core.c 170.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3
 *
I
Ingo Molnar 已提交
4
 *  Core kernel scheduler code and related syscalls
L
Linus Torvalds 已提交
5 6 7
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 */
8
#include <linux/sched.h>
9
#include <linux/sched/clock.h>
10
#include <uapi/linux/sched/types.h>
11
#include <linux/sched/loadavg.h>
12
#include <linux/sched/hotplug.h>
13
#include <linux/wait_bit.h>
L
Linus Torvalds 已提交
14
#include <linux/cpuset.h>
15
#include <linux/delayacct.h>
16
#include <linux/init_task.h>
17
#include <linux/context_tracking.h>
18
#include <linux/rcupdate_wait.h>
19
#include <linux/compat.h>
20 21 22 23 24 25

#include <linux/blkdev.h>
#include <linux/kprobes.h>
#include <linux/mmu_context.h>
#include <linux/module.h>
#include <linux/nmi.h>
26
#include <linux/prefetch.h>
27 28 29
#include <linux/profile.h>
#include <linux/security.h>
#include <linux/syscalls.h>
30
#include <linux/sched/isolation.h>
L
Linus Torvalds 已提交
31

32
#include <asm/switch_to.h>
33
#include <asm/tlb.h>
34 35 36
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
37

38
#include "sched.h"
39
#include "../workqueue_internal.h"
40
#include "../smpboot.h"
41

42
#define CREATE_TRACE_POINTS
43
#include <trace/events/sched.h>
44

45
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46

47
#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
I
Ingo Molnar 已提交
48 49
/*
 * Debugging: various feature bits
50 51 52 53
 *
 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
 * sysctl_sched_features, defined in sched.h, to allow constants propagation
 * at compile time and compiler optimization based on features default.
I
Ingo Molnar 已提交
54
 */
P
Peter Zijlstra 已提交
55 56
#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |
I
Ingo Molnar 已提交
57
const_debug unsigned int sysctl_sched_features =
58
#include "features.h"
P
Peter Zijlstra 已提交
59 60
	0;
#undef SCHED_FEAT
61
#endif
P
Peter Zijlstra 已提交
62

63 64 65 66 67 68
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

69 70 71 72 73 74 75 76
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
77
/*
I
Ingo Molnar 已提交
78
 * period over which we measure -rt task CPU usage in us.
P
Peter Zijlstra 已提交
79 80
 * default: 1s
 */
P
Peter Zijlstra 已提交
81
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
82

83
__read_mostly int scheduler_running;
84

P
Peter Zijlstra 已提交
85 86 87 88 89
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
90

91 92 93
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
94
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
95 96 97 98 99 100 101 102 103 104
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
105
			rq_pin_lock(rq, rf);
106 107 108 109 110 111 112 113 114 115 116 117
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
118
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
119 120 121 122 123 124
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
125
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
I
Ingo Molnar 已提交
141
		 * If we observe the new CPU in task_rq_lock, the acquire will
142 143 144
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
145
			rq_pin_lock(rq, rf);
146 147 148
			return rq;
		}
		raw_spin_unlock(&rq->lock);
149
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
150 151 152 153 154 155

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
/*
 * RQ-clock updating methods:
 */

static void update_rq_clock_task(struct rq *rq, s64 delta)
{
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_key_false((&paravirt_steal_rq_enabled))) {
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

	rq->clock_task += delta;

#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
}

void update_rq_clock(struct rq *rq)
{
	s64 delta;

	lockdep_assert_held(&rq->lock);

	if (rq->clock_update_flags & RQCF_ACT_SKIP)
		return;

#ifdef CONFIG_SCHED_DEBUG
224 225
	if (sched_feat(WARN_DOUBLE_CLOCK))
		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
226 227
	rq->clock_update_flags |= RQCF_UPDATED;
#endif
228

229 230 231 232 233 234 235 236
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	if (delta < 0)
		return;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
}


P
Peter Zijlstra 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
255
	struct rq_flags rf;
P
Peter Zijlstra 已提交
256 257 258

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

259
	rq_lock(rq, &rf);
260
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
261
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262
	rq_unlock(rq, &rf);
P
Peter Zijlstra 已提交
263 264 265 266

	return HRTIMER_NORESTART;
}

267
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
268

269
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
270 271 272
{
	struct hrtimer *timer = &rq->hrtick_timer;

273
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
274 275
}

276 277 278 279
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
280
{
281
	struct rq *rq = arg;
282
	struct rq_flags rf;
283

284
	rq_lock(rq, &rf);
P
Peter Zijlstra 已提交
285
	__hrtick_restart(rq);
286
	rq->hrtick_csd_pending = 0;
287
	rq_unlock(rq, &rf);
288 289
}

290 291 292 293 294
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
295
void hrtick_start(struct rq *rq, u64 delay)
296
{
297
	struct hrtimer *timer = &rq->hrtick_timer;
298 299 300 301 302 303 304 305 306
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
307

308
	hrtimer_set_expires(timer, time);
309 310

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
311
		__hrtick_restart(rq);
312
	} else if (!rq->hrtick_csd_pending) {
313
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 315
		rq->hrtick_csd_pending = 1;
	}
316 317
}

318 319 320 321 322 323
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
324
void hrtick_start(struct rq *rq, u64 delay)
325
{
W
Wanpeng Li 已提交
326 327 328 329 330
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
331 332
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
333 334
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
335

336
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
337
{
338 339
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
340

341 342 343 344
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
345

346 347
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
348
}
A
Andrew Morton 已提交
349
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
350 351 352 353 354 355 356
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
357
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

377
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 379 380 381 382 383 384 385 386 387
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
388 389 390 391 392 393 394 395 396 397

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
398
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399 400 401 402 403 404 405 406 407 408 409 410 411 412

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

413 414 415 416 417 418
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
419 420 421 422 423 424 425

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
426 427
#endif

428 429 430 431 432 433 434 435 436 437
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
438
	 * barrier implied by the wakeup in wake_up_q().
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
I
Ingo Molnar 已提交
461
		/* Task can safely be re-inserted now: */
462 463 464 465 466 467 468 469 470 471 472 473
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
474
/*
475
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
476 477 478 479 480
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
481
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
482
{
483
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
484 485
	int cpu;

486
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
487

488
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
489 490
		return;

491
	cpu = cpu_of(rq);
492

493
	if (cpu == smp_processor_id()) {
494
		set_tsk_need_resched(curr);
495
		set_preempt_need_resched();
I
Ingo Molnar 已提交
496
		return;
497
	}
I
Ingo Molnar 已提交
498

499
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
500
		smp_send_reschedule(cpu);
501 502
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
503 504
}

505
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
506 507 508 509
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

510
	raw_spin_lock_irqsave(&rq->lock, flags);
511
	resched_curr(rq);
512
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
513
}
514

515
#ifdef CONFIG_SMP
516
#ifdef CONFIG_NO_HZ_COMMON
517
/*
I
Ingo Molnar 已提交
518 519
 * In the semi idle case, use the nearest busy CPU for migrating timers
 * from an idle CPU.  This is good for power-savings.
520 521
 *
 * We don't do similar optimization for completely idle system, as
I
Ingo Molnar 已提交
522 523
 * selecting an idle CPU will add more delays to the timers than intended
 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
524
 */
525
int get_nohz_timer_target(void)
526
{
527
	int i, cpu = smp_processor_id();
528 529
	struct sched_domain *sd;

530
	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
531 532
		return cpu;

533
	rcu_read_lock();
534
	for_each_domain(cpu, sd) {
535
		for_each_cpu(i, sched_domain_span(sd)) {
536 537 538
			if (cpu == i)
				continue;

539
			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
540 541 542 543
				cpu = i;
				goto unlock;
			}
		}
544
	}
545

546 547
	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
548 549
unlock:
	rcu_read_unlock();
550 551
	return cpu;
}
I
Ingo Molnar 已提交
552

553 554 555 556 557 558 559 560 561 562
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
563
static void wake_up_idle_cpu(int cpu)
564 565 566 567 568 569
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

570
	if (set_nr_and_not_polling(rq->idle))
571
		smp_send_reschedule(cpu);
572 573
	else
		trace_sched_wake_idle_without_ipi(cpu);
574 575
}

576
static bool wake_up_full_nohz_cpu(int cpu)
577
{
578 579 580 581 582 583
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
584 585
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
586
	if (tick_nohz_full_cpu(cpu)) {
587 588
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
589
			tick_nohz_full_kick_cpu(cpu);
590 591 592 593 594 595
		return true;
	}

	return false;
}

596 597 598 599 600
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
601 602
void wake_up_nohz_cpu(int cpu)
{
603
	if (!wake_up_full_nohz_cpu(cpu))
604 605 606
		wake_up_idle_cpu(cpu);
}

607
static inline bool got_nohz_idle_kick(void)
608
{
609
	int cpu = smp_processor_id();
610 611 612 613 614 615 616 617 618 619 620 621 622

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
623 624
}

625
#else /* CONFIG_NO_HZ_COMMON */
626

627
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
628
{
629
	return false;
P
Peter Zijlstra 已提交
630 631
}

632
#endif /* CONFIG_NO_HZ_COMMON */
633

634
#ifdef CONFIG_NO_HZ_FULL
635
bool sched_can_stop_tick(struct rq *rq)
636
{
637 638 639 640 641 642
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

643
	/*
644 645
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
646
	 */
647 648 649 650 651
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
652 653
	}

654 655 656 657 658 659 660 661 662 663 664 665 666 667
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
668
		return false;
669

670
	return true;
671 672
}
#endif /* CONFIG_NO_HZ_FULL */
673

674
void sched_avg_update(struct rq *rq)
675
{
676 677
	s64 period = sched_avg_period();

678
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
679 680 681 682 683 684
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
685 686 687
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
688 689
}

690
#endif /* CONFIG_SMP */
691

692 693
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
694
/*
695 696 697 698
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
699
 */
700
int walk_tg_tree_from(struct task_group *from,
701
			     tg_visitor down, tg_visitor up, void *data)
702 703
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
704
	int ret;
705

706 707
	parent = from;

708
down:
P
Peter Zijlstra 已提交
709 710
	ret = (*down)(parent, data);
	if (ret)
711
		goto out;
712 713 714 715 716 717 718
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
719
	ret = (*up)(parent, data);
720 721
	if (ret || parent == from)
		goto out;
722 723 724 725 726

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
727
out:
P
Peter Zijlstra 已提交
728
	return ret;
729 730
}

731
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
732
{
733
	return 0;
P
Peter Zijlstra 已提交
734
}
735 736
#endif

737
static void set_load_weight(struct task_struct *p, bool update_load)
738
{
N
Nikhil Rao 已提交
739 740 741
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
742 743 744
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
745
	if (idle_policy(p->policy)) {
746
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
747
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
748 749
		return;
	}
750

751 752 753 754 755 756 757 758 759 760
	/*
	 * SCHED_OTHER tasks have to update their load when changing their
	 * weight
	 */
	if (update_load && p->sched_class == &fair_sched_class) {
		reweight_task(p, prio);
	} else {
		load->weight = scale_load(sched_prio_to_weight[prio]);
		load->inv_weight = sched_prio_to_wmult[prio];
	}
761 762
}

763
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764
{
765 766 767
	if (!(flags & ENQUEUE_NOCLOCK))
		update_rq_clock(rq);

768 769
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
770

771
	p->sched_class->enqueue_task(rq, p, flags);
772 773
}

774
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
775
{
776 777 778
	if (!(flags & DEQUEUE_NOCLOCK))
		update_rq_clock(rq);

779 780
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
781

782
	p->sched_class->dequeue_task(rq, p, flags);
783 784
}

785
void activate_task(struct rq *rq, struct task_struct *p, int flags)
786 787 788 789
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

790
	enqueue_task(rq, p, flags);
791 792
}

793
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
794 795 796 797
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

798
	dequeue_task(rq, p, flags);
799 800
}

801
/*
I
Ingo Molnar 已提交
802
 * __normal_prio - return the priority that is based on the static prio
803 804 805
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
806
	return p->static_prio;
807 808
}

809 810 811 812 813 814 815
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
816
static inline int normal_prio(struct task_struct *p)
817 818 819
{
	int prio;

820 821 822
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
823 824 825 826 827 828 829 830 831 832 833 834 835
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
836
static int effective_prio(struct task_struct *p)
837 838 839 840 841 842 843 844 845 846 847 848
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
849 850 851
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
852 853
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
854
 */
855
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
856 857 858 859
{
	return cpu_curr(task_cpu(p)) == p;
}

860
/*
861 862 863 864 865
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
866
 */
867 868
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
869
				       int oldprio)
870 871 872
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
873
			prev_class->switched_from(rq, p);
874

P
Peter Zijlstra 已提交
875
		p->sched_class->switched_to(rq, p);
876
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
877
		p->sched_class->prio_changed(rq, p, oldprio);
878 879
}

880
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
881 882 883 884 885 886 887 888 889 890
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
891
				resched_curr(rq);
892 893 894 895 896 897 898 899 900
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
901
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
902
		rq_clock_skip_update(rq, true);
903 904
}

L
Linus Torvalds 已提交
905
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
925 926
static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
				   struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
927 928 929 930
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
931
	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
932
	set_task_cpu(p, new_cpu);
933
	rq_unlock(rq, rf);
P
Peter Zijlstra 已提交
934 935 936

	rq = cpu_rq(new_cpu);

937
	rq_lock(rq, rf);
P
Peter Zijlstra 已提交
938 939
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
940
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
941 942 943 944 945 946 947 948 949 950 951
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
I
Ingo Molnar 已提交
952
 * Move (not current) task off this CPU, onto the destination CPU. We're doing
P
Peter Zijlstra 已提交
953 954 955 956 957 958 959
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
960 961
static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
				 struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
962
{
963 964 965 966 967 968 969
	if (p->flags & PF_KTHREAD) {
		if (unlikely(!cpu_online(dest_cpu)))
			return rq;
	} else {
		if (unlikely(!cpu_active(dest_cpu)))
			return rq;
	}
P
Peter Zijlstra 已提交
970 971

	/* Affinity changed (again). */
972
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
973
		return rq;
P
Peter Zijlstra 已提交
974

975
	update_rq_clock(rq);
976
	rq = move_queued_task(rq, rf, p, dest_cpu);
977 978

	return rq;
P
Peter Zijlstra 已提交
979 980 981 982 983 984 985 986 987 988
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
989 990
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
991
	struct rq_flags rf;
P
Peter Zijlstra 已提交
992 993

	/*
I
Ingo Molnar 已提交
994 995
	 * The original target CPU might have gone down and we might
	 * be on another CPU but it doesn't matter.
P
Peter Zijlstra 已提交
996 997 998 999 1000 1001 1002 1003
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1004 1005

	raw_spin_lock(&p->pi_lock);
1006
	rq_lock(rq, &rf);
1007 1008 1009 1010 1011
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
1012 1013
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
1014
			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1015 1016 1017
		else
			p->wake_cpu = arg->dest_cpu;
	}
1018
	rq_unlock(rq, &rf);
1019 1020
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1021 1022 1023 1024
	local_irq_enable();
	return 0;
}

1025 1026 1027 1028 1029
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1030 1031 1032 1033 1034
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1035 1036
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1037 1038 1039
	struct rq *rq = task_rq(p);
	bool queued, running;

