core.c 219.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28
 */

29
#include <linux/kasan.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
34
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
35
#include <linux/highmem.h>
36
#include <linux/mmu_context.h>
L
Linus Torvalds 已提交
37
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
74
#include <linux/context_tracking.h>
75
#include <linux/compiler.h>
76
#include <linux/frame.h>
77
#include <linux/prefetch.h>
78
#include <linux/mutex.h>
L
Linus Torvalds 已提交
79

80
#include <asm/switch_to.h>
81
#include <asm/tlb.h>
82
#include <asm/irq_regs.h>
G
Glauber Costa 已提交
83 84 85
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
86

87
#include "sched.h"
88
#include "../workqueue_internal.h"
89
#include "../smpboot.h"
90

91
#define CREATE_TRACE_POINTS
92
#include <trace/events/sched.h>
93

94 95
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96

97
static void update_rq_clock_task(struct rq *rq, s64 delta);
98

99
void update_rq_clock(struct rq *rq)
100
{
101
	s64 delta;
102

103 104
	lockdep_assert_held(&rq->lock);

105
	if (rq->clock_update_flags & RQCF_ACT_SKIP)
106
		return;
107

108 109 110
#ifdef CONFIG_SCHED_DEBUG
	rq->clock_update_flags |= RQCF_UPDATED;
#endif
111
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
112 113
	if (delta < 0)
		return;
114 115
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
116 117
}

I
Ingo Molnar 已提交
118 119 120
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
121 122 123 124

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
125
const_debug unsigned int sysctl_sched_features =
126
#include "features.h"
P
Peter Zijlstra 已提交
127 128 129 130
	0;

#undef SCHED_FEAT

131 132 133 134 135 136
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

137 138 139 140 141 142 143 144
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
145
/*
P
Peter Zijlstra 已提交
146
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
147 148
 * default: 1s
 */
P
Peter Zijlstra 已提交
149
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
150

151
__read_mostly int scheduler_running;
152

P
Peter Zijlstra 已提交
153 154 155 156 157
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
158

159 160 161
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
162
/*
163
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
164
 */
A
Alexey Dobriyan 已提交
165
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
166 167
	__acquires(rq->lock)
{
168
	struct rq *rq;
L
Linus Torvalds 已提交
169 170 171

	local_irq_disable();
	rq = this_rq();
172
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
173 174 175 176

	return rq;
}

177 178 179
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
180
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
181 182 183 184 185 186 187 188 189 190
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
191
			rq_pin_lock(rq, rf);
192 193 194 195 196 197 198 199 200 201 202 203
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
204
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
205 206 207 208 209 210
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
211
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
		 * If we observe the new cpu in task_rq_lock, the acquire will
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
231
			rq_pin_lock(rq, rf);
232 233 234
			return rq;
		}
		raw_spin_unlock(&rq->lock);
235
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
236 237 238 239 240 241

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

P
Peter Zijlstra 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

263
	raw_spin_lock(&rq->lock);
264
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
265
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
266
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
267 268 269 270

	return HRTIMER_NORESTART;
}

271
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
272

273
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
274 275 276
{
	struct hrtimer *timer = &rq->hrtick_timer;

277
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
278 279
}

280 281 282 283
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
284
{
285
	struct rq *rq = arg;
286

287
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
288
	__hrtick_restart(rq);
289
	rq->hrtick_csd_pending = 0;
290
	raw_spin_unlock(&rq->lock);
291 292
}

293 294 295 296 297
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
298
void hrtick_start(struct rq *rq, u64 delay)
299
{
300
	struct hrtimer *timer = &rq->hrtick_timer;
301 302 303 304 305 306 307 308 309
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
310

311
	hrtimer_set_expires(timer, time);
312 313

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
314
		__hrtick_restart(rq);
315
	} else if (!rq->hrtick_csd_pending) {
316
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
317 318
		rq->hrtick_csd_pending = 1;
	}
319 320
}

321 322 323 324 325 326
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
327
void hrtick_start(struct rq *rq, u64 delay)
328
{
W
Wanpeng Li 已提交
329 330 331 332 333
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
334 335
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
336 337
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
338

339
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
340
{
341 342
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
343

344 345 346 347
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
348

349 350
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
351
}
A
Andrew Morton 已提交
352
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
353 354 355 356 357 358 359
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
360
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

380
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
381 382 383 384 385 386 387 388 389 390
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
391 392 393 394 395 396 397 398 399 400

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
401
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
402 403 404 405 406 407 408 409 410 411 412 413 414 415

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

416 417 418 419 420 421
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
422 423 424 425 426 427 428

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
429 430
#endif

431 432 433 434 435 436 437 438 439 440
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
441
	 * barrier implied by the wakeup in wake_up_q().
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
477
/*
478
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
479 480 481 482 483
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
484
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
485
{
486
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
487 488
	int cpu;

489
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
490

491
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
492 493
		return;

494
	cpu = cpu_of(rq);
495

496
	if (cpu == smp_processor_id()) {
497
		set_tsk_need_resched(curr);
498
		set_preempt_need_resched();
I
Ingo Molnar 已提交
499
		return;
500
	}
I
Ingo Molnar 已提交
501

502
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
503
		smp_send_reschedule(cpu);
504 505
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
506 507
}

508
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
509 510 511 512
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

513
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
514
		return;
515
	resched_curr(rq);
516
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
517
}
518

519
#ifdef CONFIG_SMP
520
#ifdef CONFIG_NO_HZ_COMMON
521 522 523 524 525 526 527 528
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
529
int get_nohz_timer_target(void)
530
{
531
	int i, cpu = smp_processor_id();
532 533
	struct sched_domain *sd;

534
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
535 536
		return cpu;

537
	rcu_read_lock();
538
	for_each_domain(cpu, sd) {
539
		for_each_cpu(i, sched_domain_span(sd)) {
540 541 542 543
			if (cpu == i)
				continue;

			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
544 545 546 547
				cpu = i;
				goto unlock;
			}
		}
548
	}
549 550 551

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
552 553
unlock:
	rcu_read_unlock();
554 555
	return cpu;
}
556 557 558 559 560 561 562 563 564 565
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
566
static void wake_up_idle_cpu(int cpu)
567 568 569 570 571 572
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

573
	if (set_nr_and_not_polling(rq->idle))
574
		smp_send_reschedule(cpu);
575 576
	else
		trace_sched_wake_idle_without_ipi(cpu);
577 578
}

579
static bool wake_up_full_nohz_cpu(int cpu)
580
{
581 582 583 584 585 586
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
587 588
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
589
	if (tick_nohz_full_cpu(cpu)) {
590 591
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
592
			tick_nohz_full_kick_cpu(cpu);
593 594 595 596 597 598
		return true;
	}

	return false;
}

599 600 601 602 603
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
604 605
void wake_up_nohz_cpu(int cpu)
{
606
	if (!wake_up_full_nohz_cpu(cpu))
607 608 609
		wake_up_idle_cpu(cpu);
}

610
static inline bool got_nohz_idle_kick(void)
611
{
612
	int cpu = smp_processor_id();
613 614 615 616 617 618 619 620 621 622 623 624 625

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
626 627
}

628
#else /* CONFIG_NO_HZ_COMMON */
629

630
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
631
{
632
	return false;
P
Peter Zijlstra 已提交
633 634
}

635
#endif /* CONFIG_NO_HZ_COMMON */
636

637
#ifdef CONFIG_NO_HZ_FULL
638
bool sched_can_stop_tick(struct rq *rq)
639
{
640 641 642 643 644 645
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

646
	/*
647 648
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
649
	 */
650 651 652 653 654
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
655 656
	}

657 658 659 660 661 662 663 664 665 666 667 668 669 670
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
671
		return false;
672

673
	return true;
674 675
}
#endif /* CONFIG_NO_HZ_FULL */
676

677
void sched_avg_update(struct rq *rq)
678
{
679 680
	s64 period = sched_avg_period();

681
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
682 683 684 685 686 687
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
688 689 690
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
691 692
}

693
#endif /* CONFIG_SMP */
694

695 696
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
697
/*
698 699 700 701
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
702
 */
703
int walk_tg_tree_from(struct task_group *from,
704
			     tg_visitor down, tg_visitor up, void *data)
705 706
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
707
	int ret;
708

709 710
	parent = from;

711
down:
P
Peter Zijlstra 已提交
712 713
	ret = (*down)(parent, data);
	if (ret)
714
		goto out;
715 716 717 718 719 720 721
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
722
	ret = (*up)(parent, data);
723 724
	if (ret || parent == from)
		goto out;
725 726 727 728 729

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
730
out:
P
Peter Zijlstra 已提交
731
	return ret;
732 733
}

734
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
735
{
736
	return 0;
P
Peter Zijlstra 已提交
737
}
738 739
#endif

740 741
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
742 743 744
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
745 746 747
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
748
	if (idle_policy(p->policy)) {
749
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
750
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
751 752
		return;
	}
753

754 755
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
756 757
}

758
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
759
{
760
	update_rq_clock(rq);
761 762
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
763
	p->sched_class->enqueue_task(rq, p, flags);
764 765
}

766
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
767
{
768
	update_rq_clock(rq);
769 770
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
771
	p->sched_class->dequeue_task(rq, p, flags);
772 773
}

774
void activate_task(struct rq *rq, struct task_struct *p, int flags)
775 776 777 778
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

779
	enqueue_task(rq, p, flags);
780 781
}

782
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
783 784 785 786
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

787
	dequeue_task(rq, p, flags);
788 789
}

790
static void update_rq_clock_task(struct rq *rq, s64 delta)
791
{
792 793 794 795 796 797 798 799
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
800
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
822 823
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
824
	if (static_key_false((&paravirt_steal_rq_enabled))) {
825 826 827 828 829 830 831 832 833 834 835
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

836 837
	rq->clock_task += delta;

838
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
839
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
840 841
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
842 843
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

874
/*
I
Ingo Molnar 已提交
875
 * __normal_prio - return the priority that is based on the static prio
876 877 878
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
879
	return p->static_prio;
880 881
}

882 883 884 885 886 887 888
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
889
static inline int normal_prio(struct task_struct *p)
890 891 892
{
	int prio;

893 894 895
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
896 897 898 899 900 901 902 903 904 905 906 907 908
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
909
static int effective_prio(struct task_struct *p)
910 911 912 913 914 915 916 917 918 919 920 921
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
922 923 924
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
925 926
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
927
 */
928
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
929 930 931 932
{
	return cpu_curr(task_cpu(p)) == p;
}

933
/*
934 935 936 937 938
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
939
 */
940 941
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
942
				       int oldprio)
943 944 945
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
946
			prev_class->switched_from(rq, p);
947

P
Peter Zijlstra 已提交
948
		p->sched_class->switched_to(rq, p);
949
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
950
		p->sched_class->prio_changed(rq, p, oldprio);
951 952
}

953
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
954 955 956 957 958 959 960 961 962 963
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
964
				resched_curr(rq);
965 966 967 968 969 970 971 972 973
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
974
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
975
		rq_clock_skip_update(rq, true);
976 977
}

L
Linus Torvalds 已提交
978
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
998
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
999 1000 1001 1002
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
1003
	dequeue_task(rq, p, 0);
P
Peter Zijlstra 已提交
1004 1005 1006 1007 1008 1009 1010 1011
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
1012
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
1032
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
1033 1034
{
	if (unlikely(!cpu_active(dest_cpu)))
1035
		return rq;
P
Peter Zijlstra 已提交
1036 1037 1038

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1039
		return rq;
P
Peter Zijlstra 已提交
1040

1041 1042 1043
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1054 1055
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1068 1069 1070 1071 1072 1073 1074 1075

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
1076 1077 1078 1079 1080 1081
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
			rq = __migrate_task(rq, p, arg->dest_cpu);
		else
			p->wake_cpu = arg->dest_cpu;
	}
1082 1083 1084
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1085 1086 1087 1088
	local_irq_enable();
	return 0;
}

1089 1090 1091 1092 1093
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1094 1095 1096 1097 1098
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1099 1100
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1101 1102 1103
	struct rq *rq = task_rq(p);
	bool queued, running;

1104
	lockdep_assert_held(&p->pi_lock);
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1115
		dequeue_task(rq, p, DEQUEUE_SAVE);
1116 1117 1118 1119
	}
	if (running)
		put_prev_task(rq, p);

1120
	p->sched_class->set_cpus_allowed(p, new_mask);
1121 1122

	if (queued)
1123
		enqueue_task(rq, p, ENQUEUE_RESTORE);
1124
	if (running)
1125
		set_curr_task(rq, p);
1126 1127
}

P
Peter Zijlstra 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1137 1138
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1139
{
1140
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1141
	unsigned int dest_cpu;
1142 1143
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1144 1145
	int ret = 0;

1146
	rq = task_rq_lock(p, &rf);
P
Peter Zijlstra 已提交
1147

1148 1149 1150 1151 1152 1153 1154
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1155 1156 1157 1158 1159 1160 1161 1162 1163
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1164 1165 1166
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1167
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1168 1169 1170 1171 1172 1173
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
		 * !active we want to ensure they are strict per-cpu threads.
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1184 1185 1186 1187
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1188
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1189 1190 1191
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1192
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1193 1194 1195
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1196 1197 1198 1199 1200
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1201
		rq_unpin_lock(rq, &rf);
1202
		rq = move_queued_task(rq, p, dest_cpu);
1203
		rq_repin_lock(rq, &rf);
1204
	}
P
Peter Zijlstra 已提交
1205
out:
1206
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1207 1208 1209

	return ret;
}
1210 1211 1212 1213 1214

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1215 1216
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1217
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1218
{
1219 1220 1221 1222 1223
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1224
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1225
			!p->on_rq);
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1236
#ifdef CONFIG_LOCKDEP
1237 1238 1239 1240 1241
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1242
	 * see task_group().
1243 1244 1245 1246
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1247 1248 1249
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1250 1251
#endif

1252
	trace_sched_migrate_task(p, new_cpu);
1253

1254
	if (task_cpu(p) != new_cpu) {
1255
		if (p->sched_class->migrate_task_rq)
1256
			p->sched_class->migrate_task_rq(p);
1257
		p->se.nr_migrations++;
1258
		perf_event_task_migrate(p);
1259
	}
I
Ingo Molnar 已提交
1260 1261

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1262 1263
}

1264 1265
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1266
	if (task_on_rq_queued(p)) {
1267 1268 1269 1270 1271
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1272
		p->on_rq = TASK_ON_RQ_MIGRATING;
1273 1274 1275
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1276
		p->on_rq = TASK_ON_RQ_QUEUED;
1277 1278 1279 1280 1281
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
L
Leo Yan 已提交
1282
		 * previous cpu our target instead of where it really is.
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1299 1300 1301
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1302 1303 1304
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1305 1306
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1307
	double_rq_lock(src_rq, dst_rq);
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1328 1329
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1352 1353 1354 1355
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1356 1357 1358 1359 1360 1361 1362 1363 1364
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1365
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1366 1367 1368 1369 1370 1371
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1372 1373 1374
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1375 1376 1377 1378 1379 1380 1381
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1382 1383 1384 1385 1386 1387
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1388
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1389
{
1390
	int running, queued;
1391
	struct rq_flags rf;
R
Roland McGrath 已提交
1392
	unsigned long ncsw;
1393
	struct rq *rq;
L
Linus Torvalds 已提交
1394

1395 1396 1397 1398 1399 1400 1401 1402
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1415 1416 1417
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1418
			cpu_relax();
R
Roland McGrath 已提交
1419
		}
1420

1421 1422 1423 1424 1425
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1426
		rq = task_rq_lock(p, &rf);
1427
		trace_sched_wait_task(p);
1428
		running = task_running(rq, p);
1429
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1430
		ncsw = 0;
1431
		if (!match_state || p->state == match_state)
1432
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1433
		task_rq_unlock(rq, p, &rf);
1434

R
Roland McGrath 已提交
1435 1436 1437 1438 1439 1440
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1451

1452 1453 1454 1455 1456
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1457
		 * So if it was still runnable (but just not actively
1458 1459 1460
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1461
		if (unlikely(queued)) {
T
Thomas Gleixner 已提交
1462
			ktime_t to = NSEC_PER_SEC / HZ;
1463 1464 1465

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1466 1467
			continue;
		}
1468

1469 1470 1471 1472 1473 1474 1475
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1476 1477

	return ncsw;
L
Linus Torvalds 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1487
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1488 1489 1490 1491 1492
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1493
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1503
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1504

