core.c 173.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3
 *
I
Ingo Molnar 已提交
4
 *  Core kernel scheduler code and related syscalls
L
Linus Torvalds 已提交
5 6 7
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 */
8
#include "sched.h"
L
Linus Torvalds 已提交
9

10
#include <linux/kthread.h>
11
#include <linux/nospec.h>
12

13 14
#include <linux/kcov.h>

15
#include <asm/switch_to.h>
16
#include <asm/tlb.h>
L
Linus Torvalds 已提交
17

18
#include "../workqueue_internal.h"
19
#include "../smpboot.h"
20

21
#define CREATE_TRACE_POINTS
22
#include <trace/events/sched.h>
23

24
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
25

26
#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
I
Ingo Molnar 已提交
27 28
/*
 * Debugging: various feature bits
29 30 31 32
 *
 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
 * sysctl_sched_features, defined in sched.h, to allow constants propagation
 * at compile time and compiler optimization based on features default.
I
Ingo Molnar 已提交
33
 */
P
Peter Zijlstra 已提交
34 35
#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |
I
Ingo Molnar 已提交
36
const_debug unsigned int sysctl_sched_features =
37
#include "features.h"
P
Peter Zijlstra 已提交
38 39
	0;
#undef SCHED_FEAT
40
#endif
P
Peter Zijlstra 已提交
41

42 43 44 45 46 47
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

48 49 50 51 52 53 54 55
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
56
/*
I
Ingo Molnar 已提交
57
 * period over which we measure -rt task CPU usage in us.
P
Peter Zijlstra 已提交
58 59
 * default: 1s
 */
P
Peter Zijlstra 已提交
60
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
61

62
__read_mostly int scheduler_running;
63

P
Peter Zijlstra 已提交
64 65 66 67 68
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
69

70 71 72
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
73
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
74 75 76 77 78 79 80 81 82 83
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
84
			rq_pin_lock(rq, rf);
85 86 87 88 89 90 91 92 93 94 95 96
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
97
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
98 99 100 101 102 103
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
104
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
105 106 107 108 109 110 111 112 113 114 115 116
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
117
		 * If we observe the old CPU in task_rq_lock, the acquire of
118 119
		 * the old rq->lock will fully serialize against the stores.
		 *
I
Ingo Molnar 已提交
120
		 * If we observe the new CPU in task_rq_lock, the acquire will
121 122 123
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
124
			rq_pin_lock(rq, rf);
125 126 127
			return rq;
		}
		raw_spin_unlock(&rq->lock);
128
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
129 130 131 132 133 134

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * RQ-clock updating methods:
 */

static void update_rq_clock_task(struct rq *rq, s64 delta)
{
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_key_false((&paravirt_steal_rq_enabled))) {
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

	rq->clock_task += delta;

#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
}

void update_rq_clock(struct rq *rq)
{
	s64 delta;

	lockdep_assert_held(&rq->lock);

	if (rq->clock_update_flags & RQCF_ACT_SKIP)
		return;

#ifdef CONFIG_SCHED_DEBUG
203 204
	if (sched_feat(WARN_DOUBLE_CLOCK))
		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
205 206
	rq->clock_update_flags |= RQCF_UPDATED;
#endif
207

208 209 210 211 212 213 214 215
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	if (delta < 0)
		return;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
}


P
Peter Zijlstra 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
234
	struct rq_flags rf;
P
Peter Zijlstra 已提交
235 236 237

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

238
	rq_lock(rq, &rf);
239
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
240
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
241
	rq_unlock(rq, &rf);
P
Peter Zijlstra 已提交
242 243 244 245

	return HRTIMER_NORESTART;
}

246
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
247

248
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
249 250 251
{
	struct hrtimer *timer = &rq->hrtick_timer;

252
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
253 254
}

255 256 257 258
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
259
{
260
	struct rq *rq = arg;
261
	struct rq_flags rf;
262

263
	rq_lock(rq, &rf);
P
Peter Zijlstra 已提交
264
	__hrtick_restart(rq);
265
	rq->hrtick_csd_pending = 0;
266
	rq_unlock(rq, &rf);
267 268
}

269 270 271 272 273
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
274
void hrtick_start(struct rq *rq, u64 delay)
275
{
276
	struct hrtimer *timer = &rq->hrtick_timer;
277 278 279 280 281 282 283 284 285
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
286

287
	hrtimer_set_expires(timer, time);
288 289

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
290
		__hrtick_restart(rq);
291
	} else if (!rq->hrtick_csd_pending) {
292
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
293 294
		rq->hrtick_csd_pending = 1;
	}
295 296
}

297 298 299 300 301 302
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
303
void hrtick_start(struct rq *rq, u64 delay)
304
{
W
Wanpeng Li 已提交
305 306 307 308 309
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
310 311
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
312 313
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
314

315
static void hrtick_rq_init(struct rq *rq)
P
Peter Zijlstra 已提交
316
{
317 318
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
319

320 321 322 323
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
324

325 326
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
327
}
A
Andrew Morton 已提交
328
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
329 330 331 332
static inline void hrtick_clear(struct rq *rq)
{
}

333
static inline void hrtick_rq_init(struct rq *rq)
P
Peter Zijlstra 已提交
334 335
{
}
A
Andrew Morton 已提交
336
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

356
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
357 358 359 360 361 362 363 364 365 366
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
367 368 369 370 371 372 373 374 375 376

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
377
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
378 379 380 381 382 383 384 385 386 387 388 389 390 391

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

392 393 394 395 396 397
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
398 399 400 401 402 403 404

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
405 406
#endif

407 408 409 410 411 412 413 414 415 416
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
417
	 * barrier implied by the wakeup in wake_up_q().
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
I
Ingo Molnar 已提交
440
		/* Task can safely be re-inserted now: */
441 442 443 444 445 446 447 448 449 450 451 452
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
453
/*
454
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
455 456 457 458 459
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
460
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
461
{
462
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
463 464
	int cpu;

465
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
466

467
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
468 469
		return;

470
	cpu = cpu_of(rq);
471

472
	if (cpu == smp_processor_id()) {
473
		set_tsk_need_resched(curr);
474
		set_preempt_need_resched();
I
Ingo Molnar 已提交
475
		return;
476
	}
I
Ingo Molnar 已提交
477

478
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
479
		smp_send_reschedule(cpu);
480 481
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
482 483
}

484
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
485 486 487 488
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

489
	raw_spin_lock_irqsave(&rq->lock, flags);
490 491
	if (cpu_online(cpu) || cpu == smp_processor_id())
		resched_curr(rq);
492
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
493
}
494

495
#ifdef CONFIG_SMP
496
#ifdef CONFIG_NO_HZ_COMMON
497
/*
I
Ingo Molnar 已提交
498 499
 * In the semi idle case, use the nearest busy CPU for migrating timers
 * from an idle CPU.  This is good for power-savings.
500 501
 *
 * We don't do similar optimization for completely idle system, as
I
Ingo Molnar 已提交
502 503
 * selecting an idle CPU will add more delays to the timers than intended
 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
504
 */
505
int get_nohz_timer_target(void)
506
{
507
	int i, cpu = smp_processor_id();
508 509
	struct sched_domain *sd;

510
	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
511 512
		return cpu;

513
	rcu_read_lock();
514
	for_each_domain(cpu, sd) {
515
		for_each_cpu(i, sched_domain_span(sd)) {
516 517 518
			if (cpu == i)
				continue;

519
			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
520 521 522 523
				cpu = i;
				goto unlock;
			}
		}
524
	}
525

526 527
	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
528 529
unlock:
	rcu_read_unlock();
530 531
	return cpu;
}
I
Ingo Molnar 已提交
532

533 534 535 536 537 538 539 540 541 542
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
543
static void wake_up_idle_cpu(int cpu)
544 545 546 547 548 549
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

550
	if (set_nr_and_not_polling(rq->idle))
551
		smp_send_reschedule(cpu);
552 553
	else
		trace_sched_wake_idle_without_ipi(cpu);
554 555
}

556
static bool wake_up_full_nohz_cpu(int cpu)
557
{
558 559 560 561 562 563
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
564 565
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
566
	if (tick_nohz_full_cpu(cpu)) {
567 568
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
569
			tick_nohz_full_kick_cpu(cpu);
570 571 572 573 574 575
		return true;
	}

	return false;
}

576 577 578 579 580
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
581 582
void wake_up_nohz_cpu(int cpu)
{
583
	if (!wake_up_full_nohz_cpu(cpu))
584 585 586
		wake_up_idle_cpu(cpu);
}

587
static inline bool got_nohz_idle_kick(void)
588
{
589
	int cpu = smp_processor_id();
590

P
Peter Zijlstra 已提交
591
	if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
592 593 594 595 596 597 598 599 600
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
P
Peter Zijlstra 已提交
601
	atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
602
	return false;
603 604
}

605
#else /* CONFIG_NO_HZ_COMMON */
606

607
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
608
{
609
	return false;
P
Peter Zijlstra 已提交
610 611
}

612
#endif /* CONFIG_NO_HZ_COMMON */
613

614
#ifdef CONFIG_NO_HZ_FULL
615
bool sched_can_stop_tick(struct rq *rq)
616
{
617 618 619 620 621 622
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

623
	/*
624 625
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
626
	 */
627 628 629 630 631
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
632 633
	}

634 635 636 637 638 639 640 641 642 643 644 645 646 647
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
648
		return false;
649

650
	return true;
651 652
}
#endif /* CONFIG_NO_HZ_FULL */
653

654
void sched_avg_update(struct rq *rq)
655
{
656 657
	s64 period = sched_avg_period();

658
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
659 660 661 662 663 664
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
665 666 667
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
668 669
}

670
#endif /* CONFIG_SMP */
671

672 673
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
674
/*
675 676 677 678
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
679
 */
680
int walk_tg_tree_from(struct task_group *from,
681
			     tg_visitor down, tg_visitor up, void *data)
682 683
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
684
	int ret;
685

686 687
	parent = from;

688
down:
P
Peter Zijlstra 已提交
689 690
	ret = (*down)(parent, data);
	if (ret)
691
		goto out;
692 693 694 695 696 697 698
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
699
	ret = (*up)(parent, data);
700 701
	if (ret || parent == from)
		goto out;
702 703 704 705 706

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
707
out:
P
Peter Zijlstra 已提交
708
	return ret;
709 710
}

711
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
712
{
713
	return 0;
P
Peter Zijlstra 已提交
714
}
715 716
#endif

717
static void set_load_weight(struct task_struct *p, bool update_load)
718
{
N
Nikhil Rao 已提交
719 720 721
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
722 723 724
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
725
	if (idle_policy(p->policy)) {
726
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
727
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
728 729
		return;
	}
730

731 732 733 734 735 736 737 738 739 740
	/*
	 * SCHED_OTHER tasks have to update their load when changing their
	 * weight
	 */
	if (update_load && p->sched_class == &fair_sched_class) {
		reweight_task(p, prio);
	} else {
		load->weight = scale_load(sched_prio_to_weight[prio]);
		load->inv_weight = sched_prio_to_wmult[prio];
	}
741 742
}

743
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
744
{
745 746 747
	if (!(flags & ENQUEUE_NOCLOCK))
		update_rq_clock(rq);

748 749
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
750

751
	p->sched_class->enqueue_task(rq, p, flags);
752 753
}

754
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
755
{
756 757 758
	if (!(flags & DEQUEUE_NOCLOCK))
		update_rq_clock(rq);

759 760
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
761

762
	p->sched_class->dequeue_task(rq, p, flags);
763 764
}

765
void activate_task(struct rq *rq, struct task_struct *p, int flags)
766 767 768 769
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

770
	enqueue_task(rq, p, flags);
771 772
}

773
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
774 775 776 777
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

778
	dequeue_task(rq, p, flags);
779 780
}

781
/*
I
Ingo Molnar 已提交
782
 * __normal_prio - return the priority that is based on the static prio
783 784 785
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
786
	return p->static_prio;
787 788
}

789 790 791 792 793 794 795
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
796
static inline int normal_prio(struct task_struct *p)
797 798 799
{
	int prio;

800 801 802
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
803 804 805 806 807 808 809 810 811 812 813 814 815
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
816
static int effective_prio(struct task_struct *p)
817 818 819 820 821 822 823 824 825 826 827 828
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
829 830 831
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
832 833
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
834
 */
835
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
836 837 838 839
{
	return cpu_curr(task_cpu(p)) == p;
}

840
/*
841 842 843 844 845
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
846
 */
847 848
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
849
				       int oldprio)
850 851 852
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
853
			prev_class->switched_from(rq, p);
854

P
Peter Zijlstra 已提交
855
		p->sched_class->switched_to(rq, p);
856
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
857
		p->sched_class->prio_changed(rq, p, oldprio);
858 859
}

860
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
861 862 863 864 865 866 867 868 869 870
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
871
				resched_curr(rq);
872 873 874 875 876 877 878 879 880
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
881
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
882
		rq_clock_skip_update(rq);
883 884
}

L
Linus Torvalds 已提交
885
#ifdef CONFIG_SMP
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912

static inline bool is_per_cpu_kthread(struct task_struct *p)
{
	if (!(p->flags & PF_KTHREAD))
		return false;

	if (p->nr_cpus_allowed != 1)
		return false;

	return true;
}

/*
 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
 * __set_cpus_allowed_ptr() and select_fallback_rq().
 */
static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
{
	if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
		return false;

	if (is_per_cpu_kthread(p))
		return cpu_online(cpu);

	return cpu_active(cpu);
}

P
Peter Zijlstra 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
932 933
static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
				   struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
934 935 936 937
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
938
	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
939
	set_task_cpu(p, new_cpu);
940
	rq_unlock(rq, rf);
P
Peter Zijlstra 已提交
941 942 943

	rq = cpu_rq(new_cpu);

944
	rq_lock(rq, rf);
P
Peter Zijlstra 已提交
945 946
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
947
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
948 949 950 951 952 953 954 955 956 957 958
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
I
Ingo Molnar 已提交
959
 * Move (not current) task off this CPU, onto the destination CPU. We're doing
P
Peter Zijlstra 已提交
960 961 962 963 964 965 966
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
967 968
static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
				 struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
969 970
{
	/* Affinity changed (again). */
971
	if (!is_cpu_allowed(p, dest_cpu))
972
		return rq;
P
Peter Zijlstra 已提交
973

974
	update_rq_clock(rq);
975
	rq = move_queued_task(rq, rf, p, dest_cpu);
976 977

	return rq;
P
Peter Zijlstra 已提交
978 979 980 981 982 983 984 985 986 987
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
988 989
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
990
	struct rq_flags rf;
P
Peter Zijlstra 已提交
991 992

	/*
I
Ingo Molnar 已提交
993 994
	 * The original target CPU might have gone down and we might
	 * be on another CPU but it doesn't matter.
P
Peter Zijlstra 已提交
995 996 997 998 999 1000 1001 1002
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1003 1004

	raw_spin_lock(&p->pi_lock);
1005
	rq_lock(rq, &rf);
1006 1007 1008 1009 1010
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
1011 1012
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
1013
			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1014 1015 1016
		else
			p->wake_cpu = arg->dest_cpu;
	}
1017
	rq_unlock(rq, &rf);
1018 1019
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1020 1021 1022 1023
	local_irq_enable();
	return 0;
}

1024 1025 1026 1027 1028
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1029 1030 1031 1032 1033
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1034 1035
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1036 1037 1038
	struct rq *rq = task_rq(p);
	bool queued, running;

1039
	lockdep_assert_held(&p->pi_lock);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1050
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1051 1052 1053 1054
	}
	if (running)
		put_prev_task(rq, p);

1055
	p->sched_class->set_cpus_allowed(p, new_mask);
1056 1057

	if (queued)
1058
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1059
	if (running)
1060
		set_curr_task(rq, p);
1061 1062
}

P
Peter Zijlstra 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1072 1073
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1074
{
1075
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1076
	unsigned int dest_cpu;
1077 1078
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1079 1080
	int ret = 0;

1081
	rq = task_rq_lock(p, &rf);
1082
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1083