1040
	lockdep_assert_held(&p->pi_lock);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1051
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1052 1053 1054 1055
	}
	if (running)
		put_prev_task(rq, p);

1056
	p->sched_class->set_cpus_allowed(p, new_mask);
1057 1058

	if (queued)
1059
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1060
	if (running)
1061
		set_curr_task(rq, p);
1062 1063
}

P
Peter Zijlstra 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1073 1074
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1075
{
1076
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1077
	unsigned int dest_cpu;
1078 1079
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1080 1081
	int ret = 0;

1082
	rq = task_rq_lock(p, &rf);
1083
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1084

1085 1086 1087 1088 1089 1090 1091
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1092 1093 1094 1095 1096 1097 1098 1099 1100
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1101 1102 1103
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1104
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1105 1106 1107 1108 1109 1110
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1111 1112 1113
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
I
Ingo Molnar 已提交
1114
		 * !active we want to ensure they are strict per-CPU threads.
1115 1116 1117 1118 1119 1120
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1121 1122 1123 1124
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1125
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1126 1127 1128
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1129
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1130 1131 1132
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1133 1134 1135 1136 1137
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1138
		rq = move_queued_task(rq, &rf, p, dest_cpu);
1139
	}
P
Peter Zijlstra 已提交
1140
out:
1141
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1142 1143 1144

	return ret;
}
1145 1146 1147 1148 1149

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1150 1151
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1152
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1153
{
1154 1155 1156 1157 1158
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1159
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1160
			!p->on_rq);
1161

1162 1163 1164 1165 1166 1167 1168 1169 1170
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1171
#ifdef CONFIG_LOCKDEP
1172 1173 1174 1175 1176
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1177
	 * see task_group().
1178 1179 1180 1181
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1182 1183 1184
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1185 1186 1187 1188
	/*
	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
	 */
	WARN_ON_ONCE(!cpu_online(new_cpu));
1189 1190
#endif

1191
	trace_sched_migrate_task(p, new_cpu);
1192

1193
	if (task_cpu(p) != new_cpu) {
1194
		if (p->sched_class->migrate_task_rq)
1195
			p->sched_class->migrate_task_rq(p);
1196
		p->se.nr_migrations++;
1197
		perf_event_task_migrate(p);
1198
	}
I
Ingo Molnar 已提交
1199 1200

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1201 1202
}

1203 1204
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1205
	if (task_on_rq_queued(p)) {
1206
		struct rq *src_rq, *dst_rq;
1207
		struct rq_flags srf, drf;
1208 1209 1210 1211

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1212 1213 1214
		rq_pin_lock(src_rq, &srf);
		rq_pin_lock(dst_rq, &drf);

1215
		p->on_rq = TASK_ON_RQ_MIGRATING;
1216 1217 1218
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1219
		p->on_rq = TASK_ON_RQ_QUEUED;
1220
		check_preempt_curr(dst_rq, p, 0);
1221 1222 1223 1224

		rq_unpin_lock(dst_rq, &drf);
		rq_unpin_lock(src_rq, &srf);

1225 1226 1227 1228
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
I
Ingo Molnar 已提交
1229
		 * previous CPU our target instead of where it really is.
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1246 1247 1248
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1249 1250 1251
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1252 1253
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1254
	double_rq_lock(src_rq, dst_rq);
1255

1256 1257 1258 1259 1260 1261
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

1262
	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1263 1264
		goto unlock;

1265
	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1266 1267 1268 1269 1270 1271 1272 1273 1274
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1275 1276
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1299 1300 1301 1302
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1303 1304 1305
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

1306
	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1307 1308
		goto out;

1309
	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1310 1311
		goto out;

1312
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1313 1314 1315 1316 1317 1318
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1319 1320 1321
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1322 1323 1324 1325 1326 1327 1328
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1329 1330 1331 1332 1333 1334
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1335
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1336
{
1337
	int running, queued;
1338
	struct rq_flags rf;
R
Roland McGrath 已提交
1339
	unsigned long ncsw;
1340
	struct rq *rq;
L
Linus Torvalds 已提交
1341

1342 1343 1344 1345 1346 1347 1348 1349
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1362 1363 1364
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1365
			cpu_relax();
R
Roland McGrath 已提交
1366
		}
1367

1368 1369 1370 1371 1372
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1373
		rq = task_rq_lock(p, &rf);
1374
		trace_sched_wait_task(p);
1375
		running = task_running(rq, p);
1376
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1377
		ncsw = 0;
1378
		if (!match_state || p->state == match_state)
1379
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1380
		task_rq_unlock(rq, p, &rf);
1381

R
Roland McGrath 已提交
1382 1383 1384 1385 1386 1387
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1398

1399 1400 1401 1402 1403
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1404
		 * So if it was still runnable (but just not actively
1405 1406 1407
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1408
		if (unlikely(queued)) {
T
Thomas Gleixner 已提交
1409
			ktime_t to = NSEC_PER_SEC / HZ;
1410 1411 1412

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1413 1414
			continue;
		}
1415

1416 1417 1418 1419 1420 1421 1422
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1423 1424

	return ncsw;
L
Linus Torvalds 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1434
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1440
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1450
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1451

1452
/*
1453
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1454 1455 1456 1457 1458 1459 1460
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
I
Ingo Molnar 已提交
1461
 *    CPU isn't yet part of the sched domains, and balancing will not
1462 1463
 *    see it.
 *
I
Ingo Molnar 已提交
1464
 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1465
 *    avoid the load balancer to place new tasks on the to be removed
I
Ingo Molnar 已提交
1466
 *    CPU. Existing tasks will remain running there and will be taken
1467 1468 1469 1470 1471 1472
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1473
 */
1474 1475
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1476 1477
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1478 1479
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1480

1481
	/*
I
Ingo Molnar 已提交
1482 1483 1484
	 * If the node that the CPU is on has been offlined, cpu_to_node()
	 * will return -1. There is no CPU on the node, and we should
	 * select the CPU on the other node.
1485 1486 1487 1488 1489 1490 1491 1492
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
1493
			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1494 1495
				return dest_cpu;
		}
1496
	}
1497

1498 1499
	for (;;) {
		/* Any allowed, online CPU? */
1500
		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1501 1502 1503
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1504 1505 1506
				continue;
			goto out;
		}
1507

1508
		/* No more Mr. Nice Guy. */
1509 1510
		switch (state) {
		case cpuset:
1511 1512 1513 1514 1515
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
I
Ingo Molnar 已提交
1516
			/* Fall-through */
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1536
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1537 1538
					task_pid_nr(p), p->comm, cpu);
		}
1539 1540 1541 1542 1543
	}

	return dest_cpu;
}

1544
/*
1545
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1546
 */
1547
static inline
1548
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1549
{
1550 1551
	lockdep_assert_held(&p->pi_lock);

1552
	if (p->nr_cpus_allowed > 1)
1553
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1554
	else
1555
		cpu = cpumask_any(&p->cpus_allowed);
1556 1557 1558 1559

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
I
Ingo Molnar 已提交
1560
	 * CPU.
1561 1562 1563 1564 1565 1566
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1567
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
1568
		     !cpu_online(cpu)))
1569
		cpu = select_fallback_rq(task_cpu(p), p);
1570 1571

	return cpu;
1572
}
1573 1574 1575 1576 1577 1578

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1579

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1610 1611 1612 1613 1614 1615 1616 1617
#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1618
#endif /* CONFIG_SMP */
1619

P
Peter Zijlstra 已提交
1620
static void
1621
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1622
{
1623
	struct rq *rq;
1624

1625 1626 1627 1628
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1629

1630 1631
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1632 1633
		schedstat_inc(rq->ttwu_local);
		schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1634 1635 1636
	} else {
		struct sched_domain *sd;

1637
		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1638
		rcu_read_lock();
1639
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1640
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1641
				schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1642 1643 1644
				break;
			}
		}
1645
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1646
	}
1647 1648

	if (wake_flags & WF_MIGRATED)
1649
		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1650 1651
#endif /* CONFIG_SMP */

1652 1653
	schedstat_inc(rq->ttwu_count);
	schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1654 1655

	if (wake_flags & WF_SYNC)
1656
		schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1657 1658
}

1659
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1660
{
T
Tejun Heo 已提交
1661
	activate_task(rq, p, en_flags);
1662
	p->on_rq = TASK_ON_RQ_QUEUED;
1663

I
Ingo Molnar 已提交
1664
	/* If a worker is waking up, notify the workqueue: */
1665 1666
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1667 1668
}

1669 1670 1671
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1672
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1673
			   struct rq_flags *rf)
T
Tejun Heo 已提交
1674 1675 1676
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1677 1678
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1679
#ifdef CONFIG_SMP
1680 1681
	if (p->sched_class->task_woken) {
		/*
1682 1683
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1684
		 */
1685
		rq_unpin_lock(rq, rf);
T
Tejun Heo 已提交
1686
		p->sched_class->task_woken(rq, p);
1687
		rq_repin_lock(rq, rf);
1688
	}
T
Tejun Heo 已提交
1689

1690
	if (rq->idle_stamp) {
1691
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1692
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1693

1694 1695 1696
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1697
			rq->avg_idle = max;
1698

T
Tejun Heo 已提交
1699 1700 1701 1702 1703
		rq->idle_stamp = 0;
	}
#endif
}

1704
static void
1705
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1706
		 struct rq_flags *rf)
1707
{
1708
	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1709

1710 1711
	lockdep_assert_held(&rq->lock);

1712 1713 1714
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1715 1716

	if (wake_flags & WF_MIGRATED)
1717
		en_flags |= ENQUEUE_MIGRATED;
1718 1719
#endif

1720
	ttwu_activate(rq, p, en_flags);
1721
	ttwu_do_wakeup(rq, p, wake_flags, rf);
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1732
	struct rq_flags rf;
1733 1734 1735
	struct rq *rq;
	int ret = 0;

1736
	rq = __task_rq_lock(p, &rf);
1737
	if (task_on_rq_queued(p)) {
1738 1739
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1740
		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1741 1742
		ret = 1;
	}
1743
	__task_rq_unlock(rq, &rf);
1744 1745 1746 1747

	return ret;
}

1748
#ifdef CONFIG_SMP
1749
void sched_ttwu_pending(void)
1750 1751
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1752
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1753
	struct task_struct *p, *t;
1754
	struct rq_flags rf;
1755

1756 1757 1758
	if (!llist)
		return;

1759
	rq_lock_irqsave(rq, &rf);
1760
	update_rq_clock(rq);
1761

1762 1763
	llist_for_each_entry_safe(p, t, llist, wake_entry)
		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1764

1765
	rq_unlock_irqrestore(rq, &rf);
1766 1767 1768 1769
}

void scheduler_ipi(void)
{
1770 1771 1772 1773 1774
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1775
	preempt_fold_need_resched();
1776

1777
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1794
	sched_ttwu_pending();
1795 1796 1797 1798

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1799
	if (unlikely(got_nohz_idle_kick())) {
1800
		this_rq()->idle_balance = 1;
1801
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1802
	}
1803
	irq_exit();
1804 1805
}

P
Peter Zijlstra 已提交
1806
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1807
{
1808 1809
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1810 1811
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1812 1813 1814 1815 1816 1817
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1818
}
1819

1820 1821 1822
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1823
	struct rq_flags rf;
1824

1825 1826 1827 1828
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1829 1830 1831 1832

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
1833
		rq_lock_irqsave(rq, &rf);
1834 1835
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
I
Ingo Molnar 已提交
1836
		/* Else CPU is not idle, do nothing here: */
1837
		rq_unlock_irqrestore(rq, &rf);
1838
	}
1839 1840 1841

out:
	rcu_read_unlock();
1842 1843
}

1844
bool cpus_share_cache(int this_cpu, int that_cpu)
1845 1846 1847
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1848
#endif /* CONFIG_SMP */
1849

1850
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1851 1852
{
	struct rq *rq = cpu_rq(cpu);
1853
	struct rq_flags rf;
1854

1855
#if defined(CONFIG_SMP)
1856
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
I
Ingo Molnar 已提交
1857
		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
P
Peter Zijlstra 已提交
1858
		ttwu_queue_remote(p, cpu, wake_flags);
1859 1860 1861 1862
		return;
	}
#endif

1863
	rq_lock(rq, &rf);
1864
	update_rq_clock(rq);
1865
	ttwu_do_activate(rq, p, wake_flags, &rf);
1866
	rq_unlock(rq, &rf);
T
Tejun Heo 已提交
1867 1868
}

1869 1870 1871 1872 1873 1874
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
I
Ingo Molnar 已提交
1875 1876
 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 * execution on its new CPU [c1].
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
I
Ingo Molnar 已提交
1887
 * Note: the CPU doing B need not be c0 or c1
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1919
 *   2) smp_cond_load_acquire(!X->on_cpu)
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1930
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1956
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1957 1958 1959
 *
 */

T
Tejun Heo 已提交
1960
/**
L
Linus Torvalds 已提交
1961
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1962
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1963
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1964
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1965
 *
1966
 * If (@state & @p->state) @p->state = TASK_RUNNING.
L
Linus Torvalds 已提交
1967
 *
1968 1969 1970 1971 1972 1973 1974
 * If the task was not queued/runnable, also place it back on a runqueue.
 *
 * Atomic against schedule() which would dequeue a task, also see
 * set_current_state().
 *
 * Return: %true if @p->state changes (an actual wakeup was done),
 *	   %false otherwise.
L
Linus Torvalds 已提交
1975
 */
1976 1977
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1978 1979
{
	unsigned long flags;
1980
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1981

1982 1983 1984 1985 1986 1987
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
1988
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1989
	smp_mb__after_spinlock();
P
Peter Zijlstra 已提交
1990
	if (!(p->state & state))
L
Linus Torvalds 已提交
1991 1992
		goto out;

1993 1994
	trace_sched_waking(p);

I
Ingo Molnar 已提交
1995 1996
	/* We're going to change ->state: */
	success = 1;
L
Linus Torvalds 已提交
1997 1998
	cpu = task_cpu(p);

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
	 * sched_ttwu_pending()                 try_to_wake_up()
	 *   [S] p->on_rq = 1;                  [L] P->state
	 *       UNLOCK rq->lock  -----.
	 *                              \
	 *				 +---   RMB
	 * schedule()                   /
	 *       LOCK rq->lock    -----'
	 *       UNLOCK rq->lock
	 *
	 * [task p]
	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
	 *
	 * Pairs with the UNLOCK+LOCK on rq->lock from the
	 * last wakeup of our task and the schedule that got our task
	 * current.
	 */
	smp_rmb();
2021 2022
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2023 2024

#ifdef CONFIG_SMP
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2044
	/*
I
Ingo Molnar 已提交
2045
	 * If the owning (remote) CPU is still in the middle of schedule() with
2046
	 * this task as prev, wait until its done referencing the task.
2047 2048 2049 2050 2051
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2052
	 */
2053
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2054

2055
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2056
	p->state = TASK_WAKING;
2057

2058 2059 2060 2061 2062
	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

2063
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2064 2065
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2066
		set_task_cpu(p, cpu);
2067
	}
2068 2069 2070 2071 2072 2073 2074 2075