1505
/*
1506
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
 *    cpu isn't yet part of the sched domains, and balancing will not
 *    see it.
 *
 *  - on cpu-down we clear cpu_active() to mask the sched domains and
 *    avoid the load balancer to place new tasks on the to be removed
 *    cpu. Existing tasks will remain running there and will be taken
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1526
 */
1527 1528
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1529 1530
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1531 1532
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1533

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1549
	}
1550

1551 1552
	for (;;) {
		/* Any allowed, online CPU? */
1553
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1554 1555 1556
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1557 1558 1559
				continue;
			goto out;
		}
1560

1561
		/* No more Mr. Nice Guy. */
1562 1563
		switch (state) {
		case cpuset:
1564 1565 1566 1567 1568 1569
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
			/* fall-through */
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1589
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1590 1591
					task_pid_nr(p), p->comm, cpu);
		}
1592 1593 1594 1595 1596
	}

	return dest_cpu;
}

1597
/*
1598
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1599
 */
1600
static inline
1601
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1602
{
1603 1604
	lockdep_assert_held(&p->pi_lock);

1605
	if (tsk_nr_cpus_allowed(p) > 1)
1606
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1607 1608
	else
		cpu = cpumask_any(tsk_cpus_allowed(p));
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1620
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1621
		     !cpu_online(cpu)))
1622
		cpu = select_fallback_rq(task_cpu(p), p);
1623 1624

	return cpu;
1625
}
1626 1627 1628 1629 1630 1631

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1632 1633 1634 1635 1636 1637 1638 1639 1640

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1641
#endif /* CONFIG_SMP */
1642

P
Peter Zijlstra 已提交
1643
static void
1644
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1645
{
1646
	struct rq *rq;
1647

1648 1649 1650 1651
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1652

1653 1654
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1655 1656
		schedstat_inc(rq->ttwu_local);
		schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1657 1658 1659
	} else {
		struct sched_domain *sd;

1660
		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1661
		rcu_read_lock();
1662
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1663
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1664
				schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1665 1666 1667
				break;
			}
		}
1668
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1669
	}
1670 1671

	if (wake_flags & WF_MIGRATED)
1672
		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1673 1674
#endif /* CONFIG_SMP */

1675 1676
	schedstat_inc(rq->ttwu_count);
	schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1677 1678

	if (wake_flags & WF_SYNC)
1679
		schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1680 1681
}

1682
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1683
{
T
Tejun Heo 已提交
1684
	activate_task(rq, p, en_flags);
1685
	p->on_rq = TASK_ON_RQ_QUEUED;
1686 1687 1688 1689

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1690 1691
}

1692 1693 1694
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1695
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1696
			   struct rq_flags *rf)
T
Tejun Heo 已提交
1697 1698 1699
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1700 1701
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1702
#ifdef CONFIG_SMP
1703 1704
	if (p->sched_class->task_woken) {
		/*
1705 1706
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1707
		 */
1708
		rq_unpin_lock(rq, rf);
T
Tejun Heo 已提交
1709
		p->sched_class->task_woken(rq, p);
1710
		rq_repin_lock(rq, rf);
1711
	}
T
Tejun Heo 已提交
1712

1713
	if (rq->idle_stamp) {
1714
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1715
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1716

1717 1718 1719
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1720
			rq->avg_idle = max;
1721

T
Tejun Heo 已提交
1722 1723 1724 1725 1726
		rq->idle_stamp = 0;
	}
#endif
}

1727
static void
1728
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1729
		 struct rq_flags *rf)
1730
{
1731 1732
	int en_flags = ENQUEUE_WAKEUP;

1733 1734
	lockdep_assert_held(&rq->lock);

1735 1736 1737
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1738 1739

	if (wake_flags & WF_MIGRATED)
1740
		en_flags |= ENQUEUE_MIGRATED;
1741 1742
#endif

1743
	ttwu_activate(rq, p, en_flags);
1744
	ttwu_do_wakeup(rq, p, wake_flags, rf);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1755
	struct rq_flags rf;
1756 1757 1758
	struct rq *rq;
	int ret = 0;

1759
	rq = __task_rq_lock(p, &rf);
1760
	if (task_on_rq_queued(p)) {
1761 1762
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1763
		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1764 1765
		ret = 1;
	}
1766
	__task_rq_unlock(rq, &rf);
1767 1768 1769 1770

	return ret;
}

1771
#ifdef CONFIG_SMP
1772
void sched_ttwu_pending(void)
1773 1774
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1775 1776
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1777
	unsigned long flags;
1778
	struct rq_flags rf;
1779

1780 1781 1782 1783
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1784
	rq_pin_lock(rq, &rf);
1785

P
Peter Zijlstra 已提交
1786
	while (llist) {
P
Peter Zijlstra 已提交
1787 1788
		int wake_flags = 0;

P
Peter Zijlstra 已提交
1789 1790
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
P
Peter Zijlstra 已提交
1791 1792 1793 1794

		if (p->sched_remote_wakeup)
			wake_flags = WF_MIGRATED;

1795
		ttwu_do_activate(rq, p, wake_flags, &rf);
1796 1797
	}

1798
	rq_unpin_lock(rq, &rf);
1799
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1800 1801 1802 1803
}

void scheduler_ipi(void)
{
1804 1805 1806 1807 1808
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1809
	preempt_fold_need_resched();
1810

1811
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1828
	sched_ttwu_pending();
1829 1830 1831 1832

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1833
	if (unlikely(got_nohz_idle_kick())) {
1834
		this_rq()->idle_balance = 1;
1835
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1836
	}
1837
	irq_exit();
1838 1839
}

P
Peter Zijlstra 已提交
1840
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1841
{
1842 1843
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1844 1845
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1846 1847 1848 1849 1850 1851
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1852
}
1853

1854 1855 1856 1857 1858
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1859 1860 1861 1862
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1873 1874 1875

out:
	rcu_read_unlock();
1876 1877
}

1878
bool cpus_share_cache(int this_cpu, int that_cpu)
1879 1880 1881
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1882
#endif /* CONFIG_SMP */
1883

1884
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1885 1886
{
	struct rq *rq = cpu_rq(cpu);
1887
	struct rq_flags rf;
1888

1889
#if defined(CONFIG_SMP)
1890
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1891
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
P
Peter Zijlstra 已提交
1892
		ttwu_queue_remote(p, cpu, wake_flags);
1893 1894 1895 1896
		return;
	}
#endif

1897
	raw_spin_lock(&rq->lock);
1898 1899 1900
	rq_pin_lock(rq, &rf);
	ttwu_do_activate(rq, p, wake_flags, &rf);
	rq_unpin_lock(rq, &rf);
1901
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1902 1903
}

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
 * execution on its new cpu [c1].
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
 * Note: the cpu doing B need not be c0 or c1
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1954
 *   2) smp_cond_load_acquire(!X->on_cpu)
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1965
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1991
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1992 1993 1994
 *
 */

T
Tejun Heo 已提交
1995
/**
L
Linus Torvalds 已提交
1996
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1997
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1998
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1999
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
2000
 *
2001
 * If (@state & @p->state) @p->state = TASK_RUNNING.
L
Linus Torvalds 已提交
2002
 *
2003 2004 2005 2006 2007 2008 2009
 * If the task was not queued/runnable, also place it back on a runqueue.
 *
 * Atomic against schedule() which would dequeue a task, also see
 * set_current_state().
 *
 * Return: %true if @p->state changes (an actual wakeup was done),
 *	   %false otherwise.
L
Linus Torvalds 已提交
2010
 */
2011 2012
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
2013 2014
{
	unsigned long flags;
2015
	int cpu, success = 0;
P
Peter Zijlstra 已提交
2016

2017 2018 2019 2020 2021 2022 2023
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
2024
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
2025
	if (!(p->state & state))
L
Linus Torvalds 已提交
2026 2027
		goto out;

2028 2029
	trace_sched_waking(p);

2030
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
2031 2032
	cpu = task_cpu(p);

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
	 * sched_ttwu_pending()                 try_to_wake_up()
	 *   [S] p->on_rq = 1;                  [L] P->state
	 *       UNLOCK rq->lock  -----.
	 *                              \
	 *				 +---   RMB
	 * schedule()                   /
	 *       LOCK rq->lock    -----'
	 *       UNLOCK rq->lock
	 *
	 * [task p]
	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
	 *
	 * Pairs with the UNLOCK+LOCK on rq->lock from the
	 * last wakeup of our task and the schedule that got our task
	 * current.
	 */
	smp_rmb();
2055 2056
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2057 2058

#ifdef CONFIG_SMP
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2078
	/*
2079 2080
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
2081 2082 2083 2084 2085
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2086
	 */
2087
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2088

2089
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2090
	p->state = TASK_WAKING;
2091

2092 2093 2094 2095 2096
	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

2097
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2098 2099
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2100
		set_task_cpu(p, cpu);
2101
	}
2102 2103 2104 2105 2106 2107 2108 2109

#else /* CONFIG_SMP */

	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

L
Linus Torvalds 已提交
2110 2111
#endif /* CONFIG_SMP */

2112
	ttwu_queue(p, cpu, wake_flags);
2113
stat:
2114
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2115
out:
2116
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2117 2118 2119 2120

	return success;
}

T
Tejun Heo 已提交
2121 2122 2123
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2124
 * @cookie: context's cookie for pinning
T
Tejun Heo 已提交
2125
 *
2126
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2127
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2128
 * the current task.
T
Tejun Heo 已提交
2129
 */
2130
static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
T
Tejun Heo 已提交
2131 2132 2133
{
	struct rq *rq = task_rq(p);

2134 2135 2136 2137
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2138 2139
	lockdep_assert_held(&rq->lock);

2140
	if (!raw_spin_trylock(&p->pi_lock)) {
2141 2142 2143 2144 2145 2146
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2147
		rq_unpin_lock(rq, rf);
2148 2149 2150
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
2151
		rq_repin_lock(rq, rf);
2152 2153
	}

T
Tejun Heo 已提交
2154
	if (!(p->state & TASK_NORMAL))
2155
		goto out;
T
Tejun Heo 已提交
2156

2157 2158
	trace_sched_waking(p);

2159 2160 2161 2162 2163
	if (!task_on_rq_queued(p)) {
		if (p->in_iowait) {
			delayacct_blkio_end();
			atomic_dec(&rq->nr_iowait);
		}
P
Peter Zijlstra 已提交
2164
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2165
	}
P
Peter Zijlstra 已提交
2166

2167
	ttwu_do_wakeup(rq, p, 0, rf);
2168
	ttwu_stat(p, smp_processor_id(), 0);
2169 2170
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2171 2172
}

2173 2174 2175 2176 2177
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2178 2179 2180
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2181 2182 2183 2184
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2185
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2186
{
2187
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2188 2189 2190
}
EXPORT_SYMBOL(wake_up_process);

2191
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2192 2193 2194 2195
{
	return try_to_wake_up(p, state, 0);
}

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2208 2209 2210

	dl_se->dl_throttled = 0;
	dl_se->dl_yielded = 0;
2211 2212
}

L
Linus Torvalds 已提交
2213 2214 2215
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2216 2217 2218
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2219
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2220
{
P
Peter Zijlstra 已提交
2221 2222 2223
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2224 2225
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2226
	p->se.prev_sum_exec_runtime	= 0;
2227
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2228
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2229
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2230

2231 2232 2233 2234
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2235
#ifdef CONFIG_SCHEDSTATS
2236
	/* Even if schedstat is disabled, there should not be garbage */
2237
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2238
#endif
N
Nick Piggin 已提交
2239

2240
	RB_CLEAR_NODE(&p->dl.rb_node);
2241
	init_dl_task_timer(&p->dl);
2242
	__dl_clear_params(p);
2243

P
Peter Zijlstra 已提交
2244
	INIT_LIST_HEAD(&p->rt.run_list);
2245 2246 2247 2248
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2249

2250 2251 2252
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2253 2254 2255

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2256
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2257 2258 2259
		p->mm->numa_scan_seq = 0;
	}

2260 2261 2262 2263 2264
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2265 2266
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2267
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2268
	p->numa_work.next = &p->numa_work;
2269
	p->numa_faults = NULL;
2270 2271
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2272 2273

	p->numa_group = NULL;
2274
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2275 2276
}

2277 2278
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2279
#ifdef CONFIG_NUMA_BALANCING
2280

2281 2282 2283
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2284
		static_branch_enable(&sched_numa_balancing);
2285
	else
2286
		static_branch_disable(&sched_numa_balancing);
2287
}
2288 2289 2290 2291 2292 2293 2294

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2295
	int state = static_branch_likely(&sched_numa_balancing);
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2311

2312 2313
#ifdef CONFIG_SCHEDSTATS

2314
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2315
static bool __initdata __sched_schedstats = false;
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2339 2340 2341 2342 2343
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2344
	if (!strcmp(str, "enable")) {
2345
		__sched_schedstats = true;
2346 2347
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2348
		__sched_schedstats = false;
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2359 2360 2361 2362 2363
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2384 2385 2386 2387
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2388 2389 2390 2391

/*
 * fork()/clone()-time setup:
 */
2392
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2393
{
2394
	unsigned long flags;
I
Ingo Molnar 已提交
2395 2396
	int cpu = get_cpu();

2397
	__sched_fork(clone_flags, p);
2398
	/*
2399
	 * We mark the process as NEW here. This guarantees that
2400 2401 2402
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2403
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2404

2405 2406 2407 2408 2409
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2410 2411 2412 2413
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2414
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2415
			p->policy = SCHED_NORMAL;
2416
			p->static_prio = NICE_TO_PRIO(0);
2417 2418 2419 2420 2421 2422
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2423

2424 2425 2426 2427 2428 2429
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2430

2431 2432 2433 2434 2435 2436
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2437
		p->sched_class = &fair_sched_class;
2438
	}
2439

2440
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2441

2442 2443 2444 2445 2446 2447 2448
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2449
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2450 2451 2452 2453 2454 2455 2456
	/*
	 * We're setting the cpu for the first time, we don't migrate,
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2457
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2458

2459
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2460
	if (likely(sched_info_on()))
2461
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2462
#endif
P
Peter Zijlstra 已提交
2463 2464
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2465
#endif
2466
	init_task_preempt_count(p);
2467
#ifdef CONFIG_SMP
2468
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2469
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2470
#endif
2471

N
Nick Piggin 已提交
2472
	put_cpu();
2473
	return 0;
L
Linus Torvalds 已提交
2474 2475
}

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2495 2496
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2497 2498 2499
	return &cpu_rq(i)->rd->dl_bw;
}

2500
static inline int dl_bw_cpus(int i)
2501
{
2502 2503 2504
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2505 2506
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2507 2508 2509 2510
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2511 2512 2513 2514 2515 2516 2517
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2518
static inline int dl_bw_cpus(int i)
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2531 2532 2533
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2534 2535 2536 2537 2538 2539
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2540
	u64 period = attr->sched_period ?: attr->sched_deadline;
2541 2542
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2543
	int cpus, err = -1;
2544

2545 2546
	/* !deadline task may carry old deadline bandwidth */
	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2547 2548 2549 2550 2551 2552 2553 2554
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2555
	cpus = dl_bw_cpus(task_cpu(p));
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2576 2577 2578 2579 2580 2581 2582
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2583
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2584
{
2585
	struct rq_flags rf;
I
Ingo Molnar 已提交
2586
	struct rq *rq;
2587

2588
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2589
	p->state = TASK_RUNNING;
2590 2591 2592 2593 2594
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
2595 2596 2597
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2598
	 */
2599
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2600
#endif
2601
	rq = __task_rq_lock(p, &rf);
2602
	update_rq_clock(rq);
2603
	post_init_entity_util_avg(&p->se);
2604

P
Peter Zijlstra 已提交
2605
	activate_task(rq, p, 0);
2606
	p->on_rq = TASK_ON_RQ_QUEUED;
2607
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2608
	check_preempt_curr(rq, p, WF_FORK);
2609
#ifdef CONFIG_SMP
2610 2611 2612 2613 2614
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2615
		rq_unpin_lock(rq, &rf);
2616
		p->sched_class->task_woken(rq, p);
2617
		rq_repin_lock(rq, &rf);
2618
	}
2619
#endif
2620
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2621 2622
}

2623 2624
#ifdef CONFIG_PREEMPT_NOTIFIERS

2625 2626
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2639
/**
2640
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2641
 * @notifier: notifier struct to register
2642 2643 2644
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2645 2646 2647
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2648 2649 2650 2651 2652 2653
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2654
 * @notifier: notifier struct to unregister
2655
 *
2656
 * This is *not* safe to call from within a preemption notifier.
2657 2658 2659 2660 2661 2662 2663
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2664
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2665 2666 2667
{
	struct preempt_notifier *notifier;