1084 1085 1086 1087 1088 1089 1090
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1091 1092 1093 1094 1095 1096 1097 1098 1099
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1100 1101 1102
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1103
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1104 1105 1106 1107 1108 1109
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1110 1111 1112
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
I
Ingo Molnar 已提交
1113
		 * !active we want to ensure they are strict per-CPU threads.
1114 1115 1116 1117 1118 1119
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1120 1121 1122 1123
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1124
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1125 1126 1127
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1128
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1129 1130 1131
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1132 1133 1134 1135 1136
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1137
		rq = move_queued_task(rq, &rf, p, dest_cpu);
1138
	}
P
Peter Zijlstra 已提交
1139
out:
1140
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1141 1142 1143

	return ret;
}
1144 1145 1146 1147 1148

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1149 1150
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1151
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1152
{
1153 1154 1155 1156 1157
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1158
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1159
			!p->on_rq);
1160

1161 1162 1163 1164 1165 1166 1167 1168 1169
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1170
#ifdef CONFIG_LOCKDEP
1171 1172 1173 1174 1175
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1176
	 * see task_group().
1177 1178 1179 1180
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1181 1182 1183
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1184 1185 1186 1187
	/*
	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
	 */
	WARN_ON_ONCE(!cpu_online(new_cpu));
1188 1189
#endif

1190
	trace_sched_migrate_task(p, new_cpu);
1191

1192
	if (task_cpu(p) != new_cpu) {
1193
		if (p->sched_class->migrate_task_rq)
1194
			p->sched_class->migrate_task_rq(p);
1195
		p->se.nr_migrations++;
1196
		rseq_migrate(p);
1197
		perf_event_task_migrate(p);
1198
	}
I
Ingo Molnar 已提交
1199 1200

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1201 1202
}

1203 1204
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1205
	if (task_on_rq_queued(p)) {
1206
		struct rq *src_rq, *dst_rq;
1207
		struct rq_flags srf, drf;
1208 1209 1210 1211

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1212 1213 1214
		rq_pin_lock(src_rq, &srf);
		rq_pin_lock(dst_rq, &drf);

1215
		p->on_rq = TASK_ON_RQ_MIGRATING;
1216 1217 1218
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1219
		p->on_rq = TASK_ON_RQ_QUEUED;
1220
		check_preempt_curr(dst_rq, p, 0);
1221 1222 1223 1224

		rq_unpin_lock(dst_rq, &drf);
		rq_unpin_lock(src_rq, &srf);

1225 1226 1227 1228
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
I
Ingo Molnar 已提交
1229
		 * previous CPU our target instead of where it really is.
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1246 1247 1248
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1249 1250 1251
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1252 1253
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1254
	double_rq_lock(src_rq, dst_rq);
1255

1256 1257 1258 1259 1260 1261
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

1262
	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1263 1264
		goto unlock;

1265
	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1266 1267 1268 1269 1270 1271 1272 1273 1274
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1275 1276
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1299 1300 1301 1302
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1303 1304 1305
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

1306
	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1307 1308
		goto out;

1309
	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1310 1311
		goto out;

1312
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1313 1314 1315 1316 1317 1318
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1319 1320 1321
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1322 1323 1324 1325 1326 1327 1328
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1329 1330 1331 1332 1333 1334
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1335
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1336
{
1337
	int running, queued;
1338
	struct rq_flags rf;
R
Roland McGrath 已提交
1339
	unsigned long ncsw;
1340
	struct rq *rq;
L
Linus Torvalds 已提交
1341

1342 1343 1344 1345 1346 1347 1348 1349
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1362 1363 1364
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1365
			cpu_relax();
R
Roland McGrath 已提交
1366
		}
1367

1368 1369 1370 1371 1372
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1373
		rq = task_rq_lock(p, &rf);
1374
		trace_sched_wait_task(p);
1375
		running = task_running(rq, p);
1376
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1377
		ncsw = 0;
1378
		if (!match_state || p->state == match_state)
1379
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1380
		task_rq_unlock(rq, p, &rf);
1381

R
Roland McGrath 已提交
1382 1383 1384 1385 1386 1387
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1398

1399 1400 1401 1402 1403
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1404
		 * So if it was still runnable (but just not actively
1405 1406 1407
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1408
		if (unlikely(queued)) {
T
Thomas Gleixner 已提交
1409
			ktime_t to = NSEC_PER_SEC / HZ;
1410 1411 1412

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1413 1414
			continue;
		}
1415

1416 1417 1418 1419 1420 1421 1422
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1423 1424

	return ncsw;
L
Linus Torvalds 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1434
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1440
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1450
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1451

1452
/*
1453
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1454 1455 1456 1457 1458
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
1459
 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1460
 *    see __set_cpus_allowed_ptr(). At this point the newly online
I
Ingo Molnar 已提交
1461
 *    CPU isn't yet part of the sched domains, and balancing will not
1462 1463
 *    see it.
 *
I
Ingo Molnar 已提交
1464
 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1465
 *    avoid the load balancer to place new tasks on the to be removed
I
Ingo Molnar 已提交
1466
 *    CPU. Existing tasks will remain running there and will be taken
1467 1468 1469 1470 1471 1472
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1473
 */
1474 1475
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1476 1477
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1478 1479
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1480

1481
	/*
I
Ingo Molnar 已提交
1482 1483 1484
	 * If the node that the CPU is on has been offlined, cpu_to_node()
	 * will return -1. There is no CPU on the node, and we should
	 * select the CPU on the other node.
1485 1486 1487 1488 1489 1490 1491 1492
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
1493
			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1494 1495
				return dest_cpu;
		}
1496
	}
1497

1498 1499
	for (;;) {
		/* Any allowed, online CPU? */
1500
		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1501
			if (!is_cpu_allowed(p, dest_cpu))
1502
				continue;
1503

1504 1505
			goto out;
		}
1506

1507
		/* No more Mr. Nice Guy. */
1508 1509
		switch (state) {
		case cpuset:
1510 1511 1512 1513 1514
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
I
Ingo Molnar 已提交
1515
			/* Fall-through */
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1535
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1536 1537
					task_pid_nr(p), p->comm, cpu);
		}
1538 1539 1540 1541 1542
	}

	return dest_cpu;
}

1543
/*
1544
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1545
 */
1546
static inline
1547
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1548
{
1549 1550
	lockdep_assert_held(&p->pi_lock);

1551
	if (p->nr_cpus_allowed > 1)
1552
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1553
	else
1554
		cpu = cpumask_any(&p->cpus_allowed);
1555 1556 1557 1558

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
I
Ingo Molnar 已提交
1559
	 * CPU.
1560 1561 1562 1563 1564 1565
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1566
	if (unlikely(!is_cpu_allowed(p, cpu)))
1567
		cpu = select_fallback_rq(task_cpu(p), p);
1568 1569

	return cpu;
1570
}
1571 1572 1573 1574 1575 1576

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1577

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1608 1609 1610 1611 1612 1613 1614 1615
#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1616
#endif /* CONFIG_SMP */
1617

P
Peter Zijlstra 已提交
1618
static void
1619
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1620
{
1621
	struct rq *rq;
1622

1623 1624 1625 1626
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1627

1628 1629
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1630 1631
		__schedstat_inc(rq->ttwu_local);
		__schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1632 1633 1634
	} else {
		struct sched_domain *sd;

1635
		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
1636
		rcu_read_lock();
1637
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1638
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1639
				__schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1640 1641 1642
				break;
			}
		}
1643
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1644
	}
1645 1646

	if (wake_flags & WF_MIGRATED)
1647
		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1648 1649
#endif /* CONFIG_SMP */

1650 1651
	__schedstat_inc(rq->ttwu_count);
	__schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1652 1653

	if (wake_flags & WF_SYNC)
1654
		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1655 1656
}

1657
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1658
{
T
Tejun Heo 已提交
1659
	activate_task(rq, p, en_flags);
1660
	p->on_rq = TASK_ON_RQ_QUEUED;
1661

I
Ingo Molnar 已提交
1662
	/* If a worker is waking up, notify the workqueue: */
1663 1664
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1665 1666
}

1667 1668 1669
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1670
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1671
			   struct rq_flags *rf)
T
Tejun Heo 已提交
1672 1673 1674
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1675 1676
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1677
#ifdef CONFIG_SMP
1678 1679
	if (p->sched_class->task_woken) {
		/*
1680 1681
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1682
		 */
1683
		rq_unpin_lock(rq, rf);
T
Tejun Heo 已提交
1684
		p->sched_class->task_woken(rq, p);
1685
		rq_repin_lock(rq, rf);
1686
	}
T
Tejun Heo 已提交
1687

1688
	if (rq->idle_stamp) {
1689
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1690
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1691

1692 1693 1694
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1695
			rq->avg_idle = max;
1696

T
Tejun Heo 已提交
1697 1698 1699 1700 1701
		rq->idle_stamp = 0;
	}
#endif
}

1702
static void
1703
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1704
		 struct rq_flags *rf)
1705
{
1706
	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1707

1708 1709
	lockdep_assert_held(&rq->lock);

1710 1711 1712
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1713 1714

	if (wake_flags & WF_MIGRATED)
1715
		en_flags |= ENQUEUE_MIGRATED;
1716 1717
#endif

1718
	ttwu_activate(rq, p, en_flags);
1719
	ttwu_do_wakeup(rq, p, wake_flags, rf);
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1730
	struct rq_flags rf;
1731 1732 1733
	struct rq *rq;
	int ret = 0;

1734
	rq = __task_rq_lock(p, &rf);
1735
	if (task_on_rq_queued(p)) {
1736 1737
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1738
		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1739 1740
		ret = 1;
	}
1741
	__task_rq_unlock(rq, &rf);
1742 1743 1744 1745

	return ret;
}

1746
#ifdef CONFIG_SMP
1747
void sched_ttwu_pending(void)
1748 1749
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1750
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1751
	struct task_struct *p, *t;
1752
	struct rq_flags rf;
1753

1754 1755 1756
	if (!llist)
		return;

1757
	rq_lock_irqsave(rq, &rf);
1758
	update_rq_clock(rq);
1759

1760 1761
	llist_for_each_entry_safe(p, t, llist, wake_entry)
		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1762

1763
	rq_unlock_irqrestore(rq, &rf);
1764 1765 1766 1767
}

void scheduler_ipi(void)
{
1768 1769 1770 1771 1772
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1773
	preempt_fold_need_resched();
1774

1775
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1792
	sched_ttwu_pending();
1793 1794 1795 1796

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1797
	if (unlikely(got_nohz_idle_kick())) {
1798
		this_rq()->idle_balance = 1;
1799
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1800
	}
1801
	irq_exit();
1802 1803
}

P
Peter Zijlstra 已提交
1804
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1805
{
1806 1807
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1808 1809
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1810 1811 1812 1813 1814 1815
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1816
}
1817

1818 1819 1820
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1821
	struct rq_flags rf;
1822

1823 1824 1825 1826
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1827 1828 1829 1830

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
1831
		rq_lock_irqsave(rq, &rf);
1832 1833
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
I
Ingo Molnar 已提交
1834
		/* Else CPU is not idle, do nothing here: */
1835
		rq_unlock_irqrestore(rq, &rf);
1836
	}
1837 1838 1839

out:
	rcu_read_unlock();
1840 1841
}

1842
bool cpus_share_cache(int this_cpu, int that_cpu)
1843 1844 1845
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1846
#endif /* CONFIG_SMP */
1847

1848
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1849 1850
{
	struct rq *rq = cpu_rq(cpu);
1851
	struct rq_flags rf;
1852

1853
#if defined(CONFIG_SMP)
1854
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
I
Ingo Molnar 已提交
1855
		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
P
Peter Zijlstra 已提交
1856
		ttwu_queue_remote(p, cpu, wake_flags);
1857 1858 1859 1860
		return;
	}
#endif

1861
	rq_lock(rq, &rf);
1862
	update_rq_clock(rq);
1863
	ttwu_do_activate(rq, p, wake_flags, &rf);
1864
	rq_unlock(rq, &rf);
T
Tejun Heo 已提交
1865 1866
}

1867 1868 1869 1870 1871 1872
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
I
Ingo Molnar 已提交
1873 1874
 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 * execution on its new CPU [c1].
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
I
Ingo Molnar 已提交
1885
 * Note: the CPU doing B need not be c0 or c1
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1917
 *   2) smp_cond_load_acquire(!X->on_cpu)
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1928
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1954
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1955 1956 1957
 *
 */

T
Tejun Heo 已提交
1958
/**
L
Linus Torvalds 已提交
1959
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1960
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1961
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1962
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1963
 *
1964
 * If (@state & @p->state) @p->state = TASK_RUNNING.
L
Linus Torvalds 已提交
1965
 *
1966 1967 1968 1969 1970 1971 1972
 * If the task was not queued/runnable, also place it back on a runqueue.
 *
 * Atomic against schedule() which would dequeue a task, also see
 * set_current_state().
 *
 * Return: %true if @p->state changes (an actual wakeup was done),
 *	   %false otherwise.
L
Linus Torvalds 已提交
1973
 */
1974 1975
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1976 1977
{
	unsigned long flags;
1978
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1979

1980 1981 1982 1983 1984 1985
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
1986
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1987
	smp_mb__after_spinlock();
P
Peter Zijlstra 已提交
1988
	if (!(p->state & state))
L
Linus Torvalds 已提交
1989 1990
		goto out;

1991 1992
	trace_sched_waking(p);

I
Ingo Molnar 已提交
1993 1994
	/* We're going to change ->state: */
	success = 1;
L
Linus Torvalds 已提交
1995 1996
	cpu = task_cpu(p);

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
	 * sched_ttwu_pending()                 try_to_wake_up()
	 *   [S] p->on_rq = 1;                  [L] P->state
	 *       UNLOCK rq->lock  -----.
	 *                              \
	 *				 +---   RMB
	 * schedule()                   /
	 *       LOCK rq->lock    -----'
	 *       UNLOCK rq->lock
	 *
	 * [task p]
	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
	 *
	 * Pairs with the UNLOCK+LOCK on rq->lock from the
	 * last wakeup of our task and the schedule that got our task
	 * current.
	 */
	smp_rmb();
2019 2020
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2021 2022

#ifdef CONFIG_SMP
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2042
	/*
I
Ingo Molnar 已提交
2043
	 * If the owning (remote) CPU is still in the middle of schedule() with
2044
	 * this task as prev, wait until its done referencing the task.
2045
	 *
2046
	 * Pairs with the smp_store_release() in finish_task().
2047 2048 2049
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2050
	 */
2051
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2052

2053
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2054
	p->state = TASK_WAKING;
2055

2056
	if (p->in_iowait) {
2057
		delayacct_blkio_end(p);
2058 2059 2060
		atomic_dec(&task_rq(p)->nr_iowait);
	}

2061
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2062 2063
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2064
		set_task_cpu(p, cpu);
2065
	}
2066 2067 2068 2069

#else /* CONFIG_SMP */

	if (p->in_iowait) {
2070
		delayacct_blkio_end(p);
2071 2072 2073
		atomic_dec(&task_rq(p)->nr_iowait);
	}

L
Linus Torvalds 已提交
2074 2075
#endif /* CONFIG_SMP */

2076
	ttwu_queue(p, cpu, wake_flags);
2077
stat:
2078
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2079
out:
2080
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2081 2082 2083 2084

	return success;
}

T
Tejun Heo 已提交
2085 2086 2087
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2088
 * @rf: request-queue flags for pinning
T
Tejun Heo 已提交
2089
 *
2090
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2091
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2092
 * the current task.
T
Tejun Heo 已提交
2093
 */
2094
static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
T
Tejun Heo 已提交
2095 2096 2097
{
	struct rq *rq = task_rq(p);

2098 2099 2100 2101
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2102 2103
	lockdep_assert_held(&rq->lock);

2104
	if (!raw_spin_trylock(&p->pi_lock)) {
2105 2106 2107 2108 2109 2110
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2111
		rq_unlock(rq, rf);
2112
		raw_spin_lock(&p->pi_lock);
2113
		rq_relock(rq, rf);
2114 2115
	}

T
Tejun Heo 已提交
2116
	if (!(p->state & TASK_NORMAL))
2117
		goto out;
T
Tejun Heo 已提交
2118

