core.c 178.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3
 *
I
Ingo Molnar 已提交
4
 *  Core kernel scheduler code and related syscalls
L
Linus Torvalds 已提交
5 6 7
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 */
8
#include <linux/sched.h>
9
#include <linux/sched/clock.h>
10
#include <uapi/linux/sched/types.h>
11
#include <linux/sched/loadavg.h>
12
#include <linux/sched/hotplug.h>
L
Linus Torvalds 已提交
13
#include <linux/cpuset.h>
14
#include <linux/delayacct.h>
15
#include <linux/init_task.h>
16
#include <linux/context_tracking.h>
17
#include <linux/rcupdate_wait.h>
18 19 20 21 22 23

#include <linux/blkdev.h>
#include <linux/kprobes.h>
#include <linux/mmu_context.h>
#include <linux/module.h>
#include <linux/nmi.h>
24
#include <linux/prefetch.h>
25 26 27
#include <linux/profile.h>
#include <linux/security.h>
#include <linux/syscalls.h>
L
Linus Torvalds 已提交
28

29
#include <asm/switch_to.h>
30
#include <asm/tlb.h>
31 32 33
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
34

35
#include "sched.h"
36
#include "../workqueue_internal.h"
37
#include "../smpboot.h"
38

39
#define CREATE_TRACE_POINTS
40
#include <trace/events/sched.h>
41

42
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
43

I
Ingo Molnar 已提交
44 45 46
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
47 48 49 50

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
51
const_debug unsigned int sysctl_sched_features =
52
#include "features.h"
P
Peter Zijlstra 已提交
53 54 55 56
	0;

#undef SCHED_FEAT

57 58 59 60 61 62
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

63 64 65 66 67 68 69 70
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
71
/*
I
Ingo Molnar 已提交
72
 * period over which we measure -rt task CPU usage in us.
P
Peter Zijlstra 已提交
73 74
 * default: 1s
 */
P
Peter Zijlstra 已提交
75
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
76

77
__read_mostly int scheduler_running;
78

P
Peter Zijlstra 已提交
79 80 81 82 83
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
84

I
Ingo Molnar 已提交
85
/* CPUs with isolated domains */
86 87
cpumask_var_t cpu_isolated_map;

88 89 90
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
91
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
92 93 94 95 96 97 98 99 100 101
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
102
			rq_pin_lock(rq, rf);
103 104 105 106 107 108 109 110 111 112 113 114
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
115
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
116 117 118 119 120 121
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
122
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
I
Ingo Molnar 已提交
138
		 * If we observe the new CPU in task_rq_lock, the acquire will
139 140 141
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
142
			rq_pin_lock(rq, rf);
143 144 145
			return rq;
		}
		raw_spin_unlock(&rq->lock);
146
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
147 148 149 150 151 152

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/*
 * RQ-clock updating methods:
 */

static void update_rq_clock_task(struct rq *rq, s64 delta)
{
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_key_false((&paravirt_steal_rq_enabled))) {
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

	rq->clock_task += delta;

#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
}

void update_rq_clock(struct rq *rq)
{
	s64 delta;

	lockdep_assert_held(&rq->lock);

	if (rq->clock_update_flags & RQCF_ACT_SKIP)
		return;

#ifdef CONFIG_SCHED_DEBUG
221 222
	if (sched_feat(WARN_DOUBLE_CLOCK))
		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
223 224
	rq->clock_update_flags |= RQCF_UPDATED;
#endif
225

226 227 228 229 230 231 232 233
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	if (delta < 0)
		return;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
}


P
Peter Zijlstra 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
252
	struct rq_flags rf;
P
Peter Zijlstra 已提交
253 254 255

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

256
	rq_lock(rq, &rf);
257
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
258
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
259
	rq_unlock(rq, &rf);
P
Peter Zijlstra 已提交
260 261 262 263

	return HRTIMER_NORESTART;
}

264
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
265

266
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
267 268 269
{
	struct hrtimer *timer = &rq->hrtick_timer;

270
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
271 272
}

273 274 275 276
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
277
{
278
	struct rq *rq = arg;
279
	struct rq_flags rf;
280

281
	rq_lock(rq, &rf);
P
Peter Zijlstra 已提交
282
	__hrtick_restart(rq);
283
	rq->hrtick_csd_pending = 0;
284
	rq_unlock(rq, &rf);
285 286
}

