core.c 180.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3
 *
I
Ingo Molnar 已提交
4
 *  Core kernel scheduler code and related syscalls
L
Linus Torvalds 已提交
5 6 7
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 */
8
#include <linux/sched.h>
9
#include <linux/sched/clock.h>
10
#include <uapi/linux/sched/types.h>
11
#include <linux/sched/loadavg.h>
12
#include <linux/sched/hotplug.h>
L
Linus Torvalds 已提交
13
#include <linux/cpuset.h>
14
#include <linux/delayacct.h>
15
#include <linux/init_task.h>
16
#include <linux/context_tracking.h>
17
#include <linux/rcupdate_wait.h>
18 19 20 21 22 23

#include <linux/blkdev.h>
#include <linux/kprobes.h>
#include <linux/mmu_context.h>
#include <linux/module.h>
#include <linux/nmi.h>
24
#include <linux/prefetch.h>
25 26 27
#include <linux/profile.h>
#include <linux/security.h>
#include <linux/syscalls.h>
L
Linus Torvalds 已提交
28

29
#include <asm/switch_to.h>
30
#include <asm/tlb.h>
31 32 33
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
34

35
#include "sched.h"
36
#include "../workqueue_internal.h"
37
#include "../smpboot.h"
38

39
#define CREATE_TRACE_POINTS
40
#include <trace/events/sched.h>
41

42
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
43

I
Ingo Molnar 已提交
44 45 46
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
47 48 49 50

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
51
const_debug unsigned int sysctl_sched_features =
52
#include "features.h"
P
Peter Zijlstra 已提交
53 54 55 56
	0;

#undef SCHED_FEAT

57 58 59 60 61 62
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

63 64 65 66 67 68 69 70
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
71
/*
I
Ingo Molnar 已提交
72
 * period over which we measure -rt task CPU usage in us.
P
Peter Zijlstra 已提交
73 74
 * default: 1s
 */
P
Peter Zijlstra 已提交
75
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
76

77
__read_mostly int scheduler_running;
78

P
Peter Zijlstra 已提交
79 80 81 82 83
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
84

I
Ingo Molnar 已提交
85
/* CPUs with isolated domains */
86 87
cpumask_var_t cpu_isolated_map;

88 89 90
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
91
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
92 93 94 95 96 97 98 99 100 101
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
102
			rq_pin_lock(rq, rf);
103 104 105 106 107 108 109 110 111 112 113 114
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
115
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
116 117 118 119 120 121
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
122
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
I
Ingo Molnar 已提交
138
		 * If we observe the new CPU in task_rq_lock, the acquire will
139 140 141
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
142
			rq_pin_lock(rq, rf);
143 144 145
			return rq;
		}
		raw_spin_unlock(&rq->lock);
146
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
147 148 149 150 151 152

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/*
 * RQ-clock updating methods:
 */

static void update_rq_clock_task(struct rq *rq, s64 delta)
{
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_key_false((&paravirt_steal_rq_enabled))) {
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

	rq->clock_task += delta;

#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
}

void update_rq_clock(struct rq *rq)
{
	s64 delta;

	lockdep_assert_held(&rq->lock);

	if (rq->clock_update_flags & RQCF_ACT_SKIP)
		return;

#ifdef CONFIG_SCHED_DEBUG
221 222
	if (sched_feat(WARN_DOUBLE_CLOCK))
		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
223 224
	rq->clock_update_flags |= RQCF_UPDATED;
#endif
225

226 227 228 229 230 231 232 233
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	if (delta < 0)
		return;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
}


P
Peter Zijlstra 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
252
	struct rq_flags rf;
P
Peter Zijlstra 已提交
253 254 255

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

256
	rq_lock(rq, &rf);
257
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
258
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
259
	rq_unlock(rq, &rf);
P
Peter Zijlstra 已提交
260 261 262 263

	return HRTIMER_NORESTART;
}

264
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
265

266
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
267 268 269
{
	struct hrtimer *timer = &rq->hrtick_timer;

270
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
271 272
}

273 274 275 276
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
277
{
278
	struct rq *rq = arg;
279
	struct rq_flags rf;
280

281
	rq_lock(rq, &rf);
P
Peter Zijlstra 已提交
282
	__hrtick_restart(rq);
283
	rq->hrtick_csd_pending = 0;
284
	rq_unlock(rq, &rf);
285 286
}

287 288 289 290 291
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
292
void hrtick_start(struct rq *rq, u64 delay)
293
{
294
	struct hrtimer *timer = &rq->hrtick_timer;
295 296 297 298 299 300 301 302 303
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
304

305
	hrtimer_set_expires(timer, time);
306 307

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
308
		__hrtick_restart(rq);
309
	} else if (!rq->hrtick_csd_pending) {
310
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
311 312
		rq->hrtick_csd_pending = 1;
	}
313 314
}

315 316 317 318 319 320
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
321
void hrtick_start(struct rq *rq, u64 delay)
322
{
W
Wanpeng Li 已提交
323 324 325 326 327
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
328 329
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
330 331
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
332

333
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
334
{
335 336
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
337

338 339 340 341
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
342

343 344
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
345
}
A
Andrew Morton 已提交
346
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
347 348 349 350 351 352 353
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
354
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

374
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
375 376 377 378 379 380 381 382 383 384
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
385 386 387 388 389 390 391 392 393 394

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
395
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
396 397 398 399 400 401 402 403 404 405 406 407 408 409

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

410 411 412 413 414 415
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
416 417 418 419 420 421 422

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
423 424
#endif

425 426 427 428 429 430 431 432 433 434
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
435
	 * barrier implied by the wakeup in wake_up_q().
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
I
Ingo Molnar 已提交
458
		/* Task can safely be re-inserted now: */
459 460 461 462 463 464 465 466 467 468 469 470
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
471
/*
472
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
473 474 475 476 477
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
478
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
479
{
480
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
481 482
	int cpu;

483
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
484

485
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
486 487
		return;

488
	cpu = cpu_of(rq);
489

490
	if (cpu == smp_processor_id()) {
491
		set_tsk_need_resched(curr);
492
		set_preempt_need_resched();
I
Ingo Molnar 已提交
493
		return;
494
	}
I
Ingo Molnar 已提交
495

496
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
497
		smp_send_reschedule(cpu);
498 499
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
500 501
}

502
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
503 504 505 506
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

507
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
508
		return;
509
	resched_curr(rq);
510
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
511
}
512

513
#ifdef CONFIG_SMP
514
#ifdef CONFIG_NO_HZ_COMMON
515
/*
I
Ingo Molnar 已提交
516 517
 * In the semi idle case, use the nearest busy CPU for migrating timers
 * from an idle CPU.  This is good for power-savings.
518 519
 *
 * We don't do similar optimization for completely idle system, as
I
Ingo Molnar 已提交
520 521
 * selecting an idle CPU will add more delays to the timers than intended
 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
522
 */
523
int get_nohz_timer_target(void)
524
{
525
	int i, cpu = smp_processor_id();
526 527
	struct sched_domain *sd;

528
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
529 530
		return cpu;

531
	rcu_read_lock();
532
	for_each_domain(cpu, sd) {
533
		for_each_cpu(i, sched_domain_span(sd)) {
534 535 536 537
			if (cpu == i)
				continue;

			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
538 539 540 541
				cpu = i;
				goto unlock;
			}
		}
542
	}
543 544 545

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
546 547
unlock:
	rcu_read_unlock();
548 549
	return cpu;
}
I
Ingo Molnar 已提交
550

551 552 553 554 555 556 557 558 559 560
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
561
static void wake_up_idle_cpu(int cpu)
562 563 564 565 566 567
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

568
	if (set_nr_and_not_polling(rq->idle))
569
		smp_send_reschedule(cpu);
570 571
	else
		trace_sched_wake_idle_without_ipi(cpu);
572 573
}

574
static bool wake_up_full_nohz_cpu(int cpu)
575
{
576 577 578 579 580 581
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
582 583
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
584
	if (tick_nohz_full_cpu(cpu)) {
585 586
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
587
			tick_nohz_full_kick_cpu(cpu);
588 589 590 591 592 593
		return true;
	}

	return false;
}

594 595 596 597 598
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
599 600
void wake_up_nohz_cpu(int cpu)
{
601
	if (!wake_up_full_nohz_cpu(cpu))
602 603 604
		wake_up_idle_cpu(cpu);
}

605
static inline bool got_nohz_idle_kick(void)
606
{
607
	int cpu = smp_processor_id();
608 609 610 611 612 613 614 615 616 617 618 619 620

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
621 622
}

623
#else /* CONFIG_NO_HZ_COMMON */
624

625
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
626
{
627
	return false;
P
Peter Zijlstra 已提交
628 629
}

630
#endif /* CONFIG_NO_HZ_COMMON */
631

632
#ifdef CONFIG_NO_HZ_FULL
633
bool sched_can_stop_tick(struct rq *rq)
634
{
635 636 637 638 639 640
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

641
	/*
642 643
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
644
	 */
645 646 647 648 649
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
650 651
	}

652 653 654 655 656 657 658 659 660 661 662 663 664 665
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
666
		return false;
667

668
	return true;
669 670
}
#endif /* CONFIG_NO_HZ_FULL */
671

672
void sched_avg_update(struct rq *rq)
673
{
674 675
	s64 period = sched_avg_period();

676
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
677 678 679 680 681 682
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
683 684 685
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
686 687
}

688
#endif /* CONFIG_SMP */
689

690 691
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
692
/*
693 694 695 696
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
697
 */
698
int walk_tg_tree_from(struct task_group *from,
699
			     tg_visitor down, tg_visitor up, void *data)
700 701
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
702
	int ret;
703

704 705
	parent = from;

706
down:
P
Peter Zijlstra 已提交
707 708
	ret = (*down)(parent, data);
	if (ret)
709
		goto out;
710 711 712 713 714 715 716
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
717
	ret = (*up)(parent, data);
718 719
	if (ret || parent == from)
		goto out;
720 721 722 723 724

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
725
out:
P
Peter Zijlstra 已提交
726
	return ret;
727 728
}

729
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
730
{
731
	return 0;
P
Peter Zijlstra 已提交
732
}
733 734
#endif

735 736
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
737 738 739
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
740 741 742
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
743
	if (idle_policy(p->policy)) {
744
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
745
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
746 747
		return;
	}
748

749 750
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
751 752
}

753
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
754
{
755 756 757
	if (!(flags & ENQUEUE_NOCLOCK))
		update_rq_clock(rq);

758 759
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
760

761
	p->sched_class->enqueue_task(rq, p, flags);
762 763
}

764
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
765
{
766 767 768
	if (!(flags & DEQUEUE_NOCLOCK))
		update_rq_clock(rq);

769 770
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
771

772
	p->sched_class->dequeue_task(rq, p, flags);
773 774
}

775
void activate_task(struct rq *rq, struct task_struct *p, int flags)
776 777 778 779
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

780
	enqueue_task(rq, p, flags);
781 782
}

783
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784 785 786 787
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

788
	dequeue_task(rq, p, flags);
789 790
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

821
/*
I
Ingo Molnar 已提交
822
 * __normal_prio - return the priority that is based on the static prio
823 824 825
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
826
	return p->static_prio;
827 828
}

829 830 831 832 833 834 835
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
836
static inline int normal_prio(struct task_struct *p)
837 838 839
{
	int prio;

840 841 842
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
843 844 845 846 847 848 849 850 851 852 853 854 855
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
856
static int effective_prio(struct task_struct *p)
857 858 859 860 861 862 863 864 865 866 867 868
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
869 870 871
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
872 873
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
874
 */
875
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
876 877 878 879
{
	return cpu_curr(task_cpu(p)) == p;
}

880
/*
881 882 883 884 885
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
886
 */
887 888
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
889
				       int oldprio)
890 891 892
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
893
			prev_class->switched_from(rq, p);
894

P
Peter Zijlstra 已提交
895
		p->sched_class->switched_to(rq, p);
896
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
897
		p->sched_class->prio_changed(rq, p, oldprio);
898 899
}

900
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901 902 903 904 905 906 907 908 909 910
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
911
				resched_curr(rq);
912 913 914 915 916 917 918 919 920
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
921
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
922
		rq_clock_skip_update(rq, true);
923 924
}

L
Linus Torvalds 已提交
925
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
945 946
static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
				   struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
947 948 949 950
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
951
	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
952
	set_task_cpu(p, new_cpu);
953
	rq_unlock(rq, rf);
P
Peter Zijlstra 已提交
954 955 956

	rq = cpu_rq(new_cpu);

957
	rq_lock(rq, rf);
P
Peter Zijlstra 已提交
958 959
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
960
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
961 962 963 964 965 966 967 968 969 970 971
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
I
Ingo Molnar 已提交
972
 * Move (not current) task off this CPU, onto the destination CPU. We're doing
P
Peter Zijlstra 已提交
973 974 975 976 977 978 979
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
980 981
static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
				 struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
982 983
{
	if (unlikely(!cpu_active(dest_cpu)))
984
		return rq;
P
Peter Zijlstra 已提交
985 986

	/* Affinity changed (again). */
987
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
988
		return rq;
P
Peter Zijlstra 已提交
989

990
	update_rq_clock(rq);
991
	rq = move_queued_task(rq, rf, p, dest_cpu);
992 993

	return rq;
P
Peter Zijlstra 已提交
994 995 996 997 998 999 1000 1001 1002 1003
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1004 1005
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
1006
	struct rq_flags rf;
P
Peter Zijlstra 已提交
1007 1008

	/*
I
Ingo Molnar 已提交
1009 1010
	 * The original target CPU might have gone down and we might
	 * be on another CPU but it doesn't matter.
P
Peter Zijlstra 已提交
1011 1012 1013 1014 1015 1016 1017 1018
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1019 1020

	raw_spin_lock(&p->pi_lock);
1021
	rq_lock(rq, &rf);
1022 1023 1024 1025 1026
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
1027 1028
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
1029
			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1030 1031 1032
		else
			p->wake_cpu = arg->dest_cpu;
	}
1033
	rq_unlock(rq, &rf);
1034 1035
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1036 1037 1038 1039
	local_irq_enable();
	return 0;
}

1040 1041 1042 1043 1044
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1045 1046 1047 1048 1049
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1050 1051
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1052 1053 1054
	struct rq *rq = task_rq(p);
	bool queued, running;

1055
	lockdep_assert_held(&p->pi_lock);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1066
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1067 1068 1069 1070
	}
	if (running)
		put_prev_task(rq, p);

1071
	p->sched_class->set_cpus_allowed(p, new_mask);
1072 1073

	if (queued)
1074
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1075
	if (running)
1076
		set_curr_task(rq, p);
1077 1078
}

P
Peter Zijlstra 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1088 1089
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1090
{
1091
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1092
	unsigned int dest_cpu;
1093 1094
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1095 1096
	int ret = 0;

1097
	rq = task_rq_lock(p, &rf);
1098
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1099

1100 1101 1102 1103 1104 1105 1106
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1107 1108 1109 1110 1111 1112 1113 1114 1115
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1116 1117 1118
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1119
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1120 1121 1122 1123 1124 1125
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1126 1127 1128
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
I
Ingo Molnar 已提交
1129
		 * !active we want to ensure they are strict per-CPU threads.
1130 1131 1132 1133 1134 1135
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1136 1137 1138 1139
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1140
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1141 1142 1143
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1144
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1145 1146 1147
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1148 1149 1150 1151 1152
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1153
		rq = move_queued_task(rq, &rf, p, dest_cpu);
1154
	}
P
Peter Zijlstra 已提交
1155
out:
1156
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1157 1158 1159

	return ret;
}
1160 1161 1162 1163 1164

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1165 1166
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1167
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1168
{
1169 1170 1171 1172 1173
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1174
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1175
			!p->on_rq);
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1186
#ifdef CONFIG_LOCKDEP
1187 1188 1189 1190 1191
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1192
	 * see task_group().
1193 1194 1195 1196
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1197 1198 1199
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1200 1201
#endif