2119 2120
	trace_sched_waking(p);

2121 2122
	if (!task_on_rq_queued(p)) {
		if (p->in_iowait) {
2123
			delayacct_blkio_end(p);
2124 2125
			atomic_dec(&rq->nr_iowait);
		}
2126
		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2127
	}
P
Peter Zijlstra 已提交
2128

2129
	ttwu_do_wakeup(rq, p, 0, rf);
2130
	ttwu_stat(p, smp_processor_id(), 0);
2131 2132
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2133 2134
}

2135 2136 2137 2138 2139
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2140 2141 2142
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2143 2144 2145 2146
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2147
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2148
{
2149
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2150 2151 2152
}
EXPORT_SYMBOL(wake_up_process);

2153
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2154 2155 2156 2157 2158 2159 2160
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2161 2162 2163
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2164
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2165
{
P
Peter Zijlstra 已提交
2166 2167 2168
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2169 2170
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2171
	p->se.prev_sum_exec_runtime	= 0;
2172
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2173
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2174
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2175

2176 2177 2178 2179
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2180
#ifdef CONFIG_SCHEDSTATS
2181
	/* Even if schedstat is disabled, there should not be garbage */
2182
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2183
#endif
N
Nick Piggin 已提交
2184

2185
	RB_CLEAR_NODE(&p->dl.rb_node);
2186
	init_dl_task_timer(&p->dl);
2187
	init_dl_inactive_task_timer(&p->dl);
2188
	__dl_clear_params(p);
2189

P
Peter Zijlstra 已提交
2190
	INIT_LIST_HEAD(&p->rt.run_list);
2191 2192 2193 2194
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2195

2196 2197 2198
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2199

2200
	init_numa_balancing(clone_flags, p);
I
Ingo Molnar 已提交
2201 2202
}

2203 2204
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2205
#ifdef CONFIG_NUMA_BALANCING
2206

2207 2208 2209
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2210
		static_branch_enable(&sched_numa_balancing);
2211
	else
2212
		static_branch_disable(&sched_numa_balancing);
2213
}
2214 2215 2216 2217 2218 2219 2220

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2221
	int state = static_branch_likely(&sched_numa_balancing);
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2237

2238 2239
#ifdef CONFIG_SCHEDSTATS

2240
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2241
static bool __initdata __sched_schedstats = false;
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2265 2266 2267 2268 2269
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2270
	if (!strcmp(str, "enable")) {
2271
		__sched_schedstats = true;
2272 2273
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2274
		__sched_schedstats = false;
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2285 2286 2287 2288 2289
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2310 2311 2312 2313
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2314 2315 2316 2317

/*
 * fork()/clone()-time setup:
 */
2318
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2319
{
2320
	unsigned long flags;
I
Ingo Molnar 已提交
2321 2322
	int cpu = get_cpu();

2323
	__sched_fork(clone_flags, p);
2324
	/*
2325
	 * We mark the process as NEW here. This guarantees that
2326 2327 2328
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2329
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2330

2331 2332 2333 2334 2335
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2336 2337 2338 2339
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2340
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2341
			p->policy = SCHED_NORMAL;
2342
			p->static_prio = NICE_TO_PRIO(0);
2343 2344 2345 2346 2347
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
2348
		set_load_weight(p, false);
2349

2350 2351 2352 2353 2354 2355
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2356

2357 2358 2359 2360 2361 2362
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2363
		p->sched_class = &fair_sched_class;
2364
	}
2365

2366
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2367

2368 2369 2370 2371 2372 2373 2374
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2375
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2376
	/*
I
Ingo Molnar 已提交
2377
	 * We're setting the CPU for the first time, we don't migrate,
2378 2379 2380 2381 2382
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2383
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2384

2385
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2386
	if (likely(sched_info_on()))
2387
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2388
#endif
P
Peter Zijlstra 已提交
2389 2390
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2391
#endif
2392
	init_task_preempt_count(p);
2393
#ifdef CONFIG_SMP
2394
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2395
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2396
#endif
2397

N
Nick Piggin 已提交
2398
	put_cpu();
2399
	return 0;
L
Linus Torvalds 已提交
2400 2401
}

2402 2403 2404
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
2405
		return BW_UNIT;
2406 2407 2408 2409 2410 2411 2412 2413 2414

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

2415
	return div64_u64(runtime << BW_SHIFT, period);
2416 2417
}

L
Linus Torvalds 已提交
2418 2419 2420 2421 2422 2423 2424
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2425
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2426
{
2427
	struct rq_flags rf;
I
Ingo Molnar 已提交
2428
	struct rq *rq;
2429

2430
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2431
	p->state = TASK_RUNNING;
2432 2433 2434 2435
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
I
Ingo Molnar 已提交
2436
	 *  - any previously selected CPU might disappear through hotplug
2437 2438 2439
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2440
	 */
2441
	p->recent_used_cpu = task_cpu(p);
2442
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2443
#endif
2444
	rq = __task_rq_lock(p, &rf);
2445
	update_rq_clock(rq);
2446
	post_init_entity_util_avg(&p->se);
2447

2448
	activate_task(rq, p, ENQUEUE_NOCLOCK);
2449
	p->on_rq = TASK_ON_RQ_QUEUED;
2450
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2451
	check_preempt_curr(rq, p, WF_FORK);
2452
#ifdef CONFIG_SMP
2453 2454 2455 2456 2457
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2458
		rq_unpin_lock(rq, &rf);
2459
		p->sched_class->task_woken(rq, p);
2460
		rq_repin_lock(rq, &rf);
2461
	}
2462
#endif
2463
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2464 2465
}

2466 2467
#ifdef CONFIG_PREEMPT_NOTIFIERS

2468
static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2469

2470 2471
void preempt_notifier_inc(void)
{
2472
	static_branch_inc(&preempt_notifier_key);
2473 2474 2475 2476 2477
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
2478
	static_branch_dec(&preempt_notifier_key);
2479 2480 2481
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2482
/**
2483
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2484
 * @notifier: notifier struct to register
2485 2486 2487
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2488
	if (!static_branch_unlikely(&preempt_notifier_key))
2489 2490
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2491 2492 2493 2494 2495 2496
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2497
 * @notifier: notifier struct to unregister
2498
 *
2499
 * This is *not* safe to call from within a preemption notifier.
2500 2501 2502 2503 2504 2505 2506
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2507
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2508 2509 2510
{
	struct preempt_notifier *notifier;

2511
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2512 2513 2514
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2515 2516
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
2517
	if (static_branch_unlikely(&preempt_notifier_key))
2518 2519 2520
		__fire_sched_in_preempt_notifiers(curr);
}

2521
static void
2522 2523
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2524 2525 2526
{
	struct preempt_notifier *notifier;

2527
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2528 2529 2530
		notifier->ops->sched_out(notifier, next);
}

2531 2532 2533 2534
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
2535
	if (static_branch_unlikely(&preempt_notifier_key))
2536 2537 2538
		__fire_sched_out_preempt_notifiers(curr, next);
}

2539
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2540

2541
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2542 2543 2544
{
}

2545
static inline void
2546 2547 2548 2549 2550
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2551
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2552

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
static inline void prepare_task(struct task_struct *next)
{
#ifdef CONFIG_SMP
	/*
	 * Claim the task as running, we do this before switching to it
	 * such that any running task will have this set.
	 */
	next->on_cpu = 1;
#endif
}

static inline void finish_task(struct task_struct *prev)
{
#ifdef CONFIG_SMP
	/*
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 *
	 * In particular, the load of prev->state in finish_task_switch() must
	 * happen before this.
	 *
	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
	 */
	smp_store_release(&prev->on_cpu, 0);
#endif
}

2581 2582
static inline void
prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2583
{
2584 2585 2586 2587 2588 2589 2590 2591
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
	rq_unpin_lock(rq, rf);
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2592 2593
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
2594
	rq->lock.owner = next;
2595
#endif
2596 2597 2598 2599
}

static inline void finish_lock_switch(struct rq *rq)
{
2600 2601 2602 2603 2604 2605 2606 2607 2608
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
	raw_spin_unlock_irq(&rq->lock);
}

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
/*
 * NOP if the arch has not defined these:
 */

#ifndef prepare_arch_switch
# define prepare_arch_switch(next)	do { } while (0)
#endif

#ifndef finish_arch_post_lock_switch
# define finish_arch_post_lock_switch()	do { } while (0)
#endif

2621 2622 2623
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2624
 * @prev: the current task that is being switched out
2625 2626 2627 2628 2629 2630 2631 2632 2633
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2634 2635 2636
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2637
{
2638
	kcov_prepare_switch(prev);
2639
	sched_info_switch(rq, prev, next);
2640
	perf_event_task_sched_out(prev, next);
2641
	rseq_preempt(prev);
2642
	fire_sched_out_preempt_notifiers(prev, next);
2643
	prepare_task(next);
2644 2645 2646
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2647 2648 2649 2650
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2651 2652 2653 2654
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2655 2656
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2657
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2658 2659
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2660 2661 2662 2663 2664
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2665
 */
2666
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2667 2668
	__releases(rq->lock)
{
2669
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2670
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2671
	long prev_state;
L
Linus Torvalds 已提交
2672

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2684 2685 2686 2687
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2688

L
Linus Torvalds 已提交
2689 2690 2691 2692
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2693
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2694 2695
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2696 2697
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
2698
	 * finish_task), otherwise a concurrent wakeup can get prev
2699 2700
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2701
	 */
O
Oleg Nesterov 已提交
2702
	prev_state = prev->state;
2703
	vtime_task_switch(prev);
2704
	perf_event_task_sched_in(prev, current);
2705 2706
	finish_task(prev);
	finish_lock_switch(rq);
2707
	finish_arch_post_lock_switch();
2708
	kcov_finish_switch(current);
S
Steven Rostedt 已提交
2709

2710
	fire_sched_in_preempt_notifiers(current);
2711
	/*
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
	 * When switching through a kernel thread, the loop in
	 * membarrier_{private,global}_expedited() may have observed that
	 * kernel thread and not issued an IPI. It is therefore possible to
	 * schedule between user->kernel->user threads without passing though
	 * switch_mm(). Membarrier requires a barrier after storing to
	 * rq->curr, before returning to userspace, so provide them here:
	 *
	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
	 *   provided by mmdrop(),
	 * - a sync_core for SYNC_CORE.
2722
	 */
2723 2724
	if (mm) {
		membarrier_mm_sync_core_before_usermode(mm);
L
Linus Torvalds 已提交
2725
		mmdrop(mm);
2726
	}
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
	if (unlikely(prev_state & (TASK_DEAD|TASK_PARKED))) {
		switch (prev_state) {
		case TASK_DEAD:
			if (prev->sched_class->task_dead)
				prev->sched_class->task_dead(prev);

			/*
			 * Remove function-return probe instances associated with this
			 * task and put them back on the free list.
			 */
			kprobe_flush_task(prev);

			/* Task is done with its stack. */
			put_task_stack(prev);

			put_task_struct(prev);
			break;
2744

2745 2746 2747 2748
		case TASK_PARKED:
			kthread_park_complete(prev);
			break;
		}
2749
	}
2750

2751
	tick_nohz_task_switch();
2752
	return rq;
L
Linus Torvalds 已提交
2753 2754
}

2755 2756 2757
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2758
static void __balance_callback(struct rq *rq)
2759
{
2760 2761 2762
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2763

2764 2765 2766 2767 2768 2769 2770 2771
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2772

2773
		func(rq);
2774
	}
2775 2776 2777 2778 2779 2780 2781
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2782 2783 2784
}

#else
2785

2786
static inline void balance_callback(struct rq *rq)
2787
{
L
Linus Torvalds 已提交
2788 2789
}

2790 2791
#endif

L
Linus Torvalds 已提交
2792 2793 2794 2795
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2796
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2797 2798
	__releases(rq->lock)
{
2799
	struct rq *rq;
2800

2801 2802 2803 2804 2805 2806 2807 2808 2809
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2810
	rq = finish_task_switch(prev);
2811
	balance_callback(rq);
2812
	preempt_enable();
2813

L
Linus Torvalds 已提交
2814
	if (current->set_child_tid)
2815
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2816 2817 2818
}

/*
2819
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2820
 */
2821
static __always_inline struct rq *
2822
context_switch(struct rq *rq, struct task_struct *prev,
2823
	       struct task_struct *next, struct rq_flags *rf)
L
Linus Torvalds 已提交
2824
{
I
Ingo Molnar 已提交
2825
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2826

2827
	prepare_task_switch(rq, prev, next);
2828

I
Ingo Molnar 已提交
2829 2830
	mm = next->mm;
	oldmm = prev->active_mm;
2831 2832 2833 2834 2835
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2836
	arch_start_context_switch(prev);
2837

2838 2839 2840 2841 2842 2843 2844
	/*
	 * If mm is non-NULL, we pass through switch_mm(). If mm is
	 * NULL, we will pass through mmdrop() in finish_task_switch().
	 * Both of these contain the full memory barrier required by
	 * membarrier after storing to rq->curr, before returning to
	 * user-space.
	 */
2845
	if (!mm) {
L
Linus Torvalds 已提交
2846
		next->active_mm = oldmm;
V
Vegard Nossum 已提交
2847
		mmgrab(oldmm);
L
Linus Torvalds 已提交
2848 2849
		enter_lazy_tlb(oldmm, next);
	} else
2850
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2851

2852
	if (!prev->mm) {
L
Linus Torvalds 已提交
2853 2854 2855
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2856

2857
	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2858

2859
	prepare_lock_switch(rq, next, rf);
L
Linus Torvalds 已提交
2860 2861 2862

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2863
	barrier();
2864 2865

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2866 2867 2868
}

/*
2869
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2870 2871
 *
 * externally visible scheduler statistics: current number of runnable
2872
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2873 2874 2875 2876 2877 2878 2879 2880 2881
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2882
}
L
Linus Torvalds 已提交
2883

2884
/*
I
Ingo Molnar 已提交
2885
 * Check if only the current task is running on the CPU.
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2896 2897 2898
 */
bool single_task_running(void)
{
2899
	return raw_rq()->nr_running == 1;
2900 2901 2902
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2903
unsigned long long nr_context_switches(void)
2904
{
2905 2906
	int i;
	unsigned long long sum = 0;
2907

2908
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2909
		sum += cpu_rq(i)->nr_switches;
2910

L
Linus Torvalds 已提交
2911 2912
	return sum;
}
2913

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
/*
 * IO-wait accounting, and how its mostly bollocks (on SMP).
 *
 * The idea behind IO-wait account is to account the idle time that we could
 * have spend running if it were not for IO. That is, if we were to improve the
 * storage performance, we'd have a proportional reduction in IO-wait time.
 *
 * This all works nicely on UP, where, when a task blocks on IO, we account
 * idle time as IO-wait, because if the storage were faster, it could've been
 * running and we'd not be idle.
 *
 * This has been extended to SMP, by doing the same for each CPU. This however
 * is broken.
 *
 * Imagine for instance the case where two tasks block on one CPU, only the one
 * CPU will have IO-wait accounted, while the other has regular idle. Even
 * though, if the storage were faster, both could've ran at the same time,
 * utilising both CPUs.
 *
 * This means, that when looking globally, the current IO-wait accounting on
 * SMP is a lower bound, by reason of under accounting.
 *
 * Worse, since the numbers are provided per CPU, they are sometimes
 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 * associated with any one particular CPU, it can wake to another CPU than it
 * blocked on. This means the per CPU IO-wait number is meaningless.
 *
 * Task CPU affinities can make all that even more 'interesting'.
 */

L
Linus Torvalds 已提交
2944 2945 2946
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2947

2948
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2949
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2950

L
Linus Torvalds 已提交
2951 2952
	return sum;
}
2953

2954 2955 2956 2957 2958 2959 2960
/*
 * Consumers of these two interfaces, like for example the cpufreq menu
 * governor are using nonsensical data. Boosting frequency for a CPU that has
 * IO-wait which might not even end up running the task when it does become
 * runnable.
 */

2961
unsigned long nr_iowait_cpu(int cpu)
2962
{
2963
	struct rq *this = cpu_rq(cpu);
2964 2965
	return atomic_read(&this->nr_iowait);
}
2966

