}

L
Linus Torvalds 已提交
4545 4546 4547 4548 4549
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4550 4551
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4552
 */
I
Ingo Molnar 已提交
4553
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4554
{
4555 4556 4557
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4558 4559 4560 4561 4562 4563 4564
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4565 4566
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4567
 */
4568
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4569
{
4570
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4571 4572
}

4573 4574 4575
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4576
 * @uattr: structure containing the extended parameters.
4577
 * @flags: for future extension.
4578
 */
4579 4580
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4581 4582 4583 4584 4585
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4586
	if (!uattr || pid < 0 || flags)
4587 4588
		return -EINVAL;

4589 4590 4591
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4592

4593
	if ((int)attr.sched_policy < 0)
4594
		return -EINVAL;
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4606 4607 4608
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4609 4610 4611
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4612
 */
4613
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4614
{
4615
	struct task_struct *p;
4616
	int retval;
L
Linus Torvalds 已提交
4617 4618

	if (pid < 0)
4619
		return -EINVAL;
L
Linus Torvalds 已提交
4620 4621

	retval = -ESRCH;
4622
	rcu_read_lock();
L
Linus Torvalds 已提交
4623 4624 4625 4626
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4627 4628
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4629
	}
4630
	rcu_read_unlock();
L
Linus Torvalds 已提交
4631 4632 4633 4634
	return retval;
}

/**
4635
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4636 4637
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4638 4639 4640
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4641
 */
4642
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4643
{
4644
	struct sched_param lp = { .sched_priority = 0 };
4645
	struct task_struct *p;
4646
	int retval;
L
Linus Torvalds 已提交
4647 4648

	if (!param || pid < 0)
4649
		return -EINVAL;
L
Linus Torvalds 已提交
4650

4651
	rcu_read_lock();
L
Linus Torvalds 已提交
4652 4653 4654 4655 4656 4657 4658 4659 4660
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4661 4662
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4663
	rcu_read_unlock();
L
Linus Torvalds 已提交
4664 4665 4666 4667 4668 4669 4670 4671 4672

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4673
	rcu_read_unlock();
L
Linus Torvalds 已提交
4674 4675 4676
	return retval;
}

4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4700
				return -EFBIG;
4701 4702 4703 4704 4705
		}

		attr->size = usize;
	}

4706
	ret = copy_to_user(uattr, attr, attr->size);
4707 4708 4709
	if (ret)
		return -EFAULT;

4710
	return 0;
4711 4712 4713
}

/**
4714
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4715
 * @pid: the pid in question.
J
Juri Lelli 已提交
4716
 * @uattr: structure containing the extended parameters.
4717
 * @size: sizeof(attr) for fwd/bwd comp.
4718
 * @flags: for future extension.
4719
 */
4720 4721
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4722 4723 4724 4725 4726 4727 4728 4729
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4730
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4744 4745
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4746 4747 4748
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4749 4750
		attr.sched_priority = p->rt_priority;
	else
4751
		attr.sched_nice = task_nice(p);
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4763
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4764
{
4765
	cpumask_var_t cpus_allowed, new_mask;
4766 4767
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4768

4769
	rcu_read_lock();
L
Linus Torvalds 已提交
4770 4771 4772

	p = find_process_by_pid(pid);
	if (!p) {
4773
		rcu_read_unlock();
L
Linus Torvalds 已提交
4774 4775 4776
		return -ESRCH;
	}

4777
	/* Prevent p going away */
L
Linus Torvalds 已提交
4778
	get_task_struct(p);
4779
	rcu_read_unlock();
L
Linus Torvalds 已提交
4780

4781 4782 4783 4784
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4785 4786 4787 4788 4789 4790 4791 4792
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4793
	retval = -EPERM;
E
Eric W. Biederman 已提交
4794 4795 4796 4797
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4798
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4799 4800 4801
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4802

4803
	retval = security_task_setscheduler(p);
4804
	if (retval)
4805
		goto out_free_new_mask;
4806

4807 4808 4809 4810

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4811 4812 4813 4814 4815 4816 4817
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4818 4819 4820
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4821
			retval = -EBUSY;
4822
			rcu_read_unlock();
4823
			goto out_free_new_mask;
4824
		}
4825
		rcu_read_unlock();
4826 4827
	}
#endif
P
Peter Zijlstra 已提交
4828
again:
4829
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4830

P
Paul Menage 已提交
4831
	if (!retval) {
4832 4833
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4834 4835 4836 4837 4838
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4839
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4840 4841 4842
			goto again;
		}
	}
4843
out_free_new_mask:
4844 4845 4846 4847
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4848 4849 4850 4851 4852
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4853
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4854
{
4855 4856 4857 4858 4859
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4860 4861 4862 4863
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
I
Ingo Molnar 已提交
4864
 * sys_sched_setaffinity - set the CPU affinity of a process
L
Linus Torvalds 已提交
4865 4866
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4867
 * @user_mask_ptr: user-space pointer to the new CPU mask
4868 4869
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4870
 */
4871 4872
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4873
{
4874
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4875 4876
	int retval;

4877 4878
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4879

4880 4881 4882 4883 4884
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4885 4886
}

4887
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4888
{
4889
	struct task_struct *p;
4890
	unsigned long flags;
L
Linus Torvalds 已提交
4891 4892
	int retval;

4893
	rcu_read_lock();
L
Linus Torvalds 已提交
4894 4895 4896 4897 4898 4899

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4900 4901 4902 4903
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4904
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4905
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4906
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4907 4908

out_unlock:
4909
	rcu_read_unlock();
L
Linus Torvalds 已提交
4910

4911
	return retval;
L
Linus Torvalds 已提交
4912 4913 4914
}

/**
I
Ingo Molnar 已提交
4915
 * sys_sched_getaffinity - get the CPU affinity of a process
L
Linus Torvalds 已提交
4916 4917
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4918
 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4919
 *
4920 4921
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4922
 */
4923 4924
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4925 4926
{
	int ret;
4927
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4928

A
Anton Blanchard 已提交
4929
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4930 4931
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4932 4933
		return -EINVAL;

4934 4935
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4936

4937 4938
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4939
		unsigned int retlen = min(len, cpumask_size());
4940 4941

		if (copy_to_user(user_mask_ptr, mask, retlen))
4942 4943
			ret = -EFAULT;
		else
4944
			ret = retlen;
4945 4946
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4947