1202
	trace_sched_migrate_task(p, new_cpu);
1203

1204
	if (task_cpu(p) != new_cpu) {
1205
		if (p->sched_class->migrate_task_rq)
1206
			p->sched_class->migrate_task_rq(p);
1207
		p->se.nr_migrations++;
1208
		perf_event_task_migrate(p);
1209
	}
I
Ingo Molnar 已提交
1210 1211

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1212 1213
}

1214 1215
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1216
	if (task_on_rq_queued(p)) {
1217
		struct rq *src_rq, *dst_rq;
1218
		struct rq_flags srf, drf;
1219 1220 1221 1222

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1223 1224 1225
		rq_pin_lock(src_rq, &srf);
		rq_pin_lock(dst_rq, &drf);

1226
		p->on_rq = TASK_ON_RQ_MIGRATING;
1227 1228 1229
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1230
		p->on_rq = TASK_ON_RQ_QUEUED;
1231
		check_preempt_curr(dst_rq, p, 0);
1232 1233 1234 1235

		rq_unpin_lock(dst_rq, &drf);
		rq_unpin_lock(src_rq, &srf);

1236 1237 1238 1239
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
I
Ingo Molnar 已提交
1240
		 * previous CPU our target instead of where it really is.
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1257 1258 1259
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1260 1261 1262
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1263 1264
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1265
	double_rq_lock(src_rq, dst_rq);
1266

1267 1268 1269 1270 1271 1272
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

1273
	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1274 1275
		goto unlock;

1276
	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1277 1278 1279 1280 1281 1282 1283 1284 1285
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1286 1287
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1310 1311 1312 1313
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1314 1315 1316
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

1317
	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1318 1319
		goto out;

1320
	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1321 1322
		goto out;

1323
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1324 1325 1326 1327 1328 1329
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1330 1331 1332
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1333 1334 1335 1336 1337 1338 1339
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1340 1341 1342 1343 1344 1345
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1346
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1347
{
1348
	int running, queued;
1349
	struct rq_flags rf;
R
Roland McGrath 已提交
1350
	unsigned long ncsw;
1351
	struct rq *rq;
L
Linus Torvalds 已提交
1352

1353 1354 1355 1356 1357 1358 1359 1360
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1373 1374 1375
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1376
			cpu_relax();
R
Roland McGrath 已提交
1377
		}
1378

1379 1380 1381 1382 1383
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1384
		rq = task_rq_lock(p, &rf);
1385
		trace_sched_wait_task(p);
1386
		running = task_running(rq, p);
1387
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1388
		ncsw = 0;
1389
		if (!match_state || p->state == match_state)
1390
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1391
		task_rq_unlock(rq, p, &rf);
1392

R
Roland McGrath 已提交
1393 1394 1395 1396 1397 1398
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1409

1410 1411 1412 1413 1414
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1415
		 * So if it was still runnable (but just not actively
1416 1417 1418
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1419
		if (unlikely(queued)) {
T
Thomas Gleixner 已提交
1420
			ktime_t to = NSEC_PER_SEC / HZ;
1421 1422 1423

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1424 1425
			continue;
		}
1426

1427 1428 1429 1430 1431 1432 1433
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1434 1435

	return ncsw;
L
Linus Torvalds 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1445
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1446 1447 1448 1449 1450
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1451
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1461
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1462

1463
/*
1464
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1465 1466 1467 1468 1469 1470 1471
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
I
Ingo Molnar 已提交
1472
 *    CPU isn't yet part of the sched domains, and balancing will not
1473 1474
 *    see it.
 *
I
Ingo Molnar 已提交
1475
 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1476
 *    avoid the load balancer to place new tasks on the to be removed
I
Ingo Molnar 已提交
1477
 *    CPU. Existing tasks will remain running there and will be taken
1478 1479 1480 1481 1482 1483
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1484
 */
1485 1486
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1487 1488
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1489 1490
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1491

1492
	/*
I
Ingo Molnar 已提交
1493 1494 1495
	 * If the node that the CPU is on has been offlined, cpu_to_node()
	 * will return -1. There is no CPU on the node, and we should
	 * select the CPU on the other node.
1496 1497 1498 1499 1500 1501 1502 1503
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
1504
			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1505 1506
				return dest_cpu;
		}
1507
	}
1508

1509 1510
	for (;;) {
		/* Any allowed, online CPU? */
1511
		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1512 1513 1514
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1515 1516 1517
				continue;
			goto out;
		}
1518

1519
		/* No more Mr. Nice Guy. */
1520 1521
		switch (state) {
		case cpuset:
1522 1523 1524 1525 1526
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
I
Ingo Molnar 已提交
1527
			/* Fall-through */
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1547
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1548 1549
					task_pid_nr(p), p->comm, cpu);
		}
1550 1551 1552 1553 1554
	}

	return dest_cpu;
}

1555
/*
1556
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1557
 */
1558
static inline
1559
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1560
{
1561 1562
	lockdep_assert_held(&p->pi_lock);

1563
	if (p->nr_cpus_allowed > 1)
1564
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1565
	else
1566
		cpu = cpumask_any(&p->cpus_allowed);
1567 1568 1569 1570

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
I
Ingo Molnar 已提交
1571
	 * CPU.
1572 1573 1574 1575 1576 1577
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1578
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
1579
		     !cpu_online(cpu)))
1580
		cpu = select_fallback_rq(task_cpu(p), p);
1581 1582

	return cpu;
1583
}
1584 1585 1586 1587 1588 1589

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1590 1591 1592 1593 1594 1595 1596 1597 1598

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1599
#endif /* CONFIG_SMP */
1600

P
Peter Zijlstra 已提交
1601
static void
1602
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1603
{
1604
	struct rq *rq;
1605

1606 1607 1608 1609
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1610

1611 1612
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1613 1614
		schedstat_inc(rq->ttwu_local);
		schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1615 1616 1617
	} else {
		struct sched_domain *sd;

1618
		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1619
		rcu_read_lock();
1620
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1621
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1622
				schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1623 1624 1625
				break;
			}
		}
1626
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1627
	}
1628 1629

	if (wake_flags & WF_MIGRATED)
1630
		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1631 1632
#endif /* CONFIG_SMP */

1633 1634
	schedstat_inc(rq->ttwu_count);
	schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1635 1636

	if (wake_flags & WF_SYNC)
1637
		schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1638 1639
}

1640
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1641
{
T
Tejun Heo 已提交
1642
	activate_task(rq, p, en_flags);
1643
	p->on_rq = TASK_ON_RQ_QUEUED;
1644

I
Ingo Molnar 已提交
1645
	/* If a worker is waking up, notify the workqueue: */
1646 1647
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1648 1649
}

1650 1651 1652
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1653
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1654
			   struct rq_flags *rf)
T
Tejun Heo 已提交
1655 1656 1657
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1658 1659
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1660
#ifdef CONFIG_SMP
1661 1662
	if (p->sched_class->task_woken) {
		/*
1663 1664
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1665
		 */
1666
		rq_unpin_lock(rq, rf);
T
Tejun Heo 已提交
1667
		p->sched_class->task_woken(rq, p);
1668
		rq_repin_lock(rq, rf);
1669
	}
T
Tejun Heo 已提交
1670

1671
	if (rq->idle_stamp) {
1672
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1673
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1674

1675 1676 1677
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1678
			rq->avg_idle = max;
1679

T
Tejun Heo 已提交
1680 1681 1682 1683 1684
		rq->idle_stamp = 0;
	}
#endif
}

1685
static void
1686
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1687
		 struct rq_flags *rf)
1688
{
1689
	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1690

1691 1692
	lockdep_assert_held(&rq->lock);

1693 1694 1695
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1696 1697

	if (wake_flags & WF_MIGRATED)
1698
		en_flags |= ENQUEUE_MIGRATED;
1699 1700
#endif

1701
	ttwu_activate(rq, p, en_flags);
1702
	ttwu_do_wakeup(rq, p, wake_flags, rf);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1713
	struct rq_flags rf;
1714 1715 1716
	struct rq *rq;
	int ret = 0;

1717
	rq = __task_rq_lock(p, &rf);
1718
	if (task_on_rq_queued(p)) {
1719 1720
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1721
		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1722 1723
		ret = 1;
	}
1724
	__task_rq_unlock(rq, &rf);
1725 1726 1727 1728

	return ret;
}

1729
#ifdef CONFIG_SMP
1730
void sched_ttwu_pending(void)
1731 1732
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1733
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1734
	struct task_struct *p, *t;
1735
	struct rq_flags rf;
1736

1737 1738 1739
	if (!llist)
		return;

1740
	rq_lock_irqsave(rq, &rf);
1741
	update_rq_clock(rq);
1742

1743 1744
	llist_for_each_entry_safe(p, t, llist, wake_entry)
		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1745

1746
	rq_unlock_irqrestore(rq, &rf);
1747 1748 1749 1750
}

void scheduler_ipi(void)
{
1751 1752 1753 1754 1755
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1756
	preempt_fold_need_resched();
1757

1758
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1775
	sched_ttwu_pending();
1776 1777 1778 1779

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1780
	if (unlikely(got_nohz_idle_kick())) {
1781
		this_rq()->idle_balance = 1;
1782
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1783
	}
1784
	irq_exit();
1785 1786
}

P
Peter Zijlstra 已提交
1787
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1788
{
1789 1790
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1791 1792
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1793 1794 1795 1796 1797 1798
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1799
}
1800

1801 1802 1803
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1804
	struct rq_flags rf;
1805

1806 1807 1808 1809
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1810 1811 1812 1813

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
1814
		rq_lock_irqsave(rq, &rf);
1815 1816
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
I
Ingo Molnar 已提交
1817
		/* Else CPU is not idle, do nothing here: */
1818
		rq_unlock_irqrestore(rq, &rf);
1819
	}
1820 1821 1822

out:
	rcu_read_unlock();
1823 1824
}

1825
bool cpus_share_cache(int this_cpu, int that_cpu)
1826 1827 1828
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1829
#endif /* CONFIG_SMP */
1830

1831
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1832 1833
{
	struct rq *rq = cpu_rq(cpu);
1834
	struct rq_flags rf;
1835

1836
#if defined(CONFIG_SMP)
1837
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
I
Ingo Molnar 已提交
1838
		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
P
Peter Zijlstra 已提交
1839
		ttwu_queue_remote(p, cpu, wake_flags);
1840 1841 1842 1843
		return;
	}
#endif

1844
	rq_lock(rq, &rf);
1845
	update_rq_clock(rq);
1846
	ttwu_do_activate(rq, p, wake_flags, &rf);
1847
	rq_unlock(rq, &rf);
T
Tejun Heo 已提交
1848 1849
}

1850 1851 1852 1853 1854 1855
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
I
Ingo Molnar 已提交
1856 1857
 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 * execution on its new CPU [c1].
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
I
Ingo Molnar 已提交
1868
 * Note: the CPU doing B need not be c0 or c1
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1900
 *   2) smp_cond_load_acquire(!X->on_cpu)
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1911
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1937
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1938 1939 1940
 *
 */

T
Tejun Heo 已提交
1941
/**
L
Linus Torvalds 已提交
1942
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1943
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1944
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1945
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1946
 *
1947
 * If (@state & @p->state) @p->state = TASK_RUNNING.
L
Linus Torvalds 已提交
1948
 *
1949 1950 1951 1952 1953 1954 1955
 * If the task was not queued/runnable, also place it back on a runqueue.
 *
 * Atomic against schedule() which would dequeue a task, also see
 * set_current_state().
 *
 * Return: %true if @p->state changes (an actual wakeup was done),
 *	   %false otherwise.
L
Linus Torvalds 已提交
1956
 */
1957 1958
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1959 1960
{
	unsigned long flags;
1961
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1962

1963 1964 1965 1966 1967 1968 1969
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1970
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1971
	if (!(p->state & state))
L
Linus Torvalds 已提交
1972 1973
		goto out;

1974 1975
	trace_sched_waking(p);

I
Ingo Molnar 已提交
1976 1977
	/* We're going to change ->state: */
	success = 1;
L
Linus Torvalds 已提交
1978 1979
	cpu = task_cpu(p);

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
	 * sched_ttwu_pending()                 try_to_wake_up()
	 *   [S] p->on_rq = 1;                  [L] P->state
	 *       UNLOCK rq->lock  -----.
	 *                              \
	 *				 +---   RMB
	 * schedule()                   /
	 *       LOCK rq->lock    -----'
	 *       UNLOCK rq->lock
	 *
	 * [task p]
	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
	 *
	 * Pairs with the UNLOCK+LOCK on rq->lock from the
	 * last wakeup of our task and the schedule that got our task
	 * current.
	 */
	smp_rmb();
2002 2003
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2004 2005

#ifdef CONFIG_SMP
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2025
	/*
I
Ingo Molnar 已提交
2026
	 * If the owning (remote) CPU is still in the middle of schedule() with
2027
	 * this task as prev, wait until its done referencing the task.
2028 2029 2030 2031 2032
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2033
	 */
2034
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2035

2036
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2037
	p->state = TASK_WAKING;
2038

2039 2040 2041 2042 2043
	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

2044
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2045 2046
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2047
		set_task_cpu(p, cpu);
2048
	}
2049 2050 2051 2052 2053 2054 2055 2056

#else /* CONFIG_SMP */

	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

L
Linus Torvalds 已提交
2057 2058
#endif /* CONFIG_SMP */

2059
	ttwu_queue(p, cpu, wake_flags);
2060
stat:
2061
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2062
out:
2063
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2064 2065 2066 2067

	return success;
}

T
Tejun Heo 已提交
2068 2069 2070
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2071
 * @cookie: context's cookie for pinning
T
Tejun Heo 已提交
2072
 *
2073
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2074
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2075
 * the current task.
T
Tejun Heo 已提交
2076
 */
2077
static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
T
Tejun Heo 已提交
2078 2079 2080
{
	struct rq *rq = task_rq(p);

2081 2082 2083 2084
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2085 2086
	lockdep_assert_held(&rq->lock);

2087
	if (!raw_spin_trylock(&p->pi_lock)) {
2088 2089 2090 2091 2092 2093
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2094
		rq_unlock(rq, rf);
2095
		raw_spin_lock(&p->pi_lock);
2096
		rq_relock(rq, rf);
2097 2098
	}

T
Tejun Heo 已提交
2099
	if (!(p->state & TASK_NORMAL))
2100
		goto out;
T
Tejun Heo 已提交
2101

2102 2103
	trace_sched_waking(p);

2104 2105 2106 2107 2108
	if (!task_on_rq_queued(p)) {
		if (p->in_iowait) {
			delayacct_blkio_end();
			atomic_dec(&rq->nr_iowait);
		}
2109
		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2110
	}
P
Peter Zijlstra 已提交
2111

2112
	ttwu_do_wakeup(rq, p, 0, rf);
2113
	ttwu_stat(p, smp_processor_id(), 0);
2114 2115
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2116 2117
}