2967 2968
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2969 2970 2971
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2972 2973
}

I
Ingo Molnar 已提交
2974
#ifdef CONFIG_SMP
2975

2976
/*
P
Peter Zijlstra 已提交
2977 2978
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2979
 */
P
Peter Zijlstra 已提交
2980
void sched_exec(void)
2981
{
P
Peter Zijlstra 已提交
2982
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2983
	unsigned long flags;
2984
	int dest_cpu;
2985

2986
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2987
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2988 2989
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2990

2991
	if (likely(cpu_active(dest_cpu))) {
2992
		struct migration_arg arg = { p, dest_cpu };
2993

2994 2995
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2996 2997
		return;
	}
2998
unlock:
2999
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3000
}
I
Ingo Molnar 已提交
3001

L
Linus Torvalds 已提交
3002 3003 3004
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
3005
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
3006 3007

EXPORT_PER_CPU_SYMBOL(kstat);
3008
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
3009

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

3027 3028 3029 3030 3031 3032 3033
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
3034
	struct rq_flags rf;
3035
	struct rq *rq;
3036
	u64 ns;
3037

3038 3039
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
3040
	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3041 3042 3043
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
I
Ingo Molnar 已提交
3044 3045
	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
	 * If we race with it entering CPU, unaccounted time is 0. This is
3046
	 * indistinguishable from the read occurring a few cycles earlier.
3047 3048
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
3049
	 */
3050
	if (!p->on_cpu || !task_on_rq_queued(p))
3051 3052 3053
		return p->se.sum_exec_runtime;
#endif

3054
	rq = task_rq_lock(p, &rf);
3055 3056 3057 3058 3059 3060
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
3061
		prefetch_curr_exec_start(p);
3062 3063 3064 3065
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3066
	task_rq_unlock(rq, p, &rf);
3067 3068 3069

	return ns;
}
3070

3071 3072 3073 3074 3075 3076 3077 3078
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3079
	struct task_struct *curr = rq->curr;
3080
	struct rq_flags rf;
3081 3082

	sched_clock_tick();
I
Ingo Molnar 已提交
3083

3084 3085
	rq_lock(rq, &rf);

3086
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3087
	curr->sched_class->task_tick(rq, curr, 0);
3088
	cpu_load_update_active(rq);
3089
	calc_global_load_tick(rq);
3090 3091

	rq_unlock(rq, &rf);
3092

3093
	perf_event_task_tick();
3094

3095
#ifdef CONFIG_SMP
3096
	rq->idle_balance = idle_cpu(cpu);
3097
	trigger_load_balance(rq);
3098
#endif
L
Linus Torvalds 已提交
3099 3100
}

3101
#ifdef CONFIG_NO_HZ_FULL
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191

struct tick_work {
	int			cpu;
	struct delayed_work	work;
};

static struct tick_work __percpu *tick_work_cpu;

static void sched_tick_remote(struct work_struct *work)
{
	struct delayed_work *dwork = to_delayed_work(work);
	struct tick_work *twork = container_of(dwork, struct tick_work, work);
	int cpu = twork->cpu;
	struct rq *rq = cpu_rq(cpu);
	struct rq_flags rf;

	/*
	 * Handle the tick only if it appears the remote CPU is running in full
	 * dynticks mode. The check is racy by nature, but missing a tick or
	 * having one too much is no big deal because the scheduler tick updates
	 * statistics and checks timeslices in a time-independent way, regardless
	 * of when exactly it is running.
	 */
	if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) {
		struct task_struct *curr;
		u64 delta;

		rq_lock_irq(rq, &rf);
		update_rq_clock(rq);
		curr = rq->curr;
		delta = rq_clock_task(rq) - curr->se.exec_start;

		/*
		 * Make sure the next tick runs within a reasonable
		 * amount of time.
		 */
		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
		curr->sched_class->task_tick(rq, curr, 0);
		rq_unlock_irq(rq, &rf);
	}

	/*
	 * Run the remote tick once per second (1Hz). This arbitrary
	 * frequency is large enough to avoid overload but short enough
	 * to keep scheduler internal stats reasonably up to date.
	 */
	queue_delayed_work(system_unbound_wq, dwork, HZ);
}

static void sched_tick_start(int cpu)
{
	struct tick_work *twork;

	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
		return;

	WARN_ON_ONCE(!tick_work_cpu);

	twork = per_cpu_ptr(tick_work_cpu, cpu);
	twork->cpu = cpu;
	INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
	queue_delayed_work(system_unbound_wq, &twork->work, HZ);
}

#ifdef CONFIG_HOTPLUG_CPU
static void sched_tick_stop(int cpu)
{
	struct tick_work *twork;

	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
		return;

	WARN_ON_ONCE(!tick_work_cpu);

	twork = per_cpu_ptr(tick_work_cpu, cpu);
	cancel_delayed_work_sync(&twork->work);
}
#endif /* CONFIG_HOTPLUG_CPU */

int __init sched_tick_offload_init(void)
{
	tick_work_cpu = alloc_percpu(struct tick_work);
	BUG_ON(!tick_work_cpu);

	return 0;
}

#else /* !CONFIG_NO_HZ_FULL */
static inline void sched_tick_start(int cpu) { }
static inline void sched_tick_stop(int cpu) { }
3192
#endif
L
Linus Torvalds 已提交
3193

3194 3195
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3210

3211
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3212
{
3213
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3214 3215 3216
	/*
	 * Underflow?
	 */
3217 3218
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3219
#endif
3220
	__preempt_count_add(val);
3221
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3222 3223 3224
	/*
	 * Spinlock count overflowing soon?
	 */
3225 3226
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3227
#endif
3228
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3229
}
3230
EXPORT_SYMBOL(preempt_count_add);
3231
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3232

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3243
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3244
{
3245
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3246 3247 3248
	/*
	 * Underflow?
	 */
3249
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3250
		return;
L
Linus Torvalds 已提交
3251 3252 3253
	/*
	 * Is the spinlock portion underflowing?
	 */
3254 3255 3256
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3257
#endif
3258

3259
	preempt_latency_stop(val);
3260
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3261
}
3262
EXPORT_SYMBOL(preempt_count_sub);
3263
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3264

3265 3266 3267
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3268 3269
#endif

3270 3271 3272 3273 3274 3275 3276 3277 3278
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
	return p->preempt_disable_ip;
#else
	return 0;
#endif
}

L
Linus Torvalds 已提交
3279
/*
I
Ingo Molnar 已提交
3280
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3281
 */
I
Ingo Molnar 已提交
3282
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3283
{
3284 3285 3286
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3287 3288 3289
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3290 3291
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3292

I
Ingo Molnar 已提交
3293
	debug_show_held_locks(prev);
3294
	print_modules();
I
Ingo Molnar 已提交
3295 3296
	if (irqs_disabled())
		print_irqtrace_events(prev);
3297 3298
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3299
		pr_err("Preemption disabled at:");
3300
		print_ip_sym(preempt_disable_ip);
3301 3302
		pr_cont("\n");
	}
3303 3304 3305
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3306
	dump_stack();
3307
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3308
}
L
Linus Torvalds 已提交
3309

I
Ingo Molnar 已提交
3310 3311 3312 3313 3314
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3315
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3316 3317
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3318
#endif
3319

3320
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3321
		__schedule_bug(prev);
3322 3323
		preempt_count_set(PREEMPT_DISABLED);
	}
3324
	rcu_sleep_check();
I
Ingo Molnar 已提交
3325

L
Linus Torvalds 已提交
3326 3327
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3328
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3329 3330 3331 3332 3333 3334
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3335
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
I
Ingo Molnar 已提交
3336
{
3337
	const struct sched_class *class;
I
Ingo Molnar 已提交
3338
	struct task_struct *p;
L
Linus Torvalds 已提交
3339 3340

	/*
3341 3342 3343 3344
	 * Optimization: we know that if all tasks are in the fair class we can
	 * call that function directly, but only if the @prev task wasn't of a
	 * higher scheduling class, because otherwise those loose the
	 * opportunity to pull in more work from other CPUs.
L
Linus Torvalds 已提交
3345
	 */
3346 3347 3348 3349
	if (likely((prev->sched_class == &idle_sched_class ||
		    prev->sched_class == &fair_sched_class) &&
		   rq->nr_running == rq->cfs.h_nr_running)) {

3350
		p = fair_sched_class.pick_next_task(rq, prev, rf);
3351 3352 3353
		if (unlikely(p == RETRY_TASK))
			goto again;

I
Ingo Molnar 已提交
3354
		/* Assumes fair_sched_class->next == idle_sched_class */
3355
		if (unlikely(!p))
3356
			p = idle_sched_class.pick_next_task(rq, prev, rf);
3357 3358

		return p;
L
Linus Torvalds 已提交
3359 3360
	}

3361
again:
3362
	for_each_class(class) {
3363
		p = class->pick_next_task(rq, prev, rf);
3364 3365 3366
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3367
			return p;
3368
		}
I
Ingo Molnar 已提交
3369
	}
3370

I
Ingo Molnar 已提交
3371 3372
	/* The idle class should always have a runnable task: */
	BUG();
I
Ingo Molnar 已提交
3373
}
L
Linus Torvalds 已提交
3374

I
Ingo Molnar 已提交
3375
/*
3376
 * __schedule() is the main scheduler function.
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3411
 *
3412
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3413
 */
3414
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3415 3416
{
	struct task_struct *prev, *next;
3417
	unsigned long *switch_count;
3418
	struct rq_flags rf;
I
Ingo Molnar 已提交
3419
	struct rq *rq;
3420
	int cpu;
I
Ingo Molnar 已提交
3421 3422 3423 3424 3425 3426

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3427

3428
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3429
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3430

3431
	local_irq_disable();
3432
	rcu_note_context_switch(preempt);
3433

3434 3435 3436 3437
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
3438 3439 3440
	 *
	 * The membarrier system call requires a full memory barrier
	 * after coming from user-space, before storing to rq->curr.
3441
	 */
3442
	rq_lock(rq, &rf);
3443
	smp_mb__after_spinlock();
L
Linus Torvalds 已提交
3444

I
Ingo Molnar 已提交
3445 3446
	/* Promote REQ to ACT */
	rq->clock_update_flags <<= 1;
3447
	update_rq_clock(rq);
3448

3449
	switch_count = &prev->nivcsw;
3450
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3451
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3452
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3453
		} else {
3454
			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3455 3456
			prev->on_rq = 0;

3457 3458 3459 3460 3461
			if (prev->in_iowait) {
				atomic_inc(&rq->nr_iowait);
				delayacct_blkio_start();
			}

T
Tejun Heo 已提交
3462
			/*
3463 3464 3465
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3466 3467 3468 3469
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3470
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3471
				if (to_wakeup)
3472
					try_to_wake_up_local(to_wakeup, &rf);
T
Tejun Heo 已提交
3473 3474
			}
		}
I
Ingo Molnar 已提交
3475
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3476 3477
	}

3478
	next = pick_next_task(rq, prev, &rf);
3479
	clear_tsk_need_resched(prev);
3480
	clear_preempt_need_resched();
L
Linus Torvalds 已提交
3481 3482 3483 3484

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
3485 3486 3487
		/*
		 * The membarrier system call requires each architecture
		 * to have a full memory barrier after updating
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
		 * rq->curr, before returning to user-space.
		 *
		 * Here are the schemes providing that barrier on the
		 * various architectures:
		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
		 * - finish_lock_switch() for weakly-ordered
		 *   architectures where spin_unlock is a full barrier,
		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
		 *   is a RELEASE barrier),
3498
		 */
L
Linus Torvalds 已提交
3499 3500
		++*switch_count;

3501
		trace_sched_switch(preempt, prev, next);
I
Ingo Molnar 已提交
3502 3503 3504

		/* Also unlocks the rq: */
		rq = context_switch(rq, prev, next, &rf);
3505
	} else {
3506
		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3507
		rq_unlock_irq(rq, &rf);
3508
	}
L
Linus Torvalds 已提交
3509

3510
	balance_callback(rq);
L
Linus Torvalds 已提交
3511
}
3512

3513 3514
void __noreturn do_task_dead(void)
{
I
Ingo Molnar 已提交
3515
	/* Causes final put_task_struct in finish_task_switch(): */
3516
	set_special_state(TASK_DEAD);
I
Ingo Molnar 已提交
3517 3518 3519 3520

	/* Tell freezer to ignore us: */
	current->flags |= PF_NOFREEZE;

3521 3522
	__schedule(false);
	BUG();
I
Ingo Molnar 已提交
3523 3524

	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3525
	for (;;)
I
Ingo Molnar 已提交
3526
		cpu_relax();
3527 3528
}

3529 3530
static inline void sched_submit_work(struct task_struct *tsk)
{
3531
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3532 3533 3534 3535 3536 3537 3538 3539 3540
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3541
asmlinkage __visible void __sched schedule(void)
3542
{
3543 3544 3545
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3546
	do {
3547
		preempt_disable();
3548
		__schedule(false);
3549
		sched_preempt_enable_no_resched();
3550
	} while (need_resched());
3551
}
L
Linus Torvalds 已提交
3552 3553
EXPORT_SYMBOL(schedule);

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
/*
 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 * state (have scheduled out non-voluntarily) by making sure that all
 * tasks have either left the run queue or have gone into user space.
 * As idle tasks do not do either, they must not ever be preempted
 * (schedule out non-voluntarily).
 *
 * schedule_idle() is similar to schedule_preempt_disable() except that it
 * never enables preemption because it does not call sched_submit_work().
 */
void __sched schedule_idle(void)
{
	/*
	 * As this skips calling sched_submit_work(), which the idle task does
	 * regardless because that function is a nop when the task is in a
	 * TASK_RUNNING state, make sure this isn't used someplace that the
	 * current task can be in any other state. Note, idle is always in the
	 * TASK_RUNNING state.
	 */
	WARN_ON_ONCE(current->state);
	do {
		__schedule(false);
	} while (need_resched());
}

3579
#ifdef CONFIG_CONTEXT_TRACKING
3580
asmlinkage __visible void __sched schedule_user(void)
3581 3582 3583 3584 3585 3586
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3587 3588
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3589
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3590
	 * too frequently to make sense yet.
3591
	 */
3592
	enum ctx_state prev_state = exception_enter();
3593
	schedule();
3594
	exception_exit(prev_state);
3595 3596 3597
}
#endif

3598 3599 3600 3601 3602 3603 3604
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3605
	sched_preempt_enable_no_resched();
3606 3607 3608 3609
	schedule();
	preempt_disable();
}

3610
static void __sched notrace preempt_schedule_common(void)
3611 3612
{
	do {
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3626
		preempt_disable_notrace();
3627
		preempt_latency_start(1);
3628
		__schedule(true);
3629
		preempt_latency_stop(1);
3630
		preempt_enable_no_resched_notrace();
3631 3632 3633 3634 3635 3636 3637 3638

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3639 3640
#ifdef CONFIG_PREEMPT
/*
3641
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3642
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3643 3644
 * occur there and call schedule directly.
 */
3645
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3646 3647 3648
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3649
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3650
	 */
3651
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3652 3653
		return;

3654
	preempt_schedule_common();
L
Linus Torvalds 已提交
3655
}
3656
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3657
EXPORT_SYMBOL(preempt_schedule);
3658 3659

/**
3660
 * preempt_schedule_notrace - preempt_schedule called by tracing
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3673
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3674 3675 3676 3677 3678 3679 3680
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3694
		preempt_disable_notrace();
3695
		preempt_latency_start(1);
3696 3697 3698 3699 3700 3701
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3702
		__schedule(true);
3703 3704
		exception_exit(prev_ctx);

3705
		preempt_latency_stop(1);
3706
		preempt_enable_no_resched_notrace();
3707 3708
	} while (need_resched());
}
3709
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3710

3711
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3712 3713

/*
3714
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3715 3716 3717 3718
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3719
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3720
{
3721
	enum ctx_state prev_state;
3722

3723
	/* Catch callers which need to be fixed */
3724
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3725

3726 3727
	prev_state = exception_enter();