2668
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2669 2670 2671
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2672 2673 2674 2675 2676 2677
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2678
static void
2679 2680
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2681 2682 2683
{
	struct preempt_notifier *notifier;

2684
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2685 2686 2687
		notifier->ops->sched_out(notifier, next);
}

2688 2689 2690 2691 2692 2693 2694 2695
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2696
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2697

2698
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2699 2700 2701
{
}

2702
static inline void
2703 2704 2705 2706 2707
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2708
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2709

2710 2711 2712
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2713
 * @prev: the current task that is being switched out
2714 2715 2716 2717 2718 2719 2720 2721 2722
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2723 2724 2725
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2726
{
2727
	sched_info_switch(rq, prev, next);
2728
	perf_event_task_sched_out(prev, next);
2729
	fire_sched_out_preempt_notifiers(prev, next);
2730 2731 2732 2733
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2734 2735 2736 2737
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2738 2739 2740 2741
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2742 2743
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2744
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2745 2746
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2747 2748 2749 2750 2751
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2752
 */
2753
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2754 2755
	__releases(rq->lock)
{
2756
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2757
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2758
	long prev_state;
L
Linus Torvalds 已提交
2759

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2771 2772 2773 2774
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2775

L
Linus Torvalds 已提交
2776 2777 2778 2779
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2780
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2781 2782
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2783 2784 2785 2786 2787
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2788
	 */
O
Oleg Nesterov 已提交
2789
	prev_state = prev->state;
2790
	vtime_task_switch(prev);
2791
	perf_event_task_sched_in(prev, current);
2792
	finish_lock_switch(rq, prev);
2793
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2794

2795
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2796 2797
	if (mm)
		mmdrop(mm);
2798
	if (unlikely(prev_state == TASK_DEAD)) {
2799 2800 2801
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2802 2803 2804
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2805
		 */
2806
		kprobe_flush_task(prev);
2807 2808 2809 2810

		/* Task is done with its stack. */
		put_task_stack(prev);

L
Linus Torvalds 已提交
2811
		put_task_struct(prev);
2812
	}
2813

2814
	tick_nohz_task_switch();
2815
	return rq;
L
Linus Torvalds 已提交
2816 2817
}

2818 2819 2820
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2821
static void __balance_callback(struct rq *rq)
2822
{
2823 2824 2825
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2826

2827 2828 2829 2830 2831 2832 2833 2834
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2835

2836
		func(rq);
2837
	}
2838 2839 2840 2841 2842 2843 2844
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2845 2846 2847
}

#else
2848

2849
static inline void balance_callback(struct rq *rq)
2850
{
L
Linus Torvalds 已提交
2851 2852
}

2853 2854
#endif

L
Linus Torvalds 已提交
2855 2856 2857 2858
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2859
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2860 2861
	__releases(rq->lock)
{
2862
	struct rq *rq;
2863

2864 2865 2866 2867 2868 2869 2870 2871 2872
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2873
	rq = finish_task_switch(prev);
2874
	balance_callback(rq);
2875
	preempt_enable();
2876

L
Linus Torvalds 已提交
2877
	if (current->set_child_tid)
2878
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2879 2880 2881
}

/*
2882
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2883
 */
2884
static __always_inline struct rq *
2885
context_switch(struct rq *rq, struct task_struct *prev,
2886
	       struct task_struct *next, struct rq_flags *rf)
L
Linus Torvalds 已提交
2887
{
I
Ingo Molnar 已提交
2888
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2889

2890
	prepare_task_switch(rq, prev, next);
2891

I
Ingo Molnar 已提交
2892 2893
	mm = next->mm;
	oldmm = prev->active_mm;
2894 2895 2896 2897 2898
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2899
	arch_start_context_switch(prev);
2900

2901
	if (!mm) {
L
Linus Torvalds 已提交
2902 2903 2904 2905
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
2906
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2907

2908
	if (!prev->mm) {
L
Linus Torvalds 已提交
2909 2910 2911
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2912

2913
	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2914

2915 2916 2917 2918 2919 2920
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2921
	rq_unpin_lock(rq, rf);
2922
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2923 2924 2925

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2926
	barrier();
2927 2928

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2929 2930 2931
}

/*
2932
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2933 2934
 *
 * externally visible scheduler statistics: current number of runnable
2935
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2936 2937 2938 2939 2940 2941 2942 2943 2944
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2945
}
L
Linus Torvalds 已提交
2946

2947 2948
/*
 * Check if only the current task is running on the cpu.
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2959 2960 2961
 */
bool single_task_running(void)
{
2962
	return raw_rq()->nr_running == 1;
2963 2964 2965
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2966
unsigned long long nr_context_switches(void)
2967
{
2968 2969
	int i;
	unsigned long long sum = 0;
2970

2971
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2972
		sum += cpu_rq(i)->nr_switches;
2973

L
Linus Torvalds 已提交
2974 2975
	return sum;
}
2976

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
/*
 * IO-wait accounting, and how its mostly bollocks (on SMP).
 *
 * The idea behind IO-wait account is to account the idle time that we could
 * have spend running if it were not for IO. That is, if we were to improve the
 * storage performance, we'd have a proportional reduction in IO-wait time.
 *
 * This all works nicely on UP, where, when a task blocks on IO, we account
 * idle time as IO-wait, because if the storage were faster, it could've been
 * running and we'd not be idle.
 *
 * This has been extended to SMP, by doing the same for each CPU. This however
 * is broken.
 *
 * Imagine for instance the case where two tasks block on one CPU, only the one
 * CPU will have IO-wait accounted, while the other has regular idle. Even
 * though, if the storage were faster, both could've ran at the same time,
 * utilising both CPUs.
 *
 * This means, that when looking globally, the current IO-wait accounting on
 * SMP is a lower bound, by reason of under accounting.
 *
 * Worse, since the numbers are provided per CPU, they are sometimes
 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 * associated with any one particular CPU, it can wake to another CPU than it
 * blocked on. This means the per CPU IO-wait number is meaningless.
 *
 * Task CPU affinities can make all that even more 'interesting'.
 */

L
Linus Torvalds 已提交
3007 3008 3009
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
3010

3011
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3012
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3013

L
Linus Torvalds 已提交
3014 3015
	return sum;
}
3016

3017 3018 3019 3020 3021 3022 3023
/*
 * Consumers of these two interfaces, like for example the cpufreq menu
 * governor are using nonsensical data. Boosting frequency for a CPU that has
 * IO-wait which might not even end up running the task when it does become
 * runnable.
 */

3024
unsigned long nr_iowait_cpu(int cpu)
3025
{
3026
	struct rq *this = cpu_rq(cpu);
3027 3028
	return atomic_read(&this->nr_iowait);
}
3029

3030 3031
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
3032 3033 3034
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
3035 3036
}

I
Ingo Molnar 已提交
3037
#ifdef CONFIG_SMP
3038

3039
/*
P
Peter Zijlstra 已提交
3040 3041
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3042
 */
P
Peter Zijlstra 已提交
3043
void sched_exec(void)
3044
{
P
Peter Zijlstra 已提交
3045
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3046
	unsigned long flags;
3047
	int dest_cpu;
3048

3049
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3050
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3051 3052
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3053

3054
	if (likely(cpu_active(dest_cpu))) {
3055
		struct migration_arg arg = { p, dest_cpu };
3056

3057 3058
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3059 3060
		return;
	}
3061
unlock:
3062
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3063
}
I
Ingo Molnar 已提交
3064

L
Linus Torvalds 已提交
3065 3066 3067
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
3068
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
3069 3070

EXPORT_PER_CPU_SYMBOL(kstat);
3071
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
3072

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

3090 3091 3092 3093 3094 3095 3096
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
3097
	struct rq_flags rf;
3098
	struct rq *rq;
3099
	u64 ns;
3100

3101 3102 3103 3104 3105 3106 3107 3108 3109
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
3110 3111
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
3112
	 */
3113
	if (!p->on_cpu || !task_on_rq_queued(p))
3114 3115 3116
		return p->se.sum_exec_runtime;
#endif

3117
	rq = task_rq_lock(p, &rf);
3118 3119 3120 3121 3122 3123
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
3124
		prefetch_curr_exec_start(p);
3125 3126 3127 3128
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3129
	task_rq_unlock(rq, p, &rf);
3130 3131 3132

	return ns;
}
3133

3134 3135 3136 3137 3138 3139 3140 3141
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3142
	struct task_struct *curr = rq->curr;
3143 3144

	sched_clock_tick();
I
Ingo Molnar 已提交
3145

3146
	raw_spin_lock(&rq->lock);
3147
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3148
	curr->sched_class->task_tick(rq, curr, 0);
3149
	cpu_load_update_active(rq);
3150
	calc_global_load_tick(rq);
3151
	raw_spin_unlock(&rq->lock);
3152

3153
	perf_event_task_tick();
3154

3155
#ifdef CONFIG_SMP
3156
	rq->idle_balance = idle_cpu(cpu);
3157
	trigger_load_balance(rq);
3158
#endif
3159
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3160 3161
}

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3173 3174
 *
 * Return: Maximum deferment in nanoseconds.
3175 3176 3177 3178
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3179
	unsigned long next, now = READ_ONCE(jiffies);
3180 3181 3182 3183 3184 3185

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3186
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3187
}
3188
#endif
L
Linus Torvalds 已提交
3189

3190 3191
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3206

3207
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3208
{
3209
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3210 3211 3212
	/*
	 * Underflow?
	 */
3213 3214
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3215
#endif
3216
	__preempt_count_add(val);
3217
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3218 3219 3220
	/*
	 * Spinlock count overflowing soon?
	 */
3221 3222
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3223
#endif
3224
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3225
}
3226
EXPORT_SYMBOL(preempt_count_add);
3227
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3228

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3239
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3240
{
3241
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3242 3243 3244
	/*
	 * Underflow?
	 */
3245
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3246
		return;
L
Linus Torvalds 已提交
3247 3248 3249
	/*
	 * Is the spinlock portion underflowing?
	 */
3250 3251 3252
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3253
#endif
3254

3255
	preempt_latency_stop(val);
3256
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3257
}
3258
EXPORT_SYMBOL(preempt_count_sub);
3259
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3260

3261 3262 3263
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3264 3265 3266
#endif

/*
I
Ingo Molnar 已提交
3267
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3268
 */
I
Ingo Molnar 已提交
3269
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3270
{
3271 3272 3273
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3274 3275 3276
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3277 3278
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3279

I
Ingo Molnar 已提交
3280
	debug_show_held_locks(prev);
3281
	print_modules();
I
Ingo Molnar 已提交
3282 3283
	if (irqs_disabled())
		print_irqtrace_events(prev);
3284 3285
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3286
		pr_err("Preemption disabled at:");
3287
		print_ip_sym(preempt_disable_ip);
3288 3289
		pr_cont("\n");
	}
3290 3291 3292
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3293
	dump_stack();
3294
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3295
}
L
Linus Torvalds 已提交
3296

I
Ingo Molnar 已提交
3297 3298 3299 3300 3301
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3302
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3303 3304
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3305
#endif
3306

3307
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3308
		__schedule_bug(prev);
3309 3310
		preempt_count_set(PREEMPT_DISABLED);
	}
3311
	rcu_sleep_check();
I
Ingo Molnar 已提交
3312

L
Linus Torvalds 已提交
3313 3314
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3315
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3316 3317 3318 3319 3320 3321
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3322
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
I
Ingo Molnar 已提交
3323
{
3324
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
3325
	struct task_struct *p;
L
Linus Torvalds 已提交
3326 3327

	/*
I
Ingo Molnar 已提交
3328 3329
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3330
	 */
3331
	if (likely(prev->sched_class == class &&
3332
		   rq->nr_running == rq->cfs.h_nr_running)) {
3333
		p = fair_sched_class.pick_next_task(rq, prev, rf);
3334 3335 3336 3337 3338
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
3339
			p = idle_sched_class.pick_next_task(rq, prev, rf);
3340 3341

		return p;
L
Linus Torvalds 已提交
3342 3343
	}

3344
again:
3345
	for_each_class(class) {
3346
		p = class->pick_next_task(rq, prev, rf);
3347 3348 3349
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3350
			return p;
3351
		}
I
Ingo Molnar 已提交
3352
	}
3353 3354

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3355
}
L
Linus Torvalds 已提交
3356

I
Ingo Molnar 已提交
3357
/*
3358
 * __schedule() is the main scheduler function.
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3393
 *
3394
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3395
 */
3396
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3397 3398
{
	struct task_struct *prev, *next;
3399
	unsigned long *switch_count;
3400
	struct rq_flags rf;
I
Ingo Molnar 已提交
3401
	struct rq *rq;
3402
	int cpu;
I
Ingo Molnar 已提交
3403 3404 3405 3406 3407 3408

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3409

3410
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3411
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3412

3413 3414 3415
	local_irq_disable();
	rcu_note_context_switch();

3416 3417 3418 3419 3420 3421
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3422
	raw_spin_lock(&rq->lock);
3423
	rq_pin_lock(rq, &rf);
L
Linus Torvalds 已提交
3424

3425
	rq->clock_update_flags <<= 1; /* promote REQ to ACT */
3426

3427
	switch_count = &prev->nivcsw;
3428
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3429
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3430
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3431
		} else {
3432 3433 3434
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

3435 3436 3437 3438 3439
			if (prev->in_iowait) {
				atomic_inc(&rq->nr_iowait);
				delayacct_blkio_start();
			}

T
Tejun Heo 已提交
3440
			/*
3441 3442 3443
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3444 3445 3446 3447
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3448
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3449
				if (to_wakeup)
3450
					try_to_wake_up_local(to_wakeup, &rf);
T
Tejun Heo 已提交
3451 3452
			}
		}
I
Ingo Molnar 已提交
3453
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3454 3455
	}

3456
	if (task_on_rq_queued(prev))
3457 3458
		update_rq_clock(rq);

3459
	next = pick_next_task(rq, prev, &rf);
3460
	clear_tsk_need_resched(prev);
3461
	clear_preempt_need_resched();
L
Linus Torvalds 已提交
3462 3463 3464 3465 3466 3467

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3468
		trace_sched_switch(preempt, prev, next);
3469
		rq = context_switch(rq, prev, next, &rf); /* unlocks the rq */
3470
	} else {
3471
		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3472
		rq_unpin_lock(rq, &rf);
3473
		raw_spin_unlock_irq(&rq->lock);
3474
	}
L
Linus Torvalds 已提交
3475

3476
	balance_callback(rq);
L
Linus Torvalds 已提交
3477
}
3478

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
void __noreturn do_task_dead(void)
{
	/*
	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
	 * when the following two conditions become true.
	 *   - There is race condition of mmap_sem (It is acquired by
	 *     exit_mm()), and
	 *   - SMI occurs before setting TASK_RUNINNG.
	 *     (or hypervisor of virtual machine switches to other guest)
	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
	 *
	 * To avoid it, we have to wait for releasing tsk->pi_lock which
	 * is held by try_to_wake_up()
	 */
	smp_mb();
	raw_spin_unlock_wait(&current->pi_lock);

	/* causes final put_task_struct in finish_task_switch(). */
	__set_current_state(TASK_DEAD);
	current->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
	__schedule(false);
	BUG();
	/* Avoid "noreturn function does return".  */
	for (;;)
		cpu_relax();	/* For when BUG is null */
}

3506 3507
static inline void sched_submit_work(struct task_struct *tsk)
{
3508
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3509 3510 3511 3512 3513 3514 3515 3516 3517
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3518
asmlinkage __visible void __sched schedule(void)
3519
{
3520 3521 3522
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3523
	do {
3524
		preempt_disable();
3525
		__schedule(false);
3526
		sched_preempt_enable_no_resched();
3527
	} while (need_resched());
3528
}
L
Linus Torvalds 已提交
3529 3530
EXPORT_SYMBOL(schedule);

3531
#ifdef CONFIG_CONTEXT_TRACKING
3532
asmlinkage __visible void __sched schedule_user(void)
3533 3534 3535 3536 3537 3538
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3539 3540
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3541
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3542
	 * too frequently to make sense yet.
3543
	 */
3544
	enum ctx_state prev_state = exception_enter();
3545
	schedule();
3546
	exception_exit(prev_state);
3547 3548 3549
}
#endif

3550 3551 3552 3553 3554 3555 3556
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3557
	sched_preempt_enable_no_resched();
3558 3559 3560 3561
	schedule();
	preempt_disable();
}

3562
static void __sched notrace preempt_schedule_common(void)
3563 3564
{
	do {
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3578
		preempt_disable_notrace();
3579
		preempt_latency_start(1);
3580
		__schedule(true);
3581
		preempt_latency_stop(1);
3582
		preempt_enable_no_resched_notrace();
3583 3584 3585 3586 3587 3588 3589 3590