2118 2119 2120 2121 2122
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2123 2124 2125
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2126 2127 2128 2129
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2130
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2131
{
2132
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2133 2134 2135
}
EXPORT_SYMBOL(wake_up_process);

2136
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2137 2138 2139 2140
{
	return try_to_wake_up(p, state, 0);
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2153 2154 2155

	dl_se->dl_throttled = 0;
	dl_se->dl_yielded = 0;
2156 2157
}

L
Linus Torvalds 已提交
2158 2159 2160
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2161 2162 2163
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2164
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2165
{
P
Peter Zijlstra 已提交
2166 2167 2168
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2169 2170
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2171
	p->se.prev_sum_exec_runtime	= 0;
2172
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2173
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2174
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2175

2176 2177 2178 2179
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2180
#ifdef CONFIG_SCHEDSTATS
2181
	/* Even if schedstat is disabled, there should not be garbage */
2182
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2183
#endif
N
Nick Piggin 已提交
2184

2185
	RB_CLEAR_NODE(&p->dl.rb_node);
2186
	init_dl_task_timer(&p->dl);
2187
	__dl_clear_params(p);
2188

P
Peter Zijlstra 已提交
2189
	INIT_LIST_HEAD(&p->rt.run_list);
2190 2191 2192 2193
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2194

2195 2196 2197
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2198 2199 2200

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2201
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2202 2203 2204
		p->mm->numa_scan_seq = 0;
	}

2205 2206 2207 2208 2209
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2210 2211
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2212
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2213
	p->numa_work.next = &p->numa_work;
2214
	p->numa_faults = NULL;
2215 2216
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2217 2218

	p->numa_group = NULL;
2219
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2220 2221
}

2222 2223
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2224
#ifdef CONFIG_NUMA_BALANCING
2225

2226 2227 2228
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2229
		static_branch_enable(&sched_numa_balancing);
2230
	else
2231
		static_branch_disable(&sched_numa_balancing);
2232
}
2233 2234 2235 2236 2237 2238 2239

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2240
	int state = static_branch_likely(&sched_numa_balancing);
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2256

2257 2258
#ifdef CONFIG_SCHEDSTATS

2259
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2260
static bool __initdata __sched_schedstats = false;
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2284 2285 2286 2287 2288
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2289
	if (!strcmp(str, "enable")) {
2290
		__sched_schedstats = true;
2291 2292
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2293
		__sched_schedstats = false;
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2304 2305 2306 2307 2308
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2329 2330 2331 2332
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2333 2334 2335 2336

/*
 * fork()/clone()-time setup:
 */
2337
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2338
{
2339
	unsigned long flags;
I
Ingo Molnar 已提交
2340 2341
	int cpu = get_cpu();

2342
	__sched_fork(clone_flags, p);
2343
	/*
2344
	 * We mark the process as NEW here. This guarantees that
2345 2346 2347
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2348
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2349

2350 2351 2352 2353 2354
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2355 2356 2357 2358
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2359
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2360
			p->policy = SCHED_NORMAL;
2361
			p->static_prio = NICE_TO_PRIO(0);
2362 2363 2364 2365 2366 2367
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2368

2369 2370 2371 2372 2373 2374
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2375

2376 2377 2378 2379 2380 2381
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2382
		p->sched_class = &fair_sched_class;
2383
	}
2384

2385
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2386

2387 2388 2389 2390 2391 2392 2393
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2394
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2395
	/*
I
Ingo Molnar 已提交
2396
	 * We're setting the CPU for the first time, we don't migrate,
2397 2398 2399 2400 2401
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2402
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2403

2404
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2405
	if (likely(sched_info_on()))
2406
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2407
#endif
P
Peter Zijlstra 已提交
2408 2409
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2410
#endif
2411
	init_task_preempt_count(p);
2412
#ifdef CONFIG_SMP
2413
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2414
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2415
#endif
2416

N
Nick Piggin 已提交
2417
	put_cpu();
2418
	return 0;
L
Linus Torvalds 已提交
2419 2420
}

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2440 2441
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2442 2443 2444
	return &cpu_rq(i)->rd->dl_bw;
}

2445
static inline int dl_bw_cpus(int i)
2446
{
2447 2448 2449
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2450 2451
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2452 2453 2454 2455
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2456 2457 2458 2459 2460 2461 2462
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2463
static inline int dl_bw_cpus(int i)
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2476 2477 2478
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2479 2480 2481 2482 2483 2484
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2485
	u64 period = attr->sched_period ?: attr->sched_deadline;
2486 2487
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2488
	int cpus, err = -1;
2489

2490 2491
	/* !deadline task may carry old deadline bandwidth */
	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2492 2493 2494 2495 2496 2497 2498 2499
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2500
	cpus = dl_bw_cpus(task_cpu(p));
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2521 2522 2523 2524 2525 2526 2527
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2528
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2529
{
2530
	struct rq_flags rf;
I
Ingo Molnar 已提交
2531
	struct rq *rq;
2532

2533
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2534
	p->state = TASK_RUNNING;
2535 2536 2537 2538
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
I
Ingo Molnar 已提交
2539
	 *  - any previously selected CPU might disappear through hotplug
2540 2541 2542
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2543
	 */
2544
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2545
#endif
2546
	rq = __task_rq_lock(p, &rf);
2547
	update_rq_clock(rq);
2548
	post_init_entity_util_avg(&p->se);
2549

2550
	activate_task(rq, p, ENQUEUE_NOCLOCK);
2551
	p->on_rq = TASK_ON_RQ_QUEUED;
2552
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2553
	check_preempt_curr(rq, p, WF_FORK);
2554
#ifdef CONFIG_SMP
2555 2556 2557 2558 2559
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2560
		rq_unpin_lock(rq, &rf);
2561
		p->sched_class->task_woken(rq, p);
2562
		rq_repin_lock(rq, &rf);
2563
	}
2564
#endif
2565
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2566 2567
}

2568 2569
#ifdef CONFIG_PREEMPT_NOTIFIERS

2570 2571
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2584
/**
2585
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2586
 * @notifier: notifier struct to register
2587 2588 2589
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2590 2591 2592
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2593 2594 2595 2596 2597 2598
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2599
 * @notifier: notifier struct to unregister
2600
 *
2601
 * This is *not* safe to call from within a preemption notifier.
2602 2603 2604 2605 2606 2607 2608
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2609
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2610 2611 2612
{
	struct preempt_notifier *notifier;

2613
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2614 2615 2616
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2617 2618 2619 2620 2621 2622
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2623
static void
2624 2625
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2626 2627 2628
{
	struct preempt_notifier *notifier;

2629
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2630 2631 2632
		notifier->ops->sched_out(notifier, next);
}

2633 2634 2635 2636 2637 2638 2639 2640
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2641
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2642

2643
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2644 2645 2646
{
}

2647
static inline void
2648 2649 2650 2651 2652
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2653
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2654

2655 2656 2657
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2658
 * @prev: the current task that is being switched out
2659 2660 2661 2662 2663 2664 2665 2666 2667
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2668 2669 2670
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2671
{
2672
	sched_info_switch(rq, prev, next);
2673
	perf_event_task_sched_out(prev, next);
2674
	fire_sched_out_preempt_notifiers(prev, next);
2675 2676 2677 2678
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2679 2680 2681 2682
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2683 2684 2685 2686
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2687 2688
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2689
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2690 2691
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2692 2693 2694 2695 2696
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2697
 */
2698
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2699 2700
	__releases(rq->lock)
{
2701
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2702
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2703
	long prev_state;
L
Linus Torvalds 已提交
2704

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2716 2717 2718 2719
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2720

L
Linus Torvalds 已提交
2721 2722 2723 2724
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2725
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2726 2727
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2728 2729 2730 2731 2732
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2733
	 */
O
Oleg Nesterov 已提交
2734
	prev_state = prev->state;
2735
	vtime_task_switch(prev);
2736
	perf_event_task_sched_in(prev, current);
2737
	finish_lock_switch(rq, prev);
2738
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2739

2740
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2741 2742
	if (mm)
		mmdrop(mm);
2743
	if (unlikely(prev_state == TASK_DEAD)) {
2744 2745 2746
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2747 2748 2749
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2750
		 */
2751
		kprobe_flush_task(prev);
2752 2753 2754 2755

		/* Task is done with its stack. */
		put_task_stack(prev);

L
Linus Torvalds 已提交
2756
		put_task_struct(prev);
2757
	}
2758

2759
	tick_nohz_task_switch();
2760
	return rq;
L
Linus Torvalds 已提交
2761 2762
}

2763 2764 2765
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2766
static void __balance_callback(struct rq *rq)
2767
{
2768 2769 2770
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2771

2772 2773 2774 2775 2776 2777 2778 2779
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2780

2781
		func(rq);
2782
	}
2783 2784 2785 2786 2787 2788 2789
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2790 2791 2792
}

#else
2793

2794
static inline void balance_callback(struct rq *rq)
2795
{
L
Linus Torvalds 已提交
2796 2797
}

2798 2799
#endif

L
Linus Torvalds 已提交
2800 2801 2802 2803
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2804
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2805 2806
	__releases(rq->lock)
{
2807
	struct rq *rq;
2808

2809 2810 2811 2812 2813 2814 2815 2816 2817
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2818
	rq = finish_task_switch(prev);
2819
	balance_callback(rq);
2820
	preempt_enable();
2821

L
Linus Torvalds 已提交
2822
	if (current->set_child_tid)
2823
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2824 2825 2826
}

/*
2827
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2828
 */
2829
static __always_inline struct rq *
2830
context_switch(struct rq *rq, struct task_struct *prev,
2831
	       struct task_struct *next, struct rq_flags *rf)
L
Linus Torvalds 已提交
2832
{
I
Ingo Molnar 已提交
2833
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2834

2835
	prepare_task_switch(rq, prev, next);
2836

I
Ingo Molnar 已提交
2837 2838
	mm = next->mm;
	oldmm = prev->active_mm;
2839 2840 2841 2842 2843
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2844
	arch_start_context_switch(prev);
2845

2846
	if (!mm) {
L
Linus Torvalds 已提交
2847
		next->active_mm = oldmm;
V
Vegard Nossum 已提交
2848
		mmgrab(oldmm);
L
Linus Torvalds 已提交
2849 2850
		enter_lazy_tlb(oldmm, next);
	} else
2851
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2852

2853
	if (!prev->mm) {
L
Linus Torvalds 已提交
2854 2855 2856
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2857

2858
	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2859

2860 2861 2862 2863 2864 2865
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2866
	rq_unpin_lock(rq, rf);
2867
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2868 2869 2870

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2871
	barrier();
2872 2873

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2874 2875 2876
}

/*
2877
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2878 2879
 *
 * externally visible scheduler statistics: current number of runnable
2880
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885 2886 2887 2888 2889
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2890
}
L
Linus Torvalds 已提交
2891

2892
/*
I
Ingo Molnar 已提交
2893
 * Check if only the current task is running on the CPU.
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2904 2905 2906
 */
bool single_task_running(void)
{
2907
	return raw_rq()->nr_running == 1;
2908 2909 2910
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2911
unsigned long long nr_context_switches(void)
2912
{
2913 2914
	int i;
	unsigned long long sum = 0;
2915

2916
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2917
		sum += cpu_rq(i)->nr_switches;
2918

L
Linus Torvalds 已提交
2919 2920
	return sum;
}
2921

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
/*
 * IO-wait accounting, and how its mostly bollocks (on SMP).
 *
 * The idea behind IO-wait account is to account the idle time that we could
 * have spend running if it were not for IO. That is, if we were to improve the
 * storage performance, we'd have a proportional reduction in IO-wait time.
 *
 * This all works nicely on UP, where, when a task blocks on IO, we account
 * idle time as IO-wait, because if the storage were faster, it could've been
 * running and we'd not be idle.
 *
 * This has been extended to SMP, by doing the same for each CPU. This however
 * is broken.
 *
 * Imagine for instance the case where two tasks block on one CPU, only the one
 * CPU will have IO-wait accounted, while the other has regular idle. Even
 * though, if the storage were faster, both could've ran at the same time,
 * utilising both CPUs.
 *
 * This means, that when looking globally, the current IO-wait accounting on
 * SMP is a lower bound, by reason of under accounting.
 *
 * Worse, since the numbers are provided per CPU, they are sometimes
 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 * associated with any one particular CPU, it can wake to another CPU than it
 * blocked on. This means the per CPU IO-wait number is meaningless.
 *
 * Task CPU affinities can make all that even more 'interesting'.
 */

L
Linus Torvalds 已提交
2952 2953 2954
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2955

2956
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2957
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2958

L
Linus Torvalds 已提交
2959 2960
	return sum;
}
2961

2962 2963 2964 2965 2966 2967 2968
/*
 * Consumers of these two interfaces, like for example the cpufreq menu
 * governor are using nonsensical data. Boosting frequency for a CPU that has
 * IO-wait which might not even end up running the task when it does become
 * runnable.
 */

2969
unsigned long nr_iowait_cpu(int cpu)
2970
{
2971
	struct rq *this = cpu_rq(cpu);
2972 2973
	return atomic_read(&this->nr_iowait);
}
2974

2975 2976
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2977 2978 2979
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2980 2981
}

I
Ingo Molnar 已提交
2982
#ifdef CONFIG_SMP
2983

2984
/*
P
Peter Zijlstra 已提交
2985 2986
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2987
 */
P
Peter Zijlstra 已提交
2988
void sched_exec(void)
2989
{
P
Peter Zijlstra 已提交
2990
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2991
	unsigned long flags;
2992
	int dest_cpu;
2993

2994
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2995
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2996 2997
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2998

2999
	if (likely(cpu_active(dest_cpu))) {
3000
		struct migration_arg arg = { p, dest_cpu };
3001

3002 3003
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3004 3005
		return;
	}
3006
unlock:
3007
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3008
}
I
Ingo Molnar 已提交
3009

L
Linus Torvalds 已提交
3010 3011 3012
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
3013
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
3014 3015

EXPORT_PER_CPU_SYMBOL(kstat);
3016
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
3017

3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

3035 3036 3037 3038 3039 3040 3041
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
3042
	struct rq_flags rf;
3043
	struct rq *rq;
3044
	u64 ns;
3045

3046 3047 3048 3049 3050 3051
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
I
Ingo Molnar 已提交
3052 3053
	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
	 * If we race with it entering CPU, unaccounted time is 0. This is
3054
	 * indistinguishable from the read occurring a few cycles earlier.
3055 3056
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
3057
	 */
3058
	if (!p->on_cpu || !task_on_rq_queued(p))
3059 3060 3061
		return p->se.sum_exec_runtime;
#endif

3062
	rq = task_rq_lock(p, &rf);
3063 3064 3065 3066 3067 3068
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
3069
		prefetch_curr_exec_start(p);
3070 3071 3072 3073
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3074
	task_rq_unlock(rq, p, &rf);
3075 3076 3077

	return ns;
}
3078

3079 3080 3081 3082 3083 3084 3085 3086
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3087
	struct task_struct *curr = rq->curr;
3088
	struct rq_flags rf;
3089 3090

	sched_clock_tick();
I
Ingo Molnar 已提交
3091

3092 3093
	rq_lock(rq, &rf);

3094
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3095
	curr->sched_class->task_tick(rq, curr, 0);
3096
	cpu_load_update_active(rq);
3097
	calc_global_load_tick(rq);
3098 3099

	rq_unlock(rq, &rf);
3100

3101
	perf_event_task_tick();
3102

3103
#ifdef CONFIG_SMP
3104
	rq->idle_balance = idle_cpu(cpu);
3105
	trigger_load_balance(rq);
3106
#endif
3107
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3108 3109
}