3728
	do {
3729
		preempt_disable();
3730
		local_irq_enable();
3731
		__schedule(true);
3732
		local_irq_disable();
3733
		sched_preempt_enable_no_resched();
3734
	} while (need_resched());
3735 3736

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3737 3738
}

3739
int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3740
			  void *key)
L
Linus Torvalds 已提交
3741
{
P
Peter Zijlstra 已提交
3742
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3743 3744 3745
}
EXPORT_SYMBOL(default_wake_function);

3746 3747
#ifdef CONFIG_RT_MUTEXES

3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
{
	if (pi_task)
		prio = min(prio, pi_task->prio);

	return prio;
}

static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	struct task_struct *pi_task = rt_mutex_get_top_task(p);

	return __rt_effective_prio(pi_task, prio);
}

3763 3764
/*
 * rt_mutex_setprio - set the current priority of a task
3765 3766
 * @p: task to boost
 * @pi_task: donor task
3767 3768 3769 3770
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3771 3772
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3773
 */
3774
void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3775
{
3776
	int prio, oldprio, queued, running, queue_flag =
3777
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3778
	const struct sched_class *prev_class;
3779 3780
	struct rq_flags rf;
	struct rq *rq;
3781

3782 3783 3784 3785 3786 3787 3788 3789
	/* XXX used to be waiter->prio, not waiter->task->prio */
	prio = __rt_effective_prio(pi_task, p->normal_prio);

	/*
	 * If nothing changed; bail early.
	 */
	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
		return;
3790

3791
	rq = __task_rq_lock(p, &rf);
3792
	update_rq_clock(rq);
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
	/*
	 * Set under pi_lock && rq->lock, such that the value can be used under
	 * either lock.
	 *
	 * Note that there is loads of tricky to make this pointer cache work
	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
	 * ensure a task is de-boosted (pi_task is set to NULL) before the
	 * task is allowed to run again (and can exit). This ensures the pointer
	 * points to a blocked task -- which guaratees the task is present.
	 */
	p->pi_top_task = pi_task;

	/*
	 * For FIFO/RR we only need to set prio, if that matches we're done.
	 */
	if (prio == p->prio && !dl_prio(prio))
		goto out_unlock;
3810

3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3829
	trace_sched_pi_setprio(p, pi_task);
3830
	oldprio = p->prio;
3831 3832 3833 3834

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3835
	prev_class = p->sched_class;
3836
	queued = task_on_rq_queued(p);
3837
	running = task_current(rq, p);
3838
	if (queued)
3839
		dequeue_task(rq, p, queue_flag);
3840
	if (running)
3841
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3842

3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3853 3854
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3855
			p->dl.dl_boosted = 1;
3856
			queue_flag |= ENQUEUE_REPLENISH;
3857 3858
		} else
			p->dl.dl_boosted = 0;
3859
		p->sched_class = &dl_sched_class;
3860 3861 3862 3863
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3864
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3865
		p->sched_class = &rt_sched_class;
3866 3867 3868
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3869 3870
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3871
		p->sched_class = &fair_sched_class;
3872
	}
I
Ingo Molnar 已提交
3873

3874 3875
	p->prio = prio;

3876
	if (queued)
3877
		enqueue_task(rq, p, queue_flag);
3878
	if (running)
3879
		set_curr_task(rq, p);
3880

P
Peter Zijlstra 已提交
3881
	check_class_changed(rq, p, prev_class, oldprio);
3882
out_unlock:
I
Ingo Molnar 已提交
3883 3884
	/* Avoid rq from going away on us: */
	preempt_disable();
3885
	__task_rq_unlock(rq, &rf);
3886 3887 3888

	balance_callback(rq);
	preempt_enable();
3889
}
3890 3891 3892 3893 3894
#else
static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	return prio;
}
3895
#endif
3896

3897
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3898
{
P
Peter Zijlstra 已提交
3899 3900
	bool queued, running;
	int old_prio, delta;
3901
	struct rq_flags rf;
3902
	struct rq *rq;
L
Linus Torvalds 已提交
3903

3904
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3905 3906 3907 3908 3909
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3910
	rq = task_rq_lock(p, &rf);
3911 3912
	update_rq_clock(rq);

L
Linus Torvalds 已提交
3913 3914 3915 3916
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3917
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3918
	 */
3919
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3920 3921 3922
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3923
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3924
	running = task_current(rq, p);
3925
	if (queued)
3926
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
3927 3928
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3929 3930

	p->static_prio = NICE_TO_PRIO(nice);
3931
	set_load_weight(p, true);
3932 3933 3934
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3935

3936
	if (queued) {
3937
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
L
Linus Torvalds 已提交
3938
		/*
3939 3940
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3941
		 */
3942
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3943
			resched_curr(rq);
L
Linus Torvalds 已提交
3944
	}
P
Peter Zijlstra 已提交
3945 3946
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3947
out_unlock:
3948
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3949 3950 3951
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3952 3953 3954 3955 3956
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3957
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3958
{
I
Ingo Molnar 已提交
3959
	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3960
	int nice_rlim = nice_to_rlimit(nice);
3961

3962
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3963 3964 3965
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3966 3967 3968 3969 3970 3971 3972 3973 3974
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3975
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3976
{
3977
	long nice, retval;
L
Linus Torvalds 已提交
3978 3979 3980 3981 3982 3983

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3984
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3985
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3986

3987
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3988 3989 3990
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
4005
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
4006 4007 4008
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4009
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4010 4011 4012 4013 4014
{
	return p->prio - MAX_RT_PRIO;
}

/**
I
Ingo Molnar 已提交
4015
 * idle_cpu - is a given CPU idle currently?
L
Linus Torvalds 已提交
4016
 * @cpu: the processor in question.
4017 4018
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
4019 4020 4021
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
4036 4037
}

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
/**
 * available_idle_cpu - is a given CPU idle for enqueuing work.
 * @cpu: the CPU in question.
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
 */
int available_idle_cpu(int cpu)
{
	if (!idle_cpu(cpu))
		return 0;

4049 4050 4051
	if (vcpu_is_preempted(cpu))
		return 0;

T
Thomas Gleixner 已提交
4052
	return 1;
L
Linus Torvalds 已提交
4053 4054 4055
}

/**
I
Ingo Molnar 已提交
4056
 * idle_task - return the idle task for a given CPU.
L
Linus Torvalds 已提交
4057
 * @cpu: the processor in question.
4058
 *
I
Ingo Molnar 已提交
4059
 * Return: The idle task for the CPU @cpu.
L
Linus Torvalds 已提交
4060
 */
4061
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4062 4063 4064 4065 4066 4067 4068
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
4069 4070
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
4071
 */
A
Alexey Dobriyan 已提交
4072
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4073
{
4074
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4075 4076
}

4077 4078 4079 4080 4081 4082
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

4083 4084
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
4085
{
4086 4087
	int policy = attr->sched_policy;

4088
	if (policy == SETPARAM_POLICY)
4089 4090
		policy = p->policy;

L
Linus Torvalds 已提交
4091
	p->policy = policy;
4092

4093 4094
	if (dl_policy(policy))
		__setparam_dl(p, attr);
4095
	else if (fair_policy(policy))
4096 4097
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

4098 4099 4100 4101 4102 4103
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
4104
	p->normal_prio = normal_prio(p);
4105
	set_load_weight(p, true);
4106
}
4107

4108 4109
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
4110
			   const struct sched_attr *attr, bool keep_boost)
4111 4112
{
	__setscheduler_params(p, attr);
4113

4114
	/*
4115 4116
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
4117
	 */
4118
	p->prio = normal_prio(p);
4119
	if (keep_boost)
4120
		p->prio = rt_effective_prio(p, p->prio);
4121

4122 4123 4124
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
4125 4126 4127
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
4128
}
4129

4130
/*
I
Ingo Molnar 已提交
4131
 * Check the target process has a UID that matches the current process's:
4132 4133 4134 4135 4136 4137 4138 4139
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4140 4141
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4142 4143 4144 4145
	rcu_read_unlock();
	return match;
}

4146 4147
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4148
				bool user, bool pi)
L
Linus Torvalds 已提交
4149
{
4150 4151
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4152
	int retval, oldprio, oldpolicy = -1, queued, running;
4153
	int new_effective_prio, policy = attr->sched_policy;
4154
	const struct sched_class *prev_class;
4155
	struct rq_flags rf;
4156
	int reset_on_fork;
4157
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4158
	struct rq *rq;
L
Linus Torvalds 已提交
4159

4160 4161
	/* The pi code expects interrupts enabled */
	BUG_ON(pi && in_interrupt());
L
Linus Torvalds 已提交
4162
recheck:
I
Ingo Molnar 已提交
4163
	/* Double check policy once rq lock held: */
4164 4165
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4166
		policy = oldpolicy = p->policy;
4167
	} else {
4168
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4169

4170
		if (!valid_policy(policy))
4171 4172 4173
			return -EINVAL;
	}

4174
	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4175 4176
		return -EINVAL;

L
Linus Torvalds 已提交
4177 4178
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4179 4180
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4181
	 */
4182
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4183
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4184
		return -EINVAL;
4185 4186
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4187 4188
		return -EINVAL;

4189 4190 4191
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4192
	if (user && !capable(CAP_SYS_NICE)) {
4193
		if (fair_policy(policy)) {
4194
			if (attr->sched_nice < task_nice(p) &&
4195
			    !can_nice(p, attr->sched_nice))
4196 4197 4198
				return -EPERM;
		}

4199
		if (rt_policy(policy)) {
4200 4201
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4202

I
Ingo Molnar 已提交
4203
			/* Can't set/change the rt policy: */
4204 4205 4206
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

I
Ingo Molnar 已提交
4207
			/* Can't increase priority: */
4208 4209
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4210 4211
				return -EPERM;
		}
4212

4213 4214 4215 4216 4217 4218 4219 4220 4221
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4222
		/*
4223 4224
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4225
		 */
4226
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4227
			if (!can_nice(p, task_nice(p)))
4228 4229
				return -EPERM;
		}
4230

I
Ingo Molnar 已提交
4231
		/* Can't change other user's priorities: */
4232
		if (!check_same_owner(p))
4233
			return -EPERM;
4234

I
Ingo Molnar 已提交
4235
		/* Normal users shall not reset the sched_reset_on_fork flag: */
4236 4237
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4238
	}
L
Linus Torvalds 已提交
4239

4240
	if (user) {
4241 4242 4243
		if (attr->sched_flags & SCHED_FLAG_SUGOV)
			return -EINVAL;

4244
		retval = security_task_setscheduler(p);
4245 4246 4247 4248
		if (retval)
			return retval;
	}

4249
	/*
I
Ingo Molnar 已提交
4250
	 * Make sure no PI-waiters arrive (or leave) while we are
4251
	 * changing the priority of the task:
4252
	 *
L
Lucas De Marchi 已提交
4253
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4254 4255
	 * runqueue lock must be held.
	 */
4256
	rq = task_rq_lock(p, &rf);
4257
	update_rq_clock(rq);
4258

4259
	/*
I
Ingo Molnar 已提交
4260
	 * Changing the policy of the stop threads its a very bad idea:
4261 4262
	 */
	if (p == rq->stop) {
4263
		task_rq_unlock(rq, p, &rf);
4264 4265 4266
		return -EINVAL;
	}

4267
	/*
4268 4269
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4270
	 */
4271
	if (unlikely(policy == p->policy)) {
4272
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4273 4274 4275
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4276
		if (dl_policy(policy) && dl_param_changed(p, attr))
4277
			goto change;
4278

4279
		p->sched_reset_on_fork = reset_on_fork;
4280
		task_rq_unlock(rq, p, &rf);
4281 4282
		return 0;
	}
4283
change:
4284

4285
	if (user) {
4286
#ifdef CONFIG_RT_GROUP_SCHED
4287 4288 4289 4290 4291
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4292 4293
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4294
			task_rq_unlock(rq, p, &rf);
4295 4296 4297
			return -EPERM;
		}
#endif
4298
#ifdef CONFIG_SMP
4299 4300
		if (dl_bandwidth_enabled() && dl_policy(policy) &&
				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4301 4302 4303 4304 4305 4306 4307
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4308 4309
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4310
				task_rq_unlock(rq, p, &rf);
4311 4312 4313 4314 4315
				return -EPERM;
			}
		}
#endif
	}
4316

I
Ingo Molnar 已提交
4317
	/* Re-check policy now with rq lock held: */
L
Linus Torvalds 已提交
4318 4319
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4320
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4321 4322
		goto recheck;
	}
4323 4324 4325 4326 4327 4328

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4329
	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4330
		task_rq_unlock(rq, p, &rf);
4331 4332 4333
		return -EBUSY;
	}

4334 4335 4336
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4337 4338 4339 4340 4341 4342 4343 4344
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
4345
		new_effective_prio = rt_effective_prio(p, newprio);
4346 4347
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4348 4349
	}

4350
	queued = task_on_rq_queued(p);
4351
	running = task_current(rq, p);
4352
	if (queued)
4353
		dequeue_task(rq, p, queue_flags);
4354
	if (running)
4355
		put_prev_task(rq, p);
4356

4357
	prev_class = p->sched_class;
4358
	__setscheduler(rq, p, attr, pi);
4359

4360
	if (queued) {
4361 4362 4363 4364
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4365 4366
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4367

4368
		enqueue_task(rq, p, queue_flags);
4369
	}
4370
	if (running)
4371
		set_curr_task(rq, p);
4372

P
Peter Zijlstra 已提交
4373
	check_class_changed(rq, p, prev_class, oldprio);
I
Ingo Molnar 已提交
4374 4375 4376

	/* Avoid rq from going away on us: */
	preempt_disable();
4377
	task_rq_unlock(rq, p, &rf);
4378

4379 4380
	if (pi)
		rt_mutex_adjust_pi(p);
4381

I
Ingo Molnar 已提交
4382
	/* Run balance callbacks after we've adjusted the PI chain: */
4383 4384
	balance_callback(rq);
	preempt_enable();
4385

L
Linus Torvalds 已提交
4386 4387
	return 0;
}
4388

4389 4390 4391 4392 4393 4394 4395 4396 4397
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4398 4399
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4400 4401 4402 4403 4404
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4405
	return __sched_setscheduler(p, &attr, check, true);
4406
}
4407 4408 4409 4410 4411 4412
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4413 4414
 * Return: 0 on success. An error code otherwise.
 *
4415 4416 4417
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4418
		       const struct sched_param *param)
4419
{
4420
	return _sched_setscheduler(p, policy, param, true);
4421
}
L
Linus Torvalds 已提交
4422 4423
EXPORT_SYMBOL_GPL(sched_setscheduler);

4424 4425
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4426
	return __sched_setscheduler(p, attr, true, true);
4427 4428 4429
}
EXPORT_SYMBOL_GPL(sched_setattr);

4430 4431 4432 4433 4434
int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, false, true);
}

4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4445 4446
 *
 * Return: 0 on success. An error code otherwise.
4447 4448
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4449
			       const struct sched_param *param)
4450
{
4451
	return _sched_setscheduler(p, policy, param, false);
4452
}
4453
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4454

I
Ingo Molnar 已提交
4455 4456
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4457 4458 4459
{
	struct sched_param lparam;
	struct task_struct *p;
4460
	int retval;
L
Linus Torvalds 已提交
4461 4462 4463 4464 4465

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4466 4467 4468

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4469
	p = find_process_by_pid(pid);
4470 4471 4472
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4473

L
Linus Torvalds 已提交
4474 4475 4476
	return retval;
}

4477 4478 4479
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
I
Ingo Molnar 已提交
4480
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4481 4482 4483 4484 4485 4486 4487
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

I
Ingo Molnar 已提交
4488
	/* Zero the full structure, so that a short copy will be nice: */
4489 4490 4491 4492 4493 4494
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

I
Ingo Molnar 已提交
4495 4496
	/* Bail out on silly large: */
	if (size > PAGE_SIZE)
4497 4498
		goto err_size;

I
Ingo Molnar 已提交
4499 4500
	/* ABI compatibility quirk: */
	if (!size)
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
I
Ingo Molnar 已提交
4535
	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4536 4537
	 * to be strict and return an error on out-of-bounds values?
	 */
4538
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4539