4948
	return ret;
L
Linus Torvalds 已提交
4949 4950 4951 4952 4953
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4954 4955
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4956 4957
 *
 * Return: 0.
L
Linus Torvalds 已提交
4958
 */
4959
static void do_sched_yield(void)
L
Linus Torvalds 已提交
4960
{
4961 4962 4963
	struct rq_flags rf;
	struct rq *rq;

4964
	rq = this_rq_lock_irq(&rf);
L
Linus Torvalds 已提交
4965

4966
	schedstat_inc(rq->yld_count);
4967
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4968 4969 4970 4971 4972

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
4973 4974
	preempt_disable();
	rq_unlock(rq, &rf);
4975
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4976 4977

	schedule();
4978
}
L
Linus Torvalds 已提交
4979

4980 4981 4982
SYSCALL_DEFINE0(sched_yield)
{
	do_sched_yield();
L
Linus Torvalds 已提交
4983 4984 4985
	return 0;
}

4986
#ifndef CONFIG_PREEMPT
4987
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4988
{
4989
	if (should_resched(0)) {
4990
		preempt_schedule_common();
L
Linus Torvalds 已提交
4991 4992
		return 1;
	}
4993
	rcu_all_qs();
L
Linus Torvalds 已提交
4994 4995
	return 0;
}
4996
EXPORT_SYMBOL(_cond_resched);
4997
#endif
L
Linus Torvalds 已提交
4998 4999

/*
5000
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5001 5002
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5003
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5004 5005 5006
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5007
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5008
{
5009
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
5010 5011
	int ret = 0;

5012 5013
	lockdep_assert_held(lock);

5014
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5015
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5016
		if (resched)
5017
			preempt_schedule_common();
N
Nick Piggin 已提交
5018 5019
		else
			cpu_relax();
J
Jan Kara 已提交
5020
		ret = 1;
L
Linus Torvalds 已提交
5021 5022
		spin_lock(lock);
	}
J
Jan Kara 已提交
5023
	return ret;
L
Linus Torvalds 已提交
5024
}
5025
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5026 5027 5028 5029

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
5030 5031 5032 5033 5034 5035 5036 5037 5038
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
I
Ingo Molnar 已提交
5039
 *	yield();
P
Peter Zijlstra 已提交
5040 5041 5042 5043 5044 5045 5046 5047
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
5048 5049 5050 5051
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
5052
	do_sched_yield();
L
Linus Torvalds 已提交
5053 5054 5055
}
EXPORT_SYMBOL(yield);

5056 5057 5058 5059
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5060 5061
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5062 5063 5064 5065
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
5066
 * Return:
5067 5068 5069
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
5070
 */
5071
int __sched yield_to(struct task_struct *p, bool preempt)
5072 5073 5074 5075
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
5076
	int yielded = 0;
5077 5078 5079 5080 5081 5082

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
5083 5084 5085 5086 5087 5088 5089 5090 5091
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

5092
	double_rq_lock(rq, p_rq);
5093
	if (task_rq(p) != p_rq) {
5094 5095 5096 5097 5098
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
5099
		goto out_unlock;
5100 5101

	if (curr->sched_class != p->sched_class)
5102
		goto out_unlock;
5103 5104

	if (task_running(p_rq, p) || p->state)
5105
		goto out_unlock;
5106 5107

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5108
	if (yielded) {
5109
		schedstat_inc(rq->yld_count);
5110 5111 5112 5113 5114
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
5115
			resched_curr(p_rq);
5116
	}
5117

5118
out_unlock:
5119
	double_rq_unlock(rq, p_rq);
5120
out_irq:
5121 5122
	local_irq_restore(flags);

5123
	if (yielded > 0)
5124 5125 5126 5127 5128 5129
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
int io_schedule_prepare(void)
{
	int old_iowait = current->in_iowait;

	current->in_iowait = 1;
	blk_schedule_flush_plug(current);

	return old_iowait;
}

void io_schedule_finish(int token)
{
	current->in_iowait = token;
}

L
Linus Torvalds 已提交
5145
/*
I
Ingo Molnar 已提交
5146
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5147 5148 5149 5150
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5151
	int token;
L
Linus Torvalds 已提交
5152 5153
	long ret;

5154
	token = io_schedule_prepare();
L
Linus Torvalds 已提交
5155
	ret = schedule_timeout(timeout);
5156
	io_schedule_finish(token);
5157

L
Linus Torvalds 已提交
5158 5159
	return ret;
}
5160
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5161

5162
void __sched io_schedule(void)
5163 5164 5165 5166 5167 5168 5169 5170 5171
{
	int token;

	token = io_schedule_prepare();
	schedule();
	io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);

L
Linus Torvalds 已提交
5172 5173 5174 5175
/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5176 5177 5178
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5179
 */
5180
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5181 5182 5183 5184 5185 5186 5187 5188
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5189
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5190
	case SCHED_NORMAL:
5191
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5192
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5203 5204 5205
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5206
 */
5207
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5208 5209 5210 5211 5212 5213 5214 5215
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5216
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5217
	case SCHED_NORMAL:
5218
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5219
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5220 5221 5222 5223 5224
		ret = 0;
	}
	return ret;
}

5225
static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
L
Linus Torvalds 已提交
5226
{
5227
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5228
	unsigned int time_slice;
5229
	struct rq_flags rf;
5230
	struct rq *rq;
5231
	int retval;
L
Linus Torvalds 已提交
5232 5233

	if (pid < 0)
5234
		return -EINVAL;
L
Linus Torvalds 已提交
5235 5236

	retval = -ESRCH;
5237
	rcu_read_lock();
L
Linus Torvalds 已提交
5238 5239 5240 5241 5242 5243 5244 5245
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5246
	rq = task_rq_lock(p, &rf);
5247 5248 5249
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5250
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5251

5252
	rcu_read_unlock();
5253 5254
	jiffies_to_timespec64(time_slice, t);
	return 0;
5255

L
Linus Torvalds 已提交
5256
out_unlock:
5257
	rcu_read_unlock();
L
Linus Torvalds 已提交
5258 5259 5260
	return retval;
}

5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
 */
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
		struct timespec __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = put_timespec64(&t, interval);

	return retval;
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
		       compat_pid_t, pid,
		       struct compat_timespec __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = compat_put_timespec64(&t, interval);
	return retval;
}
#endif