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3591 3592
#ifdef CONFIG_PREEMPT
/*
3593
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3594
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3595 3596
 * occur there and call schedule directly.
 */
3597
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3598 3599 3600
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3601
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3602
	 */
3603
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3604 3605
		return;

3606
	preempt_schedule_common();
L
Linus Torvalds 已提交
3607
}
3608
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3609
EXPORT_SYMBOL(preempt_schedule);
3610 3611

/**
3612
 * preempt_schedule_notrace - preempt_schedule called by tracing
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3625
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3626 3627 3628 3629 3630 3631 3632
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3646
		preempt_disable_notrace();
3647
		preempt_latency_start(1);
3648 3649 3650 3651 3652 3653
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3654
		__schedule(true);
3655 3656
		exception_exit(prev_ctx);

3657
		preempt_latency_stop(1);
3658
		preempt_enable_no_resched_notrace();
3659 3660
	} while (need_resched());
}
3661
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3662

3663
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3664 3665

/*
3666
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3667 3668 3669 3670
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3671
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3672
{
3673
	enum ctx_state prev_state;
3674

3675
	/* Catch callers which need to be fixed */
3676
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3677

3678 3679
	prev_state = exception_enter();

3680
	do {
3681
		preempt_disable();
3682
		local_irq_enable();
3683
		__schedule(true);
3684
		local_irq_disable();
3685
		sched_preempt_enable_no_resched();
3686
	} while (need_resched());
3687 3688

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3689 3690
}

P
Peter Zijlstra 已提交
3691
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3692
			  void *key)
L
Linus Torvalds 已提交
3693
{
P
Peter Zijlstra 已提交
3694
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3695 3696 3697
}
EXPORT_SYMBOL(default_wake_function);

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3708 3709
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3710
 */
3711
void rt_mutex_setprio(struct task_struct *p, int prio)
3712
{
3713
	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3714
	const struct sched_class *prev_class;
3715 3716
	struct rq_flags rf;
	struct rq *rq;
3717

3718
	BUG_ON(prio > MAX_PRIO);
3719

3720
	rq = __task_rq_lock(p, &rf);
3721
	update_rq_clock(rq);
3722

3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3741
	trace_sched_pi_setprio(p, prio);
3742
	oldprio = p->prio;
3743 3744 3745 3746

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3747
	prev_class = p->sched_class;
3748
	queued = task_on_rq_queued(p);
3749
	running = task_current(rq, p);
3750
	if (queued)
3751
		dequeue_task(rq, p, queue_flag);
3752
	if (running)
3753
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3754

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3765 3766 3767
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3768
			p->dl.dl_boosted = 1;
3769
			queue_flag |= ENQUEUE_REPLENISH;
3770 3771
		} else
			p->dl.dl_boosted = 0;
3772
		p->sched_class = &dl_sched_class;
3773 3774 3775 3776
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3777
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3778
		p->sched_class = &rt_sched_class;
3779 3780 3781
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3782 3783
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3784
		p->sched_class = &fair_sched_class;
3785
	}
I
Ingo Molnar 已提交
3786

3787 3788
	p->prio = prio;

3789
	if (queued)
3790
		enqueue_task(rq, p, queue_flag);
3791
	if (running)
3792
		set_curr_task(rq, p);
3793

P
Peter Zijlstra 已提交
3794
	check_class_changed(rq, p, prev_class, oldprio);
3795
out_unlock:
3796
	preempt_disable(); /* avoid rq from going away on us */
3797
	__task_rq_unlock(rq, &rf);
3798 3799 3800

	balance_callback(rq);
	preempt_enable();
3801 3802
}
#endif
3803

3804
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3805
{
P
Peter Zijlstra 已提交
3806 3807
	bool queued, running;
	int old_prio, delta;
3808
	struct rq_flags rf;
3809
	struct rq *rq;
L
Linus Torvalds 已提交
3810

3811
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3812 3813 3814 3815 3816
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3817
	rq = task_rq_lock(p, &rf);
3818 3819
	update_rq_clock(rq);

L
Linus Torvalds 已提交
3820 3821 3822 3823
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3824
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3825
	 */
3826
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3827 3828 3829
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3830
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3831
	running = task_current(rq, p);
3832
	if (queued)
3833
		dequeue_task(rq, p, DEQUEUE_SAVE);
P
Peter Zijlstra 已提交
3834 3835
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3836 3837

	p->static_prio = NICE_TO_PRIO(nice);
3838
	set_load_weight(p);
3839 3840 3841
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3842

3843
	if (queued) {
3844
		enqueue_task(rq, p, ENQUEUE_RESTORE);
L
Linus Torvalds 已提交
3845
		/*
3846 3847
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3848
		 */
3849
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3850
			resched_curr(rq);
L
Linus Torvalds 已提交
3851
	}
P
Peter Zijlstra 已提交
3852 3853
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3854
out_unlock:
3855
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3856 3857 3858
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3859 3860 3861 3862 3863
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3864
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3865
{
3866
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3867
	int nice_rlim = nice_to_rlimit(nice);
3868

3869
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3870 3871 3872
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3873 3874 3875 3876 3877 3878 3879 3880 3881
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3882
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3883
{
3884
	long nice, retval;
L
Linus Torvalds 已提交
3885 3886 3887 3888 3889 3890

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3891
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3892
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3893

3894
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3895 3896 3897
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3912
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3913 3914 3915
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3916
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3917 3918 3919 3920 3921 3922 3923
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3924 3925
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3926 3927 3928
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3943 3944 3945 3946 3947
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3948 3949
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3950
 */
3951
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3952 3953 3954 3955 3956 3957 3958
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3959 3960
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3961
 */
A
Alexey Dobriyan 已提交
3962
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3963
{
3964
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3965 3966
}

3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3982
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3983
	dl_se->flags = attr->sched_flags;
3984
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
4005 4006
}

4007 4008 4009 4010 4011 4012
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

4013 4014
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
4015
{
4016 4017
	int policy = attr->sched_policy;

4018
	if (policy == SETPARAM_POLICY)
4019 4020
		policy = p->policy;

L
Linus Torvalds 已提交
4021
	p->policy = policy;
4022

4023 4024
	if (dl_policy(policy))
		__setparam_dl(p, attr);
4025
	else if (fair_policy(policy))
4026 4027
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

4028 4029 4030 4031 4032 4033
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
4034
	p->normal_prio = normal_prio(p);
4035 4036
	set_load_weight(p);
}
4037

4038 4039
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
4040
			   const struct sched_attr *attr, bool keep_boost)
4041 4042
{
	__setscheduler_params(p, attr);
4043

4044
	/*
4045 4046
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
4047
	 */
4048 4049 4050 4051
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
4052

4053 4054 4055
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
4056 4057 4058
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
4059
}
4060 4061 4062 4063 4064 4065 4066 4067 4068

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
4069
	attr->sched_period = dl_se->dl_period;
4070 4071 4072 4073 4074 4075
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
4076
 * than the runtime, as well as the period of being zero or
4077
 * greater than deadline. Furthermore, we have to be sure that
4078 4079 4080 4081
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
4082 4083 4084 4085
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
4112 4113
}

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4124 4125
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4126 4127 4128 4129
	rcu_read_unlock();
	return match;
}

4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

4144 4145
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4146
				bool user, bool pi)
L
Linus Torvalds 已提交
4147
{
4148 4149
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4150
	int retval, oldprio, oldpolicy = -1, queued, running;
4151
	int new_effective_prio, policy = attr->sched_policy;
4152
	const struct sched_class *prev_class;
4153
	struct rq_flags rf;
4154
	int reset_on_fork;
4155
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4156
	struct rq *rq;
L
Linus Torvalds 已提交
4157

4158 4159
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4160 4161
recheck:
	/* double check policy once rq lock held */
4162 4163
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4164
		policy = oldpolicy = p->policy;
4165
	} else {
4166
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4167

4168
		if (!valid_policy(policy))
4169 4170 4171
			return -EINVAL;
	}

4172 4173 4174
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
4175 4176
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4177 4178
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4179
	 */
4180
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4181
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4182
		return -EINVAL;
4183 4184
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4185 4186
		return -EINVAL;

4187 4188 4189
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4190
	if (user && !capable(CAP_SYS_NICE)) {
4191
		if (fair_policy(policy)) {
4192
			if (attr->sched_nice < task_nice(p) &&
4193
			    !can_nice(p, attr->sched_nice))
4194 4195 4196
				return -EPERM;
		}

4197
		if (rt_policy(policy)) {
4198 4199
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4200 4201 4202 4203 4204 4205

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
4206 4207
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4208 4209
				return -EPERM;
		}
4210

4211 4212 4213 4214 4215 4216 4217 4218 4219
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4220
		/*
4221 4222
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4223
		 */
4224
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4225
			if (!can_nice(p, task_nice(p)))
4226 4227
				return -EPERM;
		}
4228

4229
		/* can't change other user's priorities */
4230
		if (!check_same_owner(p))
4231
			return -EPERM;
4232 4233 4234 4235

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4236
	}
L
Linus Torvalds 已提交
4237

4238
	if (user) {
4239
		retval = security_task_setscheduler(p);
4240 4241 4242 4243
		if (retval)
			return retval;
	}

4244 4245 4246
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4247
	 *
L
Lucas De Marchi 已提交
4248
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4249 4250
	 * runqueue lock must be held.
	 */
4251
	rq = task_rq_lock(p, &rf);
4252
	update_rq_clock(rq);
4253

4254 4255 4256 4257
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4258
		task_rq_unlock(rq, p, &rf);
4259 4260 4261
		return -EINVAL;
	}

4262
	/*
4263 4264
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4265
	 */
4266
	if (unlikely(policy == p->policy)) {
4267
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4268 4269 4270
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4271
		if (dl_policy(policy) && dl_param_changed(p, attr))
4272
			goto change;
4273

4274
		p->sched_reset_on_fork = reset_on_fork;
4275
		task_rq_unlock(rq, p, &rf);
4276 4277
		return 0;
	}
4278
change:
4279

4280
	if (user) {
4281
#ifdef CONFIG_RT_GROUP_SCHED
4282 4283 4284 4285 4286
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4287 4288
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4289
			task_rq_unlock(rq, p, &rf);
4290 4291 4292
			return -EPERM;
		}
#endif
4293 4294 4295 4296 4297 4298 4299 4300 4301
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4302 4303
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4304
				task_rq_unlock(rq, p, &rf);
4305 4306 4307 4308 4309
				return -EPERM;
			}
		}
#endif
	}
4310

L
Linus Torvalds 已提交
4311 4312 4313
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4314
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4315 4316
		goto recheck;
	}
4317 4318 4319 4320 4321 4322

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4323
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4324
		task_rq_unlock(rq, p, &rf);
4325 4326 4327
		return -EBUSY;
	}

4328 4329 4330
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4331 4332 4333 4334 4335 4336 4337 4338 4339
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4340 4341
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4342 4343
	}

4344
	queued = task_on_rq_queued(p);
4345
	running = task_current(rq, p);
4346
	if (queued)
4347
		dequeue_task(rq, p, queue_flags);
4348
	if (running)
4349
		put_prev_task(rq, p);
4350

4351
	prev_class = p->sched_class;
4352
	__setscheduler(rq, p, attr, pi);
4353

4354
	if (queued) {
4355 4356 4357 4358
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4359 4360
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4361

4362
		enqueue_task(rq, p, queue_flags);
4363
	}
4364
	if (running)
4365
		set_curr_task(rq, p);
4366

P
Peter Zijlstra 已提交
4367
	check_class_changed(rq, p, prev_class, oldprio);
4368
	preempt_disable(); /* avoid rq from going away on us */
4369
	task_rq_unlock(rq, p, &rf);
4370

4371 4372
	if (pi)
		rt_mutex_adjust_pi(p);
4373

4374 4375 4376 4377 4378
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();
4379

L
Linus Torvalds 已提交
4380 4381
	return 0;
}
4382

4383 4384 4385 4386 4387 4388 4389 4390 4391
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4392 4393
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4394 4395 4396 4397 4398
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4399
	return __sched_setscheduler(p, &attr, check, true);
4400
}
4401 4402 4403 4404 4405 4406
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4407 4408
 * Return: 0 on success. An error code otherwise.
 *
4409 4410 4411
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4412
		       const struct sched_param *param)
4413
{
4414
	return _sched_setscheduler(p, policy, param, true);
4415
}
L
Linus Torvalds 已提交
4416 4417
EXPORT_SYMBOL_GPL(sched_setscheduler);

4418 4419
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4420
	return __sched_setscheduler(p, attr, true, true);
4421 4422 4423
}
EXPORT_SYMBOL_GPL(sched_setattr);

4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4434 4435
 *
 * Return: 0 on success. An error code otherwise.
4436 4437
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4438
			       const struct sched_param *param)
4439
{
4440
	return _sched_setscheduler(p, policy, param, false);
4441
}
4442
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4443

I
Ingo Molnar 已提交
4444 4445
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4446 4447 4448
{
	struct sched_param lparam;
	struct task_struct *p;
4449
	int retval;
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4455 4456 4457

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4458
	p = find_process_by_pid(pid);
4459 4460 4461
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4462

L
Linus Torvalds 已提交
4463 4464 4465
	return retval;
}

4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4528
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4529

4530
	return 0;
4531 4532 4533

err_size:
	put_user(sizeof(*attr), &uattr->size);
4534
	return -E2BIG;
4535 4536
}

L
Linus Torvalds 已提交
4537 4538 4539 4540 4541
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4542 4543
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4544
 */
4545 4546
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4547
{
4548 4549 4550 4551
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4552 4553 4554 4555 4556 4557 4558
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4559 4560
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4561
 */
4562
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4563
{
4564
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4565 4566
}

4567 4568 4569
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4570
 * @uattr: structure containing the extended parameters.
4571
 * @flags: for future extension.
4572
 */
4573 4574
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4575 4576 4577 4578 4579
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4580
	if (!uattr || pid < 0 || flags)
4581 4582
		return -EINVAL;

4583 4584 4585
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4586

4587
	if ((int)attr.sched_policy < 0)
4588
		return -EINVAL;
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4600 4601 4602
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4603 4604 4605
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4606
 */
4607
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4608
{
4609
	struct task_struct *p;
4610
	int retval;
L
Linus Torvalds 已提交
4611 4612

	if (pid < 0)
4613
		return -EINVAL;
L
Linus Torvalds 已提交
4614 4615

	retval = -ESRCH;
4616
	rcu_read_lock();
L
Linus Torvalds 已提交
4617 4618 4619 4620
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4621 4622
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4623
	}
4624
	rcu_read_unlock();
L
Linus Torvalds 已提交
4625 4626 4627 4628
	return retval;
}

/**
4629
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4630 4631
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4632 4633 4634
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4635
 */
4636
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4637
{
4638
	struct sched_param lp = { .sched_priority = 0 };
4639
	struct task_struct *p;
4640
	int retval;
L
Linus Torvalds 已提交
4641 4642

	if (!param || pid < 0)
4643
		return -EINVAL;
L
Linus Torvalds 已提交
4644

4645
	rcu_read_lock();
L
Linus Torvalds 已提交
4646 4647 4648 4649 4650 4651 4652 4653 4654
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4655 4656
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4657
	rcu_read_unlock();
L
Linus Torvalds 已提交
4658 4659 4660 4661 4662 4663 4664 4665 4666

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4667
	rcu_read_unlock();
L
Linus Torvalds 已提交
4668 4669 4670
	return retval;
}

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4694
				return -EFBIG;
4695 4696 4697 4698 4699
		}

		attr->size = usize;
	}

4700
	ret = copy_to_user(uattr, attr, attr->size);
4701 4702 4703
	if (ret)
		return -EFAULT;

4704
	return 0;
4705 4706 4707
}

/**
4708
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4709
 * @pid: the pid in question.
J
Juri Lelli 已提交
4710
 * @uattr: structure containing the extended parameters.
4711
 * @size: sizeof(attr) for fwd/bwd comp.
4712
 * @flags: for future extension.
4713
 */
4714 4715
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4716 4717 4718 4719 4720 4721 4722 4723
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4724
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4738 4739
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4740 4741 4742
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4743 4744
		attr.sched_priority = p->rt_priority;
	else
4745
		attr.sched_nice = task_nice(p);
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4757
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4758
{
4759
	cpumask_var_t cpus_allowed, new_mask;
4760 4761
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4762