4540
	return 0;
4541 4542 4543

err_size:
	put_user(sizeof(*attr), &uattr->size);
4544
	return -E2BIG;
4545 4546
}

L
Linus Torvalds 已提交
4547 4548 4549 4550 4551
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4552 4553
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4554
 */
I
Ingo Molnar 已提交
4555
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4556
{
4557 4558 4559
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4560 4561 4562 4563 4564 4565 4566
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4567 4568
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4569
 */
4570
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4571
{
4572
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4573 4574
}

4575 4576 4577
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4578
 * @uattr: structure containing the extended parameters.
4579
 * @flags: for future extension.
4580
 */
4581 4582
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4583 4584 4585 4586 4587
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4588
	if (!uattr || pid < 0 || flags)
4589 4590
		return -EINVAL;

4591 4592 4593
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4594

4595
	if ((int)attr.sched_policy < 0)
4596
		return -EINVAL;
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4608 4609 4610
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4611 4612 4613
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4614
 */
4615
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4616
{
4617
	struct task_struct *p;
4618
	int retval;
L
Linus Torvalds 已提交
4619 4620

	if (pid < 0)
4621
		return -EINVAL;
L
Linus Torvalds 已提交
4622 4623

	retval = -ESRCH;
4624
	rcu_read_lock();
L
Linus Torvalds 已提交
4625 4626 4627 4628
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4629 4630
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4631
	}
4632
	rcu_read_unlock();
L
Linus Torvalds 已提交
4633 4634 4635 4636
	return retval;
}

/**
4637
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4638 4639
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4640 4641 4642
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4643
 */
4644
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4645
{
4646
	struct sched_param lp = { .sched_priority = 0 };
4647
	struct task_struct *p;
4648
	int retval;
L
Linus Torvalds 已提交
4649 4650

	if (!param || pid < 0)
4651
		return -EINVAL;
L
Linus Torvalds 已提交
4652

4653
	rcu_read_lock();
L
Linus Torvalds 已提交
4654 4655 4656 4657 4658 4659 4660 4661 4662
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4663 4664
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4665
	rcu_read_unlock();
L
Linus Torvalds 已提交
4666 4667 4668 4669 4670 4671 4672 4673 4674

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4675
	rcu_read_unlock();
L
Linus Torvalds 已提交
4676 4677 4678
	return retval;
}

4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4702
				return -EFBIG;
4703 4704 4705 4706 4707
		}

		attr->size = usize;
	}

4708
	ret = copy_to_user(uattr, attr, attr->size);
4709 4710 4711
	if (ret)
		return -EFAULT;

4712
	return 0;
4713 4714 4715
}

/**
4716
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4717
 * @pid: the pid in question.
J
Juri Lelli 已提交
4718
 * @uattr: structure containing the extended parameters.
4719
 * @size: sizeof(attr) for fwd/bwd comp.
4720
 * @flags: for future extension.
4721
 */
4722 4723
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4724 4725 4726 4727 4728 4729 4730 4731
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4732
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4746 4747
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4748 4749 4750
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4751 4752
		attr.sched_priority = p->rt_priority;
	else
4753
		attr.sched_nice = task_nice(p);
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4765
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4766
{
4767
	cpumask_var_t cpus_allowed, new_mask;
4768 4769
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4770

4771
	rcu_read_lock();
L
Linus Torvalds 已提交
4772 4773 4774

	p = find_process_by_pid(pid);
	if (!p) {
4775
		rcu_read_unlock();
L
Linus Torvalds 已提交
4776 4777 4778
		return -ESRCH;
	}

4779
	/* Prevent p going away */
L
Linus Torvalds 已提交
4780
	get_task_struct(p);
4781
	rcu_read_unlock();
L
Linus Torvalds 已提交
4782

4783 4784 4785 4786
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4787 4788 4789 4790 4791 4792 4793 4794
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4795
	retval = -EPERM;
E
Eric W. Biederman 已提交
4796 4797 4798 4799
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4800
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4801 4802 4803
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4804

4805
	retval = security_task_setscheduler(p);
4806
	if (retval)
4807
		goto out_free_new_mask;
4808

4809 4810 4811 4812

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4813 4814 4815 4816 4817 4818 4819
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4820 4821 4822
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4823
			retval = -EBUSY;
4824
			rcu_read_unlock();
4825
			goto out_free_new_mask;
4826
		}
4827
		rcu_read_unlock();
4828 4829
	}
#endif
P
Peter Zijlstra 已提交
4830
again:
4831
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4832

P
Paul Menage 已提交
4833
	if (!retval) {
4834 4835
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4836 4837 4838 4839 4840
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4841
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4842 4843 4844
			goto again;
		}
	}
4845
out_free_new_mask:
4846 4847 4848 4849
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4850 4851 4852 4853 4854
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4855
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4856
{
4857 4858 4859 4860 4861
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4862 4863 4864 4865
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
I
Ingo Molnar 已提交
4866
 * sys_sched_setaffinity - set the CPU affinity of a process
L
Linus Torvalds 已提交
4867 4868
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4869
 * @user_mask_ptr: user-space pointer to the new CPU mask
4870 4871
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4872
 */
4873 4874
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4875
{
4876
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4877 4878
	int retval;

4879 4880
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4881

4882 4883 4884 4885 4886
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4887 4888
}

4889
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4890
{
4891
	struct task_struct *p;
4892
	unsigned long flags;
L
Linus Torvalds 已提交
4893 4894
	int retval;

4895
	rcu_read_lock();
L
Linus Torvalds 已提交
4896 4897 4898 4899 4900 4901

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4902 4903 4904 4905
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4906
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4907
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4908
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4909 4910

out_unlock:
4911
	rcu_read_unlock();
L
Linus Torvalds 已提交
4912

4913
	return retval;
L
Linus Torvalds 已提交
4914 4915 4916
}

/**
I
Ingo Molnar 已提交
4917
 * sys_sched_getaffinity - get the CPU affinity of a process
L
Linus Torvalds 已提交
4918 4919
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4920
 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4921
 *
4922 4923
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4924
 */
4925 4926
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4927 4928
{
	int ret;
4929
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4930

A
Anton Blanchard 已提交
4931
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4932 4933
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4934 4935
		return -EINVAL;

4936 4937
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4938

4939 4940
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4941
		unsigned int retlen = min(len, cpumask_size());
4942 4943

		if (copy_to_user(user_mask_ptr, mask, retlen))
4944 4945
			ret = -EFAULT;
		else
4946
			ret = retlen;
4947 4948
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4949

4950
	return ret;
L
Linus Torvalds 已提交
4951 4952 4953 4954 4955
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4956 4957
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4958 4959
 *
 * Return: 0.
L
Linus Torvalds 已提交
4960
 */
4961
static void do_sched_yield(void)
L
Linus Torvalds 已提交
4962
{
4963 4964 4965 4966 4967 4968
	struct rq_flags rf;
	struct rq *rq;

	local_irq_disable();
	rq = this_rq();
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
4969

4970
	schedstat_inc(rq->yld_count);
4971
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4972 4973 4974 4975 4976

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
4977 4978
	preempt_disable();
	rq_unlock(rq, &rf);
4979
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4980 4981

	schedule();
4982
}
L
Linus Torvalds 已提交
4983

4984 4985 4986
SYSCALL_DEFINE0(sched_yield)
{
	do_sched_yield();
L
Linus Torvalds 已提交
4987 4988 4989
	return 0;
}

4990
#ifndef CONFIG_PREEMPT
4991
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4992
{
4993
	if (should_resched(0)) {
4994
		preempt_schedule_common();
L
Linus Torvalds 已提交
4995 4996
		return 1;
	}
4997
	rcu_all_qs();
L
Linus Torvalds 已提交
4998 4999
	return 0;
}
5000
EXPORT_SYMBOL(_cond_resched);
5001
#endif
L
Linus Torvalds 已提交
5002 5003

/*
5004
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5005 5006
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5007
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5008 5009 5010
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5011
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5012
{
5013
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
5014 5015
	int ret = 0;

5016 5017
	lockdep_assert_held(lock);

5018
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5019
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5020
		if (resched)
5021
			preempt_schedule_common();
N
Nick Piggin 已提交
5022 5023
		else
			cpu_relax();
J
Jan Kara 已提交
5024
		ret = 1;
L
Linus Torvalds 已提交
5025 5026
		spin_lock(lock);
	}
J
Jan Kara 已提交
5027
	return ret;
L
Linus Torvalds 已提交
5028
}
5029
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5030 5031 5032 5033

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
5034 5035 5036 5037 5038 5039 5040 5041 5042
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
I
Ingo Molnar 已提交
5043
 *	yield();
P
Peter Zijlstra 已提交
5044 5045 5046 5047 5048 5049 5050 5051
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
5052 5053 5054 5055
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
5056
	do_sched_yield();
L
Linus Torvalds 已提交
5057 5058 5059
}
EXPORT_SYMBOL(yield);

5060 5061 5062 5063
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5064 5065
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5066 5067 5068 5069
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
5070
 * Return:
5071 5072 5073
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
5074
 */
5075
int __sched yield_to(struct task_struct *p, bool preempt)
5076 5077 5078 5079
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
5080
	int yielded = 0;
5081 5082 5083 5084 5085 5086

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
5087 5088 5089 5090 5091 5092 5093 5094 5095
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

5096
	double_rq_lock(rq, p_rq);
5097
	if (task_rq(p) != p_rq) {
5098 5099 5100 5101 5102
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
5103
		goto out_unlock;
5104 5105

	if (curr->sched_class != p->sched_class)
5106
		goto out_unlock;
5107 5108

	if (task_running(p_rq, p) || p->state)
5109
		goto out_unlock;
5110 5111

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5112
	if (yielded) {
5113
		schedstat_inc(rq->yld_count);
5114 5115 5116 5117 5118
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
5119
			resched_curr(p_rq);
5120
	}
5121

5122
out_unlock:
5123
	double_rq_unlock(rq, p_rq);
5124
out_irq:
5125 5126
	local_irq_restore(flags);

5127
	if (yielded > 0)
5128 5129 5130 5131 5132 5133
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
int io_schedule_prepare(void)
{
	int old_iowait = current->in_iowait;

	current->in_iowait = 1;
	blk_schedule_flush_plug(current);

	return old_iowait;
}

void io_schedule_finish(int token)
{
	current->in_iowait = token;
}

L
Linus Torvalds 已提交
5149
/*
I
Ingo Molnar 已提交
5150
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5151 5152 5153 5154
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5155
	int token;
L
Linus Torvalds 已提交
5156 5157
	long ret;

5158
	token = io_schedule_prepare();
L
Linus Torvalds 已提交
5159
	ret = schedule_timeout(timeout);
5160
	io_schedule_finish(token);
5161

L
Linus Torvalds 已提交
5162 5163
	return ret;
}
5164
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5165

5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
void io_schedule(void)
{
	int token;

	token = io_schedule_prepare();
	schedule();
	io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);

L
Linus Torvalds 已提交
5176 5177 5178 5179
/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5180 5181 5182
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5183
 */
5184
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5185 5186 5187 5188 5189 5190 5191 5192
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5193
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5194
	case SCHED_NORMAL:
5195
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5196
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5207 5208 5209
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5210
 */
5211
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5212 5213 5214 5215 5216 5217 5218 5219
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5220
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5221
	case SCHED_NORMAL:
5222
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5223
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5224 5225 5226 5227 5228
		ret = 0;
	}
	return ret;
}

5229
static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
L
Linus Torvalds 已提交
5230
{
5231
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5232
	unsigned int time_slice;
5233
	struct rq_flags rf;
5234
	struct rq *rq;
5235
	int retval;
L
Linus Torvalds 已提交
5236 5237

	if (pid < 0)
5238
		return -EINVAL;
L
Linus Torvalds 已提交
5239 5240

	retval = -ESRCH;
5241
	rcu_read_lock();
L
Linus Torvalds 已提交
5242 5243 5244 5245 5246 5247 5248 5249
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5250
	rq = task_rq_lock(p, &rf);
5251 5252 5253
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5254
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5255

5256
	rcu_read_unlock();
5257 5258
	jiffies_to_timespec64(time_slice, t);
	return 0;
5259

L
Linus Torvalds 已提交
5260
out_unlock:
5261
	rcu_read_unlock();
L
Linus Torvalds 已提交
5262 5263 5264
	return retval;
}

5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
 */
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
		struct timespec __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = put_timespec64(&t, interval);

	return retval;
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
		       compat_pid_t, pid,
		       struct compat_timespec __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = compat_put_timespec64(&t, interval);
	return retval;
}
#endif

5302
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5303 5304
{
	unsigned long free = 0;
5305
	int ppid;
5306

5307 5308
	if (!try_get_task_stack(p))
		return;
5309 5310 5311 5312

	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));

	if (p->state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5313
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5314
#ifdef CONFIG_DEBUG_STACK_USAGE
5315
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5316
#endif
5317
	ppid = 0;
5318
	rcu_read_lock();
5319 5320
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5321
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5322
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5323
		task_pid_nr(p), ppid,
5324
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5325

5326
	print_worker_info(KERN_INFO, p);
5327
	show_stack(p, NULL);
5328
	put_task_stack(p);
L
Linus Torvalds 已提交
5329
}
5330
EXPORT_SYMBOL_GPL(sched_show_task);
L
Linus Torvalds 已提交
5331

5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
static inline bool
state_filter_match(unsigned long state_filter, struct task_struct *p)
{
	/* no filter, everything matches */
	if (!state_filter)
		return true;

	/* filter, but doesn't match */
	if (!(p->state & state_filter))
		return false;

	/*
	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
	 * TASK_KILLABLE).
	 */
	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
		return false;

	return true;
}


I
Ingo Molnar 已提交
5354
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5355
{
5356
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5357

5358
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5359 5360
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5361
#else
P
Peter Zijlstra 已提交
5362 5363
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5364
#endif
5365
	rcu_read_lock();
5366
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5367 5368
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5369
		 * console might take a lot of time:
5370 5371 5372
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5373 5374
		 */
		touch_nmi_watchdog();
5375
		touch_all_softlockup_watchdogs();
5376
		if (state_filter_match(state_filter, p))
5377
			sched_show_task(p);
5378
	}
L
Linus Torvalds 已提交
5379

I
Ingo Molnar 已提交
5380
#ifdef CONFIG_SCHED_DEBUG
5381 5382
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5383
#endif
5384
	rcu_read_unlock();
I
Ingo Molnar 已提交
5385 5386 5387
	/*
	 * Only show locks if all tasks are dumped:
	 */
5388
	if (!state_filter)
I
Ingo Molnar 已提交
5389
		debug_show_all_locks();
L
Linus Torvalds 已提交
5390 5391
}

5392 5393 5394
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
I
Ingo Molnar 已提交
5395
 * @cpu: CPU the idle task belongs to
5396 5397 5398 5399
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5400
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5401
{
5402
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5403 5404
	unsigned long flags;

5405 5406
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5407

5408
	__sched_fork(0, idle);
5409
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5410
	idle->se.exec_start = sched_clock();
5411
	idle->flags |= PF_IDLE;
I
Ingo Molnar 已提交
5412

5413 5414
	kasan_unpoison_task_stack(idle);

5415 5416 5417 5418 5419 5420 5421 5422 5423
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5424 5425
	/*
	 * We're having a chicken and egg problem, even though we are
I
Ingo Molnar 已提交
5426
	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5427 5428 5429 5430 5431 5432 5433 5434
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5435
	__set_task_cpu(idle, cpu);
5436
	rcu_read_unlock();
L
Linus Torvalds 已提交
5437 5438

	rq->curr = rq->idle = idle;
5439
	idle->on_rq = TASK_ON_RQ_QUEUED;
5440
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5441
	idle->on_cpu = 1;
5442
#endif
5443 5444
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5445 5446

	/* Set the preempt count _outside_ the spinlocks! */
5447
	init_idle_preempt_count(idle, cpu);
5448

I
Ingo Molnar 已提交
5449 5450 5451 5452
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5453
	ftrace_graph_init_idle_task(idle, cpu);
5454
	vtime_init_idle(idle, cpu);
5455
#ifdef CONFIG_SMP
5456 5457
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5458 5459
}