5298
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5299 5300
{
	unsigned long free = 0;
5301
	int ppid;
5302

5303 5304
	if (!try_get_task_stack(p))
		return;
5305 5306 5307 5308

	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));

	if (p->state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5309
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5310
#ifdef CONFIG_DEBUG_STACK_USAGE
5311
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5312
#endif
5313
	ppid = 0;
5314
	rcu_read_lock();
5315 5316
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5317
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5318
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5319
		task_pid_nr(p), ppid,
5320
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5321

5322
	print_worker_info(KERN_INFO, p);
5323
	show_stack(p, NULL);
5324
	put_task_stack(p);
L
Linus Torvalds 已提交
5325
}
5326
EXPORT_SYMBOL_GPL(sched_show_task);
L
Linus Torvalds 已提交
5327

5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
static inline bool
state_filter_match(unsigned long state_filter, struct task_struct *p)
{
	/* no filter, everything matches */
	if (!state_filter)
		return true;

	/* filter, but doesn't match */
	if (!(p->state & state_filter))
		return false;

	/*
	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
	 * TASK_KILLABLE).
	 */
	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
		return false;

	return true;
}


I
Ingo Molnar 已提交
5350
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5351
{
5352
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5353

5354
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5355 5356
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5357
#else
P
Peter Zijlstra 已提交
5358 5359
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5360
#endif
5361
	rcu_read_lock();
5362
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5363 5364
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5365
		 * console might take a lot of time:
5366 5367 5368
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5369 5370
		 */
		touch_nmi_watchdog();
5371
		touch_all_softlockup_watchdogs();
5372
		if (state_filter_match(state_filter, p))
5373
			sched_show_task(p);
5374
	}
L
Linus Torvalds 已提交
5375

I
Ingo Molnar 已提交
5376
#ifdef CONFIG_SCHED_DEBUG
5377 5378
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5379
#endif
5380
	rcu_read_unlock();
I
Ingo Molnar 已提交
5381 5382 5383
	/*
	 * Only show locks if all tasks are dumped:
	 */
5384
	if (!state_filter)
I
Ingo Molnar 已提交
5385
		debug_show_all_locks();
L
Linus Torvalds 已提交
5386 5387
}

5388 5389 5390
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
I
Ingo Molnar 已提交
5391
 * @cpu: CPU the idle task belongs to
5392 5393 5394 5395
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5396
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5397
{
5398
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5399 5400
	unsigned long flags;

5401 5402
	__sched_fork(0, idle);

5403 5404
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5405

5406
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5407
	idle->se.exec_start = sched_clock();
5408
	idle->flags |= PF_IDLE;
I
Ingo Molnar 已提交
5409

5410 5411
	kasan_unpoison_task_stack(idle);

5412 5413 5414 5415 5416 5417 5418 5419 5420
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5421 5422
	/*
	 * We're having a chicken and egg problem, even though we are
I
Ingo Molnar 已提交
5423
	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5424 5425 5426 5427 5428 5429 5430 5431
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5432
	__set_task_cpu(idle, cpu);
5433
	rcu_read_unlock();
L
Linus Torvalds 已提交
5434 5435

	rq->curr = rq->idle = idle;
5436
	idle->on_rq = TASK_ON_RQ_QUEUED;
5437
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5438
	idle->on_cpu = 1;
5439
#endif
5440 5441
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5442 5443

	/* Set the preempt count _outside_ the spinlocks! */
5444
	init_idle_preempt_count(idle, cpu);
5445

I
Ingo Molnar 已提交
5446 5447 5448 5449
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5450
	ftrace_graph_init_idle_task(idle, cpu);
5451
	vtime_init_idle(idle, cpu);
5452
#ifdef CONFIG_SMP
5453 5454
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5455 5456
}

5457 5458
#ifdef CONFIG_SMP

5459 5460 5461
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
5462
	int ret = 1;
5463

5464 5465 5466
	if (!cpumask_weight(cur))
		return ret;

5467
	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5468 5469 5470 5471

	return ret;
}

5472 5473 5474 5475 5476 5477 5478
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
I
Ingo Molnar 已提交
5479
	 * to a new cpuset; we don't want to change their CPU
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5492 5493
					      cs_cpus_allowed))
		ret = dl_task_can_attach(p, cs_cpus_allowed);
5494 5495 5496 5497 5498

out:
	return ret;
}

5499
bool sched_smp_initialized __read_mostly;
5500

5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

5511
	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5512 5513 5514 5515
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5516
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5517 5518
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5519 5520 5521 5522 5523 5524 5525

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5526
	bool queued, running;
5527 5528
	struct rq_flags rf;
	struct rq *rq;
5529

5530
	rq = task_rq_lock(p, &rf);
5531
	queued = task_on_rq_queued(p);
5532 5533
	running = task_current(rq, p);

5534
	if (queued)
5535
		dequeue_task(rq, p, DEQUEUE_SAVE);
5536
	if (running)
5537
		put_prev_task(rq, p);
5538 5539 5540

	p->numa_preferred_nid = nid;

5541
	if (queued)
5542
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5543
	if (running)
5544
		set_curr_task(rq, p);
5545
	task_rq_unlock(rq, p, &rf);
5546
}
P
Peter Zijlstra 已提交
5547
#endif /* CONFIG_NUMA_BALANCING */
5548

L
Linus Torvalds 已提交
5549
#ifdef CONFIG_HOTPLUG_CPU
5550
/*
I
Ingo Molnar 已提交
5551
 * Ensure that the idle task is using init_mm right before its CPU goes
5552
 * offline.
5553
 */
5554
void idle_task_exit(void)
L
Linus Torvalds 已提交
5555
{
5556
	struct mm_struct *mm = current->active_mm;
5557

5558
	BUG_ON(cpu_online(smp_processor_id()));
5559

5560
	if (mm != &init_mm) {
5561
		switch_mm(mm, &init_mm, current);
5562
		current->active_mm = &init_mm;
5563 5564
		finish_arch_post_lock_switch();
	}
5565
	mmdrop(mm);
L
Linus Torvalds 已提交
5566 5567 5568
}

/*
5569 5570
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5571 5572 5573
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5574 5575
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5576
 */
5577
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5578
{
5579
	long delta = calc_load_fold_active(rq, 1);
5580 5581
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5582 5583
}