4763
	rcu_read_lock();
L
Linus Torvalds 已提交
4764 4765 4766

	p = find_process_by_pid(pid);
	if (!p) {
4767
		rcu_read_unlock();
L
Linus Torvalds 已提交
4768 4769 4770
		return -ESRCH;
	}

4771
	/* Prevent p going away */
L
Linus Torvalds 已提交
4772
	get_task_struct(p);
4773
	rcu_read_unlock();
L
Linus Torvalds 已提交
4774

4775 4776 4777 4778
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4779 4780 4781 4782 4783 4784 4785 4786
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4787
	retval = -EPERM;
E
Eric W. Biederman 已提交
4788 4789 4790 4791
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4792
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4793 4794 4795
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4796

4797
	retval = security_task_setscheduler(p);
4798
	if (retval)
4799
		goto out_free_new_mask;
4800

4801 4802 4803 4804

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4805 4806 4807 4808 4809 4810 4811
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4812 4813 4814
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4815
			retval = -EBUSY;
4816
			rcu_read_unlock();
4817
			goto out_free_new_mask;
4818
		}
4819
		rcu_read_unlock();
4820 4821
	}
#endif
P
Peter Zijlstra 已提交
4822
again:
4823
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4824

P
Paul Menage 已提交
4825
	if (!retval) {
4826 4827
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4828 4829 4830 4831 4832
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4833
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4834 4835 4836
			goto again;
		}
	}
4837
out_free_new_mask:
4838 4839 4840 4841
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4842 4843 4844 4845 4846
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4847
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4848
{
4849 4850 4851 4852 4853
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4854 4855 4856 4857 4858 4859 4860 4861
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4862 4863
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4864
 */
4865 4866
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4867
{
4868
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4869 4870
	int retval;

4871 4872
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4873

4874 4875 4876 4877 4878
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4879 4880
}

4881
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4882
{
4883
	struct task_struct *p;
4884
	unsigned long flags;
L
Linus Torvalds 已提交
4885 4886
	int retval;

4887
	rcu_read_lock();
L
Linus Torvalds 已提交
4888 4889 4890 4891 4892 4893

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4894 4895 4896 4897
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4898
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4899
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4900
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4901 4902

out_unlock:
4903
	rcu_read_unlock();
L
Linus Torvalds 已提交
4904

4905
	return retval;
L
Linus Torvalds 已提交
4906 4907 4908 4909 4910 4911 4912
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4913
 *
4914 4915
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4916
 */
4917 4918
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4919 4920
{
	int ret;
4921
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4922

A
Anton Blanchard 已提交
4923
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4924 4925
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4926 4927
		return -EINVAL;

4928 4929
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4930

4931 4932
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4933
		size_t retlen = min_t(size_t, len, cpumask_size());
4934 4935

		if (copy_to_user(user_mask_ptr, mask, retlen))
4936 4937
			ret = -EFAULT;
		else
4938
			ret = retlen;
4939 4940
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4941

4942
	return ret;
L
Linus Torvalds 已提交
4943 4944 4945 4946 4947
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4948 4949
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4950 4951
 *
 * Return: 0.
L
Linus Torvalds 已提交
4952
 */
4953
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4954
{
4955
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4956

4957
	schedstat_inc(rq->yld_count);
4958
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4959 4960 4961 4962 4963 4964

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4965
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4966
	do_raw_spin_unlock(&rq->lock);
4967
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4968 4969 4970 4971 4972 4973

	schedule();

	return 0;
}

4974
#ifndef CONFIG_PREEMPT
4975
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4976
{
4977
	if (should_resched(0)) {
4978
		preempt_schedule_common();
L
Linus Torvalds 已提交
4979 4980 4981 4982
		return 1;
	}
	return 0;
}
4983
EXPORT_SYMBOL(_cond_resched);
4984
#endif
L
Linus Torvalds 已提交
4985 4986

/*
4987
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4988 4989
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4990
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4991 4992 4993
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4994
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4995
{
4996
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4997 4998
	int ret = 0;

4999 5000
	lockdep_assert_held(lock);

5001
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5002
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5003
		if (resched)
5004
			preempt_schedule_common();
N
Nick Piggin 已提交
5005 5006
		else
			cpu_relax();
J
Jan Kara 已提交
5007
		ret = 1;
L
Linus Torvalds 已提交
5008 5009
		spin_lock(lock);
	}
J
Jan Kara 已提交
5010
	return ret;
L
Linus Torvalds 已提交
5011
}
5012
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5013

5014
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5015 5016 5017
{
	BUG_ON(!in_softirq());

5018
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
5019
		local_bh_enable();
5020
		preempt_schedule_common();
L
Linus Torvalds 已提交
5021 5022 5023 5024 5025
		local_bh_disable();
		return 1;
	}
	return 0;
}
5026
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5027 5028 5029 5030

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
5049 5050 5051 5052 5053 5054 5055 5056
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

5057 5058 5059 5060
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5061 5062
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5063 5064 5065 5066
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
5067
 * Return:
5068 5069 5070
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
5071
 */
5072
int __sched yield_to(struct task_struct *p, bool preempt)
5073 5074 5075 5076
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
5077
	int yielded = 0;
5078 5079 5080 5081 5082 5083

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
5084 5085 5086 5087 5088 5089 5090 5091 5092
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

5093
	double_rq_lock(rq, p_rq);
5094
	if (task_rq(p) != p_rq) {
5095 5096 5097 5098 5099
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
5100
		goto out_unlock;
5101 5102

	if (curr->sched_class != p->sched_class)
5103
		goto out_unlock;
5104 5105

	if (task_running(p_rq, p) || p->state)
5106
		goto out_unlock;
5107 5108

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5109
	if (yielded) {
5110
		schedstat_inc(rq->yld_count);
5111 5112 5113 5114 5115
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
5116
			resched_curr(p_rq);
5117
	}
5118

5119
out_unlock:
5120
	double_rq_unlock(rq, p_rq);
5121
out_irq:
5122 5123
	local_irq_restore(flags);

5124
	if (yielded > 0)
5125 5126 5127 5128 5129 5130
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
int io_schedule_prepare(void)
{
	int old_iowait = current->in_iowait;

	current->in_iowait = 1;
	blk_schedule_flush_plug(current);

	return old_iowait;
}

void io_schedule_finish(int token)
{
	current->in_iowait = token;
}

L
Linus Torvalds 已提交
5146
/*
I
Ingo Molnar 已提交
5147
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5148 5149 5150 5151
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5152
	int token;
L
Linus Torvalds 已提交
5153 5154
	long ret;

5155
	token = io_schedule_prepare();
L
Linus Torvalds 已提交
5156
	ret = schedule_timeout(timeout);
5157
	io_schedule_finish(token);
5158

L
Linus Torvalds 已提交
5159 5160
	return ret;
}
5161
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5162

5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
void io_schedule(void)
{
	int token;

	token = io_schedule_prepare();
	schedule();
	io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);

L
Linus Torvalds 已提交
5173 5174 5175 5176
/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5177 5178 5179
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5180
 */
5181
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5182 5183 5184 5185 5186 5187 5188 5189
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5190
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5191
	case SCHED_NORMAL:
5192
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5193
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5204 5205 5206
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5207
 */
5208
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5209 5210 5211 5212 5213 5214 5215 5216
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5217
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5218
	case SCHED_NORMAL:
5219
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5220
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
5233 5234 5235
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
5236
 */
5237
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5238
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5239
{
5240
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5241
	unsigned int time_slice;
5242 5243
	struct rq_flags rf;
	struct timespec t;
5244
	struct rq *rq;
5245
	int retval;
L
Linus Torvalds 已提交
5246 5247

	if (pid < 0)
5248
		return -EINVAL;
L
Linus Torvalds 已提交
5249 5250

	retval = -ESRCH;
5251
	rcu_read_lock();
L
Linus Torvalds 已提交
5252 5253 5254 5255 5256 5257 5258 5259
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5260
	rq = task_rq_lock(p, &rf);
5261 5262 5263
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5264
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5265

5266
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5267
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5268 5269
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5270

L
Linus Torvalds 已提交
5271
out_unlock:
5272
	rcu_read_unlock();
L
Linus Torvalds 已提交
5273 5274 5275
	return retval;
}

5276
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5277

5278
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5279 5280
{
	unsigned long free = 0;
5281
	int ppid;
5282
	unsigned long state = p->state;
L
Linus Torvalds 已提交
5283

5284 5285
	if (!try_get_task_stack(p))
		return;
5286 5287
	if (state)
		state = __ffs(state) + 1;
5288
	printk(KERN_INFO "%-15.15s %c", p->comm,
5289
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
5290
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5291
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5292
#ifdef CONFIG_DEBUG_STACK_USAGE
5293
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5294
#endif
5295
	ppid = 0;
5296
	rcu_read_lock();
5297 5298
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5299
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5300
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5301
		task_pid_nr(p), ppid,
5302
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5303

5304
	print_worker_info(KERN_INFO, p);
5305
	show_stack(p, NULL);
5306
	put_task_stack(p);
L
Linus Torvalds 已提交
5307 5308
}

I
Ingo Molnar 已提交
5309
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5310
{
5311
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5312

5313
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5314 5315
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5316
#else
P
Peter Zijlstra 已提交
5317 5318
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5319
#endif
5320
	rcu_read_lock();
5321
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5322 5323
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5324
		 * console might take a lot of time:
5325 5326 5327
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5328 5329
		 */
		touch_nmi_watchdog();
5330
		touch_all_softlockup_watchdogs();
I
Ingo Molnar 已提交
5331
		if (!state_filter || (p->state & state_filter))
5332
			sched_show_task(p);
5333
	}
L
Linus Torvalds 已提交
5334

I
Ingo Molnar 已提交
5335
#ifdef CONFIG_SCHED_DEBUG
5336 5337
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5338
#endif
5339
	rcu_read_unlock();
I
Ingo Molnar 已提交
5340 5341 5342
	/*
	 * Only show locks if all tasks are dumped:
	 */
5343
	if (!state_filter)
I
Ingo Molnar 已提交
5344
		debug_show_all_locks();
L
Linus Torvalds 已提交
5345 5346
}

5347
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
5348
{
I
Ingo Molnar 已提交
5349
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5350 5351
}

5352 5353 5354 5355 5356 5357 5358 5359
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5360
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5361
{
5362
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5363 5364
	unsigned long flags;

5365 5366
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5367

5368
	__sched_fork(0, idle);
5369
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5370
	idle->se.exec_start = sched_clock();
5371
	idle->flags |= PF_IDLE;
I
Ingo Molnar 已提交
5372

5373 5374
	kasan_unpoison_task_stack(idle);

5375 5376 5377 5378 5379 5380 5381 5382 5383
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5395
	__set_task_cpu(idle, cpu);
5396
	rcu_read_unlock();
L
Linus Torvalds 已提交
5397 5398

	rq->curr = rq->idle = idle;
5399
	idle->on_rq = TASK_ON_RQ_QUEUED;
5400
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5401
	idle->on_cpu = 1;
5402
#endif
5403 5404
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5405 5406

	/* Set the preempt count _outside_ the spinlocks! */
5407
	init_idle_preempt_count(idle, cpu);
5408

I
Ingo Molnar 已提交
5409 5410 5411 5412
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5413
	ftrace_graph_init_idle_task(idle, cpu);
5414
	vtime_init_idle(idle, cpu);
5415
#ifdef CONFIG_SMP
5416 5417
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5418 5419
}

5420 5421 5422 5423 5424 5425 5426
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

5427 5428 5429
	if (!cpumask_weight(cur))
		return ret;

5430
	rcu_read_lock_sched();
5431 5432 5433 5434 5435 5436 5437 5438
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5439
	rcu_read_unlock_sched();
5440 5441 5442 5443

	return ret;
}

5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5468
		struct dl_bw *dl_b;
5469 5470 5471 5472
		bool overflow;
		int cpus;
		unsigned long flags;

5473 5474
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5490
		rcu_read_unlock_sched();
5491 5492 5493 5494 5495 5496 5497

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5498 5499
#ifdef CONFIG_SMP

5500 5501
static bool sched_smp_initialized __read_mostly;

5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5517
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5518 5519
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5520 5521 5522 5523 5524 5525 5526

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5527
	bool queued, running;
5528 5529
	struct rq_flags rf;
	struct rq *rq;
5530

5531
	rq = task_rq_lock(p, &rf);
5532
	queued = task_on_rq_queued(p);
5533 5534
	running = task_current(rq, p);

5535
	if (queued)
5536
		dequeue_task(rq, p, DEQUEUE_SAVE);
5537
	if (running)
5538
		put_prev_task(rq, p);
5539 5540 5541

	p->numa_preferred_nid = nid;

5542
	if (queued)
5543
		enqueue_task(rq, p, ENQUEUE_RESTORE);
5544
	if (running)
5545
		set_curr_task(rq, p);
5546
	task_rq_unlock(rq, p, &rf);
5547
}
P
Peter Zijlstra 已提交
5548
#endif /* CONFIG_NUMA_BALANCING */
5549

L
Linus Torvalds 已提交
5550
#ifdef CONFIG_HOTPLUG_CPU
5551
/*
5552 5553
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5554
 */
5555
void idle_task_exit(void)
L
Linus Torvalds 已提交
5556
{
5557
	struct mm_struct *mm = current->active_mm;
5558

5559
	BUG_ON(cpu_online(smp_processor_id()));
5560

5561
	if (mm != &init_mm) {
5562
		switch_mm_irqs_off(mm, &init_mm, current);
5563 5564
		finish_arch_post_lock_switch();
	}
5565
	mmdrop(mm);
L
Linus Torvalds 已提交
5566 5567 5568
}

/*
5569 5570
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5571 5572 5573
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5574 5575
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5576
 */
5577
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5578
{
5579
	long delta = calc_load_fold_active(rq, 1);
5580 5581
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5582 5583
}

5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5600
/*
5601 5602 5603 5604 5605 5606
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5607
 */
5608
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5609
{
5610
	struct rq *rq = dead_rq;
5611
	struct task_struct *next, *stop = rq->stop;
5612
	struct rq_flags rf;
5613
	int dest_cpu;
L
Linus Torvalds 已提交
5614 5615

	/*
5616 5617 5618 5619 5620 5621 5622
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5623
	 */
5624
	rq->stop = NULL;
5625

5626 5627 5628 5629 5630 5631 5632
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5633
	for (;;) {
5634 5635 5636 5637 5638
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5639
			break;
5640

5641
		/*
W
Wanpeng Li 已提交
5642
		 * pick_next_task assumes pinned rq->lock.
5643
		 */
5644 5645
		rq_pin_lock(rq, &rf);
		next = pick_next_task(rq, &fake_task, &rf);
5646
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5647
		next->sched_class->put_prev_task(rq, next);
5648

W
Wanpeng Li 已提交
5649 5650 5651 5652 5653 5654 5655 5656 5657
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5658
		rq_unpin_lock(rq, &rf);
W
Wanpeng Li 已提交
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&next->pi_lock);
		raw_spin_lock(&rq->lock);

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5673
		/* Find suitable destination for @next, with force if needed. */
5674
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5675

5676 5677 5678 5679 5680 5681
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
W
Wanpeng Li 已提交
5682
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5683
	}
5684

5685
	rq->stop = stop;
5686
}
L
Linus Torvalds 已提交
5687 5688
#endif /* CONFIG_HOTPLUG_CPU */

5689 5690 5691 5692 5693
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5694
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5714
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5715 5716 5717 5718
		rq->online = 0;
	}
}

5719
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5720
{
5721
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5722

5723 5724 5725
	rq->age_stamp = sched_clock_cpu(cpu);
}

5726 5727
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5728
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5729

5730
static __read_mostly int sched_debug_enabled;
5731

5732
static int __init sched_debug_setup(char *str)
5733
{
5734
	sched_debug_enabled = 1;
5735 5736 5737

	return 0;
}
5738 5739 5740 5741 5742 5743
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5744

5745
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5746
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5747
{
I
Ingo Molnar 已提交
5748
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5749

5750
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5751 5752 5753 5754

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5755
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5756
		if (sd->parent)
P
Peter Zijlstra 已提交
5757 5758
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5759
		return -1;
N
Nick Piggin 已提交
5760 5761
	}

5762 5763
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5764

5765
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5766 5767
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5768
	}
5769
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5770 5771
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5772
	}
L
Linus Torvalds 已提交
5773

I
Ingo Molnar 已提交
5774
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5775
	do {
I
Ingo Molnar 已提交
5776
		if (!group) {
P
Peter Zijlstra 已提交
5777 5778
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5779 5780 5781
			break;
		}

5782
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5783 5784
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5785 5786
			break;
		}
L
Linus Torvalds 已提交
5787