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3121 3122
 *
 * Return: Maximum deferment in nanoseconds.
3123 3124 3125 3126
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3127
	unsigned long next, now = READ_ONCE(jiffies);
3128 3129 3130 3131 3132 3133

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3134
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3135
}
3136
#endif
L
Linus Torvalds 已提交
3137

3138 3139
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3154

3155
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3156
{
3157
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3158 3159 3160
	/*
	 * Underflow?
	 */
3161 3162
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3163
#endif
3164
	__preempt_count_add(val);
3165
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3166 3167 3168
	/*
	 * Spinlock count overflowing soon?
	 */
3169 3170
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3171
#endif
3172
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3173
}
3174
EXPORT_SYMBOL(preempt_count_add);
3175
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3176

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3187
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3188
{
3189
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3190 3191 3192
	/*
	 * Underflow?
	 */
3193
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3194
		return;
L
Linus Torvalds 已提交
3195 3196 3197
	/*
	 * Is the spinlock portion underflowing?
	 */
3198 3199 3200
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3201
#endif
3202

3203
	preempt_latency_stop(val);
3204
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3205
}
3206
EXPORT_SYMBOL(preempt_count_sub);
3207
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3208

3209 3210 3211
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3212 3213
#endif

3214 3215 3216 3217 3218 3219 3220 3221 3222
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
	return p->preempt_disable_ip;
#else
	return 0;
#endif
}

L
Linus Torvalds 已提交
3223
/*
I
Ingo Molnar 已提交
3224
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3225
 */
I
Ingo Molnar 已提交
3226
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3227
{
3228 3229 3230
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3231 3232 3233
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3234 3235
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3236

I
Ingo Molnar 已提交
3237
	debug_show_held_locks(prev);
3238
	print_modules();
I
Ingo Molnar 已提交
3239 3240
	if (irqs_disabled())
		print_irqtrace_events(prev);
3241 3242
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3243
		pr_err("Preemption disabled at:");
3244
		print_ip_sym(preempt_disable_ip);
3245 3246
		pr_cont("\n");
	}
3247 3248 3249
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3250
	dump_stack();
3251
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3252
}
L
Linus Torvalds 已提交
3253

I
Ingo Molnar 已提交
3254 3255 3256 3257 3258
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3259
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3260 3261
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3262
#endif
3263

3264
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3265
		__schedule_bug(prev);
3266 3267
		preempt_count_set(PREEMPT_DISABLED);
	}
3268
	rcu_sleep_check();
I
Ingo Molnar 已提交
3269

L
Linus Torvalds 已提交
3270 3271
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3272
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3273 3274 3275 3276 3277 3278
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3279
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
I
Ingo Molnar 已提交
3280
{
3281
	const struct sched_class *class;
I
Ingo Molnar 已提交
3282
	struct task_struct *p;
L
Linus Torvalds 已提交
3283 3284

	/*
3285 3286 3287 3288
	 * Optimization: we know that if all tasks are in the fair class we can
	 * call that function directly, but only if the @prev task wasn't of a
	 * higher scheduling class, because otherwise those loose the
	 * opportunity to pull in more work from other CPUs.
L
Linus Torvalds 已提交
3289
	 */
3290 3291 3292 3293
	if (likely((prev->sched_class == &idle_sched_class ||
		    prev->sched_class == &fair_sched_class) &&
		   rq->nr_running == rq->cfs.h_nr_running)) {

3294
		p = fair_sched_class.pick_next_task(rq, prev, rf);
3295 3296 3297
		if (unlikely(p == RETRY_TASK))
			goto again;

I
Ingo Molnar 已提交
3298
		/* Assumes fair_sched_class->next == idle_sched_class */
3299
		if (unlikely(!p))
3300
			p = idle_sched_class.pick_next_task(rq, prev, rf);
3301 3302

		return p;
L
Linus Torvalds 已提交
3303 3304
	}

3305
again:
3306
	for_each_class(class) {
3307
		p = class->pick_next_task(rq, prev, rf);
3308 3309 3310
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3311
			return p;
3312
		}
I
Ingo Molnar 已提交
3313
	}
3314

I
Ingo Molnar 已提交
3315 3316
	/* The idle class should always have a runnable task: */
	BUG();
I
Ingo Molnar 已提交
3317
}
L
Linus Torvalds 已提交
3318

I
Ingo Molnar 已提交
3319
/*
3320
 * __schedule() is the main scheduler function.
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3355
 *
3356
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3357
 */
3358
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3359 3360
{
	struct task_struct *prev, *next;
3361
	unsigned long *switch_count;
3362
	struct rq_flags rf;
I
Ingo Molnar 已提交
3363
	struct rq *rq;
3364
	int cpu;
I
Ingo Molnar 已提交
3365 3366 3367 3368 3369 3370

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3371

3372
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3373
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3374

3375
	local_irq_disable();
3376
	rcu_note_context_switch(preempt);
3377

3378 3379 3380 3381 3382 3383
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3384
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
3385

I
Ingo Molnar 已提交
3386 3387
	/* Promote REQ to ACT */
	rq->clock_update_flags <<= 1;
3388
	update_rq_clock(rq);
3389

3390
	switch_count = &prev->nivcsw;
3391
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3392
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3393
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3394
		} else {
3395
			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3396 3397
			prev->on_rq = 0;

3398 3399 3400 3401 3402
			if (prev->in_iowait) {
				atomic_inc(&rq->nr_iowait);
				delayacct_blkio_start();
			}

T
Tejun Heo 已提交
3403
			/*
3404 3405 3406
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3407 3408 3409 3410
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3411
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3412
				if (to_wakeup)
3413
					try_to_wake_up_local(to_wakeup, &rf);
T
Tejun Heo 已提交
3414 3415
			}
		}
I
Ingo Molnar 已提交
3416
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3417 3418
	}

3419
	next = pick_next_task(rq, prev, &rf);
3420
	clear_tsk_need_resched(prev);
3421
	clear_preempt_need_resched();
L
Linus Torvalds 已提交
3422 3423 3424 3425 3426 3427

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3428
		trace_sched_switch(preempt, prev, next);
I
Ingo Molnar 已提交
3429 3430 3431

		/* Also unlocks the rq: */
		rq = context_switch(rq, prev, next, &rf);
3432
	} else {
3433
		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3434
		rq_unlock_irq(rq, &rf);
3435
	}
L
Linus Torvalds 已提交
3436

3437
	balance_callback(rq);
L
Linus Torvalds 已提交
3438
}
3439

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
void __noreturn do_task_dead(void)
{
	/*
	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
	 * when the following two conditions become true.
	 *   - There is race condition of mmap_sem (It is acquired by
	 *     exit_mm()), and
	 *   - SMI occurs before setting TASK_RUNINNG.
	 *     (or hypervisor of virtual machine switches to other guest)
	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
	 *
	 * To avoid it, we have to wait for releasing tsk->pi_lock which
	 * is held by try_to_wake_up()
	 */
	smp_mb();
	raw_spin_unlock_wait(&current->pi_lock);

I
Ingo Molnar 已提交
3457
	/* Causes final put_task_struct in finish_task_switch(): */
3458
	__set_current_state(TASK_DEAD);
I
Ingo Molnar 已提交
3459 3460 3461 3462

	/* Tell freezer to ignore us: */
	current->flags |= PF_NOFREEZE;

3463 3464
	__schedule(false);
	BUG();
I
Ingo Molnar 已提交
3465 3466

	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3467
	for (;;)
I
Ingo Molnar 已提交
3468
		cpu_relax();
3469 3470
}

3471 3472
static inline void sched_submit_work(struct task_struct *tsk)
{
3473
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3474 3475 3476 3477 3478 3479 3480 3481 3482
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3483
asmlinkage __visible void __sched schedule(void)
3484
{
3485 3486 3487
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3488
	do {
3489
		preempt_disable();
3490
		__schedule(false);
3491
		sched_preempt_enable_no_resched();
3492
	} while (need_resched());
3493
}
L
Linus Torvalds 已提交
3494 3495
EXPORT_SYMBOL(schedule);

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
/*
 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 * state (have scheduled out non-voluntarily) by making sure that all
 * tasks have either left the run queue or have gone into user space.
 * As idle tasks do not do either, they must not ever be preempted
 * (schedule out non-voluntarily).
 *
 * schedule_idle() is similar to schedule_preempt_disable() except that it
 * never enables preemption because it does not call sched_submit_work().
 */
void __sched schedule_idle(void)
{
	/*
	 * As this skips calling sched_submit_work(), which the idle task does
	 * regardless because that function is a nop when the task is in a
	 * TASK_RUNNING state, make sure this isn't used someplace that the
	 * current task can be in any other state. Note, idle is always in the
	 * TASK_RUNNING state.
	 */
	WARN_ON_ONCE(current->state);
	do {
		__schedule(false);
	} while (need_resched());
}

3521
#ifdef CONFIG_CONTEXT_TRACKING
3522
asmlinkage __visible void __sched schedule_user(void)
3523 3524 3525 3526 3527 3528
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3529 3530
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3531
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3532
	 * too frequently to make sense yet.
3533
	 */
3534
	enum ctx_state prev_state = exception_enter();
3535
	schedule();
3536
	exception_exit(prev_state);
3537 3538 3539
}
#endif

3540 3541 3542 3543 3544 3545 3546
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3547
	sched_preempt_enable_no_resched();
3548 3549 3550 3551
	schedule();
	preempt_disable();
}

3552
static void __sched notrace preempt_schedule_common(void)
3553 3554
{
	do {
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3568
		preempt_disable_notrace();
3569
		preempt_latency_start(1);
3570
		__schedule(true);
3571
		preempt_latency_stop(1);
3572
		preempt_enable_no_resched_notrace();
3573 3574 3575 3576 3577 3578 3579 3580

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3581 3582
#ifdef CONFIG_PREEMPT
/*
3583
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3584
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3585 3586
 * occur there and call schedule directly.
 */
3587
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3588 3589 3590
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3591
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3592
	 */
3593
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3594 3595
		return;

3596
	preempt_schedule_common();
L
Linus Torvalds 已提交
3597
}
3598
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3599
EXPORT_SYMBOL(preempt_schedule);
3600 3601

/**
3602
 * preempt_schedule_notrace - preempt_schedule called by tracing
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3615
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3616 3617 3618 3619 3620 3621 3622
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3636
		preempt_disable_notrace();
3637
		preempt_latency_start(1);
3638 3639 3640 3641 3642 3643
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3644
		__schedule(true);
3645 3646
		exception_exit(prev_ctx);

3647
		preempt_latency_stop(1);
3648
		preempt_enable_no_resched_notrace();
3649 3650
	} while (need_resched());
}
3651
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3652

3653
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3654 3655

/*
3656
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3657 3658 3659 3660
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3661
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3662
{
3663
	enum ctx_state prev_state;
3664

3665
	/* Catch callers which need to be fixed */
3666
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3667

3668 3669
	prev_state = exception_enter();

3670
	do {
3671
		preempt_disable();
3672
		local_irq_enable();
3673
		__schedule(true);
3674
		local_irq_disable();
3675
		sched_preempt_enable_no_resched();
3676
	} while (need_resched());
3677 3678

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3679 3680
}

P
Peter Zijlstra 已提交
3681
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3682
			  void *key)
L
Linus Torvalds 已提交
3683
{
P
Peter Zijlstra 已提交
3684
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3685 3686 3687
}
EXPORT_SYMBOL(default_wake_function);

3688 3689
#ifdef CONFIG_RT_MUTEXES

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
{
	if (pi_task)
		prio = min(prio, pi_task->prio);

	return prio;
}

static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	struct task_struct *pi_task = rt_mutex_get_top_task(p);

	return __rt_effective_prio(pi_task, prio);
}

3705 3706
/*
 * rt_mutex_setprio - set the current priority of a task
3707 3708
 * @p: task to boost
 * @pi_task: donor task
3709 3710 3711 3712
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3713 3714
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3715
 */
3716
void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3717
{
3718
	int prio, oldprio, queued, running, queue_flag =
3719
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3720
	const struct sched_class *prev_class;
3721 3722
	struct rq_flags rf;
	struct rq *rq;
3723

3724 3725 3726 3727 3728 3729 3730 3731
	/* XXX used to be waiter->prio, not waiter->task->prio */
	prio = __rt_effective_prio(pi_task, p->normal_prio);

	/*
	 * If nothing changed; bail early.
	 */
	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
		return;
3732

3733
	rq = __task_rq_lock(p, &rf);
3734
	update_rq_clock(rq);
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
	/*
	 * Set under pi_lock && rq->lock, such that the value can be used under
	 * either lock.
	 *
	 * Note that there is loads of tricky to make this pointer cache work
	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
	 * ensure a task is de-boosted (pi_task is set to NULL) before the
	 * task is allowed to run again (and can exit). This ensures the pointer
	 * points to a blocked task -- which guaratees the task is present.
	 */
	p->pi_top_task = pi_task;

	/*
	 * For FIFO/RR we only need to set prio, if that matches we're done.
	 */
	if (prio == p->prio && !dl_prio(prio))
		goto out_unlock;
3752

3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3771
	trace_sched_pi_setprio(p, pi_task);
3772
	oldprio = p->prio;
3773 3774 3775 3776

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3777
	prev_class = p->sched_class;
3778
	queued = task_on_rq_queued(p);
3779
	running = task_current(rq, p);
3780
	if (queued)
3781
		dequeue_task(rq, p, queue_flag);
3782
	if (running)
3783
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3784

3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3795 3796
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3797
			p->dl.dl_boosted = 1;
3798
			queue_flag |= ENQUEUE_REPLENISH;
3799 3800
		} else
			p->dl.dl_boosted = 0;
3801
		p->sched_class = &dl_sched_class;
3802 3803 3804 3805
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3806
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3807
		p->sched_class = &rt_sched_class;
3808 3809 3810
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3811 3812
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3813
		p->sched_class = &fair_sched_class;
3814
	}
I
Ingo Molnar 已提交
3815

3816 3817
	p->prio = prio;

3818
	if (queued)
3819
		enqueue_task(rq, p, queue_flag);
3820
	if (running)
3821
		set_curr_task(rq, p);
3822

P
Peter Zijlstra 已提交
3823
	check_class_changed(rq, p, prev_class, oldprio);
3824
out_unlock:
I
Ingo Molnar 已提交
3825 3826
	/* Avoid rq from going away on us: */
	preempt_disable();
3827
	__task_rq_unlock(rq, &rf);
3828 3829 3830

	balance_callback(rq);
	preempt_enable();
3831
}
3832 3833 3834 3835 3836
#else
static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	return prio;
}
3837
#endif
3838

3839
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3840
{
P
Peter Zijlstra 已提交
3841 3842
	bool queued, running;
	int old_prio, delta;
3843
	struct rq_flags rf;
3844
	struct rq *rq;
L
Linus Torvalds 已提交
3845

3846
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3847 3848 3849 3850 3851
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3852
	rq = task_rq_lock(p, &rf);
3853 3854
	update_rq_clock(rq);

L
Linus Torvalds 已提交
3855 3856 3857 3858
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3859
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3860
	 */
3861
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3862 3863 3864
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3865
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3866
	running = task_current(rq, p);
3867
	if (queued)
3868
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
3869 3870
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3871 3872

	p->static_prio = NICE_TO_PRIO(nice);
3873
	set_load_weight(p);
3874 3875 3876
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3877