#else /* CONFIG_SMP */

	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

L
Linus Torvalds 已提交
2076 2077
#endif /* CONFIG_SMP */

2078
	ttwu_queue(p, cpu, wake_flags);
2079
stat:
2080
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2081
out:
2082
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2083 2084 2085 2086

	return success;
}

T
Tejun Heo 已提交
2087 2088 2089
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2090
 * @rf: request-queue flags for pinning
T
Tejun Heo 已提交
2091
 *
2092
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2093
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2094
 * the current task.
T
Tejun Heo 已提交
2095
 */
2096
static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
T
Tejun Heo 已提交
2097 2098 2099
{
	struct rq *rq = task_rq(p);

2100 2101 2102 2103
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2104 2105
	lockdep_assert_held(&rq->lock);

2106
	if (!raw_spin_trylock(&p->pi_lock)) {
2107 2108 2109 2110 2111 2112
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2113
		rq_unlock(rq, rf);
2114
		raw_spin_lock(&p->pi_lock);
2115
		rq_relock(rq, rf);
2116 2117
	}

T
Tejun Heo 已提交
2118
	if (!(p->state & TASK_NORMAL))
2119
		goto out;
T
Tejun Heo 已提交
2120

2121 2122
	trace_sched_waking(p);

2123 2124 2125 2126 2127
	if (!task_on_rq_queued(p)) {
		if (p->in_iowait) {
			delayacct_blkio_end();
			atomic_dec(&rq->nr_iowait);
		}
2128
		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2129
	}
P
Peter Zijlstra 已提交
2130

2131
	ttwu_do_wakeup(rq, p, 0, rf);
2132
	ttwu_stat(p, smp_processor_id(), 0);
2133 2134
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2135 2136
}

2137 2138 2139 2140 2141
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2142 2143 2144
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2145 2146 2147 2148
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2149
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2150
{
2151
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2152 2153 2154
}
EXPORT_SYMBOL(wake_up_process);

2155
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2156 2157 2158 2159 2160 2161 2162
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2163 2164 2165
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2166
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2167
{
P
Peter Zijlstra 已提交
2168 2169 2170
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2171 2172
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2173
	p->se.prev_sum_exec_runtime	= 0;
2174
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2175
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2176
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2177

2178 2179 2180 2181
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2182
#ifdef CONFIG_SCHEDSTATS
2183
	/* Even if schedstat is disabled, there should not be garbage */
2184
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2185
#endif
N
Nick Piggin 已提交
2186

2187
	RB_CLEAR_NODE(&p->dl.rb_node);
2188
	init_dl_task_timer(&p->dl);
2189
	init_dl_inactive_task_timer(&p->dl);
2190
	__dl_clear_params(p);
2191

P
Peter Zijlstra 已提交
2192
	INIT_LIST_HEAD(&p->rt.run_list);
2193 2194 2195 2196
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2197

2198 2199 2200
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2201 2202 2203

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2204
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2205 2206 2207
		p->mm->numa_scan_seq = 0;
	}

2208 2209 2210 2211 2212
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2213 2214
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2215
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2216
	p->numa_work.next = &p->numa_work;
2217
	p->numa_faults = NULL;
2218 2219
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2220 2221

	p->numa_group = NULL;
2222
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2223 2224
}

2225 2226
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2227
#ifdef CONFIG_NUMA_BALANCING
2228

2229 2230 2231
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2232
		static_branch_enable(&sched_numa_balancing);
2233
	else
2234
		static_branch_disable(&sched_numa_balancing);
2235
}
2236 2237 2238 2239 2240 2241 2242

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2243
	int state = static_branch_likely(&sched_numa_balancing);
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2259

2260 2261
#ifdef CONFIG_SCHEDSTATS

2262
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2263
static bool __initdata __sched_schedstats = false;
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2287 2288 2289 2290 2291
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2292
	if (!strcmp(str, "enable")) {
2293
		__sched_schedstats = true;
2294 2295
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2296
		__sched_schedstats = false;
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2307 2308 2309 2310 2311
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2332 2333 2334 2335
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2336 2337 2338 2339

/*
 * fork()/clone()-time setup:
 */
2340
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2341
{
2342
	unsigned long flags;
I
Ingo Molnar 已提交
2343 2344
	int cpu = get_cpu();

2345
	__sched_fork(clone_flags, p);
2346
	/*
2347
	 * We mark the process as NEW here. This guarantees that
2348 2349 2350
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2351
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2352

2353 2354 2355 2356 2357
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2358 2359 2360 2361
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2362
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2363
			p->policy = SCHED_NORMAL;
2364
			p->static_prio = NICE_TO_PRIO(0);
2365 2366 2367 2368 2369
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
2370
		set_load_weight(p, false);
2371

2372 2373 2374 2375 2376 2377
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2378

2379 2380 2381 2382 2383 2384
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2385
		p->sched_class = &fair_sched_class;
2386
	}
2387

2388
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2389

2390 2391 2392 2393 2394 2395 2396
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2397
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2398
	/*
I
Ingo Molnar 已提交
2399
	 * We're setting the CPU for the first time, we don't migrate,
2400 2401 2402 2403 2404
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2405
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2406

2407
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2408
	if (likely(sched_info_on()))
2409
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2410
#endif
P
Peter Zijlstra 已提交
2411 2412
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2413
#endif
2414
	init_task_preempt_count(p);
2415
#ifdef CONFIG_SMP
2416
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2417
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2418
#endif
2419

N
Nick Piggin 已提交
2420
	put_cpu();
2421
	return 0;
L
Linus Torvalds 已提交
2422 2423
}

2424 2425 2426
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
2427
		return BW_UNIT;
2428 2429 2430 2431 2432 2433 2434 2435 2436

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

2437
	return div64_u64(runtime << BW_SHIFT, period);
2438 2439
}

L
Linus Torvalds 已提交
2440 2441 2442 2443 2444 2445 2446
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2447
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2448
{
2449
	struct rq_flags rf;
I
Ingo Molnar 已提交
2450
	struct rq *rq;
2451

2452
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2453
	p->state = TASK_RUNNING;
2454 2455 2456 2457
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
I
Ingo Molnar 已提交
2458
	 *  - any previously selected CPU might disappear through hotplug
2459 2460 2461
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2462
	 */
2463
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2464
#endif
2465
	rq = __task_rq_lock(p, &rf);
2466
	update_rq_clock(rq);
2467
	post_init_entity_util_avg(&p->se);
2468

2469
	activate_task(rq, p, ENQUEUE_NOCLOCK);
2470
	p->on_rq = TASK_ON_RQ_QUEUED;
2471
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2472
	check_preempt_curr(rq, p, WF_FORK);
2473
#ifdef CONFIG_SMP
2474 2475 2476 2477 2478
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2479
		rq_unpin_lock(rq, &rf);
2480
		p->sched_class->task_woken(rq, p);
2481
		rq_repin_lock(rq, &rf);
2482
	}
2483
#endif
2484
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2485 2486
}

2487 2488
#ifdef CONFIG_PREEMPT_NOTIFIERS

2489 2490
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2503
/**
2504
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2505
 * @notifier: notifier struct to register
2506 2507 2508
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2509 2510 2511
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2512 2513 2514 2515 2516 2517
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2518
 * @notifier: notifier struct to unregister
2519
 *
2520
 * This is *not* safe to call from within a preemption notifier.
2521 2522 2523 2524 2525 2526 2527
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2528
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2529 2530 2531
{
	struct preempt_notifier *notifier;

2532
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2533 2534 2535
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2536 2537 2538 2539 2540 2541
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2542
static void
2543 2544
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2545 2546 2547
{
	struct preempt_notifier *notifier;

2548
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2549 2550 2551
		notifier->ops->sched_out(notifier, next);
}

2552 2553 2554 2555 2556 2557 2558 2559
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2560
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2561

2562
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2563 2564 2565
{
}

2566
static inline void
2567 2568 2569 2570 2571
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2572
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2573

2574 2575 2576
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2577
 * @prev: the current task that is being switched out
2578 2579 2580 2581 2582 2583 2584 2585 2586
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2587 2588 2589
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2590
{
2591
	sched_info_switch(rq, prev, next);
2592
	perf_event_task_sched_out(prev, next);
2593
	fire_sched_out_preempt_notifiers(prev, next);
2594 2595 2596 2597
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2598 2599 2600 2601
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2602 2603 2604 2605
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2606 2607
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2608
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2609 2610
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2611 2612 2613 2614 2615
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2616
 */
2617
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2618 2619
	__releases(rq->lock)
{
2620
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2621
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2622
	long prev_state;
L
Linus Torvalds 已提交
2623

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2635 2636 2637 2638
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2639

L
Linus Torvalds 已提交
2640 2641 2642 2643
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2644
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2645 2646
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2647 2648 2649 2650 2651
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2652
	 */
O
Oleg Nesterov 已提交
2653
	prev_state = prev->state;
2654
	vtime_task_switch(prev);
2655
	perf_event_task_sched_in(prev, current);
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
	/*
	 * The membarrier system call requires a full memory barrier
	 * after storing to rq->curr, before going back to user-space.
	 *
	 * TODO: This smp_mb__after_unlock_lock can go away if PPC end
	 * up adding a full barrier to switch_mm(), or we should figure
	 * out if a smp_mb__after_unlock_lock is really the proper API
	 * to use.
	 */
	smp_mb__after_unlock_lock();
2666
	finish_lock_switch(rq, prev);
2667
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2668

2669
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2670 2671
	if (mm)
		mmdrop(mm);
2672
	if (unlikely(prev_state == TASK_DEAD)) {
2673 2674 2675
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2676 2677 2678
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2679
		 */
2680
		kprobe_flush_task(prev);
2681 2682 2683 2684

		/* Task is done with its stack. */
		put_task_stack(prev);

L
Linus Torvalds 已提交
2685
		put_task_struct(prev);
2686
	}
2687

2688
	tick_nohz_task_switch();
2689
	return rq;
L
Linus Torvalds 已提交
2690 2691
}

2692 2693 2694
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2695
static void __balance_callback(struct rq *rq)
2696
{
2697 2698 2699
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2700

2701 2702 2703 2704 2705 2706 2707 2708
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2709

2710
		func(rq);
2711
	}
2712 2713 2714 2715 2716 2717 2718
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2719 2720 2721
}

#else
2722

2723
static inline void balance_callback(struct rq *rq)
2724
{
L
Linus Torvalds 已提交
2725 2726
}

2727 2728
#endif

L
Linus Torvalds 已提交
2729 2730 2731 2732
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2733
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2734 2735
	__releases(rq->lock)
{
2736
	struct rq *rq;
2737

2738 2739 2740 2741 2742 2743 2744 2745 2746
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2747
	rq = finish_task_switch(prev);
2748
	balance_callback(rq);
2749
	preempt_enable();
2750

L
Linus Torvalds 已提交
2751
	if (current->set_child_tid)
2752
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2753 2754 2755
}

/*
2756
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2757
 */
2758
static __always_inline struct rq *
2759
context_switch(struct rq *rq, struct task_struct *prev,
2760
	       struct task_struct *next, struct rq_flags *rf)
L
Linus Torvalds 已提交
2761
{
I
Ingo Molnar 已提交
2762
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2763

2764
	prepare_task_switch(rq, prev, next);
2765

I
Ingo Molnar 已提交
2766 2767
	mm = next->mm;
	oldmm = prev->active_mm;
2768 2769 2770 2771 2772
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2773
	arch_start_context_switch(prev);
2774

2775
	if (!mm) {
L
Linus Torvalds 已提交
2776
		next->active_mm = oldmm;
V
Vegard Nossum 已提交
2777
		mmgrab(oldmm);
L
Linus Torvalds 已提交
2778 2779
		enter_lazy_tlb(oldmm, next);
	} else
2780
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2781

2782
	if (!prev->mm) {
L
Linus Torvalds 已提交
2783 2784 2785
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2786

2787
	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2788

2789 2790 2791 2792 2793 2794
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2795
	rq_unpin_lock(rq, rf);
2796
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2797 2798 2799

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2800
	barrier();
2801 2802

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2803 2804 2805
}

/*
2806
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2807 2808
 *
 * externally visible scheduler statistics: current number of runnable
2809
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2810 2811 2812 2813 2814 2815 2816 2817 2818
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2819
}
L
Linus Torvalds 已提交
2820

2821
/*
I
Ingo Molnar 已提交
2822
 * Check if only the current task is running on the CPU.
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2833 2834 2835
 */
bool single_task_running(void)
{
2836
	return raw_rq()->nr_running == 1;
2837 2838 2839
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2840
unsigned long long nr_context_switches(void)
2841
{
2842 2843
	int i;
	unsigned long long sum = 0;
2844

2845
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2846
		sum += cpu_rq(i)->nr_switches;
2847

L
Linus Torvalds 已提交
2848 2849
	return sum;
}
2850

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
/*
 * IO-wait accounting, and how its mostly bollocks (on SMP).
 *
 * The idea behind IO-wait account is to account the idle time that we could
 * have spend running if it were not for IO. That is, if we were to improve the
 * storage performance, we'd have a proportional reduction in IO-wait time.
 *
 * This all works nicely on UP, where, when a task blocks on IO, we account
 * idle time as IO-wait, because if the storage were faster, it could've been
 * running and we'd not be idle.
 *
 * This has been extended to SMP, by doing the same for each CPU. This however
 * is broken.
 *
 * Imagine for instance the case where two tasks block on one CPU, only the one
 * CPU will have IO-wait accounted, while the other has regular idle. Even
 * though, if the storage were faster, both could've ran at the same time,
 * utilising both CPUs.
 *
 * This means, that when looking globally, the current IO-wait accounting on
 * SMP is a lower bound, by reason of under accounting.
 *
 * Worse, since the numbers are provided per CPU, they are sometimes
 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 * associated with any one particular CPU, it can wake to another CPU than it
 * blocked on. This means the per CPU IO-wait number is meaningless.
 *
 * Task CPU affinities can make all that even more 'interesting'.
 */

L
Linus Torvalds 已提交
2881 2882 2883
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2884

2885
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2886
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2887

L
Linus Torvalds 已提交
2888 2889
	return sum;
}
2890

2891 2892 2893 2894 2895 2896 2897
/*
 * Consumers of these two interfaces, like for example the cpufreq menu
 * governor are using nonsensical data. Boosting frequency for a CPU that has
 * IO-wait which might not even end up running the task when it does become
 * runnable.
 */

2898
unsigned long nr_iowait_cpu(int cpu)
2899
{
2900
	struct rq *this = cpu_rq(cpu);
2901 2902
	return atomic_read(&this->nr_iowait);
}
2903

2904 2905
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2906 2907 2908
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2909 2910
}

I
Ingo Molnar 已提交
2911
#ifdef CONFIG_SMP
2912

2913
/*
P
Peter Zijlstra 已提交
2914 2915
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2916
 */
P
Peter Zijlstra 已提交
2917
void sched_exec(void)
2918
{
P
Peter Zijlstra 已提交
2919
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2920
	unsigned long flags;
2921
	int dest_cpu;
2922

2923
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2924
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2925 2926
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2927

2928
	if (likely(cpu_active(dest_cpu))) {
2929
		struct migration_arg arg = { p, dest_cpu };
2930

2931 2932
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2933 2934
		return;
	}
2935
unlock:
2936
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2937
}
I
Ingo Molnar 已提交
2938

L
Linus Torvalds 已提交
2939 2940 2941
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2942
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2943 2944

EXPORT_PER_CPU_SYMBOL(kstat);
2945
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2946