5788 5789
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5790 5791
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5792 5793
			break;
		}
L
Linus Torvalds 已提交
5794

5795
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5796

5797 5798
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5799
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5800
			printk(KERN_CONT " (cpu_capacity = %lu)",
5801
				group->sgc->capacity);
5802
		}
L
Linus Torvalds 已提交
5803

I
Ingo Molnar 已提交
5804 5805
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5806
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5807

5808
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5809
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5810

5811 5812
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5813 5814
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5815 5816
	return 0;
}
L
Linus Torvalds 已提交
5817

I
Ingo Molnar 已提交
5818 5819 5820
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5821

5822
	if (!sched_debug_enabled)
5823 5824
		return;

I
Ingo Molnar 已提交
5825 5826 5827 5828
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5829

I
Ingo Molnar 已提交
5830 5831 5832
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5833
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5834
			break;
L
Linus Torvalds 已提交
5835 5836
		level++;
		sd = sd->parent;
5837
		if (!sd)
I
Ingo Molnar 已提交
5838 5839
			break;
	}
L
Linus Torvalds 已提交
5840
}
5841
#else /* !CONFIG_SCHED_DEBUG */
5842 5843

# define sched_debug_enabled 0
5844
# define sched_domain_debug(sd, cpu) do { } while (0)
5845 5846 5847 5848
static inline bool sched_debug(void)
{
	return false;
}
5849
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5850

5851
static int sd_degenerate(struct sched_domain *sd)
5852
{
5853
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5854 5855 5856 5857 5858 5859
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5860
			 SD_BALANCE_EXEC |
5861
			 SD_SHARE_CPUCAPACITY |
5862
			 SD_ASYM_CPUCAPACITY |
5863 5864
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5865 5866 5867 5868 5869
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5870
	if (sd->flags & (SD_WAKE_AFFINE))
5871 5872 5873 5874 5875
		return 0;

	return 1;
}

5876 5877
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5878 5879 5880 5881 5882 5883
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5884
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5885 5886 5887 5888 5889 5890 5891
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5892
				SD_BALANCE_EXEC |
5893
				SD_ASYM_CPUCAPACITY |
5894
				SD_SHARE_CPUCAPACITY |
5895
				SD_SHARE_PKG_RESOURCES |
5896 5897
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5898 5899
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5900 5901 5902 5903 5904 5905 5906
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5907
static void free_rootdomain(struct rcu_head *rcu)
5908
{
5909
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5910

5911
	cpupri_cleanup(&rd->cpupri);
5912
	cpudl_cleanup(&rd->cpudl);
5913
	free_cpumask_var(rd->dlo_mask);
5914 5915 5916 5917 5918 5919
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5920 5921
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5922
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5923 5924
	unsigned long flags;

5925
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5926 5927

	if (rq->rd) {
I
Ingo Molnar 已提交
5928
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5929

5930
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5931
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5932

5933
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5934

I
Ingo Molnar 已提交
5935
		/*
5936
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5937 5938 5939 5940 5941
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5942 5943 5944 5945 5946
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5947
	cpumask_set_cpu(rq->cpu, rd->span);
5948
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5949
		set_rq_online(rq);
G
Gregory Haskins 已提交
5950

5951
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5952 5953

	if (old_rd)
5954
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5955 5956
}

5957
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5958 5959 5960
{
	memset(rd, 0, sizeof(*rd));

5961
	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5962
		goto out;
5963
	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5964
		goto free_span;
5965
	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5966
		goto free_online;
5967
	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5968
		goto free_dlo_mask;
5969

5970
	init_dl_bw(&rd->dl_bw);
5971 5972
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5973

5974
	if (cpupri_init(&rd->cpupri) != 0)
5975
		goto free_rto_mask;
5976
	return 0;
5977

5978 5979
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5980 5981
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5982 5983 5984 5985
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5986
out:
5987
	return -ENOMEM;
G
Gregory Haskins 已提交
5988 5989
}

5990 5991 5992 5993 5994 5995
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5996 5997
static void init_defrootdomain(void)
{
5998
	init_rootdomain(&def_root_domain);
5999

G
Gregory Haskins 已提交
6000 6001 6002
	atomic_set(&def_root_domain.refcount, 1);
}

6003
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6004 6005 6006 6007 6008 6009 6010
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6011
	if (init_rootdomain(rd) != 0) {
6012 6013 6014
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6015 6016 6017 6018

	return rd;
}

6019
static void free_sched_groups(struct sched_group *sg, int free_sgc)
6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

6030 6031
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
6032 6033 6034 6035 6036 6037

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

6038
static void destroy_sched_domain(struct sched_domain *sd)
6039
{
6040 6041 6042 6043 6044 6045 6046
	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
6047
		kfree(sd->groups->sgc);
6048
		kfree(sd->groups);
6049
	}
6050 6051
	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
		kfree(sd->shared);
6052 6053 6054
	kfree(sd);
}

6055
static void destroy_sched_domains_rcu(struct rcu_head *rcu)
6056
{
6057 6058 6059 6060 6061 6062 6063
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);

	while (sd) {
		struct sched_domain *parent = sd->parent;
		destroy_sched_domain(sd);
		sd = parent;
	}
6064 6065
}

6066
static void destroy_sched_domains(struct sched_domain *sd)
6067
{
6068 6069
	if (sd)
		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
6070 6071
}

6072 6073 6074 6075 6076 6077 6078
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
6079
 * two cpus are in the same cache domain, see cpus_share_cache().
6080 6081
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6082
DEFINE_PER_CPU(int, sd_llc_size);
6083
DEFINE_PER_CPU(int, sd_llc_id);
6084
DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
6085
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6086
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6087 6088 6089

static void update_top_cache_domain(int cpu)
{
6090
	struct sched_domain_shared *sds = NULL;
6091 6092
	struct sched_domain *sd;
	int id = cpu;
6093
	int size = 1;
6094 6095

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6096
	if (sd) {
6097
		id = cpumask_first(sched_domain_span(sd));
6098
		size = cpumask_weight(sched_domain_span(sd));
6099
		sds = sd->shared;
6100
	}
6101 6102

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6103
	per_cpu(sd_llc_size, cpu) = size;
6104
	per_cpu(sd_llc_id, cpu) = id;
6105
	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
6106 6107 6108

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6109 6110 6111

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6112 6113
}

L
Linus Torvalds 已提交
6114
/*
I
Ingo Molnar 已提交
6115
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6116 6117
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6118 6119
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6120
{
6121
	struct rq *rq = cpu_rq(cpu);
6122 6123 6124
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6125
	for (tmp = sd; tmp; ) {
6126 6127 6128
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6129

6130
		if (sd_parent_degenerate(tmp, parent)) {
6131
			tmp->parent = parent->parent;
6132 6133
			if (parent->parent)
				parent->parent->child = tmp;
6134 6135 6136 6137 6138 6139 6140
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
6141
			destroy_sched_domain(parent);
6142 6143
		} else
			tmp = tmp->parent;
6144 6145
	}

6146
	if (sd && sd_degenerate(sd)) {
6147
		tmp = sd;
6148
		sd = sd->parent;
6149
		destroy_sched_domain(tmp);
6150 6151 6152
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6153

6154
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
6155

G
Gregory Haskins 已提交
6156
	rq_attach_root(rq, rd);
6157
	tmp = rq->sd;
N
Nick Piggin 已提交
6158
	rcu_assign_pointer(rq->sd, sd);
6159
	destroy_sched_domains(tmp);
6160 6161

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
6162 6163 6164 6165 6166
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6167 6168
	int ret;

R
Rusty Russell 已提交
6169
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6170 6171 6172 6173 6174
	ret = cpulist_parse(str, cpu_isolated_map);
	if (ret) {
		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
		return 0;
	}
L
Linus Torvalds 已提交
6175 6176
	return 1;
}
I
Ingo Molnar 已提交
6177
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6178

6179
struct s_data {
6180
	struct sched_domain ** __percpu sd;
6181 6182 6183
	struct root_domain	*rd;
};

6184 6185
enum s_alloc {
	sa_rootdomain,
6186
	sa_sd,
6187
	sa_sd_storage,
6188 6189 6190
	sa_none,
};

P
Peter Zijlstra 已提交
6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

6229 6230 6231 6232 6233 6234 6235
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
6236
	struct sched_domain *sibling;
6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

6247
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
6248 6249

		/* See the comment near build_group_mask(). */
6250
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
6251 6252
			continue;

6253
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6254
				GFP_KERNEL, cpu_to_node(cpu));
6255 6256 6257 6258 6259

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
6260 6261 6262
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
6263 6264 6265 6266
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

6267 6268
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
6269 6270
			build_group_mask(sd, sg);

6271
		/*
6272
		 * Initialize sgc->capacity such that even if we mess up the
6273 6274 6275
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
6276
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6277
		sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
6278

P
Peter Zijlstra 已提交
6279 6280 6281 6282 6283
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6284
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6285
		    group_balance_cpu(sg) == cpu)
6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6305
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6306
{
6307 6308
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6309

6310 6311
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6312

6313
	if (sg) {
6314
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6315 6316
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6317
	}
6318 6319

	return cpu;
6320 6321
}

6322
/*
6323 6324
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6325
 * and ->cpu_capacity to 0.
6326 6327
 *
 * Assumes the sched_domain tree is fully constructed
6328
 */
6329 6330
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6331
{
6332 6333 6334
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6335
	struct cpumask *covered;
6336
	int i;
6337

6338 6339 6340
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6341
	if (cpu != cpumask_first(span))
6342 6343
		return 0;

6344 6345 6346
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6347
	cpumask_clear(covered);
6348

6349 6350
	for_each_cpu(i, span) {
		struct sched_group *sg;
6351
		int group, j;
6352

6353 6354
		if (cpumask_test_cpu(i, covered))
			continue;
6355

6356
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6357
		cpumask_setall(sched_group_mask(sg));
6358

6359 6360 6361
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6362

6363 6364 6365
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6366

6367 6368 6369 6370 6371 6372 6373
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6374 6375

	return 0;
6376
}
6377

6378
/*
6379
 * Initialize sched groups cpu_capacity.
6380
 *
6381
 * cpu_capacity indicates the capacity of sched group, which is used while
6382
 * distributing the load between different sched groups in a sched domain.
6383 6384 6385 6386
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6387
 */
6388
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6389
{
6390
	struct sched_group *sg = sd->groups;
6391

6392
	WARN_ON(!sg);
6393 6394

	do {
T
Tim Chen 已提交
6395 6396
		int cpu, max_cpu = -1;

6397
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
T
Tim Chen 已提交
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410

		if (!(sd->flags & SD_ASYM_PACKING))
			goto next;

		for_each_cpu(cpu, sched_group_cpus(sg)) {
			if (max_cpu < 0)
				max_cpu = cpu;
			else if (sched_asym_prefer(cpu, max_cpu))
				max_cpu = cpu;
		}
		sg->asym_prefer_cpu = max_cpu;

next:
6411 6412
		sg = sg->next;
	} while (sg != sd->groups);
6413

P
Peter Zijlstra 已提交
6414
	if (cpu != group_balance_cpu(sg))
6415
		return;
6416

6417
	update_group_capacity(sd, cpu);
6418 6419
}

6420 6421 6422 6423 6424
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6425
static int default_relax_domain_level = -1;
6426
int sched_domain_level_max;
6427 6428 6429

static int __init setup_relax_domain_level(char *str)
{
6430 6431
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6432

6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6451
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6452 6453
	} else {
		/* turn on idle balance on this domain */
6454
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6455 6456 6457
	}
}

6458 6459 6460
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6461 6462 6463 6464 6465
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6466 6467
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6468 6469
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6470
	case sa_sd_storage:
6471
		__sdt_free(cpu_map); /* fall through */
6472 6473 6474 6475
	case sa_none:
		break;
	}
}
6476

6477 6478 6479
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6480 6481
	memset(d, 0, sizeof(*d));

6482 6483
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6484 6485 6486
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6487
	d->rd = alloc_rootdomain();
6488
	if (!d->rd)
6489
		return sa_sd;
6490 6491
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6492

6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6505 6506 6507
	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
		*per_cpu_ptr(sdd->sds, cpu) = NULL;

6508
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6509
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6510

6511 6512
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6513 6514
}

6515 6516
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6517
enum numa_topology_type sched_numa_topology_type;
6518
static int *sched_domains_numa_distance;
6519
int sched_max_numa_distance;
6520 6521
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6522
#endif
6523

6524 6525 6526
/*
 * SD_flags allowed in topology descriptions.
 *
6527 6528 6529
 * These flags are purely descriptive of the topology and do not prescribe
 * behaviour. Behaviour is artificial and mapped in the below sd_init()
 * function:
6530
 *
6531 6532 6533 6534
 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
 *   SD_SHARE_PKG_RESOURCES - describes shared caches
 *   SD_NUMA                - describes NUMA topologies
 *   SD_SHARE_POWERDOMAIN   - describes shared power domain
6535
 *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
6536 6537 6538
 *
 * Odd one out, which beside describing the topology has a quirk also
 * prescribes the desired behaviour that goes along with it:
6539
 *
6540
 *   SD_ASYM_PACKING        - describes SMT quirks
6541 6542
 */
#define TOPOLOGY_SD_FLAGS		\
6543
	(SD_SHARE_CPUCAPACITY |		\
6544 6545
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6546
	 SD_ASYM_PACKING |		\
6547
	 SD_ASYM_CPUCAPACITY |		\
6548
	 SD_SHARE_POWERDOMAIN)
6549 6550

static struct sched_domain *
6551
sd_init(struct sched_domain_topology_level *tl,
6552
	const struct cpumask *cpu_map,
6553
	struct sched_domain *child, int cpu)
6554
{
6555 6556 6557
	struct sd_data *sdd = &tl->data;
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	int sd_id, sd_weight, sd_flags = 0;
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6573 6574 6575 6576 6577

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6578
		.imbalance_pct		= 125,
6579 6580 6581 6582

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6583 6584 6585 6586 6587 6588
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6589 6590
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6591
					| 0*SD_BALANCE_WAKE
6592
					| 1*SD_WAKE_AFFINE
6593
					| 0*SD_SHARE_CPUCAPACITY
6594
					| 0*SD_SHARE_PKG_RESOURCES
6595
					| 0*SD_SERIALIZE
6596
					| 0*SD_PREFER_SIBLING
6597 6598
					| 0*SD_NUMA
					| sd_flags
6599
					,
6600

6601 6602
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6603
		.smt_gain		= 0,
6604 6605
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6606
		.child			= child,
6607 6608 6609
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6610 6611
	};

6612 6613 6614
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
	sd_id = cpumask_first(sched_domain_span(sd));

6615
	/*
6616
	 * Convert topological properties into behaviour.
6617
	 */
6618

6619 6620 6621 6622 6623 6624 6625
	if (sd->flags & SD_ASYM_CPUCAPACITY) {
		struct sched_domain *t = sd;

		for_each_lower_domain(t)
			t->flags |= SD_BALANCE_WAKE;
	}

6626
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6627
		sd->flags |= SD_PREFER_SIBLING;
6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

6657 6658 6659 6660 6661 6662 6663
	/*
	 * For all levels sharing cache; connect a sched_domain_shared
	 * instance.
	 */
	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
		atomic_inc(&sd->shared->ref);
6664
		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
6665 6666 6667
	}

	sd->private = sdd;
6668 6669 6670 6671

	return sd;
}

6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

6686 6687
static struct sched_domain_topology_level *sched_domain_topology =
	default_topology;
6688 6689 6690 6691 6692 6693

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
6694 6695 6696
	if (WARN_ON_ONCE(sched_smp_initialized))
		return;

6697 6698 6699 6700 6701
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6702 6703 6704 6705 6706
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6728
bool find_numa_distance(int distance)
6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

6768
	if (sched_domains_numa_levels <= 1) {
6769
		sched_numa_topology_type = NUMA_DIRECT;
6770 6771
		return;
	}
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6840
		}
6841 6842 6843 6844 6845 6846

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6847
	}
6848 6849 6850 6851

	if (!level)
		return;

6852 6853 6854 6855
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6856
	 * The sched_domains_numa_distance[] array includes the actual distance
6857 6858 6859
	 * numbers.
	 */

6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6886
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6887 6888 6889 6890 6891
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

6892
			for_each_node(k) {
6893
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6894 6895 6896 6897 6898 6899 6900
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6901 6902 6903
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6904
	tl = kzalloc((i + level + 1) *
6905 6906 6907 6908 6909 6910 6911
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6912 6913
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6914 6915 6916 6917 6918 6919 6920