3878
	if (queued) {
3879
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
L
Linus Torvalds 已提交
3880
		/*
3881 3882
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3883
		 */
3884
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3885
			resched_curr(rq);
L
Linus Torvalds 已提交
3886
	}
P
Peter Zijlstra 已提交
3887 3888
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3889
out_unlock:
3890
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3891 3892 3893
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3894 3895 3896 3897 3898
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3899
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3900
{
I
Ingo Molnar 已提交
3901
	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3902
	int nice_rlim = nice_to_rlimit(nice);
3903

3904
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3905 3906 3907
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3908 3909 3910 3911 3912 3913 3914 3915 3916
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3917
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3918
{
3919
	long nice, retval;
L
Linus Torvalds 已提交
3920 3921 3922 3923 3924 3925

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3926
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3927
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3928

3929
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3930 3931 3932
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3947
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3948 3949 3950
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3951
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3952 3953 3954 3955 3956
{
	return p->prio - MAX_RT_PRIO;
}

/**
I
Ingo Molnar 已提交
3957
 * idle_cpu - is a given CPU idle currently?
L
Linus Torvalds 已提交
3958
 * @cpu: the processor in question.
3959 3960
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3961 3962 3963
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3978 3979 3980
}

/**
I
Ingo Molnar 已提交
3981
 * idle_task - return the idle task for a given CPU.
L
Linus Torvalds 已提交
3982
 * @cpu: the processor in question.
3983
 *
I
Ingo Molnar 已提交
3984
 * Return: The idle task for the CPU @cpu.
L
Linus Torvalds 已提交
3985
 */
3986
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3987 3988 3989 3990 3991 3992 3993
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3994 3995
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3996
 */
A
Alexey Dobriyan 已提交
3997
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3998
{
3999
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4000 4001
}

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
4017
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
4018
	dl_se->flags = attr->sched_flags;
4019
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
4040 4041
}

4042 4043 4044 4045 4046 4047
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

4048 4049
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
4050
{
4051 4052
	int policy = attr->sched_policy;

4053
	if (policy == SETPARAM_POLICY)
4054 4055
		policy = p->policy;

L
Linus Torvalds 已提交
4056
	p->policy = policy;
4057

4058 4059
	if (dl_policy(policy))
		__setparam_dl(p, attr);
4060
	else if (fair_policy(policy))
4061 4062
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

4063 4064 4065 4066 4067 4068
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
4069
	p->normal_prio = normal_prio(p);
4070 4071
	set_load_weight(p);
}
4072

4073 4074
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
4075
			   const struct sched_attr *attr, bool keep_boost)
4076 4077
{
	__setscheduler_params(p, attr);
4078

4079
	/*
4080 4081
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
4082
	 */
4083
	p->prio = normal_prio(p);
4084
	if (keep_boost)
4085
		p->prio = rt_effective_prio(p, p->prio);
4086

4087 4088 4089
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
4090 4091 4092
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
4093
}
4094 4095 4096 4097 4098 4099 4100 4101 4102

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
4103
	attr->sched_period = dl_se->dl_period;
4104 4105 4106 4107 4108 4109
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
4110
 * than the runtime, as well as the period of being zero or
4111
 * greater than deadline. Furthermore, we have to be sure that
4112 4113 4114 4115
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
4116 4117 4118 4119
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
4146 4147
}

4148
/*
I
Ingo Molnar 已提交
4149
 * Check the target process has a UID that matches the current process's:
4150 4151 4152 4153 4154 4155 4156 4157
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4158 4159
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4160 4161 4162 4163
	rcu_read_unlock();
	return match;
}

I
Ingo Molnar 已提交
4164
static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

4177 4178
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4179
				bool user, bool pi)
L
Linus Torvalds 已提交
4180
{
4181 4182
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4183
	int retval, oldprio, oldpolicy = -1, queued, running;
4184
	int new_effective_prio, policy = attr->sched_policy;
4185
	const struct sched_class *prev_class;
4186
	struct rq_flags rf;
4187
	int reset_on_fork;
4188
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4189
	struct rq *rq;
L
Linus Torvalds 已提交
4190

4191 4192
	/* The pi code expects interrupts enabled */
	BUG_ON(pi && in_interrupt());
L
Linus Torvalds 已提交
4193
recheck:
I
Ingo Molnar 已提交
4194
	/* Double check policy once rq lock held: */
4195 4196
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4197
		policy = oldpolicy = p->policy;
4198
	} else {
4199
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4200

4201
		if (!valid_policy(policy))
4202 4203 4204
			return -EINVAL;
	}

4205 4206 4207
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
4208 4209
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4210 4211
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4212
	 */
4213
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4214
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4215
		return -EINVAL;
4216 4217
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4218 4219
		return -EINVAL;

4220 4221 4222
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4223
	if (user && !capable(CAP_SYS_NICE)) {
4224
		if (fair_policy(policy)) {
4225
			if (attr->sched_nice < task_nice(p) &&
4226
			    !can_nice(p, attr->sched_nice))
4227 4228 4229
				return -EPERM;
		}

4230
		if (rt_policy(policy)) {
4231 4232
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4233

I
Ingo Molnar 已提交
4234
			/* Can't set/change the rt policy: */
4235 4236 4237
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

I
Ingo Molnar 已提交
4238
			/* Can't increase priority: */
4239 4240
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4241 4242
				return -EPERM;
		}
4243

4244 4245 4246 4247 4248 4249 4250 4251 4252
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4253
		/*
4254 4255
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4256
		 */
4257
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4258
			if (!can_nice(p, task_nice(p)))
4259 4260
				return -EPERM;
		}
4261

I
Ingo Molnar 已提交
4262
		/* Can't change other user's priorities: */
4263
		if (!check_same_owner(p))
4264
			return -EPERM;
4265

I
Ingo Molnar 已提交
4266
		/* Normal users shall not reset the sched_reset_on_fork flag: */
4267 4268
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4269
	}
L
Linus Torvalds 已提交
4270

4271
	if (user) {
4272
		retval = security_task_setscheduler(p);
4273 4274 4275 4276
		if (retval)
			return retval;
	}

4277
	/*
I
Ingo Molnar 已提交
4278
	 * Make sure no PI-waiters arrive (or leave) while we are
4279
	 * changing the priority of the task:
4280
	 *
L
Lucas De Marchi 已提交
4281
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4282 4283
	 * runqueue lock must be held.
	 */
4284
	rq = task_rq_lock(p, &rf);
4285
	update_rq_clock(rq);
4286

4287
	/*
I
Ingo Molnar 已提交
4288
	 * Changing the policy of the stop threads its a very bad idea:
4289 4290
	 */
	if (p == rq->stop) {
4291
		task_rq_unlock(rq, p, &rf);
4292 4293 4294
		return -EINVAL;
	}

4295
	/*
4296 4297
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4298
	 */
4299
	if (unlikely(policy == p->policy)) {
4300
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4301 4302 4303
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4304
		if (dl_policy(policy) && dl_param_changed(p, attr))
4305
			goto change;
4306

4307
		p->sched_reset_on_fork = reset_on_fork;
4308
		task_rq_unlock(rq, p, &rf);
4309 4310
		return 0;
	}
4311
change:
4312

4313
	if (user) {
4314
#ifdef CONFIG_RT_GROUP_SCHED
4315 4316 4317 4318 4319
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4320 4321
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4322
			task_rq_unlock(rq, p, &rf);
4323 4324 4325
			return -EPERM;
		}
#endif
4326 4327 4328 4329 4330 4331 4332 4333 4334
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4335 4336
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4337
				task_rq_unlock(rq, p, &rf);
4338 4339 4340 4341 4342
				return -EPERM;
			}
		}
#endif
	}
4343

I
Ingo Molnar 已提交
4344
	/* Re-check policy now with rq lock held: */
L
Linus Torvalds 已提交
4345 4346
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4347
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4348 4349
		goto recheck;
	}
4350 4351 4352 4353 4354 4355

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4356
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4357
		task_rq_unlock(rq, p, &rf);
4358 4359 4360
		return -EBUSY;
	}

4361 4362 4363
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4364 4365 4366 4367 4368 4369 4370 4371
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
4372
		new_effective_prio = rt_effective_prio(p, newprio);
4373 4374
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4375 4376
	}

4377
	queued = task_on_rq_queued(p);
4378
	running = task_current(rq, p);
4379
	if (queued)
4380
		dequeue_task(rq, p, queue_flags);
4381
	if (running)
4382
		put_prev_task(rq, p);
4383

4384
	prev_class = p->sched_class;
4385
	__setscheduler(rq, p, attr, pi);
4386

4387
	if (queued) {
4388 4389 4390 4391
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4392 4393
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4394

4395
		enqueue_task(rq, p, queue_flags);
4396
	}
4397
	if (running)
4398
		set_curr_task(rq, p);
4399

P
Peter Zijlstra 已提交
4400
	check_class_changed(rq, p, prev_class, oldprio);
I
Ingo Molnar 已提交
4401 4402 4403

	/* Avoid rq from going away on us: */
	preempt_disable();
4404
	task_rq_unlock(rq, p, &rf);
4405

4406 4407
	if (pi)
		rt_mutex_adjust_pi(p);
4408

I
Ingo Molnar 已提交
4409
	/* Run balance callbacks after we've adjusted the PI chain: */
4410 4411
	balance_callback(rq);
	preempt_enable();
4412

L
Linus Torvalds 已提交
4413 4414
	return 0;
}
4415

4416 4417 4418 4419 4420 4421 4422 4423 4424
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4425 4426
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4427 4428 4429 4430 4431
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4432
	return __sched_setscheduler(p, &attr, check, true);
4433
}
4434 4435 4436 4437 4438 4439
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4440 4441
 * Return: 0 on success. An error code otherwise.
 *
4442 4443 4444
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4445
		       const struct sched_param *param)
4446
{
4447
	return _sched_setscheduler(p, policy, param, true);
4448
}
L
Linus Torvalds 已提交
4449 4450
EXPORT_SYMBOL_GPL(sched_setscheduler);

4451 4452
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4453
	return __sched_setscheduler(p, attr, true, true);
4454 4455 4456
}
EXPORT_SYMBOL_GPL(sched_setattr);

4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4467 4468
 *
 * Return: 0 on success. An error code otherwise.
4469 4470
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4471
			       const struct sched_param *param)
4472
{
4473
	return _sched_setscheduler(p, policy, param, false);
4474
}
4475
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4476

I
Ingo Molnar 已提交
4477 4478
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4479 4480 4481
{
	struct sched_param lparam;
	struct task_struct *p;
4482
	int retval;
L
Linus Torvalds 已提交
4483 4484 4485 4486 4487

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4488 4489 4490

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4491
	p = find_process_by_pid(pid);
4492 4493 4494
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4495

L
Linus Torvalds 已提交
4496 4497 4498
	return retval;
}

4499 4500 4501
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
I
Ingo Molnar 已提交
4502
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4503 4504 4505 4506 4507 4508 4509
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

I
Ingo Molnar 已提交
4510
	/* Zero the full structure, so that a short copy will be nice: */
4511 4512 4513 4514 4515 4516
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

I
Ingo Molnar 已提交
4517 4518
	/* Bail out on silly large: */
	if (size > PAGE_SIZE)
4519 4520
		goto err_size;

I
Ingo Molnar 已提交
4521 4522
	/* ABI compatibility quirk: */
	if (!size)
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
I
Ingo Molnar 已提交
4557
	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4558 4559
	 * to be strict and return an error on out-of-bounds values?
	 */
4560
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4561

4562
	return 0;
4563 4564 4565

err_size:
	put_user(sizeof(*attr), &uattr->size);
4566
	return -E2BIG;
4567 4568
}

L
Linus Torvalds 已提交
4569 4570 4571 4572 4573
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4574 4575
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4576
 */
I
Ingo Molnar 已提交
4577
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4578
{
4579 4580 4581
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4582 4583 4584 4585 4586 4587 4588
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4589 4590
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4591
 */
4592
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4593
{
4594
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4595 4596
}

4597 4598 4599
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4600
 * @uattr: structure containing the extended parameters.
4601
 * @flags: for future extension.
4602
 */
4603 4604
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4605 4606 4607 4608 4609
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4610
	if (!uattr || pid < 0 || flags)
4611 4612
		return -EINVAL;

4613 4614 4615
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4616

4617
	if ((int)attr.sched_policy < 0)
4618
		return -EINVAL;
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4630 4631 4632
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4633 4634 4635
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4636
 */
4637
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4638
{
4639
	struct task_struct *p;
4640
	int retval;
L
Linus Torvalds 已提交
4641 4642

	if (pid < 0)
4643
		return -EINVAL;
L
Linus Torvalds 已提交
4644 4645

	retval = -ESRCH;
4646
	rcu_read_lock();
L
Linus Torvalds 已提交
4647 4648 4649 4650
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4651 4652
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4653
	}
4654
	rcu_read_unlock();
L
Linus Torvalds 已提交
4655 4656 4657 4658
	return retval;
}

/**
4659
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4660 4661
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4662 4663 4664
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4665
 */
4666
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4667
{
4668
	struct sched_param lp = { .sched_priority = 0 };
4669
	struct task_struct *p;
4670
	int retval;
L
Linus Torvalds 已提交
4671 4672

	if (!param || pid < 0)
4673
		return -EINVAL;
L
Linus Torvalds 已提交
4674

4675
	rcu_read_lock();
L
Linus Torvalds 已提交
4676 4677 4678 4679 4680 4681 4682 4683 4684
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4685 4686
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4687
	rcu_read_unlock();
L
Linus Torvalds 已提交
4688 4689 4690 4691 4692 4693 4694 4695 4696

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4697
	rcu_read_unlock();
L
Linus Torvalds 已提交
4698 4699 4700
	return retval;
}

4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4724
				return -EFBIG;
4725 4726 4727 4728 4729
		}

		attr->size = usize;
	}

4730
	ret = copy_to_user(uattr, attr, attr->size);
4731 4732 4733
	if (ret)
		return -EFAULT;

4734
	return 0;
4735 4736 4737
}

/**
4738
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4739
 * @pid: the pid in question.
J
Juri Lelli 已提交
4740
 * @uattr: structure containing the extended parameters.
4741
 * @size: sizeof(attr) for fwd/bwd comp.
4742
 * @flags: for future extension.
4743
 */
4744 4745
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4746 4747 4748 4749 4750 4751 4752 4753
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4754
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4768 4769
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4770 4771 4772
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4773 4774
		attr.sched_priority = p->rt_priority;
	else
4775
		attr.sched_nice = task_nice(p);
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4787
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4788
{
4789
	cpumask_var_t cpus_allowed, new_mask;
4790 4791
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4792

4793
	rcu_read_lock();
L
Linus Torvalds 已提交
4794 4795 4796

	p = find_process_by_pid(pid);
	if (!p) {
4797
		rcu_read_unlock();
L
Linus Torvalds 已提交
4798 4799 4800
		return -ESRCH;
	}

4801
	/* Prevent p going away */
L
Linus Torvalds 已提交
4802
	get_task_struct(p);
4803
	rcu_read_unlock();
L
Linus Torvalds 已提交
4804

4805 4806 4807 4808
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4809 4810 4811 4812 4813 4814 4815 4816
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4817
	retval = -EPERM;
E
Eric W. Biederman 已提交
4818 4819 4820 4821
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4822
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4823 4824 4825
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4826