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

2964 2965 2966 2967 2968 2969 2970
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
2971
	struct rq_flags rf;
2972
	struct rq *rq;
2973
	u64 ns;
2974

2975 2976 2977 2978 2979 2980
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
I
Ingo Molnar 已提交
2981 2982
	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
	 * If we race with it entering CPU, unaccounted time is 0. This is
2983
	 * indistinguishable from the read occurring a few cycles earlier.
2984 2985
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2986
	 */
2987
	if (!p->on_cpu || !task_on_rq_queued(p))
2988 2989 2990
		return p->se.sum_exec_runtime;
#endif

2991
	rq = task_rq_lock(p, &rf);
2992 2993 2994 2995 2996 2997
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
2998
		prefetch_curr_exec_start(p);
2999 3000 3001 3002
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3003
	task_rq_unlock(rq, p, &rf);
3004 3005 3006

	return ns;
}
3007

3008 3009 3010 3011 3012 3013 3014 3015
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3016
	struct task_struct *curr = rq->curr;
3017
	struct rq_flags rf;
3018 3019

	sched_clock_tick();
I
Ingo Molnar 已提交
3020

3021 3022
	rq_lock(rq, &rf);

3023
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3024
	curr->sched_class->task_tick(rq, curr, 0);
3025
	cpu_load_update_active(rq);
3026
	calc_global_load_tick(rq);
3027 3028

	rq_unlock(rq, &rf);
3029

3030
	perf_event_task_tick();
3031

3032
#ifdef CONFIG_SMP
3033
	rq->idle_balance = idle_cpu(cpu);
3034
	trigger_load_balance(rq);
3035
#endif
3036
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3037 3038
}

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3050 3051
 *
 * Return: Maximum deferment in nanoseconds.
3052 3053 3054 3055
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3056
	unsigned long next, now = READ_ONCE(jiffies);
3057 3058 3059 3060 3061 3062

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3063
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3064
}
3065
#endif
L
Linus Torvalds 已提交
3066

3067 3068
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3083

3084
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3085
{
3086
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3087 3088 3089
	/*
	 * Underflow?
	 */
3090 3091
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3092
#endif
3093
	__preempt_count_add(val);
3094
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3095 3096 3097
	/*
	 * Spinlock count overflowing soon?
	 */
3098 3099
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3100
#endif
3101
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3102
}
3103
EXPORT_SYMBOL(preempt_count_add);
3104
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3105

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3116
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3117
{
3118
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3119 3120 3121
	/*
	 * Underflow?
	 */
3122
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3123
		return;
L
Linus Torvalds 已提交
3124 3125 3126
	/*
	 * Is the spinlock portion underflowing?
	 */
3127 3128 3129
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3130
#endif
3131

3132
	preempt_latency_stop(val);
3133
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3134
}
3135
EXPORT_SYMBOL(preempt_count_sub);
3136
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3137

3138 3139 3140
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3141 3142
#endif

3143 3144 3145 3146 3147 3148 3149 3150 3151
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
	return p->preempt_disable_ip;
#else
	return 0;
#endif
}

L
Linus Torvalds 已提交
3152
/*
I
Ingo Molnar 已提交
3153
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3154
 */
I
Ingo Molnar 已提交
3155
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3156
{
3157 3158 3159
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3160 3161 3162
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3163 3164
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3165

I
Ingo Molnar 已提交
3166
	debug_show_held_locks(prev);
3167
	print_modules();
I
Ingo Molnar 已提交
3168 3169
	if (irqs_disabled())
		print_irqtrace_events(prev);
3170 3171
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3172
		pr_err("Preemption disabled at:");
3173
		print_ip_sym(preempt_disable_ip);
3174 3175
		pr_cont("\n");
	}
3176 3177 3178
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3179
	dump_stack();
3180
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3181
}
L
Linus Torvalds 已提交
3182

I
Ingo Molnar 已提交
3183 3184 3185 3186 3187
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3188
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3189 3190
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3191
#endif
3192

3193
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3194
		__schedule_bug(prev);
3195 3196
		preempt_count_set(PREEMPT_DISABLED);
	}
3197
	rcu_sleep_check();
I
Ingo Molnar 已提交
3198

L
Linus Torvalds 已提交
3199 3200
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3201
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3202 3203 3204 3205 3206 3207
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3208
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
I
Ingo Molnar 已提交
3209
{
3210
	const struct sched_class *class;
I
Ingo Molnar 已提交
3211
	struct task_struct *p;
L
Linus Torvalds 已提交
3212 3213

	/*
3214 3215 3216 3217
	 * Optimization: we know that if all tasks are in the fair class we can
	 * call that function directly, but only if the @prev task wasn't of a
	 * higher scheduling class, because otherwise those loose the
	 * opportunity to pull in more work from other CPUs.
L
Linus Torvalds 已提交
3218
	 */
3219 3220 3221 3222
	if (likely((prev->sched_class == &idle_sched_class ||
		    prev->sched_class == &fair_sched_class) &&
		   rq->nr_running == rq->cfs.h_nr_running)) {

3223
		p = fair_sched_class.pick_next_task(rq, prev, rf);
3224 3225 3226
		if (unlikely(p == RETRY_TASK))
			goto again;

I
Ingo Molnar 已提交
3227
		/* Assumes fair_sched_class->next == idle_sched_class */
3228
		if (unlikely(!p))
3229
			p = idle_sched_class.pick_next_task(rq, prev, rf);
3230 3231

		return p;
L
Linus Torvalds 已提交
3232 3233
	}

3234
again:
3235
	for_each_class(class) {
3236
		p = class->pick_next_task(rq, prev, rf);
3237 3238 3239
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3240
			return p;
3241
		}
I
Ingo Molnar 已提交
3242
	}
3243

I
Ingo Molnar 已提交
3244 3245
	/* The idle class should always have a runnable task: */
	BUG();
I
Ingo Molnar 已提交
3246
}
L
Linus Torvalds 已提交
3247

I
Ingo Molnar 已提交
3248
/*
3249
 * __schedule() is the main scheduler function.
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3284
 *
3285
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3286
 */
3287
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3288 3289
{
	struct task_struct *prev, *next;
3290
	unsigned long *switch_count;
3291
	struct rq_flags rf;
I
Ingo Molnar 已提交
3292
	struct rq *rq;
3293
	int cpu;
I
Ingo Molnar 已提交
3294 3295 3296 3297 3298 3299

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3300

3301
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3302
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3303

3304
	local_irq_disable();
3305
	rcu_note_context_switch(preempt);
3306

3307 3308 3309 3310 3311
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
3312
	rq_lock(rq, &rf);
3313
	smp_mb__after_spinlock();
L
Linus Torvalds 已提交
3314

I
Ingo Molnar 已提交
3315 3316
	/* Promote REQ to ACT */
	rq->clock_update_flags <<= 1;
3317
	update_rq_clock(rq);
3318

3319
	switch_count = &prev->nivcsw;
3320
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3321
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3322
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3323
		} else {
3324
			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3325 3326
			prev->on_rq = 0;

3327 3328 3329 3330 3331
			if (prev->in_iowait) {
				atomic_inc(&rq->nr_iowait);
				delayacct_blkio_start();
			}

T
Tejun Heo 已提交
3332
			/*
3333 3334 3335
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3336 3337 3338 3339
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3340
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3341
				if (to_wakeup)
3342
					try_to_wake_up_local(to_wakeup, &rf);
T
Tejun Heo 已提交
3343 3344
			}
		}
I
Ingo Molnar 已提交
3345
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3346 3347
	}

3348
	next = pick_next_task(rq, prev, &rf);
3349
	clear_tsk_need_resched(prev);
3350
	clear_preempt_need_resched();
L
Linus Torvalds 已提交
3351 3352 3353 3354

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
		/*
		 * The membarrier system call requires each architecture
		 * to have a full memory barrier after updating
		 * rq->curr, before returning to user-space. For TSO
		 * (e.g. x86), the architecture must provide its own
		 * barrier in switch_mm(). For weakly ordered machines
		 * for which spin_unlock() acts as a full memory
		 * barrier, finish_lock_switch() in common code takes
		 * care of this barrier. For weakly ordered machines for
		 * which spin_unlock() acts as a RELEASE barrier (only
		 * arm64 and PowerPC), arm64 has a full barrier in
		 * switch_to(), and PowerPC has
		 * smp_mb__after_unlock_lock() before
		 * finish_lock_switch().
		 */
L
Linus Torvalds 已提交
3370 3371
		++*switch_count;

3372
		trace_sched_switch(preempt, prev, next);
I
Ingo Molnar 已提交
3373 3374 3375

		/* Also unlocks the rq: */
		rq = context_switch(rq, prev, next, &rf);
3376
	} else {
3377
		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3378
		rq_unlock_irq(rq, &rf);
3379
	}
L
Linus Torvalds 已提交
3380

3381
	balance_callback(rq);
L
Linus Torvalds 已提交
3382
}
3383

3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
void __noreturn do_task_dead(void)
{
	/*
	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
	 * when the following two conditions become true.
	 *   - There is race condition of mmap_sem (It is acquired by
	 *     exit_mm()), and
	 *   - SMI occurs before setting TASK_RUNINNG.
	 *     (or hypervisor of virtual machine switches to other guest)
	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
	 *
	 * To avoid it, we have to wait for releasing tsk->pi_lock which
	 * is held by try_to_wake_up()
	 */
3398 3399
	raw_spin_lock_irq(&current->pi_lock);
	raw_spin_unlock_irq(&current->pi_lock);
3400

I
Ingo Molnar 已提交
3401
	/* Causes final put_task_struct in finish_task_switch(): */
3402
	__set_current_state(TASK_DEAD);
I
Ingo Molnar 已提交
3403 3404 3405 3406

	/* Tell freezer to ignore us: */
	current->flags |= PF_NOFREEZE;

3407 3408
	__schedule(false);
	BUG();
I
Ingo Molnar 已提交
3409 3410

	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3411
	for (;;)
I
Ingo Molnar 已提交
3412
		cpu_relax();
3413 3414
}

3415 3416
static inline void sched_submit_work(struct task_struct *tsk)
{
3417
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3418 3419 3420 3421 3422 3423 3424 3425 3426
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3427
asmlinkage __visible void __sched schedule(void)
3428
{
3429 3430 3431
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3432
	do {
3433
		preempt_disable();
3434
		__schedule(false);
3435
		sched_preempt_enable_no_resched();
3436
	} while (need_resched());
3437
}
L
Linus Torvalds 已提交
3438 3439
EXPORT_SYMBOL(schedule);

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
/*
 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 * state (have scheduled out non-voluntarily) by making sure that all
 * tasks have either left the run queue or have gone into user space.
 * As idle tasks do not do either, they must not ever be preempted
 * (schedule out non-voluntarily).
 *
 * schedule_idle() is similar to schedule_preempt_disable() except that it
 * never enables preemption because it does not call sched_submit_work().
 */
void __sched schedule_idle(void)
{
	/*
	 * As this skips calling sched_submit_work(), which the idle task does
	 * regardless because that function is a nop when the task is in a
	 * TASK_RUNNING state, make sure this isn't used someplace that the
	 * current task can be in any other state. Note, idle is always in the
	 * TASK_RUNNING state.
	 */
	WARN_ON_ONCE(current->state);
	do {
		__schedule(false);
	} while (need_resched());
}

3465
#ifdef CONFIG_CONTEXT_TRACKING
3466
asmlinkage __visible void __sched schedule_user(void)
3467 3468 3469 3470 3471 3472
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3473 3474
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3475
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3476
	 * too frequently to make sense yet.
3477
	 */
3478
	enum ctx_state prev_state = exception_enter();
3479
	schedule();
3480
	exception_exit(prev_state);
3481 3482 3483
}
#endif

3484 3485 3486 3487 3488 3489 3490
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3491
	sched_preempt_enable_no_resched();
3492 3493 3494 3495
	schedule();
	preempt_disable();
}

3496
static void __sched notrace preempt_schedule_common(void)
3497 3498
{
	do {
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3512
		preempt_disable_notrace();
3513
		preempt_latency_start(1);
3514
		__schedule(true);
3515
		preempt_latency_stop(1);
3516
		preempt_enable_no_resched_notrace();
3517 3518 3519 3520 3521 3522 3523 3524

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3525 3526
#ifdef CONFIG_PREEMPT
/*
3527
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3528
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3529 3530
 * occur there and call schedule directly.
 */
3531
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3532 3533 3534
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3535
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3536
	 */
3537
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3538 3539
		return;

3540
	preempt_schedule_common();
L
Linus Torvalds 已提交
3541
}
3542
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3543
EXPORT_SYMBOL(preempt_schedule);
3544 3545

/**
3546
 * preempt_schedule_notrace - preempt_schedule called by tracing
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3559
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3560 3561 3562 3563 3564 3565 3566
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3580
		preempt_disable_notrace();
3581
		preempt_latency_start(1);
3582 3583 3584 3585 3586 3587
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3588
		__schedule(true);
3589 3590
		exception_exit(prev_ctx);

3591
		preempt_latency_stop(1);
3592
		preempt_enable_no_resched_notrace();
3593 3594
	} while (need_resched());
}
3595
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3596

3597
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3598 3599

/*
3600
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3601 3602 3603 3604
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3605
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3606
{
3607
	enum ctx_state prev_state;
3608

3609
	/* Catch callers which need to be fixed */
3610
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3611

3612 3613
	prev_state = exception_enter();

3614
	do {
3615
		preempt_disable();
3616
		local_irq_enable();
3617
		__schedule(true);
3618
		local_irq_disable();
3619
		sched_preempt_enable_no_resched();
3620
	} while (need_resched());
3621 3622

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3623 3624
}

3625
int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3626
			  void *key)
L
Linus Torvalds 已提交
3627
{
P
Peter Zijlstra 已提交
3628
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3629 3630 3631
}
EXPORT_SYMBOL(default_wake_function);

3632 3633
#ifdef CONFIG_RT_MUTEXES

3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
{
	if (pi_task)
		prio = min(prio, pi_task->prio);

	return prio;
}

static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	struct task_struct *pi_task = rt_mutex_get_top_task(p);

	return __rt_effective_prio(pi_task, prio);
}

3649 3650
/*
 * rt_mutex_setprio - set the current priority of a task
3651 3652
 * @p: task to boost
 * @pi_task: donor task
3653 3654 3655 3656
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3657 3658
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3659
 */
3660
void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3661
{
3662
	int prio, oldprio, queued, running, queue_flag =
3663
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3664
	const struct sched_class *prev_class;
3665 3666
	struct rq_flags rf;
	struct rq *rq;
3667

3668 3669 3670 3671 3672 3673 3674 3675
	/* XXX used to be waiter->prio, not waiter->task->prio */
	prio = __rt_effective_prio(pi_task, p->normal_prio);

	/*
	 * If nothing changed; bail early.
	 */
	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
		return;
3676

3677
	rq = __task_rq_lock(p, &rf);
3678
	update_rq_clock(rq);
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
	/*
	 * Set under pi_lock && rq->lock, such that the value can be used under
	 * either lock.
	 *
	 * Note that there is loads of tricky to make this pointer cache work
	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
	 * ensure a task is de-boosted (pi_task is set to NULL) before the
	 * task is allowed to run again (and can exit). This ensures the pointer
	 * points to a blocked task -- which guaratees the task is present.
	 */
	p->pi_top_task = pi_task;