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6921
			.sd_flags = cpu_numa_flags,
6922 6923
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6924
			SD_INIT_NAME(NUMA)
6925 6926 6927 6928
		};
	}

	sched_domain_topology = tl;
6929 6930

	sched_domains_numa_levels = level;
6931
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6932 6933

	init_numa_topology_type();
6934
}
6935

6936
static void sched_domains_numa_masks_set(unsigned int cpu)
6937 6938
{
	int node = cpu_to_node(cpu);
6939
	int i, j;
6940 6941 6942 6943 6944 6945 6946 6947 6948

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

6949
static void sched_domains_numa_masks_clear(unsigned int cpu)
6950 6951
{
	int i, j;
6952

6953 6954 6955 6956 6957 6958
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

6959
#else
6960 6961 6962
static inline void sched_init_numa(void) { }
static void sched_domains_numa_masks_set(unsigned int cpu) { }
static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6963 6964
#endif /* CONFIG_NUMA */

6965 6966 6967 6968 6969
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6970
	for_each_sd_topology(tl) {
6971 6972 6973 6974 6975 6976
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

6977 6978 6979 6980
		sdd->sds = alloc_percpu(struct sched_domain_shared *);
		if (!sdd->sds)
			return -ENOMEM;

6981 6982 6983 6984
		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6985 6986
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6987 6988
			return -ENOMEM;

6989 6990
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
6991
			struct sched_domain_shared *sds;
6992
			struct sched_group *sg;
6993
			struct sched_group_capacity *sgc;
6994

P
Peter Zijlstra 已提交
6995
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6996 6997 6998 6999 7000 7001
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

7002 7003 7004 7005 7006 7007 7008
			sds = kzalloc_node(sizeof(struct sched_domain_shared),
					GFP_KERNEL, cpu_to_node(j));
			if (!sds)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sds, j) = sds;

7009 7010 7011 7012 7013
			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

7014 7015
			sg->next = sg;

7016
			*per_cpu_ptr(sdd->sg, j) = sg;
7017

7018
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
7019
					GFP_KERNEL, cpu_to_node(j));
7020
			if (!sgc)
7021 7022
				return -ENOMEM;

7023
			*per_cpu_ptr(sdd->sgc, j) = sgc;
7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

7035
	for_each_sd_topology(tl) {
7036 7037 7038
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
7039 7040 7041 7042 7043 7044 7045 7046 7047
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

7048 7049
			if (sdd->sds)
				kfree(*per_cpu_ptr(sdd->sds, j));
7050 7051
			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
7052 7053
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
7054 7055
		}
		free_percpu(sdd->sd);
7056
		sdd->sd = NULL;
7057 7058
		free_percpu(sdd->sds);
		sdd->sds = NULL;
7059
		free_percpu(sdd->sg);
7060
		sdd->sg = NULL;
7061 7062
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
7063 7064 7065
	}
}

7066
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7067 7068
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
7069
{
7070
	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
7071

7072 7073 7074
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
7075
		child->parent = sd;
P
Peter Zijlstra 已提交
7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

7090
	}
7091
	set_domain_attribute(sd, attr);
7092 7093 7094 7095

	return sd;
}

7096 7097 7098 7099
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
7100 7101
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
7102
{
7103
	enum s_alloc alloc_state;
7104
	struct sched_domain *sd;
7105
	struct s_data d;
7106
	struct rq *rq = NULL;
7107
	int i, ret = -ENOMEM;
7108

7109 7110 7111
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
7112

7113
	/* Set up domains for cpus specified by the cpu_map. */
7114
	for_each_cpu(i, cpu_map) {
7115 7116
		struct sched_domain_topology_level *tl;

7117
		sd = NULL;
7118
		for_each_sd_topology(tl) {
7119
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7120 7121
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
7122 7123
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
7124 7125
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
7126
		}
7127 7128 7129 7130 7131 7132
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
7133 7134 7135 7136 7137 7138 7139
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
7140
		}
7141
	}
7142

7143
	/* Calculate CPU capacity for physical packages and nodes */
7144 7145 7146
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
7147

7148 7149
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
7150
			init_sched_groups_capacity(i, sd);
7151
		}
7152
	}
7153

L
Linus Torvalds 已提交
7154
	/* Attach the domains */
7155
	rcu_read_lock();
7156
	for_each_cpu(i, cpu_map) {
7157
		rq = cpu_rq(i);
7158
		sd = *per_cpu_ptr(d.sd, i);
7159 7160 7161 7162 7163

		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);

7164
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7165
	}
7166
	rcu_read_unlock();
7167

7168
	if (rq && sched_debug_enabled) {
7169 7170 7171 7172
		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
	}

7173
	ret = 0;
7174
error:
7175
	__free_domain_allocs(&d, alloc_state, cpu_map);
7176
	return ret;
L
Linus Torvalds 已提交
7177
}
P
Paul Jackson 已提交
7178

7179
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7180
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7181 7182
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7183 7184 7185

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7186 7187
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7188
 */
7189
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7190

7191 7192 7193 7194 7195
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
7196
int __weak arch_update_cpu_topology(void)
7197
{
7198
	return 0;
7199 7200
}

7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7226
/*
I
Ingo Molnar 已提交
7227
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7228 7229
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7230
 */
7231
static int init_sched_domains(const struct cpumask *cpu_map)
7232
{
7233 7234
	int err;

7235
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7236
	ndoms_cur = 1;
7237
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7238
	if (!doms_cur)
7239 7240
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7241
	err = build_sched_domains(doms_cur[0], NULL);
7242
	register_sched_domain_sysctl();
7243 7244

	return err;
7245 7246 7247 7248 7249 7250
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7251
static void detach_destroy_domains(const struct cpumask *cpu_map)
7252 7253 7254
{
	int i;

7255
	rcu_read_lock();
7256
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7257
		cpu_attach_domain(NULL, &def_root_domain, i);
7258
	rcu_read_unlock();
7259 7260
}

7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7277 7278
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7279
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7280 7281 7282
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7283
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7284 7285 7286
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7287 7288 7289
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7290 7291 7292 7293 7294 7295
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7296
 *
7297
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7298 7299
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7300
 *
P
Paul Jackson 已提交
7301 7302
 * Call with hotplug lock held
 */
7303
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7304
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7305
{
7306
	int i, j, n;
7307
	int new_topology;
P
Paul Jackson 已提交
7308

7309
	mutex_lock(&sched_domains_mutex);
7310

7311 7312 7313
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7314 7315 7316
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7317
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7318 7319 7320

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7321
		for (j = 0; j < n && !new_topology; j++) {
7322
			if (cpumask_equal(doms_cur[i], doms_new[j])
7323
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7324 7325 7326
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7327
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7328 7329 7330 7331
match1:
		;
	}

7332
	n = ndoms_cur;
7333
	if (doms_new == NULL) {
7334
		n = 0;
7335
		doms_new = &fallback_doms;
7336
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7337
		WARN_ON_ONCE(dattr_new);
7338 7339
	}

P
Paul Jackson 已提交
7340 7341
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7342
		for (j = 0; j < n && !new_topology; j++) {
7343
			if (cpumask_equal(doms_new[i], doms_cur[j])
7344
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7345 7346 7347
				goto match2;
		}
		/* no match - add a new doms_new */
7348
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7349 7350 7351 7352 7353
match2:
		;
	}

	/* Remember the new sched domains */
7354 7355
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7356
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7357
	doms_cur = doms_new;
7358
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7359
	ndoms_cur = ndoms_new;
7360 7361

	register_sched_domain_sysctl();
7362

7363
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7364 7365
}

7366 7367
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7368
/*
7369 7370 7371
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7372 7373 7374
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7375
 */
7376
static void cpuset_cpu_active(void)
7377
{
7378
	if (cpuhp_tasks_frozen) {
7379 7380 7381 7382 7383 7384 7385 7386 7387
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
7388
			return;
7389 7390 7391 7392 7393 7394
		}
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
7395
	}
7396
	cpuset_update_active_cpus(true);
7397
}
7398

7399
static int cpuset_cpu_inactive(unsigned int cpu)
7400
{
7401 7402
	unsigned long flags;
	struct dl_bw *dl_b;
7403 7404
	bool overflow;
	int cpus;
7405

7406
	if (!cpuhp_tasks_frozen) {
7407 7408
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7409

7410 7411 7412 7413
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7414

7415
		rcu_read_unlock_sched();
7416

7417
		if (overflow)
7418
			return -EBUSY;
7419
		cpuset_update_active_cpus(false);
7420
	} else {
7421 7422
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
7423
	}
7424
	return 0;
7425 7426
}

7427
int sched_cpu_activate(unsigned int cpu)
7428
{
7429 7430 7431
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

7432
	set_cpu_active(cpu, true);
7433

7434
	if (sched_smp_initialized) {
7435
		sched_domains_numa_masks_set(cpu);
7436
		cpuset_cpu_active();
7437
	}
7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
	 *    after all cpus have been brought up.
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
	raw_spin_unlock_irqrestore(&rq->lock, flags);

	update_max_interval();

7457
	return 0;
7458 7459
}

7460
int sched_cpu_deactivate(unsigned int cpu)
7461 7462 7463
{
	int ret;

7464
	set_cpu_active(cpu, false);
7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
	 * not imply sync_sched(), so wait for both.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
	if (IS_ENABLED(CONFIG_PREEMPT))
		synchronize_rcu_mult(call_rcu, call_rcu_sched);
	else
		synchronize_rcu();
7479 7480 7481 7482 7483 7484 7485 7486

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
7487
	}
7488 7489
	sched_domains_numa_masks_clear(cpu);
	return 0;
7490 7491
}

7492 7493 7494 7495 7496 7497 7498 7499
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

7500 7501 7502
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
7503
	sched_rq_cpu_starting(cpu);
7504
	return 0;
7505 7506
}

7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
	migrate_tasks(rq);
	BUG_ON(rq->nr_running != 1);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
	calc_load_migrate(rq);
	update_max_interval();
7525
	nohz_balance_exit_idle(cpu);
7526
	hrtick_clear(rq);
7527 7528 7529 7530
	return 0;
}
#endif

P
Peter Zijlstra 已提交
7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);

static void sched_init_smt(void)
{
	/*
	 * We've enumerated all CPUs and will assume that if any CPU
	 * has SMT siblings, CPU0 will too.
	 */
	if (cpumask_weight(cpu_smt_mask(0)) > 1)
		static_branch_enable(&sched_smt_present);
}
#else
static inline void sched_init_smt(void) { }
#endif

L
Linus Torvalds 已提交
7547 7548
void __init sched_init_smp(void)
{
7549 7550 7551
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7552
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7553

7554 7555
	sched_init_numa();

7556 7557 7558 7559 7560
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7561
	mutex_lock(&sched_domains_mutex);
7562
	init_sched_domains(cpu_active_mask);
7563 7564 7565
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7566
	mutex_unlock(&sched_domains_mutex);
7567

7568
	/* Move init over to a non-isolated CPU */
7569
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7570
		BUG();
I
Ingo Molnar 已提交
7571
	sched_init_granularity();
7572
	free_cpumask_var(non_isolated_cpus);
7573

7574
	init_sched_rt_class();
7575
	init_sched_dl_class();
P
Peter Zijlstra 已提交
7576 7577

	sched_init_smt();
7578
	sched_clock_init_late();
P
Peter Zijlstra 已提交
7579

7580
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
7581
}
7582 7583 7584

static int __init migration_init(void)
{
7585
	sched_rq_cpu_starting(smp_processor_id());
7586
	return 0;
L
Linus Torvalds 已提交
7587
}
7588 7589
early_initcall(migration_init);

L
Linus Torvalds 已提交
7590 7591 7592
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7593
	sched_init_granularity();
7594
	sched_clock_init_late();
L
Linus Torvalds 已提交
7595 7596 7597 7598 7599 7600 7601 7602 7603 7604
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7605
#ifdef CONFIG_CGROUP_SCHED
7606 7607 7608 7609
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7610
struct task_group root_task_group;
7611
LIST_HEAD(task_groups);
7612 7613 7614

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
7615
#endif
P
Peter Zijlstra 已提交
7616

7617
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7618
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
7619

7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632
#define WAIT_TABLE_BITS 8
#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;

wait_queue_head_t *bit_waitqueue(void *word, int bit)
{
	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
	unsigned long val = (unsigned long)word << shift | bit;

	return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
}
EXPORT_SYMBOL(bit_waitqueue);

L
Linus Torvalds 已提交
7633 7634
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7635
	int i, j;
7636 7637
	unsigned long alloc_size = 0, ptr;

7638 7639
	sched_clock_init();

7640 7641 7642
	for (i = 0; i < WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(bit_wait_table + i);

7643 7644 7645 7646 7647 7648 7649
#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7650
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7651 7652

#ifdef CONFIG_FAIR_GROUP_SCHED
7653
		root_task_group.se = (struct sched_entity **)ptr;
7654 7655
		ptr += nr_cpu_ids * sizeof(void **);

7656
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7657
		ptr += nr_cpu_ids * sizeof(void **);
7658

7659
#endif /* CONFIG_FAIR_GROUP_SCHED */
7660
#ifdef CONFIG_RT_GROUP_SCHED
7661
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7662 7663
		ptr += nr_cpu_ids * sizeof(void **);

7664
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7665 7666
		ptr += nr_cpu_ids * sizeof(void **);

7667
#endif /* CONFIG_RT_GROUP_SCHED */
7668
	}
7669
#ifdef CONFIG_CPUMASK_OFFSTACK
7670 7671 7672
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7673 7674
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7675
	}
7676
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7677

7678 7679 7680
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7681
			global_rt_period(), global_rt_runtime());
7682

G
Gregory Haskins 已提交
7683 7684 7685 7686
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7687
#ifdef CONFIG_RT_GROUP_SCHED
7688
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7689
			global_rt_period(), global_rt_runtime());
7690
#endif /* CONFIG_RT_GROUP_SCHED */
7691

D
Dhaval Giani 已提交
7692
#ifdef CONFIG_CGROUP_SCHED
7693 7694
	task_group_cache = KMEM_CACHE(task_group, 0);

7695 7696
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7697
	INIT_LIST_HEAD(&root_task_group.siblings);
7698
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
7699
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7700

7701
	for_each_possible_cpu(i) {
7702
		struct rq *rq;
L
Linus Torvalds 已提交
7703 7704

		rq = cpu_rq(i);
7705
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7706
		rq->nr_running = 0;
7707 7708
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7709
		init_cfs_rq(&rq->cfs);
7710 7711
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7712
#ifdef CONFIG_FAIR_GROUP_SCHED
7713
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7714
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7715
		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
D
Dhaval Giani 已提交
7716
		/*
7717
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7718 7719 7720 7721
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7722
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7723 7724 7725
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7726
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7727 7728 7729
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7730
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7731
		 *
7732 7733
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7734
		 */
7735
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7736
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7737 7738 7739
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7740
#ifdef CONFIG_RT_GROUP_SCHED
7741
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7742
#endif
L
Linus Torvalds 已提交
7743

I
Ingo Molnar 已提交
7744 7745
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7746

L
Linus Torvalds 已提交
7747
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7748
		rq->sd = NULL;
G
Gregory Haskins 已提交
7749
		rq->rd = NULL;
7750
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7751
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7752
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7753
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7754
		rq->push_cpu = 0;
7755
		rq->cpu = i;
7756
		rq->online = 0;
7757 7758
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7759
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7760 7761 7762

		INIT_LIST_HEAD(&rq->cfs_tasks);

7763
		rq_attach_root(rq, &def_root_domain);
7764
#ifdef CONFIG_NO_HZ_COMMON
7765
		rq->last_load_update_tick = jiffies;
7766
		rq->nohz_flags = 0;
7767
#endif
7768 7769 7770
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
7771
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
7772
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7773 7774 7775
		atomic_set(&rq->nr_iowait, 0);
	}

7776
	set_load_weight(&init_task);
7777

L
Linus Torvalds 已提交
7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7791 7792 7793

	calc_load_update = jiffies + LOAD_FREQ;

7794
#ifdef CONFIG_SMP
7795
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7796 7797 7798
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7799
	idle_thread_set_boot_cpu();
7800
	set_cpu_rq_start_time(smp_processor_id());
7801 7802
#endif
	init_sched_fair_class();
7803

7804 7805
	init_schedstats();

7806
	scheduler_running = 1;
L
Linus Torvalds 已提交
7807 7808
}

7809
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7810 7811
static inline int preempt_count_equals(int preempt_offset)
{
7812
	int nested = preempt_count() + rcu_preempt_depth();
7813