4827
	retval = security_task_setscheduler(p);
4828
	if (retval)
4829
		goto out_free_new_mask;
4830

4831 4832 4833 4834

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4835 4836 4837 4838 4839 4840 4841
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4842 4843 4844
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4845
			retval = -EBUSY;
4846
			rcu_read_unlock();
4847
			goto out_free_new_mask;
4848
		}
4849
		rcu_read_unlock();
4850 4851
	}
#endif
P
Peter Zijlstra 已提交
4852
again:
4853
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4854

P
Paul Menage 已提交
4855
	if (!retval) {
4856 4857
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4858 4859 4860 4861 4862
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4863
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4864 4865 4866
			goto again;
		}
	}
4867
out_free_new_mask:
4868 4869 4870 4871
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4872 4873 4874 4875 4876
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4877
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4878
{
4879 4880 4881 4882 4883
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4884 4885 4886 4887
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
I
Ingo Molnar 已提交
4888
 * sys_sched_setaffinity - set the CPU affinity of a process
L
Linus Torvalds 已提交
4889 4890
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4891
 * @user_mask_ptr: user-space pointer to the new CPU mask
4892 4893
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4894
 */
4895 4896
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4897
{
4898
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4899 4900
	int retval;

4901 4902
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4903

4904 4905 4906 4907 4908
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4909 4910
}

4911
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4912
{
4913
	struct task_struct *p;
4914
	unsigned long flags;
L
Linus Torvalds 已提交
4915 4916
	int retval;

4917
	rcu_read_lock();
L
Linus Torvalds 已提交
4918 4919 4920 4921 4922 4923

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4924 4925 4926 4927
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4928
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4929
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4930
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4931 4932

out_unlock:
4933
	rcu_read_unlock();
L
Linus Torvalds 已提交
4934

4935
	return retval;
L
Linus Torvalds 已提交
4936 4937 4938
}

/**
I
Ingo Molnar 已提交
4939
 * sys_sched_getaffinity - get the CPU affinity of a process
L
Linus Torvalds 已提交
4940 4941
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4942
 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4943
 *
4944 4945
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4946
 */
4947 4948
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4949 4950
{
	int ret;
4951
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4952

A
Anton Blanchard 已提交
4953
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4954 4955
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4956 4957
		return -EINVAL;

4958 4959
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4960

4961 4962
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4963
		size_t retlen = min_t(size_t, len, cpumask_size());
4964 4965

		if (copy_to_user(user_mask_ptr, mask, retlen))
4966 4967
			ret = -EFAULT;
		else
4968
			ret = retlen;
4969 4970
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4971

4972
	return ret;
L
Linus Torvalds 已提交
4973 4974 4975 4976 4977
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4978 4979
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4980 4981
 *
 * Return: 0.
L
Linus Torvalds 已提交
4982
 */
4983
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4984
{
4985 4986 4987 4988 4989 4990
	struct rq_flags rf;
	struct rq *rq;

	local_irq_disable();
	rq = this_rq();
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
4991

4992
	schedstat_inc(rq->yld_count);
4993
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4994 4995 4996 4997 4998

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
4999 5000
	preempt_disable();
	rq_unlock(rq, &rf);
5001
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
5002 5003 5004 5005 5006 5007

	schedule();

	return 0;
}

5008
#ifndef CONFIG_PREEMPT
5009
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5010
{
5011
	if (should_resched(0)) {
5012
		preempt_schedule_common();
L
Linus Torvalds 已提交
5013 5014 5015 5016
		return 1;
	}
	return 0;
}
5017
EXPORT_SYMBOL(_cond_resched);
5018
#endif
L
Linus Torvalds 已提交
5019 5020

/*
5021
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5022 5023
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5024
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5025 5026 5027
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5028
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5029
{
5030
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
5031 5032
	int ret = 0;

5033 5034
	lockdep_assert_held(lock);

5035
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5036
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5037
		if (resched)
5038
			preempt_schedule_common();
N
Nick Piggin 已提交
5039 5040
		else
			cpu_relax();
J
Jan Kara 已提交
5041
		ret = 1;
L
Linus Torvalds 已提交
5042 5043
		spin_lock(lock);
	}
J
Jan Kara 已提交
5044
	return ret;
L
Linus Torvalds 已提交
5045
}
5046
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5047

5048
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5049 5050 5051
{
	BUG_ON(!in_softirq());

5052
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
5053
		local_bh_enable();
5054
		preempt_schedule_common();
L
Linus Torvalds 已提交
5055 5056 5057 5058 5059
		local_bh_disable();
		return 1;
	}
	return 0;
}
5060
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5061 5062 5063 5064

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
5065 5066 5067 5068 5069 5070 5071 5072 5073
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
I
Ingo Molnar 已提交
5074
 *	yield();
P
Peter Zijlstra 已提交
5075 5076 5077 5078 5079 5080 5081 5082
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
5083 5084 5085 5086 5087 5088 5089 5090
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

5091 5092 5093 5094
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5095 5096
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5097 5098 5099 5100
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
5101
 * Return:
5102 5103 5104
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
5105
 */
5106
int __sched yield_to(struct task_struct *p, bool preempt)
5107 5108 5109 5110
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
5111
	int yielded = 0;
5112 5113 5114 5115 5116 5117

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
5118 5119 5120 5121 5122 5123 5124 5125 5126
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

5127
	double_rq_lock(rq, p_rq);
5128
	if (task_rq(p) != p_rq) {
5129 5130 5131 5132 5133
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
5134
		goto out_unlock;
5135 5136

	if (curr->sched_class != p->sched_class)
5137
		goto out_unlock;
5138 5139

	if (task_running(p_rq, p) || p->state)
5140
		goto out_unlock;
5141 5142

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5143
	if (yielded) {
5144
		schedstat_inc(rq->yld_count);
5145 5146 5147 5148 5149
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
5150
			resched_curr(p_rq);
5151
	}
5152

5153
out_unlock:
5154
	double_rq_unlock(rq, p_rq);
5155
out_irq:
5156 5157
	local_irq_restore(flags);

5158
	if (yielded > 0)
5159 5160 5161 5162 5163 5164
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
int io_schedule_prepare(void)
{
	int old_iowait = current->in_iowait;

	current->in_iowait = 1;
	blk_schedule_flush_plug(current);

	return old_iowait;
}

void io_schedule_finish(int token)
{
	current->in_iowait = token;
}

L
Linus Torvalds 已提交
5180
/*
I
Ingo Molnar 已提交
5181
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5182 5183 5184 5185
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5186
	int token;
L
Linus Torvalds 已提交
5187 5188
	long ret;

5189
	token = io_schedule_prepare();
L
Linus Torvalds 已提交
5190
	ret = schedule_timeout(timeout);
5191
	io_schedule_finish(token);
5192

L
Linus Torvalds 已提交
5193 5194
	return ret;
}
5195
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5196

5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
void io_schedule(void)
{
	int token;

	token = io_schedule_prepare();
	schedule();
	io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);

L
Linus Torvalds 已提交
5207 5208 5209 5210
/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5211 5212 5213
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5214
 */
5215
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5216 5217 5218 5219 5220 5221 5222 5223
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5224
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5225
	case SCHED_NORMAL:
5226
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5227
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5238 5239 5240
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5241
 */
5242
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5243 5244 5245 5246 5247 5248 5249 5250
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5251
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5252
	case SCHED_NORMAL:
5253
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5254
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
5267 5268 5269
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
5270
 */
5271
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5272
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5273
{
5274
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5275
	unsigned int time_slice;
5276 5277
	struct rq_flags rf;
	struct timespec t;
5278
	struct rq *rq;
5279
	int retval;
L
Linus Torvalds 已提交
5280 5281

	if (pid < 0)
5282
		return -EINVAL;
L
Linus Torvalds 已提交
5283 5284

	retval = -ESRCH;
5285
	rcu_read_lock();
L
Linus Torvalds 已提交
5286 5287 5288 5289 5290 5291 5292 5293
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5294
	rq = task_rq_lock(p, &rf);
5295 5296 5297
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5298
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5299

5300
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5301
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5302 5303
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5304

L
Linus Torvalds 已提交
5305
out_unlock:
5306
	rcu_read_unlock();
L
Linus Torvalds 已提交
5307 5308 5309
	return retval;
}

5310
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5311

5312
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5313 5314
{
	unsigned long free = 0;
5315
	int ppid;
5316
	unsigned long state = p->state;
L
Linus Torvalds 已提交
5317

5318 5319 5320
	/* Make sure the string lines up properly with the number of task states: */
	BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);

5321 5322
	if (!try_get_task_stack(p))
		return;
5323 5324
	if (state)
		state = __ffs(state) + 1;
5325
	printk(KERN_INFO "%-15.15s %c", p->comm,
5326
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
5327
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5328
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5329
#ifdef CONFIG_DEBUG_STACK_USAGE
5330
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5331
#endif
5332
	ppid = 0;
5333
	rcu_read_lock();
5334 5335
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5336
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5337
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5338
		task_pid_nr(p), ppid,
5339
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5340

5341
	print_worker_info(KERN_INFO, p);
5342
	show_stack(p, NULL);
5343
	put_task_stack(p);
L
Linus Torvalds 已提交
5344 5345
}

I
Ingo Molnar 已提交
5346
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5347
{
5348
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5349

5350
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5351 5352
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5353
#else
P
Peter Zijlstra 已提交
5354 5355
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5356
#endif
5357
	rcu_read_lock();
5358
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5359 5360
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5361
		 * console might take a lot of time:
5362 5363 5364
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5365 5366
		 */
		touch_nmi_watchdog();
5367
		touch_all_softlockup_watchdogs();
I
Ingo Molnar 已提交
5368
		if (!state_filter || (p->state & state_filter))
5369
			sched_show_task(p);
5370
	}
L
Linus Torvalds 已提交
5371

I
Ingo Molnar 已提交
5372
#ifdef CONFIG_SCHED_DEBUG
5373 5374
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5375
#endif
5376
	rcu_read_unlock();
I
Ingo Molnar 已提交
5377 5378 5379
	/*
	 * Only show locks if all tasks are dumped:
	 */
5380
	if (!state_filter)
I
Ingo Molnar 已提交
5381
		debug_show_all_locks();
L
Linus Torvalds 已提交
5382 5383
}

5384
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
5385
{
I
Ingo Molnar 已提交
5386
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5387 5388
}

5389 5390 5391
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
I
Ingo Molnar 已提交
5392
 * @cpu: CPU the idle task belongs to
5393 5394 5395 5396
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5397
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5398
{
5399
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5400 5401
	unsigned long flags;

5402 5403
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5404

5405
	__sched_fork(0, idle);
5406
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5407
	idle->se.exec_start = sched_clock();
5408
	idle->flags |= PF_IDLE;
I
Ingo Molnar 已提交
5409

5410 5411
	kasan_unpoison_task_stack(idle);

5412 5413 5414 5415 5416 5417 5418 5419 5420
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5421 5422
	/*
	 * We're having a chicken and egg problem, even though we are
I
Ingo Molnar 已提交
5423
	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5424 5425 5426 5427 5428 5429 5430 5431
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5432
	__set_task_cpu(idle, cpu);
5433
	rcu_read_unlock();
L
Linus Torvalds 已提交
5434 5435

	rq->curr = rq->idle = idle;
5436
	idle->on_rq = TASK_ON_RQ_QUEUED;
5437
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5438
	idle->on_cpu = 1;
5439
#endif
5440 5441
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5442 5443

	/* Set the preempt count _outside_ the spinlocks! */
5444
	init_idle_preempt_count(idle, cpu);
5445

I
Ingo Molnar 已提交
5446 5447 5448 5449
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5450
	ftrace_graph_init_idle_task(idle, cpu);
5451
	vtime_init_idle(idle, cpu);
5452
#ifdef CONFIG_SMP
5453 5454
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5455 5456
}

5457 5458 5459 5460 5461 5462 5463
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

5464 5465 5466
	if (!cpumask_weight(cur))
		return ret;

5467
	rcu_read_lock_sched();
5468 5469 5470 5471 5472 5473 5474 5475
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5476
	rcu_read_unlock_sched();
5477 5478 5479 5480

	return ret;
}

5481 5482 5483 5484 5485 5486 5487
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
I
Ingo Molnar 已提交
5488
	 * to a new cpuset; we don't want to change their CPU
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5505
		struct dl_bw *dl_b;
5506 5507 5508 5509
		bool overflow;
		int cpus;
		unsigned long flags;

5510 5511
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5527
		rcu_read_unlock_sched();
5528 5529 5530 5531 5532 5533 5534

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5535 5536
#ifdef CONFIG_SMP

5537
bool sched_smp_initialized __read_mostly;
5538

5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

5549
	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5550 5551 5552 5553
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5554
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5555 5556
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5557 5558 5559 5560 5561 5562 5563

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5564
	bool queued, running;
5565 5566
	struct rq_flags rf;
	struct rq *rq;
5567

5568
	rq = task_rq_lock(p, &rf);
5569
	queued = task_on_rq_queued(p);
5570 5571
	running = task_current(rq, p);

5572
	if (queued)
5573
		dequeue_task(rq, p, DEQUEUE_SAVE);
5574
	if (running)
5575
		put_prev_task(rq, p);
5576 5577 5578

	p->numa_preferred_nid = nid;

5579
	if (queued)
5580
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5581
	if (running)
5582
		set_curr_task(rq, p);
5583
	task_rq_unlock(rq, p, &rf);
5584
}
P
Peter Zijlstra 已提交
5585
#endif /* CONFIG_NUMA_BALANCING */
5586

L
Linus Torvalds 已提交
5587
#ifdef CONFIG_HOTPLUG_CPU
5588
/*
I
Ingo Molnar 已提交
5589
 * Ensure that the idle task is using init_mm right before its CPU goes
5590
 * offline.
5591
 */
5592
void idle_task_exit(void)
L
Linus Torvalds 已提交
5593
{
5594
	struct mm_struct *mm = current->active_mm;
5595

5596
	BUG_ON(cpu_online(smp_processor_id()));
5597

5598
	if (mm != &init_mm) {
5599
		switch_mm_irqs_off(mm, &init_mm, current);
5600 5601
		finish_arch_post_lock_switch();
	}
5602
	mmdrop(mm);
L
Linus Torvalds 已提交
5603 5604 5605
}

/*
5606 5607
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5608 5609 5610
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5611 5612
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5613
 */
5614
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5615
{
5616
	long delta = calc_load_fold_active(rq, 1);
5617 5618
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5619 5620
}

5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5637
/*
5638 5639 5640 5641 5642 5643
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5644
 */
5645
static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
L
Linus Torvalds 已提交
5646
{
5647
	struct rq *rq = dead_rq;
5648
	struct task_struct *next, *stop = rq->stop;
5649
	struct rq_flags orf = *rf;
5650
	int dest_cpu;
L
Linus Torvalds 已提交
5651 5652

	/*
5653 5654 5655 5656 5657 5658 5659
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5660
	 */
5661
	rq->stop = NULL;
5662

5663 5664 5665 5666 5667 5668 5669
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5670
	for (;;) {
5671 5672
		/*
		 * There's this thread running, bail when that's the only
I
Ingo Molnar 已提交
5673
		 * remaining thread:
5674 5675
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5676
			break;
5677

5678
		/*
I
Ingo Molnar 已提交
5679
		 * pick_next_task() assumes pinned rq->lock:
5680
		 */
5681
		next = pick_next_task(rq, &fake_task, rf);
5682
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5683
		next->sched_class->put_prev_task(rq, next);
5684