	/*
	 * For FIFO/RR we only need to set prio, if that matches we're done.
	 */
	if (prio == p->prio && !dl_prio(prio))
		goto out_unlock;
3696

3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3715
	trace_sched_pi_setprio(p, pi_task);
3716
	oldprio = p->prio;
3717 3718 3719 3720

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3721
	prev_class = p->sched_class;
3722
	queued = task_on_rq_queued(p);
3723
	running = task_current(rq, p);
3724
	if (queued)
3725
		dequeue_task(rq, p, queue_flag);
3726
	if (running)
3727
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3728

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3739 3740
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3741
			p->dl.dl_boosted = 1;
3742
			queue_flag |= ENQUEUE_REPLENISH;
3743 3744
		} else
			p->dl.dl_boosted = 0;
3745
		p->sched_class = &dl_sched_class;
3746 3747 3748 3749
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3750
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3751
		p->sched_class = &rt_sched_class;
3752 3753 3754
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3755 3756
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3757
		p->sched_class = &fair_sched_class;
3758
	}
I
Ingo Molnar 已提交
3759

3760 3761
	p->prio = prio;

3762
	if (queued)
3763
		enqueue_task(rq, p, queue_flag);
3764
	if (running)
3765
		set_curr_task(rq, p);
3766

P
Peter Zijlstra 已提交
3767
	check_class_changed(rq, p, prev_class, oldprio);
3768
out_unlock:
I
Ingo Molnar 已提交
3769 3770
	/* Avoid rq from going away on us: */
	preempt_disable();
3771
	__task_rq_unlock(rq, &rf);
3772 3773 3774

	balance_callback(rq);
	preempt_enable();
3775
}
3776 3777 3778 3779 3780
#else
static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	return prio;
}
3781
#endif
3782

3783
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3784
{
P
Peter Zijlstra 已提交
3785 3786
	bool queued, running;
	int old_prio, delta;
3787
	struct rq_flags rf;
3788
	struct rq *rq;
L
Linus Torvalds 已提交
3789

3790
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3791 3792 3793 3794 3795
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3796
	rq = task_rq_lock(p, &rf);
3797 3798
	update_rq_clock(rq);

L
Linus Torvalds 已提交
3799 3800 3801 3802
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3803
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3804
	 */
3805
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3806 3807 3808
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3809
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3810
	running = task_current(rq, p);
3811
	if (queued)
3812
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
3813 3814
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3815 3816

	p->static_prio = NICE_TO_PRIO(nice);
3817
	set_load_weight(p, true);
3818 3819 3820
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3821

3822
	if (queued) {
3823
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
L
Linus Torvalds 已提交
3824
		/*
3825 3826
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3827
		 */
3828
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3829
			resched_curr(rq);
L
Linus Torvalds 已提交
3830
	}
P
Peter Zijlstra 已提交
3831 3832
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3833
out_unlock:
3834
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3835 3836 3837
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3838 3839 3840 3841 3842
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3843
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3844
{
I
Ingo Molnar 已提交
3845
	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3846
	int nice_rlim = nice_to_rlimit(nice);
3847

3848
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3849 3850 3851
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3852 3853 3854 3855 3856 3857 3858 3859 3860
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3861
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3862
{
3863
	long nice, retval;
L
Linus Torvalds 已提交
3864 3865 3866 3867 3868 3869

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3870
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3871
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3872

3873
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3874 3875 3876
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3891
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3892 3893 3894
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3895
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3896 3897 3898 3899 3900
{
	return p->prio - MAX_RT_PRIO;
}

/**
I
Ingo Molnar 已提交
3901
 * idle_cpu - is a given CPU idle currently?
L
Linus Torvalds 已提交
3902
 * @cpu: the processor in question.
3903 3904
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3905 3906 3907
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3922 3923 3924
}

/**
I
Ingo Molnar 已提交
3925
 * idle_task - return the idle task for a given CPU.
L
Linus Torvalds 已提交
3926
 * @cpu: the processor in question.
3927
 *
I
Ingo Molnar 已提交
3928
 * Return: The idle task for the CPU @cpu.
L
Linus Torvalds 已提交
3929
 */
3930
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3931 3932 3933 3934 3935 3936 3937
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3938 3939
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3940
 */
A
Alexey Dobriyan 已提交
3941
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3942
{
3943
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3944 3945
}

3946 3947 3948 3949 3950 3951
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3952 3953
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3954
{
3955 3956
	int policy = attr->sched_policy;

3957
	if (policy == SETPARAM_POLICY)
3958 3959
		policy = p->policy;

L
Linus Torvalds 已提交
3960
	p->policy = policy;
3961

3962 3963
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3964
	else if (fair_policy(policy))
3965 3966
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3967 3968 3969 3970 3971 3972
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3973
	p->normal_prio = normal_prio(p);
3974
	set_load_weight(p, true);
3975
}
3976

3977 3978
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3979
			   const struct sched_attr *attr, bool keep_boost)
3980 3981
{
	__setscheduler_params(p, attr);
3982

3983
	/*
3984 3985
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3986
	 */
3987
	p->prio = normal_prio(p);
3988
	if (keep_boost)
3989
		p->prio = rt_effective_prio(p, p->prio);
3990

3991 3992 3993
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3994 3995 3996
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3997
}
3998

3999
/*
I
Ingo Molnar 已提交
4000
 * Check the target process has a UID that matches the current process's:
4001 4002 4003 4004 4005 4006 4007 4008
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4009 4010
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4011 4012 4013 4014
	rcu_read_unlock();
	return match;
}

4015 4016
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4017
				bool user, bool pi)
L
Linus Torvalds 已提交
4018
{
4019 4020
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4021
	int retval, oldprio, oldpolicy = -1, queued, running;
4022
	int new_effective_prio, policy = attr->sched_policy;
4023
	const struct sched_class *prev_class;
4024
	struct rq_flags rf;
4025
	int reset_on_fork;
4026
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4027
	struct rq *rq;
L
Linus Torvalds 已提交
4028

4029 4030
	/* The pi code expects interrupts enabled */
	BUG_ON(pi && in_interrupt());
L
Linus Torvalds 已提交
4031
recheck:
I
Ingo Molnar 已提交
4032
	/* Double check policy once rq lock held: */
4033 4034
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4035
		policy = oldpolicy = p->policy;
4036
	} else {
4037
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4038

4039
		if (!valid_policy(policy))
4040 4041 4042
			return -EINVAL;
	}

4043 4044
	if (attr->sched_flags &
		~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM))
4045 4046
		return -EINVAL;

L
Linus Torvalds 已提交
4047 4048
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4049 4050
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4051
	 */
4052
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4053
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4054
		return -EINVAL;
4055 4056
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4057 4058
		return -EINVAL;

4059 4060 4061
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4062
	if (user && !capable(CAP_SYS_NICE)) {
4063
		if (fair_policy(policy)) {
4064
			if (attr->sched_nice < task_nice(p) &&
4065
			    !can_nice(p, attr->sched_nice))
4066 4067 4068
				return -EPERM;
		}

4069
		if (rt_policy(policy)) {
4070 4071
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4072

I
Ingo Molnar 已提交
4073
			/* Can't set/change the rt policy: */
4074 4075 4076
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

I
Ingo Molnar 已提交
4077
			/* Can't increase priority: */
4078 4079
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4080 4081
				return -EPERM;
		}
4082

4083 4084 4085 4086 4087 4088 4089 4090 4091
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4092
		/*
4093 4094
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4095
		 */
4096
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4097
			if (!can_nice(p, task_nice(p)))
4098 4099
				return -EPERM;
		}
4100

I
Ingo Molnar 已提交
4101
		/* Can't change other user's priorities: */
4102
		if (!check_same_owner(p))
4103
			return -EPERM;
4104

I
Ingo Molnar 已提交
4105
		/* Normal users shall not reset the sched_reset_on_fork flag: */
4106 4107
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4108
	}
L
Linus Torvalds 已提交
4109

4110
	if (user) {
4111
		retval = security_task_setscheduler(p);
4112 4113 4114 4115
		if (retval)
			return retval;
	}

4116
	/*
I
Ingo Molnar 已提交
4117
	 * Make sure no PI-waiters arrive (or leave) while we are
4118
	 * changing the priority of the task:
4119
	 *
L
Lucas De Marchi 已提交
4120
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4121 4122
	 * runqueue lock must be held.
	 */
4123
	rq = task_rq_lock(p, &rf);
4124
	update_rq_clock(rq);
4125

4126
	/*
I
Ingo Molnar 已提交
4127
	 * Changing the policy of the stop threads its a very bad idea:
4128 4129
	 */
	if (p == rq->stop) {
4130
		task_rq_unlock(rq, p, &rf);
4131 4132 4133
		return -EINVAL;
	}

4134
	/*
4135 4136
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4137
	 */
4138
	if (unlikely(policy == p->policy)) {
4139
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4140 4141 4142
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4143
		if (dl_policy(policy) && dl_param_changed(p, attr))
4144
			goto change;
4145

4146
		p->sched_reset_on_fork = reset_on_fork;
4147
		task_rq_unlock(rq, p, &rf);
4148 4149
		return 0;
	}
4150
change:
4151

4152
	if (user) {
4153
#ifdef CONFIG_RT_GROUP_SCHED
4154 4155 4156 4157 4158
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4159 4160
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4161
			task_rq_unlock(rq, p, &rf);
4162 4163 4164
			return -EPERM;
		}
#endif
4165 4166 4167 4168 4169 4170 4171 4172 4173
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4174 4175
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4176
				task_rq_unlock(rq, p, &rf);
4177 4178 4179 4180 4181
				return -EPERM;
			}
		}
#endif
	}
4182

I
Ingo Molnar 已提交
4183
	/* Re-check policy now with rq lock held: */
L
Linus Torvalds 已提交
4184 4185
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4186
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4187 4188
		goto recheck;
	}
4189 4190 4191 4192 4193 4194

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4195
	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4196
		task_rq_unlock(rq, p, &rf);
4197 4198 4199
		return -EBUSY;
	}

4200 4201 4202
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4203 4204 4205 4206 4207 4208 4209 4210
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
4211
		new_effective_prio = rt_effective_prio(p, newprio);
4212 4213
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4214 4215
	}

4216
	queued = task_on_rq_queued(p);
4217
	running = task_current(rq, p);
4218
	if (queued)
4219
		dequeue_task(rq, p, queue_flags);
4220
	if (running)
4221
		put_prev_task(rq, p);
4222

4223
	prev_class = p->sched_class;
4224
	__setscheduler(rq, p, attr, pi);
4225

4226
	if (queued) {
4227 4228 4229 4230
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4231 4232
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4233

4234
		enqueue_task(rq, p, queue_flags);
4235
	}
4236
	if (running)
4237
		set_curr_task(rq, p);
4238

P
Peter Zijlstra 已提交
4239
	check_class_changed(rq, p, prev_class, oldprio);
I
Ingo Molnar 已提交
4240 4241 4242

	/* Avoid rq from going away on us: */
	preempt_disable();
4243
	task_rq_unlock(rq, p, &rf);
4244

4245 4246
	if (pi)
		rt_mutex_adjust_pi(p);
4247

I
Ingo Molnar 已提交
4248
	/* Run balance callbacks after we've adjusted the PI chain: */
4249 4250
	balance_callback(rq);
	preempt_enable();
4251

L
Linus Torvalds 已提交
4252 4253
	return 0;
}
4254

4255 4256 4257 4258 4259 4260 4261 4262 4263
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4264 4265
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4266 4267 4268 4269 4270
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4271
	return __sched_setscheduler(p, &attr, check, true);
4272
}
4273 4274 4275 4276 4277 4278
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4279 4280
 * Return: 0 on success. An error code otherwise.
 *
4281 4282 4283
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4284
		       const struct sched_param *param)
4285
{
4286
	return _sched_setscheduler(p, policy, param, true);
4287
}
L
Linus Torvalds 已提交
4288 4289
EXPORT_SYMBOL_GPL(sched_setscheduler);

4290 4291
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4292
	return __sched_setscheduler(p, attr, true, true);
4293 4294 4295
}
EXPORT_SYMBOL_GPL(sched_setattr);

4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4306 4307
 *
 * Return: 0 on success. An error code otherwise.
4308 4309
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4310
			       const struct sched_param *param)
4311
{
4312
	return _sched_setscheduler(p, policy, param, false);
4313
}
4314
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4315

I
Ingo Molnar 已提交
4316 4317
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4318 4319 4320
{
	struct sched_param lparam;
	struct task_struct *p;
4321
	int retval;
L
Linus Torvalds 已提交
4322 4323 4324 4325 4326

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4327 4328 4329

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4330
	p = find_process_by_pid(pid);
4331 4332 4333
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4334

L
Linus Torvalds 已提交
4335 4336 4337
	return retval;
}

4338 4339 4340
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
I
Ingo Molnar 已提交
4341
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4342 4343 4344 4345 4346 4347 4348
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

I
Ingo Molnar 已提交
4349
	/* Zero the full structure, so that a short copy will be nice: */
4350 4351 4352 4353 4354 4355
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

I
Ingo Molnar 已提交
4356 4357
	/* Bail out on silly large: */
	if (size > PAGE_SIZE)
4358 4359
		goto err_size;

I
Ingo Molnar 已提交
4360 4361
	/* ABI compatibility quirk: */
	if (!size)
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
I
Ingo Molnar 已提交
4396
	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4397 4398
	 * to be strict and return an error on out-of-bounds values?
	 */
4399
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4400

4401
	return 0;
4402 4403 4404

err_size:
	put_user(sizeof(*attr), &uattr->size);
4405
	return -E2BIG;
4406 4407
}

L
Linus Torvalds 已提交
4408 4409 4410 4411 4412
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4413 4414
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4415
 */
I
Ingo Molnar 已提交
4416
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4417
{
4418 4419 4420
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4421 4422 4423 4424 4425 4426 4427
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4428 4429
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4430
 */
4431
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4432
{
4433
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4434 4435
}

4436 4437 4438
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4439
 * @uattr: structure containing the extended parameters.
4440
 * @flags: for future extension.
4441
 */
4442 4443
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4444 4445 4446 4447 4448
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4449
	if (!uattr || pid < 0 || flags)
4450 4451
		return -EINVAL;

4452 4453 4454
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4455

4456
	if ((int)attr.sched_policy < 0)
4457
		return -EINVAL;
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4469 4470 4471
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4472 4473 4474
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4475
 */
4476
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4477
{
4478
	struct task_struct *p;
4479
	int retval;
L
Linus Torvalds 已提交
4480 4481

	if (pid < 0)
4482
		return -EINVAL;
L
Linus Torvalds 已提交
4483 4484

	retval = -ESRCH;
4485
	rcu_read_lock();
L
Linus Torvalds 已提交
4486 4487 4488 4489
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4490 4491
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4492
	}
4493
	rcu_read_unlock();
L
Linus Torvalds 已提交
4494 4495 4496 4497
	return retval;
}

/**
4498
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4499 4500
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4501 4502 4503
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4504
 */
4505
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4506
{
4507
	struct sched_param lp = { .sched_priority = 0 };
4508
	struct task_struct *p;
4509
	int retval;
L
Linus Torvalds 已提交
4510 4511

	if (!param || pid < 0)
4512
		return -EINVAL;
L
Linus Torvalds 已提交
4513

4514
	rcu_read_lock();
L
Linus Torvalds 已提交
4515 4516 4517 4518 4519 4520 4521 4522 4523
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4524 4525
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4526
	rcu_read_unlock();
L
Linus Torvalds 已提交
4527 4528 4529 4530 4531 4532 4533 4534 4535