5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5600
/*
5601 5602 5603 5604 5605 5606
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5607
 */
5608
static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
L
Linus Torvalds 已提交
5609
{
5610
	struct rq *rq = dead_rq;
5611
	struct task_struct *next, *stop = rq->stop;
5612
	struct rq_flags orf = *rf;
5613
	int dest_cpu;
L
Linus Torvalds 已提交
5614 5615

	/*
5616 5617 5618 5619 5620 5621 5622
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5623
	 */
5624
	rq->stop = NULL;
5625

5626 5627 5628 5629 5630 5631 5632
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5633
	for (;;) {
5634 5635
		/*
		 * There's this thread running, bail when that's the only
I
Ingo Molnar 已提交
5636
		 * remaining thread:
5637 5638
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5639
			break;
5640

5641
		/*
I
Ingo Molnar 已提交
5642
		 * pick_next_task() assumes pinned rq->lock:
5643
		 */
5644
		next = pick_next_task(rq, &fake_task, rf);
5645
		BUG_ON(!next);
V
Viresh Kumar 已提交
5646
		put_prev_task(rq, next);
5647

W
Wanpeng Li 已提交
5648 5649 5650 5651 5652 5653 5654 5655 5656
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5657
		rq_unlock(rq, rf);
W
Wanpeng Li 已提交
5658
		raw_spin_lock(&next->pi_lock);
5659
		rq_relock(rq, rf);
W
Wanpeng Li 已提交
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5671
		/* Find suitable destination for @next, with force if needed. */
5672
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5673
		rq = __migrate_task(rq, rf, next, dest_cpu);
5674
		if (rq != dead_rq) {
5675
			rq_unlock(rq, rf);
5676
			rq = dead_rq;
5677 5678
			*rf = orf;
			rq_relock(rq, rf);
5679
		}
W
Wanpeng Li 已提交
5680
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5681
	}
5682

5683
	rq->stop = stop;
5684
}
L
Linus Torvalds 已提交
5685 5686
#endif /* CONFIG_HOTPLUG_CPU */

5687
void set_rq_online(struct rq *rq)
5688 5689 5690 5691
{
	if (!rq->online) {
		const struct sched_class *class;

5692
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5693 5694 5695 5696 5697 5698 5699 5700 5701
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

5702
void set_rq_offline(struct rq *rq)
5703 5704 5705 5706 5707 5708 5709 5710 5711
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5712
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5713 5714 5715 5716
		rq->online = 0;
	}
}

I
Ingo Molnar 已提交
5717 5718 5719 5720
/*
 * used to mark begin/end of suspend/resume:
 */
static int num_cpus_frozen;
5721

L
Linus Torvalds 已提交
5722
/*
5723 5724 5725
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
5726 5727 5728
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
5729
 */
5730
static void cpuset_cpu_active(void)
5731
{
5732
	if (cpuhp_tasks_frozen) {
5733 5734 5735 5736 5737 5738
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
5739 5740
		partition_sched_domains(1, NULL, NULL);
		if (--num_cpus_frozen)
5741
			return;
5742 5743 5744 5745 5746
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
5747
		cpuset_force_rebuild();
5748
	}
5749
	cpuset_update_active_cpus();
5750
}
5751

5752
static int cpuset_cpu_inactive(unsigned int cpu)
5753
{
5754
	if (!cpuhp_tasks_frozen) {
5755
		if (dl_cpu_busy(cpu))
5756
			return -EBUSY;
5757
		cpuset_update_active_cpus();
5758
	} else {
5759 5760
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
5761
	}
5762
	return 0;
5763 5764
}

5765
int sched_cpu_activate(unsigned int cpu)
5766
{
5767
	struct rq *rq = cpu_rq(cpu);
5768
	struct rq_flags rf;
5769

5770 5771
#ifdef CONFIG_SCHED_SMT
	/*
5772
	 * When going up, increment the number of cores with SMT present.
5773
	 */
5774 5775
	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
		static_branch_inc_cpuslocked(&sched_smt_present);
5776
#endif
5777
	set_cpu_active(cpu, true);
5778

5779
	if (sched_smp_initialized) {
5780
		sched_domains_numa_masks_set(cpu);
5781
		cpuset_cpu_active();
5782
	}
5783 5784 5785 5786 5787

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
I
Ingo Molnar 已提交
5788
	 *    after all CPUs have been brought up.
5789 5790 5791 5792
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
5793
	rq_lock_irqsave(rq, &rf);
5794 5795 5796 5797
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
5798
	rq_unlock_irqrestore(rq, &rf);
5799 5800 5801

	update_max_interval();

5802
	return 0;
5803 5804
}

5805
int sched_cpu_deactivate(unsigned int cpu)
5806 5807 5808
{
	int ret;

5809
	set_cpu_active(cpu, false);
5810 5811 5812 5813 5814 5815 5816
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
5817
	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5818

5819 5820 5821 5822 5823 5824 5825 5826
#ifdef CONFIG_SCHED_SMT
	/*
	 * When going down, decrement the number of cores with SMT present.
	 */
	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
		static_branch_dec_cpuslocked(&sched_smt_present);
#endif

5827 5828 5829 5830 5831 5832 5833
	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
5834
	}
5835 5836
	sched_domains_numa_masks_clear(cpu);
	return 0;
5837 5838
}

5839 5840 5841 5842 5843 5844 5845 5846
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

5847 5848
int sched_cpu_starting(unsigned int cpu)
{
5849
	sched_rq_cpu_starting(cpu);
5850
	sched_tick_start(cpu);
5851
	return 0;
5852 5853
}

5854 5855 5856 5857
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5858
	struct rq_flags rf;
5859 5860 5861

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
5862
	sched_tick_stop(cpu);
5863 5864

	rq_lock_irqsave(rq, &rf);
5865 5866 5867 5868
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
5869
	migrate_tasks(rq, &rf);
5870
	BUG_ON(rq->nr_running != 1);
5871 5872
	rq_unlock_irqrestore(rq, &rf);

5873 5874
	calc_load_migrate(rq);
	update_max_interval();
5875
	nohz_balance_exit_idle(rq);
5876
	hrtick_clear(rq);
5877 5878 5879 5880
	return 0;
}
#endif

L
Linus Torvalds 已提交
5881 5882
void __init sched_init_smp(void)
{
5883 5884
	sched_init_numa();