5460 5461
#ifdef CONFIG_SMP

5462 5463 5464
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
5465
	int ret = 1;
5466

5467 5468 5469
	if (!cpumask_weight(cur))
		return ret;

5470
	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5471 5472 5473 5474

	return ret;
}

5475 5476 5477 5478 5479 5480 5481
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
I
Ingo Molnar 已提交
5482
	 * to a new cpuset; we don't want to change their CPU
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5495 5496
					      cs_cpus_allowed))
		ret = dl_task_can_attach(p, cs_cpus_allowed);
5497 5498 5499 5500 5501

out:
	return ret;
}

5502
bool sched_smp_initialized __read_mostly;
5503

5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

5514
	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5515 5516 5517 5518
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5519
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5520 5521
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5522 5523 5524 5525 5526 5527 5528

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5529
	bool queued, running;
5530 5531
	struct rq_flags rf;
	struct rq *rq;
5532

5533
	rq = task_rq_lock(p, &rf);
5534
	queued = task_on_rq_queued(p);
5535 5536
	running = task_current(rq, p);

5537
	if (queued)
5538
		dequeue_task(rq, p, DEQUEUE_SAVE);
5539
	if (running)
5540
		put_prev_task(rq, p);
5541 5542 5543

	p->numa_preferred_nid = nid;

5544
	if (queued)
5545
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5546
	if (running)
5547
		set_curr_task(rq, p);
5548
	task_rq_unlock(rq, p, &rf);
5549
}
P
Peter Zijlstra 已提交
5550
#endif /* CONFIG_NUMA_BALANCING */
5551

L
Linus Torvalds 已提交
5552
#ifdef CONFIG_HOTPLUG_CPU
5553
/*
I
Ingo Molnar 已提交
5554
 * Ensure that the idle task is using init_mm right before its CPU goes
5555
 * offline.
5556
 */
5557
void idle_task_exit(void)
L
Linus Torvalds 已提交
5558
{
5559
	struct mm_struct *mm = current->active_mm;
5560

5561
	BUG_ON(cpu_online(smp_processor_id()));
5562

5563
	if (mm != &init_mm) {
5564
		switch_mm(mm, &init_mm, current);
5565
		current->active_mm = &init_mm;
5566 5567
		finish_arch_post_lock_switch();
	}
5568
	mmdrop(mm);
L
Linus Torvalds 已提交
5569 5570 5571
}

/*
5572 5573
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5574 5575 5576
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5577 5578
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5579
 */
5580
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5581
{
5582
	long delta = calc_load_fold_active(rq, 1);
5583 5584
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5585 5586
}

5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5603
/*
5604 5605 5606 5607 5608 5609
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5610
 */
5611
static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
L
Linus Torvalds 已提交
5612
{
5613
	struct rq *rq = dead_rq;
5614
	struct task_struct *next, *stop = rq->stop;
5615
	struct rq_flags orf = *rf;
5616
	int dest_cpu;
L
Linus Torvalds 已提交
5617 5618

	/*
5619 5620 5621 5622 5623 5624 5625
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5626
	 */
5627
	rq->stop = NULL;
5628

5629 5630 5631 5632 5633 5634 5635
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5636
	for (;;) {
5637 5638
		/*
		 * There's this thread running, bail when that's the only
I
Ingo Molnar 已提交
5639
		 * remaining thread:
5640 5641
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5642
			break;
5643

5644
		/*
I
Ingo Molnar 已提交
5645
		 * pick_next_task() assumes pinned rq->lock:
5646
		 */
5647
		next = pick_next_task(rq, &fake_task, rf);
5648
		BUG_ON(!next);
V
Viresh Kumar 已提交
5649
		put_prev_task(rq, next);
5650

W
Wanpeng Li 已提交
5651 5652 5653 5654 5655 5656 5657 5658 5659
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5660
		rq_unlock(rq, rf);
W
Wanpeng Li 已提交
5661
		raw_spin_lock(&next->pi_lock);
5662
		rq_relock(rq, rf);
W
Wanpeng Li 已提交
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5674
		/* Find suitable destination for @next, with force if needed. */
5675
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5676
		rq = __migrate_task(rq, rf, next, dest_cpu);
5677
		if (rq != dead_rq) {
5678
			rq_unlock(rq, rf);
5679
			rq = dead_rq;
5680 5681
			*rf = orf;
			rq_relock(rq, rf);
5682
		}
W
Wanpeng Li 已提交
5683
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5684
	}
5685

5686
	rq->stop = stop;
5687
}
L
Linus Torvalds 已提交
5688 5689
#endif /* CONFIG_HOTPLUG_CPU */

5690
void set_rq_online(struct rq *rq)
5691 5692 5693 5694
{
	if (!rq->online) {
		const struct sched_class *class;

5695
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5696 5697 5698 5699 5700 5701 5702 5703 5704
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

5705
void set_rq_offline(struct rq *rq)
5706 5707 5708 5709 5710 5711 5712 5713 5714
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5715
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5716 5717 5718 5719
		rq->online = 0;
	}
}

5720
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5721
{
5722
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5723

5724 5725 5726
	rq->age_stamp = sched_clock_cpu(cpu);
}

I
Ingo Molnar 已提交
5727 5728 5729 5730
/*
 * used to mark begin/end of suspend/resume:
 */
static int num_cpus_frozen;
5731

L
Linus Torvalds 已提交
5732
/*
5733 5734 5735
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
5736 5737 5738
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
5739
 */
5740
static void cpuset_cpu_active(void)
5741
{
5742
	if (cpuhp_tasks_frozen) {
5743 5744 5745 5746 5747 5748
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
5749 5750
		partition_sched_domains(1, NULL, NULL);
		if (--num_cpus_frozen)
5751
			return;
5752 5753 5754 5755 5756
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
5757
		cpuset_force_rebuild();
5758
	}
5759
	cpuset_update_active_cpus();
5760
}
5761

5762
static int cpuset_cpu_inactive(unsigned int cpu)
5763
{
5764
	if (!cpuhp_tasks_frozen) {
5765
		if (dl_cpu_busy(cpu))
5766
			return -EBUSY;
5767
		cpuset_update_active_cpus();
5768
	} else {
5769 5770
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
5771
	}
5772
	return 0;
5773 5774
}

5775
int sched_cpu_activate(unsigned int cpu)
5776
{
5777
	struct rq *rq = cpu_rq(cpu);
5778
	struct rq_flags rf;
5779

5780
	set_cpu_active(cpu, true);
5781

5782
	if (sched_smp_initialized) {
5783
		sched_domains_numa_masks_set(cpu);
5784
		cpuset_cpu_active();
5785
	}
5786 5787 5788 5789 5790

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
I
Ingo Molnar 已提交
5791
	 *    after all CPUs have been brought up.
5792 5793 5794 5795
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
5796
	rq_lock_irqsave(rq, &rf);
5797 5798 5799 5800
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
5801
	rq_unlock_irqrestore(rq, &rf);
5802 5803 5804

	update_max_interval();

5805
	return 0;
5806 5807
}

5808
int sched_cpu_deactivate(unsigned int cpu)
5809 5810 5811
{
	int ret;

5812
	set_cpu_active(cpu, false);
5813 5814 5815 5816 5817 5818 5819
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
5820
	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5821 5822 5823 5824 5825 5826 5827 5828

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
5829
	}
5830 5831
	sched_domains_numa_masks_clear(cpu);
	return 0;
5832 5833
}

5834 5835 5836 5837 5838 5839 5840 5841
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

5842 5843 5844
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
5845
	sched_rq_cpu_starting(cpu);
5846
	sched_tick_start(cpu);
5847
	return 0;
5848 5849
}

5850 5851 5852 5853
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5854
	struct rq_flags rf;
5855 5856 5857

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
5858
	sched_tick_stop(cpu);
5859 5860

	rq_lock_irqsave(rq, &rf);
5861 5862 5863 5864
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
5865
	migrate_tasks(rq, &rf);
5866
	BUG_ON(rq->nr_running != 1);
5867 5868
	rq_unlock_irqrestore(rq, &rf);

5869 5870
	calc_load_migrate(rq);
	update_max_interval();
5871
	nohz_balance_exit_idle(rq);
5872
	hrtick_clear(rq);
5873 5874 5875 5876
	return 0;
}
#endif

P
Peter Zijlstra 已提交
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);

static void sched_init_smt(void)
{
	/*
	 * We've enumerated all CPUs and will assume that if any CPU
	 * has SMT siblings, CPU0 will too.
	 */
	if (cpumask_weight(cpu_smt_mask(0)) > 1)
		static_branch_enable(&sched_smt_present);
}
#else
static inline void sched_init_smt(void) { }
#endif

L
Linus Torvalds 已提交
5893 5894
void __init sched_init_smp(void)
{
5895 5896
	sched_init_numa();

5897 5898
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
I
Ingo Molnar 已提交
5899
	 * CPU masks are stable and all blatant races in the below code cannot
5900 5901
	 * happen.
	 */
5902
	mutex_lock(&sched_domains_mutex);
P
Peter Zijlstra 已提交
5903
	sched_init_domains(cpu_active_mask);
5904
	mutex_unlock(&sched_domains_mutex);
5905

5906
	/* Move init over to a non-isolated CPU */
5907
	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5908
		BUG();
I
Ingo Molnar 已提交
5909
	sched_init_granularity();
5910

5911
	init_sched_rt_class();
5912
	init_sched_dl_class();
P
Peter Zijlstra 已提交
5913 5914 5915

	sched_init_smt();

5916
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
5917
}
5918 5919 5920

static int __init migration_init(void)
{
5921
	sched_rq_cpu_starting(smp_processor_id());
5922
	return 0;
L
Linus Torvalds 已提交
5923
}
5924 5925
early_initcall(migration_init);

L
Linus Torvalds 已提交
5926 5927 5928
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
5929
	sched_init_granularity();
L
Linus Torvalds 已提交
5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

5940
#ifdef CONFIG_CGROUP_SCHED
5941 5942 5943 5944
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
5945
struct task_group root_task_group;
5946
LIST_HEAD(task_groups);
5947 5948 5949

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
5950
#endif
P
Peter Zijlstra 已提交
5951

5952
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5953
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
5954

L
Linus Torvalds 已提交
5955 5956
void __init sched_init(void)
{
I
Ingo Molnar 已提交
5957
	int i, j;
5958 5959
	unsigned long alloc_size = 0, ptr;

5960
	sched_clock_init();
5961
	wait_bit_init();
5962

5963 5964 5965 5966 5967 5968 5969
#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
5970
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5971 5972

#ifdef CONFIG_FAIR_GROUP_SCHED
5973
		root_task_group.se = (struct sched_entity **)ptr;
5974 5975
		ptr += nr_cpu_ids * sizeof(void **);

5976
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5977
		ptr += nr_cpu_ids * sizeof(void **);
5978

5979
#endif /* CONFIG_FAIR_GROUP_SCHED */
5980
#ifdef CONFIG_RT_GROUP_SCHED
5981
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5982 5983
		ptr += nr_cpu_ids * sizeof(void **);

5984
		root_task_group.rt_rq = (struct rt_rq **)ptr;
5985 5986
		ptr += nr_cpu_ids * sizeof(void **);

5987
#endif /* CONFIG_RT_GROUP_SCHED */
5988
	}
5989
#ifdef CONFIG_CPUMASK_OFFSTACK
5990 5991 5992
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5993 5994
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5995
	}
5996
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
5997

I
Ingo Molnar 已提交
5998 5999
	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6000

G
Gregory Haskins 已提交
6001 6002 6003 6004
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6005
#ifdef CONFIG_RT_GROUP_SCHED
6006
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6007
			global_rt_period(), global_rt_runtime());
6008
#endif /* CONFIG_RT_GROUP_SCHED */
6009

D
Dhaval Giani 已提交
6010
#ifdef CONFIG_CGROUP_SCHED
6011 6012
	task_group_cache = KMEM_CACHE(task_group, 0);

6013 6014
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6015
	INIT_LIST_HEAD(&root_task_group.siblings);
6016
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
6017
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6018

6019
	for_each_possible_cpu(i) {
6020
		struct rq *rq;
L
Linus Torvalds 已提交
6021 6022

		rq = cpu_rq(i);
6023
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6024
		rq->nr_running = 0;
6025 6026
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6027
		init_cfs_rq(&rq->cfs);
6028 6029
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
6030
#ifdef CONFIG_FAIR_GROUP_SCHED
6031
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6032
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6033
		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
D
Dhaval Giani 已提交
6034
		/*
I
Ingo Molnar 已提交
6035
		 * How much CPU bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6036 6037
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
I
Ingo Molnar 已提交
6038 6039
		 * gets 100% of the CPU resources in the system. This overall
		 * system CPU resource is divided among the tasks of
6040
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6041 6042 6043
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6044
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6045
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
I
Ingo Molnar 已提交
6046
		 * then A0's share of the CPU resource is:
D
Dhaval Giani 已提交
6047
		 *
6048
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6049
		 *
6050 6051
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6052
		 */
6053
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6054
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6055 6056 6057
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6058
#ifdef CONFIG_RT_GROUP_SCHED
6059
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6060
#endif
L
Linus Torvalds 已提交
6061

I
Ingo Molnar 已提交
6062 6063
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6064

L
Linus Torvalds 已提交
6065
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6066
		rq->sd = NULL;
G
Gregory Haskins 已提交
6067
		rq->rd = NULL;
6068
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6069
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
6070
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6071
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6072
		rq->push_cpu = 0;
6073
		rq->cpu = i;
6074
		rq->online = 0;
6075 6076
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6077
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6078 6079 6080

		INIT_LIST_HEAD(&rq->cfs_tasks);

6081
		rq_attach_root(rq, &def_root_domain);
6082
#ifdef CONFIG_NO_HZ_COMMON
6083
		rq->last_load_update_tick = jiffies;
6084
		rq->last_blocked_load_update_tick = jiffies;
6085
		atomic_set(&rq->nohz_flags, 0);
6086
#endif
6087
#endif /* CONFIG_SMP */
6088
		hrtick_rq_init(rq);
L
Linus Torvalds 已提交
6089 6090 6091
		atomic_set(&rq->nr_iowait, 0);
	}

6092
	set_load_weight(&init_task, false);
6093

L
Linus Torvalds 已提交
6094 6095 6096
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
V
Vegard Nossum 已提交
6097
	mmgrab(&init_mm);
L
Linus Torvalds 已提交
6098 6099 6100 6101 6102 6103 6104 6105 6106
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6107 6108 6109

	calc_load_update = jiffies + LOAD_FREQ;

6110
#ifdef CONFIG_SMP
6111
	idle_thread_set_boot_cpu();
6112
	set_cpu_rq_start_time(smp_processor_id());
6113 6114
#endif
	init_sched_fair_class();
6115

6116 6117
	init_schedstats();

6118
	scheduler_running = 1;
L
Linus Torvalds 已提交
6119 6120
}

6121
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6122 6123
static inline int preempt_count_equals(int preempt_offset)
{
6124
	int nested = preempt_count() + rcu_preempt_depth();
6125

A
Arnd Bergmann 已提交
6126
	return (nested == preempt_offset);
6127 6128
}

6129
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6130
{
P
Peter Zijlstra 已提交
6131 6132 6133 6134 6135
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
6136
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
6137 6138 6139 6140
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
6141
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
6142

6143 6144 6145 6146 6147
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6148
{
I
Ingo Molnar 已提交
6149 6150 6151
	/* Ratelimiting timestamp: */
	static unsigned long prev_jiffy;

6152
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
6153

I
Ingo Molnar 已提交
6154 6155 6156
	/* WARN_ON_ONCE() by default, no rate limit required: */
	rcu_sleep_check();

6157 6158
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
6159 6160
	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
	    oops_in_progress)
I
Ingo Molnar 已提交
6161
		return;
6162

I
Ingo Molnar 已提交
6163 6164 6165 6166
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

I
Ingo Molnar 已提交
6167
	/* Save this before calling printk(), since that will clobber it: */
6168 6169
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
6170 6171 6172 6173 6174 6175 6176
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6177