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4536
	rcu_read_unlock();
L
Linus Torvalds 已提交
4537 4538 4539
	return retval;
}

4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4563
				return -EFBIG;
4564 4565 4566 4567 4568
		}

		attr->size = usize;
	}

4569
	ret = copy_to_user(uattr, attr, attr->size);
4570 4571 4572
	if (ret)
		return -EFAULT;

4573
	return 0;
4574 4575 4576
}

/**
4577
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4578
 * @pid: the pid in question.
J
Juri Lelli 已提交
4579
 * @uattr: structure containing the extended parameters.
4580
 * @size: sizeof(attr) for fwd/bwd comp.
4581
 * @flags: for future extension.
4582
 */
4583 4584
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4585 4586 4587 4588 4589 4590 4591 4592
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4593
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4607 4608
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4609 4610 4611
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4612 4613
		attr.sched_priority = p->rt_priority;
	else
4614
		attr.sched_nice = task_nice(p);
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4626
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4627
{
4628
	cpumask_var_t cpus_allowed, new_mask;
4629 4630
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4631

4632
	rcu_read_lock();
L
Linus Torvalds 已提交
4633 4634 4635

	p = find_process_by_pid(pid);
	if (!p) {
4636
		rcu_read_unlock();
L
Linus Torvalds 已提交
4637 4638 4639
		return -ESRCH;
	}

4640
	/* Prevent p going away */
L
Linus Torvalds 已提交
4641
	get_task_struct(p);
4642
	rcu_read_unlock();
L
Linus Torvalds 已提交
4643

4644 4645 4646 4647
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4648 4649 4650 4651 4652 4653 4654 4655
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4656
	retval = -EPERM;
E
Eric W. Biederman 已提交
4657 4658 4659 4660
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4661
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4662 4663 4664
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4665

4666
	retval = security_task_setscheduler(p);
4667
	if (retval)
4668
		goto out_free_new_mask;
4669

4670 4671 4672 4673

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4674 4675 4676 4677 4678 4679 4680
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4681 4682 4683
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4684
			retval = -EBUSY;
4685
			rcu_read_unlock();
4686
			goto out_free_new_mask;
4687
		}
4688
		rcu_read_unlock();
4689 4690
	}
#endif
P
Peter Zijlstra 已提交
4691
again:
4692
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4693

P
Paul Menage 已提交
4694
	if (!retval) {
4695 4696
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4697 4698 4699 4700 4701
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4702
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4703 4704 4705
			goto again;
		}
	}
4706
out_free_new_mask:
4707 4708 4709 4710
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4711 4712 4713 4714 4715
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4716
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4717
{
4718 4719 4720 4721 4722
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4723 4724 4725 4726
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
I
Ingo Molnar 已提交
4727
 * sys_sched_setaffinity - set the CPU affinity of a process
L
Linus Torvalds 已提交
4728 4729
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4730
 * @user_mask_ptr: user-space pointer to the new CPU mask
4731 4732
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4733
 */
4734 4735
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4736
{
4737
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4738 4739
	int retval;

4740 4741
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4742

4743 4744 4745 4746 4747
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4748 4749
}

4750
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4751
{
4752
	struct task_struct *p;
4753
	unsigned long flags;
L
Linus Torvalds 已提交
4754 4755
	int retval;

4756
	rcu_read_lock();
L
Linus Torvalds 已提交
4757 4758 4759 4760 4761 4762

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4763 4764 4765 4766
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4767
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4768
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4769
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4770 4771

out_unlock:
4772
	rcu_read_unlock();
L
Linus Torvalds 已提交
4773

4774
	return retval;
L
Linus Torvalds 已提交
4775 4776 4777
}

/**
I
Ingo Molnar 已提交
4778
 * sys_sched_getaffinity - get the CPU affinity of a process
L
Linus Torvalds 已提交
4779 4780
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4781
 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4782
 *
4783 4784
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4785
 */
4786 4787
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4788 4789
{
	int ret;
4790
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4791

A
Anton Blanchard 已提交
4792
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4793 4794
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4795 4796
		return -EINVAL;

4797 4798
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4799

4800 4801
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4802
		size_t retlen = min_t(size_t, len, cpumask_size());
4803 4804

		if (copy_to_user(user_mask_ptr, mask, retlen))
4805 4806
			ret = -EFAULT;
		else
4807
			ret = retlen;
4808 4809
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4810

4811
	return ret;
L
Linus Torvalds 已提交
4812 4813 4814 4815 4816
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4817 4818
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4819 4820
 *
 * Return: 0.
L
Linus Torvalds 已提交
4821
 */
4822
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4823
{
4824 4825 4826 4827 4828 4829
	struct rq_flags rf;
	struct rq *rq;

	local_irq_disable();
	rq = this_rq();
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
4830

4831
	schedstat_inc(rq->yld_count);
4832
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4833 4834 4835 4836 4837

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
4838 4839
	preempt_disable();
	rq_unlock(rq, &rf);
4840
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4841 4842 4843 4844 4845 4846

	schedule();

	return 0;
}

4847
#ifndef CONFIG_PREEMPT
4848
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4849
{
4850
	if (should_resched(0)) {
4851
		preempt_schedule_common();
L
Linus Torvalds 已提交
4852 4853
		return 1;
	}
4854
	rcu_all_qs();
L
Linus Torvalds 已提交
4855 4856
	return 0;
}
4857
EXPORT_SYMBOL(_cond_resched);
4858
#endif
L
Linus Torvalds 已提交
4859 4860

/*
4861
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4862 4863
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4864
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4865 4866 4867
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4868
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4869
{
4870
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4871 4872
	int ret = 0;

4873 4874
	lockdep_assert_held(lock);

4875
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4876
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4877
		if (resched)
4878
			preempt_schedule_common();
N
Nick Piggin 已提交
4879 4880
		else
			cpu_relax();
J
Jan Kara 已提交
4881
		ret = 1;
L
Linus Torvalds 已提交
4882 4883
		spin_lock(lock);
	}
J
Jan Kara 已提交
4884
	return ret;
L
Linus Torvalds 已提交
4885
}
4886
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4887

4888
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4889 4890 4891
{
	BUG_ON(!in_softirq());

4892
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4893
		local_bh_enable();
4894
		preempt_schedule_common();
L
Linus Torvalds 已提交
4895 4896 4897 4898 4899
		local_bh_disable();
		return 1;
	}
	return 0;
}
4900
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4901 4902 4903 4904

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4905 4906 4907 4908 4909 4910 4911 4912 4913
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
I
Ingo Molnar 已提交
4914
 *	yield();
P
Peter Zijlstra 已提交
4915 4916 4917 4918 4919 4920 4921 4922
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4923 4924 4925 4926 4927 4928 4929 4930
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4931 4932 4933 4934
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4935 4936
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4937 4938 4939 4940
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4941
 * Return:
4942 4943 4944
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4945
 */
4946
int __sched yield_to(struct task_struct *p, bool preempt)
4947 4948 4949 4950
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4951
	int yielded = 0;
4952 4953 4954 4955 4956 4957

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4958 4959 4960 4961 4962 4963 4964 4965 4966
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4967
	double_rq_lock(rq, p_rq);
4968
	if (task_rq(p) != p_rq) {
4969 4970 4971 4972 4973
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4974
		goto out_unlock;
4975 4976

	if (curr->sched_class != p->sched_class)
4977
		goto out_unlock;
4978 4979

	if (task_running(p_rq, p) || p->state)
4980
		goto out_unlock;
4981 4982

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4983
	if (yielded) {
4984
		schedstat_inc(rq->yld_count);
4985 4986 4987 4988 4989
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4990
			resched_curr(p_rq);
4991
	}
4992

4993
out_unlock:
4994
	double_rq_unlock(rq, p_rq);
4995
out_irq:
4996 4997
	local_irq_restore(flags);

4998
	if (yielded > 0)
4999 5000 5001 5002 5003 5004
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
int io_schedule_prepare(void)
{
	int old_iowait = current->in_iowait;

	current->in_iowait = 1;
	blk_schedule_flush_plug(current);

	return old_iowait;
}

void io_schedule_finish(int token)
{
	current->in_iowait = token;
}

L
Linus Torvalds 已提交
5020
/*
I
Ingo Molnar 已提交
5021
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5022 5023 5024 5025
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5026
	int token;
L
Linus Torvalds 已提交
5027 5028
	long ret;

5029
	token = io_schedule_prepare();
L
Linus Torvalds 已提交
5030
	ret = schedule_timeout(timeout);
5031
	io_schedule_finish(token);
5032

L
Linus Torvalds 已提交
5033 5034
	return ret;
}
5035
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5036

5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
void io_schedule(void)
{
	int token;

	token = io_schedule_prepare();
	schedule();
	io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);

L
Linus Torvalds 已提交
5047 5048 5049 5050
/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5051 5052 5053
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5054
 */
5055
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5056 5057 5058 5059 5060 5061 5062 5063
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5064
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5065
	case SCHED_NORMAL:
5066
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5067
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5078 5079 5080
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5081
 */
5082
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5083 5084 5085 5086 5087 5088 5089 5090
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5091
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5092
	case SCHED_NORMAL:
5093
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5094
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5095 5096 5097 5098 5099
		ret = 0;
	}
	return ret;
}

5100
static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
L
Linus Torvalds 已提交
5101
{
5102
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5103
	unsigned int time_slice;
5104
	struct rq_flags rf;
5105
	struct rq *rq;
5106
	int retval;
L
Linus Torvalds 已提交
5107 5108

	if (pid < 0)
5109
		return -EINVAL;
L
Linus Torvalds 已提交
5110 5111

	retval = -ESRCH;
5112
	rcu_read_lock();
L
Linus Torvalds 已提交
5113 5114 5115 5116 5117 5118 5119 5120
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5121
	rq = task_rq_lock(p, &rf);
5122 5123 5124
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5125
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5126

5127
	rcu_read_unlock();
5128 5129
	jiffies_to_timespec64(time_slice, t);
	return 0;
5130

L
Linus Torvalds 已提交
5131
out_unlock:
5132
	rcu_read_unlock();
L
Linus Torvalds 已提交
5133 5134 5135
	return retval;
}

5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
 */
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
		struct timespec __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = put_timespec64(&t, interval);

	return retval;
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
		       compat_pid_t, pid,
		       struct compat_timespec __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = compat_put_timespec64(&t, interval);
	return retval;
}
#endif

5173
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5174 5175
{
	unsigned long free = 0;
5176
	int ppid;
5177

5178 5179
	if (!try_get_task_stack(p))
		return;
5180 5181 5182 5183

	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));

	if (p->state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5184
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5185
#ifdef CONFIG_DEBUG_STACK_USAGE
5186
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5187
#endif
5188
	ppid = 0;
5189
	rcu_read_lock();
5190 5191
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5192
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5193
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5194
		task_pid_nr(p), ppid,
5195
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5196

5197
	print_worker_info(KERN_INFO, p);
5198
	show_stack(p, NULL);
5199
	put_task_stack(p);
L
Linus Torvalds 已提交
5200
}
5201
EXPORT_SYMBOL_GPL(sched_show_task);
L
Linus Torvalds 已提交
5202

5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
static inline bool
state_filter_match(unsigned long state_filter, struct task_struct *p)
{
	/* no filter, everything matches */
	if (!state_filter)
		return true;

	/* filter, but doesn't match */
	if (!(p->state & state_filter))
		return false;

	/*
	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
	 * TASK_KILLABLE).
	 */
	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
		return false;

	return true;
}


I
Ingo Molnar 已提交
5225
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5226
{
5227
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5228

5229
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5230 5231
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5232
#else
P
Peter Zijlstra 已提交
5233 5234
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5235
#endif
5236
	rcu_read_lock();
5237
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5238 5239
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5240
		 * console might take a lot of time:
5241 5242 5243
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5244 5245
		 */
		touch_nmi_watchdog();
5246
		touch_all_softlockup_watchdogs();
5247
		if (state_filter_match(state_filter, p))
5248
			sched_show_task(p);
5249
	}
L
Linus Torvalds 已提交
5250

I
Ingo Molnar 已提交
5251
#ifdef CONFIG_SCHED_DEBUG
5252 5253
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5254
#endif
5255
	rcu_read_unlock();
I
Ingo Molnar 已提交
5256 5257 5258
	/*
	 * Only show locks if all tasks are dumped:
	 */
5259
	if (!state_filter)
I
Ingo Molnar 已提交
5260
		debug_show_all_locks();
L
Linus Torvalds 已提交
5261 5262
}

5263 5264 5265
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
I
Ingo Molnar 已提交
5266
 * @cpu: CPU the idle task belongs to
5267 5268 5269 5270
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5271
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5272
{
5273
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5274 5275
	unsigned long flags;

5276 5277
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5278

5279
	__sched_fork(0, idle);
5280
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5281
	idle->se.exec_start = sched_clock();
5282
	idle->flags |= PF_IDLE;
I
Ingo Molnar 已提交
5283

5284 5285
	kasan_unpoison_task_stack(idle);

5286 5287 5288 5289 5290 5291 5292 5293 5294
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5295 5296
	/*
	 * We're having a chicken and egg problem, even though we are
I
Ingo Molnar 已提交
5297
	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5298 5299 5300 5301 5302 5303 5304 5305
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5306
	__set_task_cpu(idle, cpu);
5307
	rcu_read_unlock();
L
Linus Torvalds 已提交
5308 5309

	rq->curr = rq->idle = idle;
5310
	idle->on_rq = TASK_ON_RQ_QUEUED;
5311
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5312
	idle->on_cpu = 1;
5313
#endif
5314 5315
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5316 5317

	/* Set the preempt count _outside_ the spinlocks! */
5318
	init_idle_preempt_count(idle, cpu);
5319

I
Ingo Molnar 已提交
5320 5321 5322 5323
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5324
	ftrace_graph_init_idle_task(idle, cpu);
5325
	vtime_init_idle(idle, cpu);
5326
#ifdef CONFIG_SMP
5327 5328
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5329 5330
}

5331 5332
#ifdef CONFIG_SMP

5333 5334 5335
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
5336
	int ret = 1;
5337

5338 5339 5340
	if (!cpumask_weight(cur))
		return ret;

5341
	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5342 5343 5344 5345

	return ret;
}

5346 5347 5348 5349 5350 5351 5352
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
I
Ingo Molnar 已提交
5353
	 * to a new cpuset; we don't want to change their CPU
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5366 5367
					      cs_cpus_allowed))
		ret = dl_task_can_attach(p, cs_cpus_allowed);
5368 5369 5370 5371 5372

out:
	return ret;
}

5373
bool sched_smp_initialized __read_mostly;
5374

5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

5385
	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5386 5387 5388 5389
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5390
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5391 5392
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5393 5394 5395 5396 5397 5398 5399

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5400
	bool queued, running;
5401 5402
	struct rq_flags rf;
	struct rq *rq;
5403

5404
	rq = task_rq_lock(p, &rf);
5405
	queued = task_on_rq_queued(p);
5406 5407
	running = task_current(rq, p);