A
Arnd Bergmann 已提交
7814
	return (nested == preempt_offset);
7815 7816
}

7817
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7818
{
P
Peter Zijlstra 已提交
7819 7820 7821 7822 7823
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7824
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7825 7826 7827 7828
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7829
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7830

7831 7832 7833 7834 7835
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7836 7837
{
	static unsigned long prev_jiffy;	/* ratelimiting */
7838
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
7839

7840
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7841 7842
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7843
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7844 7845 7846 7847 7848
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

7849 7850 7851
	/* Save this before calling printk(), since that will clobber it */
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
7852 7853 7854 7855 7856 7857 7858
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7859

7860 7861 7862
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7863 7864 7865
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7866 7867
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
7868
		pr_err("Preemption disabled at:");
7869
		print_ip_sym(preempt_disable_ip);
7870 7871
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
7872
	dump_stack();
7873
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
7874
}
7875
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7876 7877 7878
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7879
void normalize_rt_tasks(void)
7880
{
7881
	struct task_struct *g, *p;
7882 7883 7884
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7885

7886
	read_lock(&tasklist_lock);
7887
	for_each_process_thread(g, p) {
7888 7889 7890
		/*
		 * Only normalize user tasks:
		 */
7891
		if (p->flags & PF_KTHREAD)
7892 7893
			continue;

7894 7895 7896 7897
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
7898

7899
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7900 7901 7902 7903
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7904
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7905
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7906
			continue;
I
Ingo Molnar 已提交
7907
		}
L
Linus Torvalds 已提交
7908

7909
		__sched_setscheduler(p, &attr, false, false);
7910
	}
7911
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7912 7913 7914
}

#endif /* CONFIG_MAGIC_SYSRQ */
7915

7916
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7917
/*
7918
 * These functions are only useful for the IA64 MCA handling, or kdb.
7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7932 7933
 *
 * Return: The current task for @cpu.
7934
 */
7935
struct task_struct *curr_task(int cpu)
7936 7937 7938 7939
{
	return cpu_curr(cpu);
}

7940 7941 7942
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7943 7944 7945 7946 7947 7948
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7949 7950
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7951 7952 7953 7954 7955 7956 7957
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7958
void ia64_set_curr_task(int cpu, struct task_struct *p)
7959 7960 7961 7962 7963
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7964

D
Dhaval Giani 已提交
7965
#ifdef CONFIG_CGROUP_SCHED
7966 7967 7968
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7969
static void sched_free_group(struct task_group *tg)
7970 7971 7972
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7973
	autogroup_free(tg);
7974
	kmem_cache_free(task_group_cache, tg);
7975 7976 7977
}

/* allocate runqueue etc for a new task group */
7978
struct task_group *sched_create_group(struct task_group *parent)
7979 7980 7981
{
	struct task_group *tg;

7982
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7983 7984 7985
	if (!tg)
		return ERR_PTR(-ENOMEM);

7986
	if (!alloc_fair_sched_group(tg, parent))
7987 7988
		goto err;

7989
	if (!alloc_rt_sched_group(tg, parent))
7990 7991
		goto err;

7992 7993 7994
	return tg;

err:
7995
	sched_free_group(tg);
7996 7997 7998 7999 8000 8001 8002
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

8003
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8004
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8005 8006 8007 8008 8009

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8010
	list_add_rcu(&tg->siblings, &parent->children);
8011
	spin_unlock_irqrestore(&task_group_lock, flags);
8012 8013

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8014 8015
}

8016
/* rcu callback to free various structures associated with a task group */
8017
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8018 8019
{
	/* now it should be safe to free those cfs_rqs */
8020
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8021 8022
}

8023
void sched_destroy_group(struct task_group *tg)
8024 8025
{
	/* wait for possible concurrent references to cfs_rqs complete */
8026
	call_rcu(&tg->rcu, sched_free_group_rcu);
8027 8028 8029
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8030
{
8031
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
8032

8033
	/* end participation in shares distribution */
8034
	unregister_fair_sched_group(tg);
8035 8036

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
8037
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8038
	list_del_rcu(&tg->siblings);
8039
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8040 8041
}

8042
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
8043
{
P
Peter Zijlstra 已提交
8044
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
8045

8046 8047 8048 8049 8050 8051
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
8052 8053 8054 8055
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
8056
#ifdef CONFIG_FAIR_GROUP_SCHED
8057 8058
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
8059
	else
P
Peter Zijlstra 已提交
8060
#endif
8061
		set_task_rq(tsk, task_cpu(tsk));
8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
	int queued, running;
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
	if (unlikely(running))
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
8088

8089
	if (queued)
8090
		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
8091
	if (unlikely(running))
8092
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8093

8094
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
8095
}
D
Dhaval Giani 已提交
8096
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8097

8098 8099 8100 8101 8102
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
8103

P
Peter Zijlstra 已提交
8104 8105
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8106
{
P
Peter Zijlstra 已提交
8107
	struct task_struct *g, *p;
8108

8109 8110 8111 8112 8113 8114
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

8115
	for_each_process_thread(g, p) {
8116
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
8117
			return 1;
8118
	}
8119

P
Peter Zijlstra 已提交
8120 8121
	return 0;
}
8122

P
Peter Zijlstra 已提交
8123 8124 8125 8126 8127
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8128

8129
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
8130 8131 8132 8133 8134
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8135

P
Peter Zijlstra 已提交
8136 8137
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8138

P
Peter Zijlstra 已提交
8139 8140 8141
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8142 8143
	}

8144 8145 8146 8147 8148
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8149

8150 8151 8152
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8153 8154
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8155

P
Peter Zijlstra 已提交
8156
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8157

8158 8159 8160 8161 8162
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8163

8164 8165 8166
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8167 8168 8169
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8170

P
Peter Zijlstra 已提交
8171 8172 8173 8174
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8175

P
Peter Zijlstra 已提交
8176
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8177
	}
P
Peter Zijlstra 已提交
8178

P
Peter Zijlstra 已提交
8179 8180 8181 8182
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8183 8184
}

P
Peter Zijlstra 已提交
8185
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8186
{
8187 8188
	int ret;

P
Peter Zijlstra 已提交
8189 8190 8191 8192 8193 8194
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

8195 8196 8197 8198 8199
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8200 8201
}

8202
static int tg_set_rt_bandwidth(struct task_group *tg,
8203
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8204
{
P
Peter Zijlstra 已提交
8205
	int i, err = 0;
P
Peter Zijlstra 已提交
8206

8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
8218
	mutex_lock(&rt_constraints_mutex);
8219
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8220 8221
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8222
		goto unlock;
P
Peter Zijlstra 已提交
8223

8224
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8225 8226
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8227 8228 8229 8230

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8231
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8232
		rt_rq->rt_runtime = rt_runtime;
8233
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8234
	}
8235
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8236
unlock:
8237
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8238 8239 8240
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8241 8242
}

8243
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8244 8245 8246 8247 8248 8249 8250 8251
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

8252
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8253 8254
}

8255
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
8256 8257 8258
{
	u64 rt_runtime_us;

8259
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8260 8261
		return -1;

8262
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8263 8264 8265
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8266

8267
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8268 8269 8270
{
	u64 rt_runtime, rt_period;

8271
	rt_period = rt_period_us * NSEC_PER_USEC;
8272 8273
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8274
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8275 8276
}

8277
static long sched_group_rt_period(struct task_group *tg)
8278 8279 8280 8281 8282 8283 8284
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
8285
#endif /* CONFIG_RT_GROUP_SCHED */
8286

8287
#ifdef CONFIG_RT_GROUP_SCHED
8288 8289 8290 8291 8292
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8293
	read_lock(&tasklist_lock);
8294
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8295
	read_unlock(&tasklist_lock);
8296 8297 8298 8299
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8300

8301
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8302 8303 8304 8305 8306 8307 8308 8309
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8310
#else /* !CONFIG_RT_GROUP_SCHED */
8311 8312
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8313
	unsigned long flags;
8314
	int i;
8315

8316
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8317 8318 8319
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8320
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8321
		rt_rq->rt_runtime = global_rt_runtime();
8322
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8323
	}
8324
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8325

8326
	return 0;
8327
}
8328
#endif /* CONFIG_RT_GROUP_SCHED */
8329

8330
static int sched_dl_global_validate(void)
8331
{
8332 8333
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
8334
	u64 new_bw = to_ratio(period, runtime);
8335
	struct dl_bw *dl_b;
8336
	int cpu, ret = 0;
8337
	unsigned long flags;
8338 8339 8340 8341 8342 8343 8344 8345 8346 8347

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
8348
	for_each_possible_cpu(cpu) {
8349 8350
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8351

8352
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8353 8354
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
8355
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8356

8357 8358
		rcu_read_unlock_sched();

8359 8360
		if (ret)
			break;
8361 8362
	}

8363
	return ret;
8364 8365
}

8366
static void sched_dl_do_global(void)
8367
{
8368
	u64 new_bw = -1;
8369
	struct dl_bw *dl_b;
8370
	int cpu;
8371
	unsigned long flags;
8372

8373 8374 8375 8376 8377 8378 8379 8380 8381 8382
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
8383 8384
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8385

8386
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8387
		dl_b->bw = new_bw;
8388
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8389 8390

		rcu_read_unlock_sched();
8391
	}
8392 8393 8394 8395 8396 8397 8398
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8399 8400
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8401 8402 8403 8404 8405 8406 8407 8408 8409
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8410 8411
}

8412
int sched_rt_handler(struct ctl_table *table, int write,
8413
		void __user *buffer, size_t *lenp,
8414 8415 8416 8417
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
8418
	int ret;
8419 8420 8421 8422 8423

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8424
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8425 8426

	if (!ret && write) {
8427 8428 8429 8430
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

8431
		ret = sched_dl_global_validate();
8432 8433 8434
		if (ret)
			goto undo;

8435
		ret = sched_rt_global_constraints();
8436 8437 8438 8439 8440 8441 8442 8443 8444 8445
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
8446 8447 8448 8449 8450
	}
	mutex_unlock(&mutex);

	return ret;
}
8451

8452
int sched_rr_handler(struct ctl_table *table, int write,
8453 8454 8455 8456 8457 8458 8459 8460
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8461 8462
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
8463
	if (!ret && write) {
8464 8465
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8466 8467 8468 8469 8470
	}
	mutex_unlock(&mutex);
	return ret;
}

8471
#ifdef CONFIG_CGROUP_SCHED
8472

8473
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8474
{
8475
	return css ? container_of(css, struct task_group, css) : NULL;
8476 8477
}

8478 8479
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8480
{
8481 8482
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
8483

8484
	if (!parent) {
8485
		/* This is early initialization for the top cgroup */
8486
		return &root_task_group.css;
8487 8488
	}

8489
	tg = sched_create_group(parent);
8490 8491 8492
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

8493 8494
	sched_online_group(tg, parent);

8495 8496 8497
	return &tg->css;
}

8498
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8499
{
8500
	struct task_group *tg = css_tg(css);
8501

8502
	sched_offline_group(tg);
8503 8504
}

8505
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8506
{
8507
	struct task_group *tg = css_tg(css);
8508

8509 8510 8511 8512
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
8513 8514
}

8515 8516 8517 8518
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
8519
static void cpu_cgroup_fork(struct task_struct *task)
8520
{
8521 8522 8523 8524 8525
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

8526
	update_rq_clock(rq);
8527 8528 8529
	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
8530 8531
}

8532
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8533
{
8534
	struct task_struct *task;
8535
	struct cgroup_subsys_state *css;
8536
	int ret = 0;
8537

8538
	cgroup_taskset_for_each(task, css, tset) {
8539
#ifdef CONFIG_RT_GROUP_SCHED
8540
		if (!sched_rt_can_attach(css_tg(css), task))
8541
			return -EINVAL;
8542
#else
8543 8544 8545
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8546
#endif
8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
8563
	}
8564
	return ret;
8565
}
8566

8567
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8568
{
8569
	struct task_struct *task;
8570
	struct cgroup_subsys_state *css;
8571

8572
	cgroup_taskset_for_each(task, css, tset)
8573
		sched_move_task(task);
8574 8575
}

8576
#ifdef CONFIG_FAIR_GROUP_SCHED
8577 8578
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8579
{
8580
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8581 8582
}

8583 8584
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8585
{
8586
	struct task_group *tg = css_tg(css);
8587

8588
	return (u64) scale_load_down(tg->shares);
8589
}
8590 8591

#ifdef CONFIG_CFS_BANDWIDTH
8592 8593
static DEFINE_MUTEX(cfs_constraints_mutex);

8594 8595 8596
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8597 8598
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8599 8600
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8601
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8602
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8623 8624 8625 8626 8627
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8628 8629 8630 8631 8632
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8633
	runtime_enabled = quota != RUNTIME_INF;
8634
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8635 8636 8637 8638 8639 8640
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8641 8642 8643
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8644

P
Paul Turner 已提交
8645
	__refill_cfs_bandwidth_runtime(cfs_b);
8646
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8647 8648
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8649 8650
	raw_spin_unlock_irq(&cfs_b->lock);

8651
	for_each_online_cpu(i) {
8652
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8653
		struct rq *rq = cfs_rq->rq;
8654 8655

		raw_spin_lock_irq(&rq->lock);
8656
		cfs_rq->runtime_enabled = runtime_enabled;
8657
		cfs_rq->runtime_remaining = 0;
8658

8659
		if (cfs_rq->throttled)
8660
			unthrottle_cfs_rq(cfs_rq);
8661 8662
		raw_spin_unlock_irq(&rq->lock);
	}
8663 8664
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8665 8666
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8667
	put_online_cpus();
8668

8669
	return ret;
8670 8671 8672 8673 8674 8675
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8676
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8689
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8690 8691
		return -1;

8692
	quota_us = tg->cfs_bandwidth.quota;
8693 8694 8695 8696 8697 8698 8699 8700 8701 8702
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8703
	quota = tg->cfs_bandwidth.quota;
8704 8705 8706 8707 8708 8709 8710 8711

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8712
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8713 8714 8715 8716 8717
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8718 8719
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8720
{
8721
	return tg_get_cfs_quota(css_tg(css));
8722 8723
}

8724 8725
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8726
{
8727
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8728 8729
}

8730 8731
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8732
{
8733
	return tg_get_cfs_period(css_tg(css));
8734 8735
}

8736 8737
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8738
{
8739
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8740 8741
}

8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8774
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8775 8776 8777 8778 8779
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8780
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8781 8782

		quota = normalize_cfs_quota(tg, d);
8783
		parent_quota = parent_b->hierarchical_quota;
8784 8785 8786 8787 8788 8789 8790 8791 8792 8793

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8794
	cfs_b->hierarchical_quota = quota;
8795 8796 8797 8798 8799 8800

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8801
	int ret;
8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8813 8814 8815 8816 8817
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8818
}
8819

8820
static int cpu_stats_show(struct seq_file *sf, void *v)
8821
{
8822
	struct task_group *tg = css_tg(seq_css(sf));
8823
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8824

8825 8826 8827
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8828 8829 8830

	return 0;
}
8831
#endif /* CONFIG_CFS_BANDWIDTH */
8832
#endif /* CONFIG_FAIR_GROUP_SCHED */
8833

8834
#ifdef CONFIG_RT_GROUP_SCHED
8835 8836
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8837
{
8838
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8839 8840
}

8841 8842
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8843
{
8844
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8845
}
8846

8847 8848
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8849
{
8850
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8851 8852
}

8853 8854
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8855
{
8856
	return sched_group_rt_period(css_tg(css));
8857
}
8858
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8859

8860
static struct cftype cpu_files[] = {
8861
#ifdef CONFIG_FAIR_GROUP_SCHED
8862 8863
	{
		.name = "shares",
8864 8865
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8866
	},
8867
#endif
8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8879 8880
	{
		.name = "stat",
8881
		.seq_show = cpu_stats_show,
8882
	},
8883
#endif
8884
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8885
	{
P
Peter Zijlstra 已提交
8886
		.name = "rt_runtime_us",
8887 8888
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8889
	},
8890 8891
	{
		.name = "rt_period_us",
8892 8893
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8894
	},
8895
#endif
8896
	{ }	/* terminate */
8897 8898
};

8899
struct cgroup_subsys cpu_cgrp_subsys = {
8900
	.css_alloc	= cpu_cgroup_css_alloc,
8901
	.css_released	= cpu_cgroup_css_released,
8902
	.css_free	= cpu_cgroup_css_free,
8903
	.fork		= cpu_cgroup_fork,
8904 8905
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8906
	.legacy_cftypes	= cpu_files,
8907
	.early_init	= true,
8908 8909
};

8910
#endif	/* CONFIG_CGROUP_SCHED */
8911

8912 8913 8914 8915 8916
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};