5885 5886
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
I
Ingo Molnar 已提交
5887
	 * CPU masks are stable and all blatant races in the below code cannot
5888 5889
	 * happen. The hotplug lock is nevertheless taken to satisfy lockdep,
	 * but there won't be any contention on it.
5890
	 */
5891
	cpus_read_lock();
5892
	mutex_lock(&sched_domains_mutex);
P
Peter Zijlstra 已提交
5893
	sched_init_domains(cpu_active_mask);
5894
	mutex_unlock(&sched_domains_mutex);
5895
	cpus_read_unlock();
5896

5897
	/* Move init over to a non-isolated CPU */
5898
	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5899
		BUG();
I
Ingo Molnar 已提交
5900
	sched_init_granularity();
5901

5902
	init_sched_rt_class();
5903
	init_sched_dl_class();
P
Peter Zijlstra 已提交
5904

5905
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
5906
}
5907 5908 5909

static int __init migration_init(void)
{
5910
	sched_rq_cpu_starting(smp_processor_id());
5911
	return 0;
L
Linus Torvalds 已提交
5912
}
5913 5914
early_initcall(migration_init);

L
Linus Torvalds 已提交
5915 5916 5917
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
5918
	sched_init_granularity();
L
Linus Torvalds 已提交
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

5929
#ifdef CONFIG_CGROUP_SCHED
5930 5931 5932 5933
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
5934
struct task_group root_task_group;
5935
LIST_HEAD(task_groups);
5936 5937 5938

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
5939
#endif
P
Peter Zijlstra 已提交
5940

5941
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5942
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
5943

L
Linus Torvalds 已提交
5944 5945
void __init sched_init(void)
{
I
Ingo Molnar 已提交
5946
	int i, j;
5947 5948
	unsigned long alloc_size = 0, ptr;

5949
	wait_bit_init();
5950

5951 5952 5953 5954 5955 5956 5957
#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
5958
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5959 5960

#ifdef CONFIG_FAIR_GROUP_SCHED
5961
		root_task_group.se = (struct sched_entity **)ptr;
5962 5963
		ptr += nr_cpu_ids * sizeof(void **);

5964
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5965
		ptr += nr_cpu_ids * sizeof(void **);
5966

5967
#endif /* CONFIG_FAIR_GROUP_SCHED */
5968
#ifdef CONFIG_RT_GROUP_SCHED
5969
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5970 5971
		ptr += nr_cpu_ids * sizeof(void **);

5972
		root_task_group.rt_rq = (struct rt_rq **)ptr;
5973 5974
		ptr += nr_cpu_ids * sizeof(void **);

5975
#endif /* CONFIG_RT_GROUP_SCHED */
5976
	}
5977
#ifdef CONFIG_CPUMASK_OFFSTACK
5978 5979 5980
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5981 5982
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5983
	}
5984
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
5985

I
Ingo Molnar 已提交
5986 5987
	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5988

G
Gregory Haskins 已提交
5989 5990 5991 5992
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

5993
#ifdef CONFIG_RT_GROUP_SCHED
5994
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5995
			global_rt_period(), global_rt_runtime());
5996
#endif /* CONFIG_RT_GROUP_SCHED */
5997

D
Dhaval Giani 已提交
5998
#ifdef CONFIG_CGROUP_SCHED
5999 6000
	task_group_cache = KMEM_CACHE(task_group, 0);

6001 6002
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6003
	INIT_LIST_HEAD(&root_task_group.siblings);
6004
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
6005
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6006

6007
	for_each_possible_cpu(i) {
6008
		struct rq *rq;
L
Linus Torvalds 已提交
6009 6010

		rq = cpu_rq(i);
6011
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6012
		rq->nr_running = 0;
6013 6014
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6015
		init_cfs_rq(&rq->cfs);
6016 6017
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
6018
#ifdef CONFIG_FAIR_GROUP_SCHED
6019
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6020
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6021
		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
D
Dhaval Giani 已提交
6022
		/*
I
Ingo Molnar 已提交
6023
		 * How much CPU bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6024 6025
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
I
Ingo Molnar 已提交
6026 6027
		 * gets 100% of the CPU resources in the system. This overall
		 * system CPU resource is divided among the tasks of
6028
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6029 6030 6031
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6032
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6033
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
I
Ingo Molnar 已提交
6034
		 * then A0's share of the CPU resource is:
D
Dhaval Giani 已提交
6035
		 *
6036
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6037
		 *
6038 6039
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6040
		 */
6041
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6042
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6043 6044 6045
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6046
#ifdef CONFIG_RT_GROUP_SCHED
6047
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6048
#endif
L
Linus Torvalds 已提交
6049

I
Ingo Molnar 已提交
6050 6051
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6052

L
Linus Torvalds 已提交
6053
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6054
		rq->sd = NULL;
G
Gregory Haskins 已提交
6055
		rq->rd = NULL;
6056
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6057
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
6058
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6059
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6060
		rq->push_cpu = 0;
6061
		rq->cpu = i;
6062
		rq->online = 0;
6063 6064
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6065
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6066 6067 6068

		INIT_LIST_HEAD(&rq->cfs_tasks);

6069
		rq_attach_root(rq, &def_root_domain);
6070
#ifdef CONFIG_NO_HZ_COMMON
6071
		rq->last_load_update_tick = jiffies;
6072
		rq->last_blocked_load_update_tick = jiffies;
6073
		atomic_set(&rq->nohz_flags, 0);
6074
#endif
6075
#endif /* CONFIG_SMP */
6076
		hrtick_rq_init(rq);
L
Linus Torvalds 已提交
6077 6078 6079
		atomic_set(&rq->nr_iowait, 0);
	}

6080
	set_load_weight(&init_task, false);
6081

L
Linus Torvalds 已提交
6082 6083 6084
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
V
Vegard Nossum 已提交
6085
	mmgrab(&init_mm);
L
Linus Torvalds 已提交
6086 6087 6088 6089 6090 6091 6092 6093 6094
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6095 6096 6097

	calc_load_update = jiffies + LOAD_FREQ;

6098
#ifdef CONFIG_SMP
6099
	idle_thread_set_boot_cpu();
6100 6101
#endif
	init_sched_fair_class();
6102

6103 6104
	init_schedstats();

6105 6106
	psi_init();

6107
	scheduler_running = 1;
L
Linus Torvalds 已提交
6108 6109
}

6110
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6111 6112
static inline int preempt_count_equals(int preempt_offset)
{
6113
	int nested = preempt_count() + rcu_preempt_depth();
6114