5408
	if (queued)
5409
		dequeue_task(rq, p, DEQUEUE_SAVE);
5410
	if (running)
5411
		put_prev_task(rq, p);
5412 5413 5414

	p->numa_preferred_nid = nid;

5415
	if (queued)
5416
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5417
	if (running)
5418
		set_curr_task(rq, p);
5419
	task_rq_unlock(rq, p, &rf);
5420
}
P
Peter Zijlstra 已提交
5421
#endif /* CONFIG_NUMA_BALANCING */
5422

L
Linus Torvalds 已提交
5423
#ifdef CONFIG_HOTPLUG_CPU
5424
/*
I
Ingo Molnar 已提交
5425
 * Ensure that the idle task is using init_mm right before its CPU goes
5426
 * offline.
5427
 */
5428
void idle_task_exit(void)
L
Linus Torvalds 已提交
5429
{
5430
	struct mm_struct *mm = current->active_mm;
5431

5432
	BUG_ON(cpu_online(smp_processor_id()));
5433

5434
	if (mm != &init_mm) {
5435
		switch_mm(mm, &init_mm, current);
5436 5437
		finish_arch_post_lock_switch();
	}
5438
	mmdrop(mm);
L
Linus Torvalds 已提交
5439 5440 5441
}

/*
5442 5443
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5444 5445 5446
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5447 5448
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5449
 */
5450
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5451
{
5452
	long delta = calc_load_fold_active(rq, 1);
5453 5454
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5455 5456
}

5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5473
/*
5474 5475 5476 5477 5478 5479
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5480
 */
5481
static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
L
Linus Torvalds 已提交
5482
{
5483
	struct rq *rq = dead_rq;
5484
	struct task_struct *next, *stop = rq->stop;
5485
	struct rq_flags orf = *rf;
5486
	int dest_cpu;
L
Linus Torvalds 已提交
5487 5488

	/*
5489 5490 5491 5492 5493 5494 5495
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5496
	 */
5497
	rq->stop = NULL;
5498

5499 5500 5501 5502 5503 5504 5505
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5506
	for (;;) {
5507 5508
		/*
		 * There's this thread running, bail when that's the only
I
Ingo Molnar 已提交
5509
		 * remaining thread:
5510 5511
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5512
			break;
5513

5514
		/*
I
Ingo Molnar 已提交
5515
		 * pick_next_task() assumes pinned rq->lock:
5516
		 */
5517
		next = pick_next_task(rq, &fake_task, rf);
5518
		BUG_ON(!next);
V
Viresh Kumar 已提交
5519
		put_prev_task(rq, next);
5520

W
Wanpeng Li 已提交
5521 5522 5523 5524 5525 5526 5527 5528 5529
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5530
		rq_unlock(rq, rf);
W
Wanpeng Li 已提交
5531
		raw_spin_lock(&next->pi_lock);
5532
		rq_relock(rq, rf);
W
Wanpeng Li 已提交
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5544
		/* Find suitable destination for @next, with force if needed. */
5545
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5546
		rq = __migrate_task(rq, rf, next, dest_cpu);
5547
		if (rq != dead_rq) {
5548
			rq_unlock(rq, rf);
5549
			rq = dead_rq;
5550 5551
			*rf = orf;
			rq_relock(rq, rf);
5552
		}
W
Wanpeng Li 已提交
5553
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5554
	}
5555

5556
	rq->stop = stop;
5557
}
L
Linus Torvalds 已提交
5558 5559
#endif /* CONFIG_HOTPLUG_CPU */

5560
void set_rq_online(struct rq *rq)
5561 5562 5563 5564
{
	if (!rq->online) {
		const struct sched_class *class;

5565
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5566 5567 5568 5569 5570 5571 5572 5573 5574
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

5575
void set_rq_offline(struct rq *rq)
5576 5577 5578 5579 5580 5581 5582 5583 5584
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5585
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5586 5587 5588 5589
		rq->online = 0;
	}
}

5590
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5591
{
5592
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5593

5594 5595 5596
	rq->age_stamp = sched_clock_cpu(cpu);
}

I
Ingo Molnar 已提交
5597 5598 5599 5600
/*
 * used to mark begin/end of suspend/resume:
 */
static int num_cpus_frozen;
5601

L
Linus Torvalds 已提交
5602
/*
5603 5604 5605
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
5606 5607 5608
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
5609
 */
5610
static void cpuset_cpu_active(void)
5611
{
5612
	if (cpuhp_tasks_frozen) {
5613 5614 5615 5616 5617 5618
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
5619 5620
		partition_sched_domains(1, NULL, NULL);
		if (--num_cpus_frozen)
5621
			return;
5622 5623 5624 5625 5626
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
5627
		cpuset_force_rebuild();
5628
	}
5629
	cpuset_update_active_cpus();
5630
}
5631

5632
static int cpuset_cpu_inactive(unsigned int cpu)
5633
{
5634
	if (!cpuhp_tasks_frozen) {
5635
		if (dl_cpu_busy(cpu))
5636
			return -EBUSY;
5637
		cpuset_update_active_cpus();
5638
	} else {
5639 5640
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
5641
	}
5642
	return 0;
5643 5644
}

5645
int sched_cpu_activate(unsigned int cpu)
5646
{
5647
	struct rq *rq = cpu_rq(cpu);
5648
	struct rq_flags rf;
5649

5650
	set_cpu_active(cpu, true);
5651

5652
	if (sched_smp_initialized) {
5653
		sched_domains_numa_masks_set(cpu);
5654
		cpuset_cpu_active();
5655
	}
5656 5657 5658 5659 5660

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
I
Ingo Molnar 已提交
5661
	 *    after all CPUs have been brought up.
5662 5663 5664 5665
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
5666
	rq_lock_irqsave(rq, &rf);
5667 5668 5669 5670
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
5671
	rq_unlock_irqrestore(rq, &rf);
5672 5673 5674

	update_max_interval();

5675
	return 0;
5676 5677
}

5678
int sched_cpu_deactivate(unsigned int cpu)
5679 5680 5681
{
	int ret;

5682
	set_cpu_active(cpu, false);
5683 5684 5685 5686 5687 5688 5689
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
5690
	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5691 5692 5693 5694 5695 5696 5697 5698

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
5699
	}
5700 5701
	sched_domains_numa_masks_clear(cpu);
	return 0;
5702 5703
}

5704 5705 5706 5707 5708 5709 5710 5711
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

5712 5713 5714
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
5715
	sched_rq_cpu_starting(cpu);
5716
	return 0;
5717 5718
}

5719 5720 5721 5722
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5723
	struct rq_flags rf;
5724 5725 5726

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
5727 5728

	rq_lock_irqsave(rq, &rf);
5729 5730 5731 5732
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
5733
	migrate_tasks(rq, &rf);
5734
	BUG_ON(rq->nr_running != 1);
5735 5736
	rq_unlock_irqrestore(rq, &rf);

5737 5738
	calc_load_migrate(rq);
	update_max_interval();
5739
	nohz_balance_exit_idle(cpu);
5740
	hrtick_clear(rq);
5741 5742 5743 5744
	return 0;
}
#endif

P
Peter Zijlstra 已提交
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);

static void sched_init_smt(void)
{
	/*
	 * We've enumerated all CPUs and will assume that if any CPU
	 * has SMT siblings, CPU0 will too.
	 */
	if (cpumask_weight(cpu_smt_mask(0)) > 1)
		static_branch_enable(&sched_smt_present);
}
#else
static inline void sched_init_smt(void) { }
#endif

L
Linus Torvalds 已提交
5761 5762
void __init sched_init_smp(void)
{
5763 5764
	sched_init_numa();

5765 5766
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
I
Ingo Molnar 已提交
5767
	 * CPU masks are stable and all blatant races in the below code cannot
5768 5769
	 * happen.
	 */
5770
	mutex_lock(&sched_domains_mutex);
P
Peter Zijlstra 已提交
5771
	sched_init_domains(cpu_active_mask);
5772
	mutex_unlock(&sched_domains_mutex);
5773

5774
	/* Move init over to a non-isolated CPU */
5775
	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5776
		BUG();
I
Ingo Molnar 已提交
5777
	sched_init_granularity();
5778

5779
	init_sched_rt_class();
5780
	init_sched_dl_class();
P
Peter Zijlstra 已提交
5781 5782 5783

	sched_init_smt();

5784
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
5785
}
5786 5787 5788

static int __init migration_init(void)
{
5789
	sched_rq_cpu_starting(smp_processor_id());
5790
	return 0;
L
Linus Torvalds 已提交
5791
}
5792 5793
early_initcall(migration_init);

L
Linus Torvalds 已提交
5794 5795 5796
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
5797
	sched_init_granularity();
L
Linus Torvalds 已提交
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

5808
#ifdef CONFIG_CGROUP_SCHED
5809 5810 5811 5812
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
5813
struct task_group root_task_group;
5814
LIST_HEAD(task_groups);
5815 5816 5817

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
5818
#endif
P
Peter Zijlstra 已提交
5819

5820
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5821
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
5822

L
Linus Torvalds 已提交
5823 5824
void __init sched_init(void)
{
I
Ingo Molnar 已提交
5825
	int i, j;
5826 5827
	unsigned long alloc_size = 0, ptr;

5828
	sched_clock_init();
5829
	wait_bit_init();
5830

5831 5832 5833 5834 5835 5836 5837
#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
5838
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5839 5840

#ifdef CONFIG_FAIR_GROUP_SCHED
5841
		root_task_group.se = (struct sched_entity **)ptr;
5842 5843
		ptr += nr_cpu_ids * sizeof(void **);

5844
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5845
		ptr += nr_cpu_ids * sizeof(void **);
5846

5847
#endif /* CONFIG_FAIR_GROUP_SCHED */
5848
#ifdef CONFIG_RT_GROUP_SCHED
5849
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5850 5851
		ptr += nr_cpu_ids * sizeof(void **);

5852
		root_task_group.rt_rq = (struct rt_rq **)ptr;
5853 5854
		ptr += nr_cpu_ids * sizeof(void **);

5855
#endif /* CONFIG_RT_GROUP_SCHED */
5856
	}
5857
#ifdef CONFIG_CPUMASK_OFFSTACK
5858 5859 5860
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5861 5862
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5863
	}
5864
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
5865

I
Ingo Molnar 已提交
5866 5867
	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5868

G
Gregory Haskins 已提交
5869 5870 5871 5872
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

5873
#ifdef CONFIG_RT_GROUP_SCHED
5874
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5875
			global_rt_period(), global_rt_runtime());
5876
#endif /* CONFIG_RT_GROUP_SCHED */
5877

D
Dhaval Giani 已提交
5878
#ifdef CONFIG_CGROUP_SCHED
5879 5880
	task_group_cache = KMEM_CACHE(task_group, 0);

5881 5882
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
5883
	INIT_LIST_HEAD(&root_task_group.siblings);
5884
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
5885
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
5886

5887
	for_each_possible_cpu(i) {
5888
		struct rq *rq;
L
Linus Torvalds 已提交
5889 5890

		rq = cpu_rq(i);
5891
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
5892
		rq->nr_running = 0;
5893 5894
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
5895
		init_cfs_rq(&rq->cfs);
5896 5897
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
5898
#ifdef CONFIG_FAIR_GROUP_SCHED
5899
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
5900
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5901
		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
D
Dhaval Giani 已提交
5902
		/*
I
Ingo Molnar 已提交
5903
		 * How much CPU bandwidth does root_task_group get?
D
Dhaval Giani 已提交
5904 5905
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
I
Ingo Molnar 已提交
5906 5907
		 * gets 100% of the CPU resources in the system. This overall
		 * system CPU resource is divided among the tasks of
5908
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
5909 5910 5911
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
5912
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
5913
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
I
Ingo Molnar 已提交
5914
		 * then A0's share of the CPU resource is:
D
Dhaval Giani 已提交
5915
		 *
5916
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
5917
		 *
5918 5919
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
5920
		 */
5921
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5922
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
5923 5924 5925
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5926
#ifdef CONFIG_RT_GROUP_SCHED
5927
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
5928
#endif
L
Linus Torvalds 已提交
5929

I
Ingo Molnar 已提交
5930 5931
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
5932

L
Linus Torvalds 已提交
5933
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
5934
		rq->sd = NULL;
G
Gregory Haskins 已提交
5935
		rq->rd = NULL;
5936
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
5937
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
5938
		rq->active_balance = 0;
I
Ingo Molnar 已提交
5939
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
5940
		rq->push_cpu = 0;
5941
		rq->cpu = i;
5942
		rq->online = 0;
5943 5944
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
5945
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
5946 5947 5948

		INIT_LIST_HEAD(&rq->cfs_tasks);

5949
		rq_attach_root(rq, &def_root_domain);
5950
#ifdef CONFIG_NO_HZ_COMMON
5951
		rq->last_load_update_tick = jiffies;
5952
		rq->nohz_flags = 0;
5953
#endif
5954 5955 5956
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
5957
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
5958
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
5959 5960 5961
		atomic_set(&rq->nr_iowait, 0);
	}

5962
	set_load_weight(&init_task, false);
5963

L
Linus Torvalds 已提交
5964 5965 5966
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
V
Vegard Nossum 已提交
5967
	mmgrab(&init_mm);
L
Linus Torvalds 已提交
5968 5969 5970 5971 5972 5973 5974 5975 5976
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
5977 5978 5979

	calc_load_update = jiffies + LOAD_FREQ;

5980
#ifdef CONFIG_SMP
5981
	idle_thread_set_boot_cpu();
5982
	set_cpu_rq_start_time(smp_processor_id());
5983 5984
#endif
	init_sched_fair_class();
5985

5986 5987
	init_schedstats();

5988
	scheduler_running = 1;
L
Linus Torvalds 已提交
5989 5990
}

5991
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5992 5993
static inline int preempt_count_equals(int preempt_offset)
{
5994
	int nested = preempt_count() + rcu_preempt_depth();
5995

A
Arnd Bergmann 已提交
5996
	return (nested == preempt_offset);
5997 5998
}

5999
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6000
{
P
Peter Zijlstra 已提交
6001 6002 6003 6004 6005
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
6006
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
6007 6008 6009 6010
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
6011
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
6012

6013 6014 6015 6016 6017
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6018
{
I
Ingo Molnar 已提交
6019 6020 6021
	/* Ratelimiting timestamp: */
	static unsigned long prev_jiffy;

6022
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
6023

I
Ingo Molnar 已提交
6024 6025 6026
	/* WARN_ON_ONCE() by default, no rate limit required: */
	rcu_sleep_check();

6027 6028
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
6029 6030
	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
	    oops_in_progress)
I
Ingo Molnar 已提交
6031
		return;
6032

I
Ingo Molnar 已提交
6033 6034 6035 6036
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

I
Ingo Molnar 已提交
6037
	/* Save this before calling printk(), since that will clobber it: */
6038 6039
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
6040 6041 6042 6043 6044 6045 6046
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6047

6048 6049 6050
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
6051 6052 6053
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6054 6055
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
6056
		pr_err("Preemption disabled at:");
6057
		print_ip_sym(preempt_disable_ip);
6058 6059
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
6060
	dump_stack();
6061
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
6062
}
6063
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
6064 6065 6066
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6067
void normalize_rt_tasks(void)
6068
{
6069
	struct task_struct *g, *p;
6070 6071 6072
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
6073