6178 6179 6180
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
6181 6182 6183
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6184 6185
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
6186
		pr_err("Preemption disabled at:");
6187
		print_ip_sym(preempt_disable_ip);
6188 6189
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
6190
	dump_stack();
6191
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
6192
}
6193
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
6194 6195 6196
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6197
void normalize_rt_tasks(void)
6198
{
6199
	struct task_struct *g, *p;
6200 6201 6202
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
6203

6204
	read_lock(&tasklist_lock);
6205
	for_each_process_thread(g, p) {
6206 6207 6208
		/*
		 * Only normalize user tasks:
		 */
6209
		if (p->flags & PF_KTHREAD)
6210 6211
			continue;

6212 6213 6214 6215
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
6216

6217
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
6218 6219 6220 6221
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
6222
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
6223
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6224
			continue;
I
Ingo Molnar 已提交
6225
		}
L
Linus Torvalds 已提交
6226

6227
		__sched_setscheduler(p, &attr, false, false);
6228
	}
6229
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6230 6231 6232
}

#endif /* CONFIG_MAGIC_SYSRQ */
6233

6234
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6235
/*
6236
 * These functions are only useful for the IA64 MCA handling, or kdb.
6237 6238 6239 6240 6241 6242 6243 6244 6245
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
I
Ingo Molnar 已提交
6246
 * curr_task - return the current task for a given CPU.
6247 6248 6249
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6250 6251
 *
 * Return: The current task for @cpu.
6252
 */
6253
struct task_struct *curr_task(int cpu)
6254 6255 6256 6257
{
	return cpu_curr(cpu);
}

6258 6259 6260
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6261
/**
I
Ingo Molnar 已提交
6262
 * set_curr_task - set the current task for a given CPU.
6263 6264 6265 6266
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6267
 * are serviced on a separate stack. It allows the architecture to switch the
I
Ingo Molnar 已提交
6268
 * notion of the current task on a CPU in a non-blocking manner. This function
6269 6270 6271 6272 6273 6274 6275
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6276
void ia64_set_curr_task(int cpu, struct task_struct *p)
6277 6278 6279 6280 6281
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6282

D
Dhaval Giani 已提交
6283
#ifdef CONFIG_CGROUP_SCHED
6284 6285 6286
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6287
static void sched_free_group(struct task_group *tg)
6288 6289 6290
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6291
	autogroup_free(tg);
6292
	kmem_cache_free(task_group_cache, tg);
6293 6294 6295
}

/* allocate runqueue etc for a new task group */
6296
struct task_group *sched_create_group(struct task_group *parent)
6297 6298 6299
{
	struct task_group *tg;

6300
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6301 6302 6303
	if (!tg)
		return ERR_PTR(-ENOMEM);

6304
	if (!alloc_fair_sched_group(tg, parent))
6305 6306
		goto err;

6307
	if (!alloc_rt_sched_group(tg, parent))
6308 6309
		goto err;

6310 6311 6312
	return tg;

err:
6313
	sched_free_group(tg);
6314 6315 6316 6317 6318 6319 6320
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6321
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6322
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6323

I
Ingo Molnar 已提交
6324 6325
	/* Root should already exist: */
	WARN_ON(!parent);
P
Peter Zijlstra 已提交
6326 6327 6328

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6329
	list_add_rcu(&tg->siblings, &parent->children);
6330
	spin_unlock_irqrestore(&task_group_lock, flags);
6331 6332

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
6333 6334
}

6335
/* rcu callback to free various structures associated with a task group */
6336
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6337
{
I
Ingo Molnar 已提交
6338
	/* Now it should be safe to free those cfs_rqs: */
6339
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6340 6341
}

6342
void sched_destroy_group(struct task_group *tg)
6343
{
I
Ingo Molnar 已提交
6344
	/* Wait for possible concurrent references to cfs_rqs complete: */
6345
	call_rcu(&tg->rcu, sched_free_group_rcu);
6346 6347 6348
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6349
{
6350
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
6351

I
Ingo Molnar 已提交
6352
	/* End participation in shares distribution: */
6353
	unregister_fair_sched_group(tg);
6354 6355

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6356
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6357
	list_del_rcu(&tg->siblings);
6358
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6359 6360
}

6361
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
6362
{
P
Peter Zijlstra 已提交
6363
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6364

6365 6366 6367 6368 6369 6370
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
6371 6372 6373 6374
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6375
#ifdef CONFIG_FAIR_GROUP_SCHED
6376 6377
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
6378
	else
P
Peter Zijlstra 已提交
6379
#endif
6380
		set_task_rq(tsk, task_cpu(tsk));
6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
6392 6393
	int queued, running, queue_flags =
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6394 6395 6396 6397
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);
6398
	update_rq_clock(rq);
6399 6400 6401 6402 6403

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
6404
		dequeue_task(rq, tsk, queue_flags);
6405
	if (running)
6406 6407 6408
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
6409

6410
	if (queued)
6411
		enqueue_task(rq, tsk, queue_flags);
6412
	if (running)
6413
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6414

6415
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
6416
}
6417

6418
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6419
{
6420
	return css ? container_of(css, struct task_group, css) : NULL;
6421 6422
}

6423 6424
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6425
{
6426 6427
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
6428

6429
	if (!parent) {
6430
		/* This is early initialization for the top cgroup */
6431
		return &root_task_group.css;
6432 6433
	}

6434
	tg = sched_create_group(parent);
6435 6436 6437 6438 6439 6440
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451
/* Expose task group only after completing cgroup initialization */
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css->parent);

	if (parent)
		sched_online_group(tg, parent);
	return 0;
}

6452
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6453
{
6454
	struct task_group *tg = css_tg(css);
6455

6456
	sched_offline_group(tg);
6457 6458
}

6459
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6460
{
6461
	struct task_group *tg = css_tg(css);
6462

6463 6464 6465 6466
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
6467 6468
}

6469 6470 6471 6472
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
6473
static void cpu_cgroup_fork(struct task_struct *task)
6474
{
6475 6476 6477 6478 6479
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

6480
	update_rq_clock(rq);
6481 6482 6483
	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
6484 6485
}

6486
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6487
{
6488
	struct task_struct *task;
6489
	struct cgroup_subsys_state *css;
6490
	int ret = 0;
6491

6492
	cgroup_taskset_for_each(task, css, tset) {
6493
#ifdef CONFIG_RT_GROUP_SCHED
6494
		if (!sched_rt_can_attach(css_tg(css), task))
6495
			return -EINVAL;
6496
#else
6497 6498 6499
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
6500
#endif
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
6517
	}
6518
	return ret;
6519
}
6520

6521
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6522
{
6523
	struct task_struct *task;
6524
	struct cgroup_subsys_state *css;
6525

6526
	cgroup_taskset_for_each(task, css, tset)
6527
		sched_move_task(task);
6528 6529
}

6530
#ifdef CONFIG_FAIR_GROUP_SCHED
6531 6532
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
6533
{
6534
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6535 6536
}

6537 6538
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
6539
{
6540
	struct task_group *tg = css_tg(css);
6541

6542
	return (u64) scale_load_down(tg->shares);
6543
}
6544 6545

#ifdef CONFIG_CFS_BANDWIDTH
6546 6547
static DEFINE_MUTEX(cfs_constraints_mutex);

6548 6549 6550
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

6551 6552
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

6553 6554
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
6555
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6556
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

6577 6578 6579 6580 6581
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
6582 6583 6584 6585 6586
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

6587
	runtime_enabled = quota != RUNTIME_INF;
6588
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6589 6590 6591 6592 6593 6594
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
6595 6596 6597
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
6598

P
Paul Turner 已提交
6599
	__refill_cfs_bandwidth_runtime(cfs_b);
I
Ingo Molnar 已提交
6600 6601

	/* Restart the period timer (if active) to handle new period expiry: */
P
Peter Zijlstra 已提交
6602 6603
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
I
Ingo Molnar 已提交
6604

6605 6606
	raw_spin_unlock_irq(&cfs_b->lock);

6607
	for_each_online_cpu(i) {
6608
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6609
		struct rq *rq = cfs_rq->rq;
6610
		struct rq_flags rf;
6611

6612
		rq_lock_irq(rq, &rf);
6613
		cfs_rq->runtime_enabled = runtime_enabled;
6614
		cfs_rq->runtime_remaining = 0;
6615

6616
		if (cfs_rq->throttled)
6617
			unthrottle_cfs_rq(cfs_rq);
6618
		rq_unlock_irq(rq, &rf);
6619
	}
6620 6621
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
6622 6623
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
6624
	put_online_cpus();
6625

6626
	return ret;
6627 6628 6629 6630 6631 6632
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

6633
	period = ktime_to_ns(tg->cfs_bandwidth.period);
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

6646
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6647 6648
		return -1;

6649
	quota_us = tg->cfs_bandwidth.quota;
6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
6660
	quota = tg->cfs_bandwidth.quota;
6661 6662 6663 6664 6665 6666 6667 6668

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

6669
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6670 6671 6672 6673 6674
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

6675 6676
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
6677
{
6678
	return tg_get_cfs_quota(css_tg(css));
6679 6680
}

6681 6682
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
6683
{
6684
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6685 6686
}

6687 6688
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6689
{
6690
	return tg_get_cfs_period(css_tg(css));
6691 6692
}

6693 6694
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
6695
{
6696
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6697 6698
}

6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
6731
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6732 6733 6734 6735 6736
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
6737
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6738 6739

		quota = normalize_cfs_quota(tg, d);
6740
		parent_quota = parent_b->hierarchical_quota;
6741 6742

		/*
6743 6744
		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
		 * always take the min.  On cgroup1, only inherit when no
I
Ingo Molnar 已提交
6745
		 * limit is set:
6746
		 */
6747 6748 6749 6750 6751 6752 6753 6754
		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
			quota = min(quota, parent_quota);
		} else {
			if (quota == RUNTIME_INF)
				quota = parent_quota;
			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
				return -EINVAL;
		}
6755
	}
6756
	cfs_b->hierarchical_quota = quota;
6757 6758 6759 6760 6761 6762

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
6763
	int ret;
6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

6775 6776 6777 6778 6779
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6780
}
6781

6782
static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6783
{
6784
	struct task_group *tg = css_tg(seq_css(sf));
6785
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6786

6787 6788 6789
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6790 6791 6792

	return 0;
}
6793
#endif /* CONFIG_CFS_BANDWIDTH */
6794
#endif /* CONFIG_FAIR_GROUP_SCHED */
6795

6796
#ifdef CONFIG_RT_GROUP_SCHED
6797 6798
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
6799
{
6800
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
6801 6802
}

6803 6804
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
6805
{
6806
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
6807
}
6808

6809 6810
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
6811
{
6812
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6813 6814
}

6815 6816
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6817
{
6818
	return sched_group_rt_period(css_tg(css));
6819
}
6820
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
6821

6822
static struct cftype cpu_legacy_files[] = {
6823
#ifdef CONFIG_FAIR_GROUP_SCHED
6824 6825
	{
		.name = "shares",
6826 6827
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
6828
	},
6829
#endif
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
6841 6842
	{
		.name = "stat",
6843
		.seq_show = cpu_cfs_stat_show,
6844
	},
6845
#endif
6846
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6847
	{
P
Peter Zijlstra 已提交
6848
		.name = "rt_runtime_us",
6849 6850
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
6851
	},
6852 6853
	{
		.name = "rt_period_us",
6854 6855
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
6856
	},
6857
#endif
I
Ingo Molnar 已提交
6858
	{ }	/* Terminate */
6859 6860
};

6861 6862
static int cpu_extra_stat_show(struct seq_file *sf,
			       struct cgroup_subsys_state *css)
6863 6864 6865
{
#ifdef CONFIG_CFS_BANDWIDTH
	{
6866
		struct task_group *tg = css_tg(css);
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		u64 throttled_usec;

		throttled_usec = cfs_b->throttled_time;
		do_div(throttled_usec, NSEC_PER_USEC);

		seq_printf(sf, "nr_periods %d\n"
			   "nr_throttled %d\n"
			   "throttled_usec %llu\n",
			   cfs_b->nr_periods, cfs_b->nr_throttled,
			   throttled_usec);
	}
#endif
	return 0;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	struct task_group *tg = css_tg(css);
	u64 weight = scale_load_down(tg->shares);

	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
}

static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cft, u64 weight)
{
	/*
	 * cgroup weight knobs should use the common MIN, DFL and MAX
	 * values which are 1, 100 and 10000 respectively.  While it loses
	 * a bit of range on both ends, it maps pretty well onto the shares
	 * value used by scheduler and the round-trip conversions preserve
	 * the original value over the entire range.
	 */
	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
		return -ERANGE;

	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);

	return sched_group_set_shares(css_tg(css), scale_load(weight));
}

static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
				    struct cftype *cft)
{
	unsigned long weight = scale_load_down(css_tg(css)->shares);
	int last_delta = INT_MAX;
	int prio, delta;

	/* find the closest nice value to the current weight */
	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
		delta = abs(sched_prio_to_weight[prio] - weight);
		if (delta >= last_delta)
			break;
		last_delta = delta;
	}

	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
}

static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
				     struct cftype *cft, s64 nice)
{
	unsigned long weight;
6933
	int idx;
6934 6935 6936 6937

	if (nice < MIN_NICE || nice > MAX_NICE)
		return -ERANGE;

6938 6939 6940 6941
	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
	idx = array_index_nospec(idx, 40);
	weight = sched_prio_to_weight[idx];

6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027
	return sched_group_set_shares(css_tg(css), scale_load(weight));
}
#endif

static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
						  long period, long quota)
{
	if (quota < 0)
		seq_puts(sf, "max");
	else
		seq_printf(sf, "%ld", quota);

	seq_printf(sf, " %ld\n", period);
}

/* caller should put the current value in *@periodp before calling */
static int __maybe_unused cpu_period_quota_parse(char *buf,
						 u64 *periodp, u64 *quotap)
{
	char tok[21];	/* U64_MAX */

	if (!sscanf(buf, "%s %llu", tok, periodp))
		return -EINVAL;

	*periodp *= NSEC_PER_USEC;

	if (sscanf(tok, "%llu", quotap))
		*quotap *= NSEC_PER_USEC;
	else if (!strcmp(tok, "max"))
		*quotap = RUNTIME_INF;
	else
		return -EINVAL;

	return 0;
}

#ifdef CONFIG_CFS_BANDWIDTH
static int cpu_max_show(struct seq_file *sf, void *v)
{
	struct task_group *tg = css_tg(seq_css(sf));

	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
	return 0;
}

static ssize_t cpu_max_write(struct kernfs_open_file *of,
			     char *buf, size_t nbytes, loff_t off)
{
	struct task_group *tg = css_tg(of_css(of));
	u64 period = tg_get_cfs_period(tg);
	u64 quota;
	int ret;

	ret = cpu_period_quota_parse(buf, &period, &quota);
	if (!ret)
		ret = tg_set_cfs_bandwidth(tg, period, quota);
	return ret ?: nbytes;
}
#endif

static struct cftype cpu_files[] = {
#ifdef CONFIG_FAIR_GROUP_SCHED
	{
		.name = "weight",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = cpu_weight_read_u64,
		.write_u64 = cpu_weight_write_u64,
	},
	{
		.name = "weight.nice",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_s64 = cpu_weight_nice_read_s64,
		.write_s64 = cpu_weight_nice_write_s64,
	},
#endif
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = cpu_max_show,
		.write = cpu_max_write,
	},
#endif
	{ }	/* terminate */
};

7028
struct cgroup_subsys cpu_cgrp_subsys = {
7029
	.css_alloc	= cpu_cgroup_css_alloc,
7030
	.css_online	= cpu_cgroup_css_online,
7031
	.css_released	= cpu_cgroup_css_released,
7032
	.css_free	= cpu_cgroup_css_free,
7033
	.css_extra_stat_show = cpu_extra_stat_show,
7034
	.fork		= cpu_cgroup_fork,
7035 7036
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7037
	.legacy_cftypes	= cpu_legacy_files,
7038
	.dfl_cftypes	= cpu_files,
7039
	.early_init	= true,
7040
	.threaded	= true,
7041 7042
};

7043
#endif	/* CONFIG_CGROUP_SCHED */
7044

7045 7046 7047 7048 7049
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};
7091 7092

#undef CREATE_TRACE_POINTS