A
Arnd Bergmann 已提交
6115
	return (nested == preempt_offset);
6116 6117
}

6118
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6119
{
P
Peter Zijlstra 已提交
6120 6121 6122 6123 6124
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
6125
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
6126 6127 6128 6129
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
6130
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
6131

6132 6133 6134 6135 6136
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6137
{
I
Ingo Molnar 已提交
6138 6139 6140
	/* Ratelimiting timestamp: */
	static unsigned long prev_jiffy;

6141
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
6142

I
Ingo Molnar 已提交
6143 6144 6145
	/* WARN_ON_ONCE() by default, no rate limit required: */
	rcu_sleep_check();

6146 6147
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
6148 6149
	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
	    oops_in_progress)
I
Ingo Molnar 已提交
6150
		return;
6151

I
Ingo Molnar 已提交
6152 6153 6154 6155
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

I
Ingo Molnar 已提交
6156
	/* Save this before calling printk(), since that will clobber it: */
6157 6158
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
6159 6160 6161 6162 6163 6164 6165
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6166

6167 6168 6169
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
6170 6171 6172
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6173 6174
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
6175
		pr_err("Preemption disabled at:");
6176
		print_ip_sym(preempt_disable_ip);
6177 6178
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
6179
	dump_stack();
6180
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
6181
}
6182
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
6183 6184 6185
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6186
void normalize_rt_tasks(void)
6187
{
6188
	struct task_struct *g, *p;
6189 6190 6191
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
6192

6193
	read_lock(&tasklist_lock);
6194
	for_each_process_thread(g, p) {
6195 6196 6197
		/*
		 * Only normalize user tasks:
		 */
6198
		if (p->flags & PF_KTHREAD)
6199 6200
			continue;

6201 6202 6203 6204
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
6205

6206
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
6207 6208 6209 6210
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
6211
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
6212
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6213
			continue;
I
Ingo Molnar 已提交
6214
		}
L
Linus Torvalds 已提交
6215

6216
		__sched_setscheduler(p, &attr, false, false);
6217
	}
6218
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6219 6220 6221
}

#endif /* CONFIG_MAGIC_SYSRQ */
6222

6223
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6224
/*
6225
 * These functions are only useful for the IA64 MCA handling, or kdb.
6226 6227 6228 6229 6230 6231 6232 6233 6234
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
I
Ingo Molnar 已提交
6235
 * curr_task - return the current task for a given CPU.
6236 6237 6238
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6239 6240
 *
 * Return: The current task for @cpu.
6241
 */
6242
struct task_struct *curr_task(int cpu)
6243 6244 6245 6246
{
	return cpu_curr(cpu);
}

6247 6248 6249
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6250
/**
I
Ingo Molnar 已提交
6251
 * set_curr_task - set the current task for a given CPU.
6252 6253 6254 6255
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6256
 * are serviced on a separate stack. It allows the architecture to switch the
I
Ingo Molnar 已提交
6257
 * notion of the current task on a CPU in a non-blocking manner. This function
6258 6259 6260 6261 6262 6263 6264
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6265
void ia64_set_curr_task(int cpu, struct task_struct *p)
6266 6267 6268 6269 6270
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6271

D
Dhaval Giani 已提交
6272
#ifdef CONFIG_CGROUP_SCHED
6273 6274 6275
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6276
static void sched_free_group(struct task_group *tg)
6277 6278 6279
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6280
	autogroup_free(tg);
6281
	kmem_cache_free(task_group_cache, tg);
6282 6283 6284
}

/* allocate runqueue etc for a new task group */
6285
struct task_group *sched_create_group(struct task_group *parent)
6286 6287 6288
{
	struct task_group *tg;

6289
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6290 6291 6292
	if (!tg)
		return ERR_PTR(-ENOMEM);

6293
	if (!alloc_fair_sched_group(tg, parent))
6294 6295
		goto err;

6296
	if (!alloc_rt_sched_group(tg, parent))
6297 6298
		goto err;

6299 6300 6301
	return tg;

err:
6302
	sched_free_group(tg);
6303 6304 6305 6306 6307 6308 6309
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6310
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6311
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6312

I
Ingo Molnar 已提交
6313 6314
	/* Root should already exist: */
	WARN_ON(!parent);
P
Peter Zijlstra 已提交
6315 6316 6317

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6318
	list_add_rcu(&tg->siblings, &parent->children);
6319
	spin_unlock_irqrestore(&task_group_lock, flags);
6320 6321

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
6322 6323
}

6324
/* rcu callback to free various structures associated with a task group */
6325
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6326
{
I
Ingo Molnar 已提交
6327
	/* Now it should be safe to free those cfs_rqs: */
6328
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6329 6330
}

6331
void sched_destroy_group(struct task_group *tg)
6332
{
I
Ingo Molnar 已提交
6333
	/* Wait for possible concurrent references to cfs_rqs complete: */
6334
	call_rcu(&tg->rcu, sched_free_group_rcu);
6335 6336 6337
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6338
{
6339
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
6340

I
Ingo Molnar 已提交
6341
	/* End participation in shares distribution: */
6342
	unregister_fair_sched_group(tg);
6343 6344

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6345
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6346
	list_del_rcu(&tg->siblings);
6347
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6348 6349
}

6350
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
6351
{
P
Peter Zijlstra 已提交
6352
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6353

6354 6355 6356 6357 6358 6359
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
6360 6361 6362 6363
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6364
#ifdef CONFIG_FAIR_GROUP_SCHED
6365 6366
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
6367
	else
P
Peter Zijlstra 已提交
6368
#endif
6369
		set_task_rq(tsk, task_cpu(tsk));
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
6381 6382
	int queued, running, queue_flags =
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6383 6384 6385 6386
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);
6387
	update_rq_clock(rq);
6388 6389 6390 6391 6392

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
6393
		dequeue_task(rq, tsk, queue_flags);
6394
	if (running)
6395 6396
		put_prev_task(rq, tsk);

6397 6398 6399 6400 6401
	/* decrease old group */
	if ((!queued && task_contributes_to_load(tsk)) ||
	    (tsk->state == TASK_WAKING && tsk->sched_contributes_to_load))
		update_nr_uninterruptible(tsk, -1);