W
Wanpeng Li 已提交
5685 5686 5687 5688 5689 5690 5691 5692 5693
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5694
		rq_unlock(rq, rf);
W
Wanpeng Li 已提交
5695
		raw_spin_lock(&next->pi_lock);
5696
		rq_relock(rq, rf);
W
Wanpeng Li 已提交
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5708
		/* Find suitable destination for @next, with force if needed. */
5709
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5710
		rq = __migrate_task(rq, rf, next, dest_cpu);
5711
		if (rq != dead_rq) {
5712
			rq_unlock(rq, rf);
5713
			rq = dead_rq;
5714 5715
			*rf = orf;
			rq_relock(rq, rf);
5716
		}
W
Wanpeng Li 已提交
5717
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5718
	}
5719

5720
	rq->stop = stop;
5721
}
L
Linus Torvalds 已提交
5722 5723
#endif /* CONFIG_HOTPLUG_CPU */

5724
void set_rq_online(struct rq *rq)
5725 5726 5727 5728
{
	if (!rq->online) {
		const struct sched_class *class;

5729
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5730 5731 5732 5733 5734 5735 5736 5737 5738
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

5739
void set_rq_offline(struct rq *rq)
5740 5741 5742 5743 5744 5745 5746 5747 5748
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5749
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5750 5751 5752 5753
		rq->online = 0;
	}
}

5754
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5755
{
5756
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5757

5758 5759 5760
	rq->age_stamp = sched_clock_cpu(cpu);
}

I
Ingo Molnar 已提交
5761 5762 5763 5764
/*
 * used to mark begin/end of suspend/resume:
 */
static int num_cpus_frozen;
5765

L
Linus Torvalds 已提交
5766
/*
5767 5768 5769
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
5770 5771 5772
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
5773
 */
5774
static void cpuset_cpu_active(void)
5775
{
5776
	if (cpuhp_tasks_frozen) {
5777 5778 5779 5780 5781 5782 5783 5784 5785
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
5786
			return;
5787 5788 5789 5790 5791 5792
		}
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
5793
	}
5794
	cpuset_update_active_cpus();
5795
}
5796

5797
static int cpuset_cpu_inactive(unsigned int cpu)
5798
{
5799 5800
	unsigned long flags;
	struct dl_bw *dl_b;
5801 5802
	bool overflow;
	int cpus;
5803

5804
	if (!cpuhp_tasks_frozen) {
5805 5806
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
5807

5808 5809 5810 5811
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5812

5813
		rcu_read_unlock_sched();
5814

5815
		if (overflow)
5816
			return -EBUSY;
5817
		cpuset_update_active_cpus();
5818
	} else {
5819 5820
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
5821
	}
5822
	return 0;
5823 5824
}

5825
int sched_cpu_activate(unsigned int cpu)
5826
{
5827
	struct rq *rq = cpu_rq(cpu);
5828
	struct rq_flags rf;
5829

5830
	set_cpu_active(cpu, true);
5831

5832
	if (sched_smp_initialized) {
5833
		sched_domains_numa_masks_set(cpu);
5834
		cpuset_cpu_active();
5835
	}
5836 5837 5838 5839 5840

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
I
Ingo Molnar 已提交
5841
	 *    after all CPUs have been brought up.
5842 5843 5844 5845
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
5846
	rq_lock_irqsave(rq, &rf);
5847 5848 5849 5850
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
5851
	rq_unlock_irqrestore(rq, &rf);
5852 5853 5854

	update_max_interval();

5855
	return 0;
5856 5857
}

5858
int sched_cpu_deactivate(unsigned int cpu)
5859 5860 5861
{
	int ret;

5862
	set_cpu_active(cpu, false);
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
	 * not imply sync_sched(), so wait for both.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
	if (IS_ENABLED(CONFIG_PREEMPT))
		synchronize_rcu_mult(call_rcu, call_rcu_sched);
	else
		synchronize_rcu();
5877 5878 5879 5880 5881 5882 5883 5884

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
5885
	}
5886 5887
	sched_domains_numa_masks_clear(cpu);
	return 0;
5888 5889
}

5890 5891 5892 5893 5894 5895 5896 5897
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

5898 5899 5900
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
5901
	sched_rq_cpu_starting(cpu);
5902
	return 0;
5903 5904
}

5905 5906 5907 5908
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5909
	struct rq_flags rf;
5910 5911 5912

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
5913 5914

	rq_lock_irqsave(rq, &rf);
5915 5916 5917 5918
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
5919
	migrate_tasks(rq, &rf);
5920
	BUG_ON(rq->nr_running != 1);
5921 5922
	rq_unlock_irqrestore(rq, &rf);

5923 5924
	calc_load_migrate(rq);
	update_max_interval();
5925
	nohz_balance_exit_idle(cpu);
5926
	hrtick_clear(rq);
5927 5928 5929 5930
	return 0;
}
#endif

P
Peter Zijlstra 已提交
5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);

static void sched_init_smt(void)
{
	/*
	 * We've enumerated all CPUs and will assume that if any CPU
	 * has SMT siblings, CPU0 will too.
	 */
	if (cpumask_weight(cpu_smt_mask(0)) > 1)
		static_branch_enable(&sched_smt_present);
}
#else
static inline void sched_init_smt(void) { }
#endif

L
Linus Torvalds 已提交
5947 5948
void __init sched_init_smp(void)
{
5949 5950 5951
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5952

5953 5954
	sched_init_numa();

5955 5956
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
I
Ingo Molnar 已提交
5957
	 * CPU masks are stable and all blatant races in the below code cannot
5958 5959
	 * happen.
	 */
5960
	mutex_lock(&sched_domains_mutex);
P
Peter Zijlstra 已提交
5961
	sched_init_domains(cpu_active_mask);
5962 5963 5964
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5965
	mutex_unlock(&sched_domains_mutex);
5966

5967
	/* Move init over to a non-isolated CPU */
5968
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5969
		BUG();
I
Ingo Molnar 已提交
5970
	sched_init_granularity();
5971
	free_cpumask_var(non_isolated_cpus);
5972

5973
	init_sched_rt_class();
5974
	init_sched_dl_class();
P
Peter Zijlstra 已提交
5975 5976 5977

	sched_init_smt();

5978
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
5979
}
5980 5981 5982

static int __init migration_init(void)
{
5983
	sched_rq_cpu_starting(smp_processor_id());
5984
	return 0;
L
Linus Torvalds 已提交
5985
}
5986 5987
early_initcall(migration_init);

L
Linus Torvalds 已提交
5988 5989 5990
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
5991
	sched_init_granularity();
L
Linus Torvalds 已提交
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6002
#ifdef CONFIG_CGROUP_SCHED
6003 6004 6005 6006
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6007
struct task_group root_task_group;
6008
LIST_HEAD(task_groups);
6009 6010 6011

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
6012
#endif
P
Peter Zijlstra 已提交
6013

6014
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6015
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
6016

6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
#define WAIT_TABLE_BITS 8
#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;

wait_queue_head_t *bit_waitqueue(void *word, int bit)
{
	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
	unsigned long val = (unsigned long)word << shift | bit;

	return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
}
EXPORT_SYMBOL(bit_waitqueue);

L
Linus Torvalds 已提交
6030 6031
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6032
	int i, j;
6033 6034
	unsigned long alloc_size = 0, ptr;

6035 6036
	sched_clock_init();

6037 6038 6039
	for (i = 0; i < WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(bit_wait_table + i);

6040 6041 6042 6043 6044 6045 6046
#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
6047
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6048 6049

#ifdef CONFIG_FAIR_GROUP_SCHED
6050
		root_task_group.se = (struct sched_entity **)ptr;
6051 6052
		ptr += nr_cpu_ids * sizeof(void **);

6053
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6054
		ptr += nr_cpu_ids * sizeof(void **);
6055

6056
#endif /* CONFIG_FAIR_GROUP_SCHED */
6057
#ifdef CONFIG_RT_GROUP_SCHED
6058
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6059 6060
		ptr += nr_cpu_ids * sizeof(void **);

6061
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6062 6063
		ptr += nr_cpu_ids * sizeof(void **);

6064
#endif /* CONFIG_RT_GROUP_SCHED */
6065
	}
6066
#ifdef CONFIG_CPUMASK_OFFSTACK
6067 6068 6069
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6070 6071
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6072
	}
6073
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
6074

I
Ingo Molnar 已提交
6075 6076
	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6077

G
Gregory Haskins 已提交
6078 6079 6080 6081
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6082
#ifdef CONFIG_RT_GROUP_SCHED
6083
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6084
			global_rt_period(), global_rt_runtime());
6085
#endif /* CONFIG_RT_GROUP_SCHED */
6086

D
Dhaval Giani 已提交
6087
#ifdef CONFIG_CGROUP_SCHED
6088 6089
	task_group_cache = KMEM_CACHE(task_group, 0);

6090 6091
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6092
	INIT_LIST_HEAD(&root_task_group.siblings);
6093
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
6094
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6095

6096
	for_each_possible_cpu(i) {
6097
		struct rq *rq;
L
Linus Torvalds 已提交
6098 6099

		rq = cpu_rq(i);
6100
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6101
		rq->nr_running = 0;
6102 6103
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6104
		init_cfs_rq(&rq->cfs);
6105 6106
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
6107
#ifdef CONFIG_FAIR_GROUP_SCHED
6108
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6109
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6110
		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
D
Dhaval Giani 已提交
6111
		/*
I
Ingo Molnar 已提交
6112
		 * How much CPU bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6113 6114
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
I
Ingo Molnar 已提交
6115 6116
		 * gets 100% of the CPU resources in the system. This overall
		 * system CPU resource is divided among the tasks of
6117
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6118 6119 6120
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6121
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6122
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
I
Ingo Molnar 已提交
6123
		 * then A0's share of the CPU resource is:
D
Dhaval Giani 已提交
6124
		 *
6125
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6126
		 *
6127 6128
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6129
		 */
6130
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6131
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6132 6133 6134
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6135
#ifdef CONFIG_RT_GROUP_SCHED
6136
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6137
#endif
L
Linus Torvalds 已提交
6138

I
Ingo Molnar 已提交
6139 6140
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6141

L
Linus Torvalds 已提交
6142
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6143
		rq->sd = NULL;
G
Gregory Haskins 已提交
6144
		rq->rd = NULL;
6145
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6146
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
6147
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6148
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6149
		rq->push_cpu = 0;
6150
		rq->cpu = i;
6151
		rq->online = 0;
6152 6153
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6154
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6155 6156 6157

		INIT_LIST_HEAD(&rq->cfs_tasks);

6158
		rq_attach_root(rq, &def_root_domain);
6159
#ifdef CONFIG_NO_HZ_COMMON
6160
		rq->last_load_update_tick = jiffies;
6161
		rq->nohz_flags = 0;
6162
#endif
6163 6164 6165
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
6166
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
6167
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6168 6169 6170
		atomic_set(&rq->nr_iowait, 0);
	}

6171
	set_load_weight(&init_task);
6172

L
Linus Torvalds 已提交
6173 6174 6175
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
V
Vegard Nossum 已提交
6176
	mmgrab(&init_mm);
L
Linus Torvalds 已提交
6177 6178 6179 6180 6181 6182 6183 6184 6185
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6186 6187 6188

	calc_load_update = jiffies + LOAD_FREQ;

6189
#ifdef CONFIG_SMP
R
Rusty Russell 已提交
6190 6191 6192
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6193
	idle_thread_set_boot_cpu();
6194
	set_cpu_rq_start_time(smp_processor_id());
6195 6196
#endif
	init_sched_fair_class();
6197

6198 6199
	init_schedstats();

6200
	scheduler_running = 1;
L
Linus Torvalds 已提交
6201 6202
}

6203
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6204 6205
static inline int preempt_count_equals(int preempt_offset)
{
6206
	int nested = preempt_count() + rcu_preempt_depth();
6207

A
Arnd Bergmann 已提交
6208
	return (nested == preempt_offset);
6209 6210
}

6211
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6212
{
P
Peter Zijlstra 已提交
6213 6214 6215 6216 6217
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
6218
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
6219 6220 6221 6222
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
6223
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
6224

6225 6226 6227 6228 6229
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6230
{
I
Ingo Molnar 已提交
6231 6232 6233
	/* Ratelimiting timestamp: */
	static unsigned long prev_jiffy;

6234
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
6235

I
Ingo Molnar 已提交
6236 6237 6238
	/* WARN_ON_ONCE() by default, no rate limit required: */
	rcu_sleep_check();

6239 6240
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
6241
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6242 6243 6244 6245 6246
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

I
Ingo Molnar 已提交
6247
	/* Save this before calling printk(), since that will clobber it: */
6248 6249
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
6250 6251 6252 6253 6254 6255 6256
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6257

6258 6259 6260
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
6261 6262 6263
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6264 6265
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
6266
		pr_err("Preemption disabled at:");
6267
		print_ip_sym(preempt_disable_ip);
6268 6269
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
6270
	dump_stack();
6271
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
6272
}
6273
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
6274 6275 6276
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6277
void normalize_rt_tasks(void)
6278
{
6279
	struct task_struct *g, *p;
6280 6281 6282
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
6283

6284
	read_lock(&tasklist_lock);
6285
	for_each_process_thread(g, p) {
6286 6287 6288
		/*
		 * Only normalize user tasks:
		 */
6289
		if (p->flags & PF_KTHREAD)
6290 6291
			continue;

6292 6293 6294 6295
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
6296

6297
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
6298 6299 6300 6301
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
6302
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
6303
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6304
			continue;
I
Ingo Molnar 已提交
6305
		}
L
Linus Torvalds 已提交
6306

6307
		__sched_setscheduler(p, &attr, false, false);
6308
	}
6309
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6310 6311 6312
}

#endif /* CONFIG_MAGIC_SYSRQ */
6313

6314
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6315
/*
6316
 * These functions are only useful for the IA64 MCA handling, or kdb.
6317 6318 6319 6320 6321 6322 6323 6324 6325
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
I
Ingo Molnar 已提交
6326
 * curr_task - return the current task for a given CPU.
6327 6328 6329
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6330 6331
 *
 * Return: The current task for @cpu.
6332
 */
6333
struct task_struct *curr_task(int cpu)
6334 6335 6336 6337
{
	return cpu_curr(cpu);
}

6338 6339 6340
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6341
/**
I
Ingo Molnar 已提交
6342
 * set_curr_task - set the current task for a given CPU.
6343 6344 6345 6346
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6347
 * are serviced on a separate stack. It allows the architecture to switch the
I
Ingo Molnar 已提交
6348
 * notion of the current task on a CPU in a non-blocking manner. This function
6349 6350 6351 6352 6353 6354 6355
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6356
void ia64_set_curr_task(int cpu, struct task_struct *p)
6357 6358 6359 6360 6361
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6362

D
Dhaval Giani 已提交
6363
#ifdef CONFIG_CGROUP_SCHED
6364 6365 6366
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6367
static void sched_free_group(struct task_group *tg)
6368 6369 6370
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6371
	autogroup_free(tg);
6372
	kmem_cache_free(task_group_cache, tg);
6373 6374 6375
}

/* allocate runqueue etc for a new task group */
6376
struct task_group *sched_create_group(struct task_group *parent)
6377 6378 6379
{
	struct task_group *tg;