287 288 289 290 291
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
292
void hrtick_start(struct rq *rq, u64 delay)
293
{
294
	struct hrtimer *timer = &rq->hrtick_timer;
295 296 297 298 299 300 301 302 303
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
304

305
	hrtimer_set_expires(timer, time);
306 307

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
308
		__hrtick_restart(rq);
309
	} else if (!rq->hrtick_csd_pending) {
310
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
311 312
		rq->hrtick_csd_pending = 1;
	}
313 314
}

315 316 317 318 319 320
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
321
void hrtick_start(struct rq *rq, u64 delay)
322
{
W
Wanpeng Li 已提交
323 324 325 326 327
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
328 329
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
330 331
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
332

333
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
334
{
335 336
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
337

338 339 340 341
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
342

343 344
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
345
}
A
Andrew Morton 已提交
346
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
347 348 349 350 351 352 353
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
354
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

374
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
375 376 377 378 379 380 381 382 383 384
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
385 386 387 388 389 390 391 392 393 394

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
395
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
396 397 398 399 400 401 402 403 404 405 406 407 408 409

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

410 411 412 413 414 415
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
416 417 418 419 420 421 422

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
423 424
#endif

425 426 427 428 429 430 431 432 433 434
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
435
	 * barrier implied by the wakeup in wake_up_q().
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
I
Ingo Molnar 已提交
458
		/* Task can safely be re-inserted now: */
459 460 461 462 463 464 465 466 467 468 469 470
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
471
/*
472
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
473 474 475 476 477
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
478
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
479
{
480
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
481 482
	int cpu;

483
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
484

485
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
486 487
		return;

488
	cpu = cpu_of(rq);
489

490
	if (cpu == smp_processor_id()) {
491
		set_tsk_need_resched(curr);
492
		set_preempt_need_resched();
I
Ingo Molnar 已提交
493
		return;
494
	}
I
Ingo Molnar 已提交
495

496
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
497
		smp_send_reschedule(cpu);
498 499
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
500 501
}

502
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
503 504 505 506
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

507
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
508
		return;
509
	resched_curr(rq);
510
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
511
}
512

513
#ifdef CONFIG_SMP
514
#ifdef CONFIG_NO_HZ_COMMON
515
/*
I
Ingo Molnar 已提交
516 517
 * In the semi idle case, use the nearest busy CPU for migrating timers
 * from an idle CPU.  This is good for power-savings.
518 519
 *
 * We don't do similar optimization for completely idle system, as
I
Ingo Molnar 已提交
520 521
 * selecting an idle CPU will add more delays to the timers than intended
 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
522
 */
523
int get_nohz_timer_target(void)
524
{
525
	int i, cpu = smp_processor_id();
526 527
	struct sched_domain *sd;

528
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
529 530
		return cpu;

531
	rcu_read_lock();
532
	for_each_domain(cpu, sd) {
533
		for_each_cpu(i, sched_domain_span(sd)) {
534 535 536 537
			if (cpu == i)
				continue;

			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
538 539 540 541
				cpu = i;
				goto unlock;
			}
		}
542
	}
543 544 545

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
546 547
unlock:
	rcu_read_unlock();
548 549
	return cpu;
}
I
Ingo Molnar 已提交
550

551 552 553 554 555 556 557 558 559 560
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
561
static void wake_up_idle_cpu(int cpu)
562 563 564 565 566 567
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

568
	if (set_nr_and_not_polling(rq->idle))
569
		smp_send_reschedule(cpu);
570 571
	else
		trace_sched_wake_idle_without_ipi(cpu);
572 573
}

574
static bool wake_up_full_nohz_cpu(int cpu)
575
{
576 577 578 579 580 581
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
582 583
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
584
	if (tick_nohz_full_cpu(cpu)) {
585 586
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
587
			tick_nohz_full_kick_cpu(cpu);
588 589 590 591 592 593
		return true;
	}

	return false;
}

594 595 596 597 598
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
599 600
void wake_up_nohz_cpu(int cpu)
{
601
	if (!wake_up_full_nohz_cpu(cpu))
602 603 604
		wake_up_idle_cpu(cpu);
}

605
static inline bool got_nohz_idle_kick(void)
606
{
607
	int cpu = smp_processor_id();
608 609 610 611 612 613 614 615 616 617 618 619 620

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
621 622
}

623
#else /* CONFIG_NO_HZ_COMMON */
624

625
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
626
{
627
	return false;
P
Peter Zijlstra 已提交
628 629
}