6074
	read_lock(&tasklist_lock);
6075
	for_each_process_thread(g, p) {
6076 6077 6078
		/*
		 * Only normalize user tasks:
		 */
6079
		if (p->flags & PF_KTHREAD)
6080 6081
			continue;

6082 6083 6084 6085
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
6086

6087
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
6088 6089 6090 6091
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
6092
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
6093
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6094
			continue;
I
Ingo Molnar 已提交
6095
		}
L
Linus Torvalds 已提交
6096

6097
		__sched_setscheduler(p, &attr, false, false);
6098
	}
6099
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6100 6101 6102
}

#endif /* CONFIG_MAGIC_SYSRQ */
6103

6104
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6105
/*
6106
 * These functions are only useful for the IA64 MCA handling, or kdb.
6107 6108 6109 6110 6111 6112 6113 6114 6115
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
I
Ingo Molnar 已提交
6116
 * curr_task - return the current task for a given CPU.
6117 6118 6119
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6120 6121
 *
 * Return: The current task for @cpu.
6122
 */
6123
struct task_struct *curr_task(int cpu)
6124 6125 6126 6127
{
	return cpu_curr(cpu);
}

6128 6129 6130
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6131
/**
I
Ingo Molnar 已提交
6132
 * set_curr_task - set the current task for a given CPU.
6133 6134 6135 6136
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6137
 * are serviced on a separate stack. It allows the architecture to switch the
I
Ingo Molnar 已提交
6138
 * notion of the current task on a CPU in a non-blocking manner. This function
6139 6140 6141 6142 6143 6144 6145
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6146
void ia64_set_curr_task(int cpu, struct task_struct *p)
6147 6148 6149 6150 6151
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6152

D
Dhaval Giani 已提交
6153
#ifdef CONFIG_CGROUP_SCHED
6154 6155 6156
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6157
static void sched_free_group(struct task_group *tg)
6158 6159 6160
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6161
	autogroup_free(tg);
6162
	kmem_cache_free(task_group_cache, tg);
6163 6164 6165
}

/* allocate runqueue etc for a new task group */
6166
struct task_group *sched_create_group(struct task_group *parent)
6167 6168 6169
{
	struct task_group *tg;

6170
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6171 6172 6173
	if (!tg)
		return ERR_PTR(-ENOMEM);

6174
	if (!alloc_fair_sched_group(tg, parent))
6175 6176
		goto err;

6177
	if (!alloc_rt_sched_group(tg, parent))
6178 6179
		goto err;

6180 6181 6182
	return tg;

err:
6183
	sched_free_group(tg);
6184 6185 6186 6187 6188 6189 6190
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6191
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6192
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6193

I
Ingo Molnar 已提交
6194 6195
	/* Root should already exist: */
	WARN_ON(!parent);
P
Peter Zijlstra 已提交
6196 6197 6198

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6199
	list_add_rcu(&tg->siblings, &parent->children);
6200
	spin_unlock_irqrestore(&task_group_lock, flags);
6201 6202

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
6203 6204
}

6205
/* rcu callback to free various structures associated with a task group */
6206
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6207
{
I
Ingo Molnar 已提交
6208
	/* Now it should be safe to free those cfs_rqs: */
6209
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6210 6211
}

6212
void sched_destroy_group(struct task_group *tg)
6213
{
I
Ingo Molnar 已提交
6214
	/* Wait for possible concurrent references to cfs_rqs complete: */
6215
	call_rcu(&tg->rcu, sched_free_group_rcu);
6216 6217 6218
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6219
{
6220
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
6221

I
Ingo Molnar 已提交
6222
	/* End participation in shares distribution: */
6223
	unregister_fair_sched_group(tg);
6224 6225

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6226
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6227
	list_del_rcu(&tg->siblings);
6228
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6229 6230
}

6231
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
6232
{
P
Peter Zijlstra 已提交
6233
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6234

6235 6236 6237 6238 6239 6240
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
6241 6242 6243 6244
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6245
#ifdef CONFIG_FAIR_GROUP_SCHED
6246 6247
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
6248
	else
P
Peter Zijlstra 已提交
6249
#endif
6250
		set_task_rq(tsk, task_cpu(tsk));
6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
6262 6263
	int queued, running, queue_flags =
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6264 6265 6266 6267
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);
6268
	update_rq_clock(rq);
6269 6270 6271 6272 6273

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
6274
		dequeue_task(rq, tsk, queue_flags);
6275
	if (running)
6276 6277 6278
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
6279

6280
	if (queued)
6281
		enqueue_task(rq, tsk, queue_flags);
6282
	if (running)
6283
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6284

6285
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
6286
}
6287

6288
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6289
{
6290
	return css ? container_of(css, struct task_group, css) : NULL;
6291 6292
}

6293 6294
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6295
{
6296 6297
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
6298

6299
	if (!parent) {
6300
		/* This is early initialization for the top cgroup */
6301
		return &root_task_group.css;
6302 6303
	}

6304
	tg = sched_create_group(parent);
6305 6306 6307 6308 6309 6310
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321
/* Expose task group only after completing cgroup initialization */
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css->parent);

	if (parent)
		sched_online_group(tg, parent);
	return 0;
}

6322
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6323
{
6324
	struct task_group *tg = css_tg(css);
6325

6326
	sched_offline_group(tg);
6327 6328
}

6329
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6330
{
6331
	struct task_group *tg = css_tg(css);
6332

6333 6334 6335 6336
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
6337 6338
}

6339 6340 6341 6342
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
6343
static void cpu_cgroup_fork(struct task_struct *task)
6344
{
6345 6346 6347 6348 6349
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

6350
	update_rq_clock(rq);
6351 6352 6353
	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
6354 6355
}

6356
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6357
{
6358
	struct task_struct *task;
6359
	struct cgroup_subsys_state *css;
6360
	int ret = 0;
6361

6362
	cgroup_taskset_for_each(task, css, tset) {
6363
#ifdef CONFIG_RT_GROUP_SCHED
6364
		if (!sched_rt_can_attach(css_tg(css), task))
6365
			return -EINVAL;
6366
#else
6367 6368 6369
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
6370
#endif
6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
6387
	}
6388
	return ret;
6389
}
6390

6391
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6392
{
6393
	struct task_struct *task;
6394
	struct cgroup_subsys_state *css;
6395

6396
	cgroup_taskset_for_each(task, css, tset)
6397
		sched_move_task(task);
6398 6399
}

6400
#ifdef CONFIG_FAIR_GROUP_SCHED
6401 6402
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
6403
{
6404
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6405 6406
}

6407 6408
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
6409
{
6410
	struct task_group *tg = css_tg(css);
6411

6412
	return (u64) scale_load_down(tg->shares);
6413
}
6414 6415

#ifdef CONFIG_CFS_BANDWIDTH
6416 6417
static DEFINE_MUTEX(cfs_constraints_mutex);

6418 6419 6420
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

6421 6422
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

6423 6424
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
6425
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6426
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

6447 6448 6449 6450 6451
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
6452 6453 6454 6455 6456
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

6457
	runtime_enabled = quota != RUNTIME_INF;
6458
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6459 6460 6461 6462 6463 6464
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
6465 6466 6467
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
6468

P
Paul Turner 已提交
6469
	__refill_cfs_bandwidth_runtime(cfs_b);
I
Ingo Molnar 已提交
6470 6471

	/* Restart the period timer (if active) to handle new period expiry: */
P
Peter Zijlstra 已提交
6472 6473
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
I
Ingo Molnar 已提交
6474

6475 6476
	raw_spin_unlock_irq(&cfs_b->lock);

6477
	for_each_online_cpu(i) {
6478
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6479
		struct rq *rq = cfs_rq->rq;
6480
		struct rq_flags rf;
6481

6482
		rq_lock_irq(rq, &rf);
6483
		cfs_rq->runtime_enabled = runtime_enabled;
6484
		cfs_rq->runtime_remaining = 0;
6485

6486
		if (cfs_rq->throttled)
6487
			unthrottle_cfs_rq(cfs_rq);
6488
		rq_unlock_irq(rq, &rf);
6489
	}
6490 6491
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
6492 6493
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
6494
	put_online_cpus();
6495

6496
	return ret;
6497 6498 6499 6500 6501 6502
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

6503
	period = ktime_to_ns(tg->cfs_bandwidth.period);
6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

6516
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6517 6518
		return -1;

6519
	quota_us = tg->cfs_bandwidth.quota;
6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
6530
	quota = tg->cfs_bandwidth.quota;
6531 6532 6533 6534 6535 6536 6537 6538

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

6539
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6540 6541 6542 6543 6544
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

6545 6546
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
6547
{
6548
	return tg_get_cfs_quota(css_tg(css));
6549 6550
}

6551 6552
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
6553
{
6554
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6555 6556
}

6557 6558
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6559
{
6560
	return tg_get_cfs_period(css_tg(css));
6561 6562
}

6563 6564
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
6565
{
6566
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6567 6568
}

6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
6601
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6602 6603 6604 6605 6606
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
6607
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6608 6609

		quota = normalize_cfs_quota(tg, d);
6610
		parent_quota = parent_b->hierarchical_quota;
6611 6612

		/*
I
Ingo Molnar 已提交
6613 6614
		 * Ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set:
6615 6616 6617 6618 6619 6620
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
6621
	cfs_b->hierarchical_quota = quota;
6622 6623 6624 6625 6626 6627

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
6628
	int ret;
6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

6640 6641 6642 6643 6644
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6645
}
6646

6647
static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6648
{
6649
	struct task_group *tg = css_tg(seq_css(sf));
6650
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6651

6652 6653 6654
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6655 6656 6657

	return 0;
}
6658
#endif /* CONFIG_CFS_BANDWIDTH */
6659
#endif /* CONFIG_FAIR_GROUP_SCHED */
6660

6661
#ifdef CONFIG_RT_GROUP_SCHED
6662 6663
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
6664
{
6665
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
6666 6667
}

6668 6669
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
6670
{
6671
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
6672
}
6673

6674 6675
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
6676
{
6677
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6678 6679
}

6680 6681
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6682
{
6683
	return sched_group_rt_period(css_tg(css));
6684
}
6685
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
6686

6687
static struct cftype cpu_legacy_files[] = {
6688
#ifdef CONFIG_FAIR_GROUP_SCHED
6689 6690
	{
		.name = "shares",
6691 6692
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
6693
	},
6694
#endif
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
6706 6707
	{
		.name = "stat",
6708
		.seq_show = cpu_cfs_stat_show,
6709
	},
6710
#endif
6711
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6712
	{
P
Peter Zijlstra 已提交
6713
		.name = "rt_runtime_us",
6714 6715
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
6716
	},
6717 6718
	{
		.name = "rt_period_us",
6719 6720
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
6721
	},
6722
#endif
I
Ingo Molnar 已提交
6723
	{ }	/* Terminate */
6724 6725
};

6726 6727
static int cpu_extra_stat_show(struct seq_file *sf,
			       struct cgroup_subsys_state *css)
6728 6729 6730
{
#ifdef CONFIG_CFS_BANDWIDTH
	{
6731
		struct task_group *tg = css_tg(css);
6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		u64 throttled_usec;

		throttled_usec = cfs_b->throttled_time;
		do_div(throttled_usec, NSEC_PER_USEC);

		seq_printf(sf, "nr_periods %d\n"
			   "nr_throttled %d\n"
			   "throttled_usec %llu\n",
			   cfs_b->nr_periods, cfs_b->nr_throttled,
			   throttled_usec);
	}
#endif
	return 0;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	struct task_group *tg = css_tg(css);
	u64 weight = scale_load_down(tg->shares);

	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
}

static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cft, u64 weight)
{
	/*
	 * cgroup weight knobs should use the common MIN, DFL and MAX
	 * values which are 1, 100 and 10000 respectively.  While it loses
	 * a bit of range on both ends, it maps pretty well onto the shares
	 * value used by scheduler and the round-trip conversions preserve
	 * the original value over the entire range.
	 */
	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
		return -ERANGE;

	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);

	return sched_group_set_shares(css_tg(css), scale_load(weight));
}

static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
				    struct cftype *cft)
{
	unsigned long weight = scale_load_down(css_tg(css)->shares);
	int last_delta = INT_MAX;
	int prio, delta;

	/* find the closest nice value to the current weight */
	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
		delta = abs(sched_prio_to_weight[prio] - weight);
		if (delta >= last_delta)
			break;
		last_delta = delta;
	}

	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
}

static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
				     struct cftype *cft, s64 nice)
{
	unsigned long weight;

	if (nice < MIN_NICE || nice > MAX_NICE)
		return -ERANGE;

	weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO];
	return sched_group_set_shares(css_tg(css), scale_load(weight));
}
#endif

static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
						  long period, long quota)
{
	if (quota < 0)
		seq_puts(sf, "max");
	else
		seq_printf(sf, "%ld", quota);

	seq_printf(sf, " %ld\n", period);
}

/* caller should put the current value in *@periodp before calling */
static int __maybe_unused cpu_period_quota_parse(char *buf,
						 u64 *periodp, u64 *quotap)
{
	char tok[21];	/* U64_MAX */

	if (!sscanf(buf, "%s %llu", tok, periodp))
		return -EINVAL;

	*periodp *= NSEC_PER_USEC;

	if (sscanf(tok, "%llu", quotap))
		*quotap *= NSEC_PER_USEC;
	else if (!strcmp(tok, "max"))
		*quotap = RUNTIME_INF;
	else
		return -EINVAL;

	return 0;
}

#ifdef CONFIG_CFS_BANDWIDTH
static int cpu_max_show(struct seq_file *sf, void *v)
{
	struct task_group *tg = css_tg(seq_css(sf));

	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
	return 0;
}

static ssize_t cpu_max_write(struct kernfs_open_file *of,
			     char *buf, size_t nbytes, loff_t off)
{
	struct task_group *tg = css_tg(of_css(of));
	u64 period = tg_get_cfs_period(tg);
	u64 quota;
	int ret;

	ret = cpu_period_quota_parse(buf, &period, &quota);
	if (!ret)
		ret = tg_set_cfs_bandwidth(tg, period, quota);
	return ret ?: nbytes;
}
#endif

static struct cftype cpu_files[] = {
#ifdef CONFIG_FAIR_GROUP_SCHED
	{
		.name = "weight",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = cpu_weight_read_u64,
		.write_u64 = cpu_weight_write_u64,
	},
	{
		.name = "weight.nice",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_s64 = cpu_weight_nice_read_s64,
		.write_s64 = cpu_weight_nice_write_s64,
	},
#endif
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = cpu_max_show,
		.write = cpu_max_write,
	},
#endif
	{ }	/* terminate */
};

6889
struct cgroup_subsys cpu_cgrp_subsys = {
6890
	.css_alloc	= cpu_cgroup_css_alloc,
6891
	.css_online	= cpu_cgroup_css_online,
6892
	.css_released	= cpu_cgroup_css_released,
6893
	.css_free	= cpu_cgroup_css_free,
6894
	.css_extra_stat_show = cpu_extra_stat_show,
6895
	.fork		= cpu_cgroup_fork,
6896 6897
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
6898
	.legacy_cftypes	= cpu_legacy_files,
6899
	.dfl_cftypes	= cpu_files,
6900
	.early_init	= true,
6901
	.threaded	= true,
6902 6903
};

6904
#endif	/* CONFIG_CGROUP_SCHED */
6905

6906 6907 6908 6909 6910
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};