6380
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6381 6382 6383
	if (!tg)
		return ERR_PTR(-ENOMEM);

6384
	if (!alloc_fair_sched_group(tg, parent))
6385 6386
		goto err;

6387
	if (!alloc_rt_sched_group(tg, parent))
6388 6389
		goto err;

6390 6391 6392
	return tg;

err:
6393
	sched_free_group(tg);
6394 6395 6396 6397 6398 6399 6400
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6401
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6402
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6403

I
Ingo Molnar 已提交
6404 6405
	/* Root should already exist: */
	WARN_ON(!parent);
P
Peter Zijlstra 已提交
6406 6407 6408

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6409
	list_add_rcu(&tg->siblings, &parent->children);
6410
	spin_unlock_irqrestore(&task_group_lock, flags);
6411 6412

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
6413 6414
}

6415
/* rcu callback to free various structures associated with a task group */
6416
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6417
{
I
Ingo Molnar 已提交
6418
	/* Now it should be safe to free those cfs_rqs: */
6419
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6420 6421
}

6422
void sched_destroy_group(struct task_group *tg)
6423
{
I
Ingo Molnar 已提交
6424
	/* Wait for possible concurrent references to cfs_rqs complete: */
6425
	call_rcu(&tg->rcu, sched_free_group_rcu);
6426 6427 6428
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6429
{
6430
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
6431

I
Ingo Molnar 已提交
6432
	/* End participation in shares distribution: */
6433
	unregister_fair_sched_group(tg);
6434 6435

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6436
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6437
	list_del_rcu(&tg->siblings);
6438
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6439 6440
}

6441
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
6442
{
P
Peter Zijlstra 已提交
6443
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6444

6445 6446 6447 6448 6449 6450
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
6451 6452 6453 6454
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6455
#ifdef CONFIG_FAIR_GROUP_SCHED
6456 6457
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
6458
	else
P
Peter Zijlstra 已提交
6459
#endif
6460
		set_task_rq(tsk, task_cpu(tsk));
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
6472 6473
	int queued, running, queue_flags =
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6474 6475 6476 6477
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);
6478
	update_rq_clock(rq);
6479 6480 6481 6482 6483

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
6484
		dequeue_task(rq, tsk, queue_flags);
6485
	if (running)
6486 6487 6488
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
6489

6490
	if (queued)
6491
		enqueue_task(rq, tsk, queue_flags);
6492
	if (running)
6493
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6494

6495
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
6496
}
D
Dhaval Giani 已提交
6497
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
6498

6499 6500 6501 6502 6503
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
6504

P
Peter Zijlstra 已提交
6505 6506
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
6507
{
P
Peter Zijlstra 已提交
6508
	struct task_struct *g, *p;
6509

6510 6511 6512 6513 6514 6515
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

6516
	for_each_process_thread(g, p) {
6517
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
6518
			return 1;
6519
	}
6520

P
Peter Zijlstra 已提交
6521 6522
	return 0;
}
6523

P
Peter Zijlstra 已提交
6524 6525 6526 6527 6528
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
6529

6530
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
6531 6532 6533 6534 6535
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
6536

P
Peter Zijlstra 已提交
6537 6538
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
6539

P
Peter Zijlstra 已提交
6540 6541 6542
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
6543 6544
	}

6545 6546 6547 6548 6549
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
6550

6551 6552 6553
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
6554 6555
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
6556

P
Peter Zijlstra 已提交
6557
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6558

6559 6560 6561 6562 6563
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
6564

6565 6566 6567
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
6568 6569 6570
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6571

P
Peter Zijlstra 已提交
6572 6573 6574 6575
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
6576

P
Peter Zijlstra 已提交
6577
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6578
	}
P
Peter Zijlstra 已提交
6579

P
Peter Zijlstra 已提交
6580 6581 6582 6583
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
6584 6585
}

P
Peter Zijlstra 已提交
6586
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6587
{
6588 6589
	int ret;

P
Peter Zijlstra 已提交
6590 6591 6592 6593 6594 6595
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

6596 6597 6598 6599 6600
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6601 6602
}

6603
static int tg_set_rt_bandwidth(struct task_group *tg,
6604
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
6605
{
P
Peter Zijlstra 已提交
6606
	int i, err = 0;
P
Peter Zijlstra 已提交
6607

6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
6619
	mutex_lock(&rt_constraints_mutex);
6620
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
6621 6622
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
6623
		goto unlock;
P
Peter Zijlstra 已提交
6624

6625
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6626 6627
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
6628 6629 6630 6631

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

6632
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6633
		rt_rq->rt_runtime = rt_runtime;
6634
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6635
	}
6636
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
6637
unlock:
6638
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
6639 6640 6641
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
6642 6643
}

6644
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6645 6646 6647 6648 6649 6650 6651 6652
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

6653
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6654 6655
}

6656
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
6657 6658 6659
{
	u64 rt_runtime_us;

6660
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
6661 6662
		return -1;

6663
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6664 6665 6666
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
6667

6668
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
6669 6670 6671
{
	u64 rt_runtime, rt_period;

6672
	rt_period = rt_period_us * NSEC_PER_USEC;
6673 6674
	rt_runtime = tg->rt_bandwidth.rt_runtime;

6675
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6676 6677
}

6678
static long sched_group_rt_period(struct task_group *tg)
6679 6680 6681 6682 6683 6684 6685
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
6686
#endif /* CONFIG_RT_GROUP_SCHED */
6687

6688
#ifdef CONFIG_RT_GROUP_SCHED
6689 6690 6691 6692 6693
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
6694
	read_lock(&tasklist_lock);
6695
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
6696
	read_unlock(&tasklist_lock);
6697 6698 6699 6700
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
6701

6702
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6703 6704 6705 6706 6707 6708 6709 6710
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

6711
#else /* !CONFIG_RT_GROUP_SCHED */
6712 6713
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
6714
	unsigned long flags;
6715
	int i;
6716

6717
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
6718 6719 6720
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

6721
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6722
		rt_rq->rt_runtime = global_rt_runtime();
6723
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6724
	}
6725
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
6726

6727
	return 0;
6728
}
6729
#endif /* CONFIG_RT_GROUP_SCHED */
6730

6731
static int sched_dl_global_validate(void)
6732
{
6733 6734
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
6735
	u64 new_bw = to_ratio(period, runtime);
6736
	struct dl_bw *dl_b;
6737
	int cpu, ret = 0;
6738
	unsigned long flags;
6739 6740 6741 6742 6743 6744 6745 6746 6747 6748

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
6749
	for_each_possible_cpu(cpu) {
6750 6751
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
6752

6753
		raw_spin_lock_irqsave(&dl_b->lock, flags);
6754 6755
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
6756
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6757

6758 6759
		rcu_read_unlock_sched();

6760 6761
		if (ret)
			break;
6762 6763
	}

6764
	return ret;
6765 6766
}

6767
static void sched_dl_do_global(void)
6768
{
6769
	u64 new_bw = -1;
6770
	struct dl_bw *dl_b;
6771
	int cpu;
6772
	unsigned long flags;
6773

6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
6784 6785
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
6786

6787
		raw_spin_lock_irqsave(&dl_b->lock, flags);
6788
		dl_b->bw = new_bw;
6789
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6790 6791

		rcu_read_unlock_sched();
6792
	}
6793 6794 6795 6796 6797 6798 6799
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

6800 6801
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
6802 6803 6804 6805 6806 6807 6808 6809 6810
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
6811 6812
}

6813
int sched_rt_handler(struct ctl_table *table, int write,
6814
		void __user *buffer, size_t *lenp,
6815 6816 6817 6818
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
6819
	int ret;
6820 6821 6822 6823 6824

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

6825
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6826 6827

	if (!ret && write) {
6828 6829 6830 6831
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

6832
		ret = sched_dl_global_validate();
6833 6834 6835
		if (ret)
			goto undo;

6836
		ret = sched_rt_global_constraints();
6837 6838 6839 6840 6841 6842 6843 6844 6845 6846
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
6847 6848 6849 6850 6851
	}
	mutex_unlock(&mutex);

	return ret;
}
6852

6853
int sched_rr_handler(struct ctl_table *table, int write,
6854 6855 6856 6857 6858 6859 6860 6861
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
I
Ingo Molnar 已提交
6862 6863 6864 6865
	/*
	 * Make sure that internally we keep jiffies.
	 * Also, writing zero resets the timeslice to default:
	 */
6866
	if (!ret && write) {
6867 6868 6869
		sched_rr_timeslice =
			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
			msecs_to_jiffies(sysctl_sched_rr_timeslice);
6870 6871 6872 6873 6874
	}
	mutex_unlock(&mutex);
	return ret;
}

6875
#ifdef CONFIG_CGROUP_SCHED
6876

6877
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6878
{
6879
	return css ? container_of(css, struct task_group, css) : NULL;
6880 6881
}

6882 6883
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6884
{
6885 6886
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
6887

6888
	if (!parent) {
6889
		/* This is early initialization for the top cgroup */
6890
		return &root_task_group.css;
6891 6892
	}

6893
	tg = sched_create_group(parent);
6894 6895 6896 6897 6898 6899
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910
/* Expose task group only after completing cgroup initialization */
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css->parent);

	if (parent)
		sched_online_group(tg, parent);
	return 0;
}

6911
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6912
{
6913
	struct task_group *tg = css_tg(css);
6914

6915
	sched_offline_group(tg);
6916 6917
}

6918
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6919
{
6920
	struct task_group *tg = css_tg(css);
6921

6922 6923 6924 6925
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
6926 6927
}

6928 6929 6930 6931
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
6932
static void cpu_cgroup_fork(struct task_struct *task)
6933
{
6934 6935 6936 6937 6938
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

6939
	update_rq_clock(rq);
6940 6941 6942
	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
6943 6944
}

6945
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6946
{
6947
	struct task_struct *task;
6948
	struct cgroup_subsys_state *css;
6949
	int ret = 0;
6950

6951
	cgroup_taskset_for_each(task, css, tset) {
6952
#ifdef CONFIG_RT_GROUP_SCHED
6953
		if (!sched_rt_can_attach(css_tg(css), task))
6954
			return -EINVAL;
6955
#else
6956 6957 6958
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
6959
#endif
6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
6976
	}
6977
	return ret;
6978
}
6979

6980
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6981
{
6982
	struct task_struct *task;
6983
	struct cgroup_subsys_state *css;
6984

6985
	cgroup_taskset_for_each(task, css, tset)
6986
		sched_move_task(task);
6987 6988
}

6989
#ifdef CONFIG_FAIR_GROUP_SCHED
6990 6991
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
6992
{
6993
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6994 6995
}

6996 6997
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
6998
{
6999
	struct task_group *tg = css_tg(css);
7000

7001
	return (u64) scale_load_down(tg->shares);
7002
}
7003 7004

#ifdef CONFIG_CFS_BANDWIDTH
7005 7006
static DEFINE_MUTEX(cfs_constraints_mutex);

7007 7008 7009
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7010 7011
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7012 7013
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7014
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7015
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7036 7037 7038 7039 7040
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
7041 7042 7043 7044 7045
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7046
	runtime_enabled = quota != RUNTIME_INF;
7047
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7048 7049 7050 7051 7052 7053
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
7054 7055 7056
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7057

P
Paul Turner 已提交
7058
	__refill_cfs_bandwidth_runtime(cfs_b);
I
Ingo Molnar 已提交
7059 7060

	/* Restart the period timer (if active) to handle new period expiry: */
P
Peter Zijlstra 已提交
7061 7062
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
I
Ingo Molnar 已提交
7063

7064 7065
	raw_spin_unlock_irq(&cfs_b->lock);

7066
	for_each_online_cpu(i) {
7067
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7068
		struct rq *rq = cfs_rq->rq;
7069
		struct rq_flags rf;
7070

7071
		rq_lock_irq(rq, &rf);
7072
		cfs_rq->runtime_enabled = runtime_enabled;
7073
		cfs_rq->runtime_remaining = 0;
7074

7075
		if (cfs_rq->throttled)
7076
			unthrottle_cfs_rq(cfs_rq);
7077
		rq_unlock_irq(rq, &rf);
7078
	}
7079 7080
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
7081 7082
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7083
	put_online_cpus();
7084

7085
	return ret;
7086 7087 7088 7089 7090 7091
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7092
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7105
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7106 7107
		return -1;

7108
	quota_us = tg->cfs_bandwidth.quota;
7109 7110 7111 7112 7113 7114 7115 7116 7117 7118
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7119
	quota = tg->cfs_bandwidth.quota;
7120 7121 7122 7123 7124 7125 7126 7127

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7128
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7129 7130 7131 7132 7133
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7134 7135
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7136
{
7137
	return tg_get_cfs_quota(css_tg(css));
7138 7139
}

7140 7141
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7142
{
7143
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7144 7145
}

7146 7147
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7148
{
7149
	return tg_get_cfs_period(css_tg(css));
7150 7151
}

7152 7153
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7154
{
7155
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7156 7157
}

7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7190
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7191 7192 7193 7194 7195
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7196
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7197 7198

		quota = normalize_cfs_quota(tg, d);
7199
		parent_quota = parent_b->hierarchical_quota;
7200 7201

		/*
I
Ingo Molnar 已提交
7202 7203
		 * Ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set:
7204 7205 7206 7207 7208 7209
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
7210
	cfs_b->hierarchical_quota = quota;
7211 7212 7213 7214 7215 7216

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7217
	int ret;
7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7229 7230 7231 7232 7233
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7234
}
7235

7236
static int cpu_stats_show(struct seq_file *sf, void *v)
7237
{
7238
	struct task_group *tg = css_tg(seq_css(sf));
7239
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7240

7241 7242 7243
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7244 7245 7246

	return 0;
}
7247
#endif /* CONFIG_CFS_BANDWIDTH */
7248
#endif /* CONFIG_FAIR_GROUP_SCHED */
7249

7250
#ifdef CONFIG_RT_GROUP_SCHED
7251 7252
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
7253
{
7254
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
7255 7256
}

7257 7258
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
7259
{
7260
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
7261
}
7262

7263 7264
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
7265
{
7266
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7267 7268
}

7269 7270
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7271
{
7272
	return sched_group_rt_period(css_tg(css));
7273
}
7274
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7275

7276
static struct cftype cpu_files[] = {
7277
#ifdef CONFIG_FAIR_GROUP_SCHED
7278 7279
	{
		.name = "shares",
7280 7281
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7282
	},
7283
#endif
7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7295 7296
	{
		.name = "stat",
7297
		.seq_show = cpu_stats_show,
7298
	},
7299
#endif
7300
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7301
	{
P
Peter Zijlstra 已提交
7302
		.name = "rt_runtime_us",
7303 7304
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7305
	},
7306 7307
	{
		.name = "rt_period_us",
7308 7309
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7310
	},
7311
#endif
I
Ingo Molnar 已提交
7312
	{ }	/* Terminate */
7313 7314
};

7315
struct cgroup_subsys cpu_cgrp_subsys = {
7316
	.css_alloc	= cpu_cgroup_css_alloc,
7317
	.css_online	= cpu_cgroup_css_online,
7318
	.css_released	= cpu_cgroup_css_released,
7319
	.css_free	= cpu_cgroup_css_free,
7320
	.fork		= cpu_cgroup_fork,
7321 7322
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7323
	.legacy_cftypes	= cpu_files,
7324
	.early_init	= true,
7325 7326
};

7327
#endif	/* CONFIG_CGROUP_SCHED */
7328

7329 7330 7331 7332 7333
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};