6402
	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
6403

6404 6405 6406 6407 6408
	/* increase new group after change */
	if ((!queued && task_contributes_to_load(tsk)) ||
	    (tsk->state == TASK_WAKING && tsk->sched_contributes_to_load))
		update_nr_uninterruptible(tsk, 1);

6409
	if (queued)
6410
		enqueue_task(rq, tsk, queue_flags);
6411
	if (running)
6412
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6413

6414
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
6415
}
6416

6417
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6418
{
6419
	return css ? container_of(css, struct task_group, css) : NULL;
6420 6421
}

6422 6423
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6424
{
6425 6426
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
6427

6428
	if (!parent) {
6429
		/* This is early initialization for the top cgroup */
6430
		return &root_task_group.css;
6431 6432
	}

6433
	tg = sched_create_group(parent);
6434 6435 6436 6437 6438 6439
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
/* Expose task group only after completing cgroup initialization */
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css->parent);

	if (parent)
		sched_online_group(tg, parent);
	return 0;
}

6451
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6452
{
6453
	struct task_group *tg = css_tg(css);
6454

6455
	sched_offline_group(tg);
6456 6457
}

6458
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6459
{
6460
	struct task_group *tg = css_tg(css);
6461

6462 6463 6464 6465
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
6466 6467
}

6468 6469 6470 6471
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
6472
static void cpu_cgroup_fork(struct task_struct *task)
6473
{
6474 6475 6476 6477 6478
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

6479
	update_rq_clock(rq);
6480 6481 6482
	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
6483 6484
}

6485
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6486
{
6487
	struct task_struct *task;
6488
	struct cgroup_subsys_state *css;
6489
	int ret = 0;
6490

6491
	cgroup_taskset_for_each(task, css, tset) {
6492
#ifdef CONFIG_RT_GROUP_SCHED
6493
		if (!sched_rt_can_attach(css_tg(css), task))
6494
			return -EINVAL;
6495
#endif
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
6512
	}
6513
	return ret;
6514
}
6515

6516
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6517
{
6518
	struct task_struct *task;
6519
	struct cgroup_subsys_state *css;
6520

6521
	cgroup_taskset_for_each(task, css, tset)
6522
		sched_move_task(task);
6523 6524
}

6525
#ifdef CONFIG_FAIR_GROUP_SCHED
6526 6527
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
6528
{
6529 6530
	if (shareval > scale_load_down(ULONG_MAX))
		shareval = MAX_SHARES;
6531
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6532 6533
}

6534 6535
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
6536
{
6537
	struct task_group *tg = css_tg(css);
6538

6539
	return (u64) scale_load_down(tg->shares);
6540
}
6541 6542

#ifdef CONFIG_CFS_BANDWIDTH
6543 6544
static DEFINE_MUTEX(cfs_constraints_mutex);

6545 6546 6547
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

6548 6549
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

6550 6551
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
6552
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6553
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

6574 6575 6576 6577 6578
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
6579 6580 6581 6582 6583
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

6584
	runtime_enabled = quota != RUNTIME_INF;
6585
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6586 6587 6588 6589 6590 6591
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
6592 6593 6594
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
6595

P
Paul Turner 已提交
6596
	__refill_cfs_bandwidth_runtime(cfs_b);
I
Ingo Molnar 已提交
6597 6598

	/* Restart the period timer (if active) to handle new period expiry: */
P
Peter Zijlstra 已提交
6599 6600
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
I
Ingo Molnar 已提交
6601

6602 6603
	raw_spin_unlock_irq(&cfs_b->lock);

6604
	for_each_online_cpu(i) {
6605
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6606
		struct rq *rq = cfs_rq->rq;
6607
		struct rq_flags rf;
6608

6609
		rq_lock_irq(rq, &rf);
6610
		cfs_rq->runtime_enabled = runtime_enabled;
6611
		cfs_rq->runtime_remaining = 0;
6612

6613
		if (cfs_rq->throttled)
6614
			unthrottle_cfs_rq(cfs_rq);
6615
		rq_unlock_irq(rq, &rf);
6616
	}
6617 6618
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
6619 6620
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
6621
	put_online_cpus();
6622

6623
	return ret;
6624 6625 6626 6627 6628 6629
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

6630
	period = ktime_to_ns(tg->cfs_bandwidth.period);
6631 6632
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
6633
	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
6634
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6635 6636
	else
		return -EINVAL;
6637 6638 6639 6640 6641 6642 6643 6644

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

6645
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6646 6647
		return -1;

6648
	quota_us = tg->cfs_bandwidth.quota;
6649 6650 6651 6652 6653 6654 6655 6656 6657
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

6658 6659 6660
	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
		return -EINVAL;

6661
	period = (u64)cfs_period_us * NSEC_PER_USEC;
6662
	quota = tg->cfs_bandwidth.quota;
6663 6664 6665 6666 6667 6668 6669 6670

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

6671
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6672 6673 6674 6675 6676
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

6677 6678
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
6679
{
6680
	return tg_get_cfs_quota(css_tg(css));
6681 6682
}

6683 6684
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
6685
{
6686
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6687 6688
}

6689 6690
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6691
{
6692
	return tg_get_cfs_period(css_tg(css));
6693 6694
}

6695 6696
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
6697
{
6698
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6699 6700
}

6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
6733
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6734 6735 6736 6737 6738
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
6739
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6740 6741

		quota = normalize_cfs_quota(tg, d);
6742
		parent_quota = parent_b->hierarchical_quota;
6743 6744

		/*
6745 6746
		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
		 * always take the min.  On cgroup1, only inherit when no
I
Ingo Molnar 已提交
6747
		 * limit is set:
6748
		 */
6749 6750 6751 6752 6753 6754 6755 6756
		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
			quota = min(quota, parent_quota);
		} else {
			if (quota == RUNTIME_INF)
				quota = parent_quota;
			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
				return -EINVAL;
		}
6757
	}
6758
	cfs_b->hierarchical_quota = quota;
6759 6760 6761 6762 6763 6764

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
6765
	int ret;
6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

6777 6778 6779 6780 6781
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6782
}
6783

6784
static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6785
{
6786
	struct task_group *tg = css_tg(seq_css(sf));
6787
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6788

6789 6790 6791
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6792

6793 6794 6795 6796 6797 6798 6799 6800 6801 6802
	if (schedstat_enabled() && tg != &root_task_group) {
		u64 ws = 0;
		int i;

		for_each_possible_cpu(i)
			ws += schedstat_val(tg->se[i]->statistics.wait_sum);

		seq_printf(sf, "wait_sum %llu\n", ws);
	}

6803 6804
	return 0;
}
6805
#endif /* CONFIG_CFS_BANDWIDTH */
6806
#endif /* CONFIG_FAIR_GROUP_SCHED */
6807

6808
#ifdef CONFIG_RT_GROUP_SCHED
6809 6810
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
6811
{
6812
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
6813 6814
}

6815 6816
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
6817
{
6818
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
6819
}
6820

6821 6822
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
6823
{
6824
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6825 6826
}

6827 6828
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6829
{
6830
	return sched_group_rt_period(css_tg(css));
6831
}
6832
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
6833

6834
static struct cftype cpu_legacy_files[] = {
6835
#ifdef CONFIG_FAIR_GROUP_SCHED
6836 6837
	{
		.name = "shares",
6838 6839
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
6840
	},
6841
#endif
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
6853 6854
	{
		.name = "stat",
6855
		.seq_show = cpu_cfs_stat_show,
6856
	},
6857
#endif
6858
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6859
	{
P
Peter Zijlstra 已提交
6860
		.name = "rt_runtime_us",
6861 6862
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
6863
	},
6864 6865
	{
		.name = "rt_period_us",
6866 6867
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
6868
	},
6869
#endif
I
Ingo Molnar 已提交
6870
	{ }	/* Terminate */
6871 6872
};

6873 6874
static int cpu_extra_stat_show(struct seq_file *sf,
			       struct cgroup_subsys_state *css)
6875 6876 6877
{
#ifdef CONFIG_CFS_BANDWIDTH
	{
6878
		struct task_group *tg = css_tg(css);
6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		u64 throttled_usec;

		throttled_usec = cfs_b->throttled_time;
		do_div(throttled_usec, NSEC_PER_USEC);

		seq_printf(sf, "nr_periods %d\n"
			   "nr_throttled %d\n"
			   "throttled_usec %llu\n",
			   cfs_b->nr_periods, cfs_b->nr_throttled,
			   throttled_usec);
	}
#endif
	return 0;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	struct task_group *tg = css_tg(css);
	u64 weight = scale_load_down(tg->shares);

	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
}

static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cft, u64 weight)
{
	/*
	 * cgroup weight knobs should use the common MIN, DFL and MAX
	 * values which are 1, 100 and 10000 respectively.  While it loses
	 * a bit of range on both ends, it maps pretty well onto the shares
	 * value used by scheduler and the round-trip conversions preserve
	 * the original value over the entire range.
	 */
	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
		return -ERANGE;

	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);

	return sched_group_set_shares(css_tg(css), scale_load(weight));
}

static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
				    struct cftype *cft)
{
	unsigned long weight = scale_load_down(css_tg(css)->shares);
	int last_delta = INT_MAX;
	int prio, delta;

	/* find the closest nice value to the current weight */
	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
		delta = abs(sched_prio_to_weight[prio] - weight);
		if (delta >= last_delta)
			break;
		last_delta = delta;
	}

	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
}

static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
				     struct cftype *cft, s64 nice)
{
	unsigned long weight;
6945
	int idx;
6946 6947 6948 6949

	if (nice < MIN_NICE || nice > MAX_NICE)
		return -ERANGE;

6950 6951 6952 6953
	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
	idx = array_index_nospec(idx, 40);
	weight = sched_prio_to_weight[idx];

6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974
	return sched_group_set_shares(css_tg(css), scale_load(weight));
}
#endif

static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
						  long period, long quota)
{
	if (quota < 0)
		seq_puts(sf, "max");
	else
		seq_printf(sf, "%ld", quota);

	seq_printf(sf, " %ld\n", period);
}

/* caller should put the current value in *@periodp before calling */
static int __maybe_unused cpu_period_quota_parse(char *buf,
						 u64 *periodp, u64 *quotap)
{
	char tok[21];	/* U64_MAX */

6975
	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
		return -EINVAL;

	*periodp *= NSEC_PER_USEC;

	if (sscanf(tok, "%llu", quotap))
		*quotap *= NSEC_PER_USEC;
	else if (!strcmp(tok, "max"))
		*quotap = RUNTIME_INF;
	else
		return -EINVAL;

	return 0;
}

#ifdef CONFIG_CFS_BANDWIDTH
static int cpu_max_show(struct seq_file *sf, void *v)
{
	struct task_group *tg = css_tg(seq_css(sf));

	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
	return 0;
}

static ssize_t cpu_max_write(struct kernfs_open_file *of,
			     char *buf, size_t nbytes, loff_t off)
{
	struct task_group *tg = css_tg(of_css(of));
	u64 period = tg_get_cfs_period(tg);
	u64 quota;
	int ret;

	ret = cpu_period_quota_parse(buf, &period, &quota);
	if (!ret)
		ret = tg_set_cfs_bandwidth(tg, period, quota);
	return ret ?: nbytes;
}
#endif

static struct cftype cpu_files[] = {
#ifdef CONFIG_FAIR_GROUP_SCHED
	{
		.name = "weight",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = cpu_weight_read_u64,
		.write_u64 = cpu_weight_write_u64,
	},
	{
		.name = "weight.nice",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_s64 = cpu_weight_nice_read_s64,
		.write_s64 = cpu_weight_nice_write_s64,
	},
#endif
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = cpu_max_show,
		.write = cpu_max_write,
	},
#endif
	{ }	/* terminate */
};

7040
struct cgroup_subsys cpu_cgrp_subsys = {
7041
	.css_alloc	= cpu_cgroup_css_alloc,
7042
	.css_online	= cpu_cgroup_css_online,
7043
	.css_released	= cpu_cgroup_css_released,
7044
	.css_free	= cpu_cgroup_css_free,
7045
	.css_extra_stat_show = cpu_extra_stat_show,
7046
	.fork		= cpu_cgroup_fork,
7047 7048
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7049
	.legacy_cftypes	= cpu_legacy_files,
7050
	.dfl_cftypes	= cpu_files,
7051
	.early_init	= true,
7052
	.threaded	= true,
7053 7054
};

7055
#endif	/* CONFIG_CGROUP_SCHED */
7056

7057 7058 7059 7060 7061
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};
7103 7104

#undef CREATE_TRACE_POINTS