630
#endif /* CONFIG_NO_HZ_COMMON */
631

632
#ifdef CONFIG_NO_HZ_FULL
633
bool sched_can_stop_tick(struct rq *rq)
634
{
635 636 637 638 639 640
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

641
	/*
642 643
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
644
	 */
645 646 647 648 649
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
650 651
	}

652 653 654 655 656 657 658 659 660 661 662 663 664 665
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
666
		return false;
667

668
	return true;
669 670
}
#endif /* CONFIG_NO_HZ_FULL */
671

672
void sched_avg_update(struct rq *rq)
673
{
674 675
	s64 period = sched_avg_period();

676
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
677 678 679 680 681 682
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
683 684 685
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
686 687
}

688
#endif /* CONFIG_SMP */
689

690 691
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
692
/*
693 694 695 696
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
697
 */
698
int walk_tg_tree_from(struct task_group *from,
699
			     tg_visitor down, tg_visitor up, void *data)
700 701
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
702
	int ret;
703

704 705
	parent = from;

706
down:
P
Peter Zijlstra 已提交
707 708
	ret = (*down)(parent, data);
	if (ret)
709
		goto out;
710 711 712 713 714 715 716
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
717
	ret = (*up)(parent, data);
718 719
	if (ret || parent == from)
		goto out;
720 721 722 723 724

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
725
out:
P
Peter Zijlstra 已提交
726
	return ret;
727 728
}

729
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
730
{
731
	return 0;
P
Peter Zijlstra 已提交
732
}
733 734
#endif

735 736
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
737 738 739
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
740 741 742
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
743
	if (idle_policy(p->policy)) {
744
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
745
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
746 747
		return;
	}
748

749 750
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
751 752
}

753
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
754
{
755 756 757
	if (!(flags & ENQUEUE_NOCLOCK))
		update_rq_clock(rq);

758 759
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
760

761
	p->sched_class->enqueue_task(rq, p, flags);
762 763
}

764
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
765
{
766 767 768
	if (!(flags & DEQUEUE_NOCLOCK))
		update_rq_clock(rq);

769 770
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
771

772
	p->sched_class->dequeue_task(rq, p, flags);
773 774
}

775
void activate_task(struct rq *rq, struct task_struct *p, int flags)
776 777 778 779
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

780
	enqueue_task(rq, p, flags);
781 782
}

783
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784 785 786 787
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

788
	dequeue_task(rq, p, flags);
789 790
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

821
/*
I
Ingo Molnar 已提交
822
 * __normal_prio - return the priority that is based on the static prio
823 824 825
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
826
	return p->static_prio;
827 828
}

829 830 831 832 833 834 835
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
836
static inline int normal_prio(struct task_struct *p)
837 838 839
{
	int prio;

840 841 842
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
843 844 845 846 847 848 849 850 851 852 853 854 855
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
856
static int effective_prio(struct task_struct *p)
857 858 859 860 861 862 863 864 865 866 867 868
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
869 870 871
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
872 873
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
874
 */
875
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
876 877 878 879
{
	return cpu_curr(task_cpu(p)) == p;
}

880
/*
881 882 883 884 885
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
886
 */
887 888
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
889
				       int oldprio)
890 891 892
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
893
			prev_class->switched_from(rq, p);
894

P
Peter Zijlstra 已提交
895
		p->sched_class->switched_to(rq, p);
896
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
897
		p->sched_class->prio_changed(rq, p, oldprio);
898 899
}

900
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901 902 903 904 905 906 907 908 909 910
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
911
				resched_curr(rq);
912 913 914 915 916 917 918 919 920
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
921
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
922
		rq_clock_skip_update(rq, true);
923 924
}

L
Linus Torvalds 已提交
925
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
945 946
static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
				   struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
947 948 949 950
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
951
	dequeue_task(rq, p, 0);
P
Peter Zijlstra 已提交
952
	set_task_cpu(p, new_cpu);
953
	rq_unlock(rq, rf);
P
Peter Zijlstra 已提交
954 955 956

	rq = cpu_rq(new_cpu);

957
	rq_lock(rq, rf);
P
Peter Zijlstra 已提交
958 959
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
960
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
961 962 963 964 965 966 967 968 969 970 971
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
I
Ingo Molnar 已提交
972
 * Move (not current) task off this CPU, onto the destination CPU. We're doing
P
Peter Zijlstra 已提交
973 974 975 976 977 978 979
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
980 981
static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
				 struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
982 983
{
	if (unlikely(!cpu_active(dest_cpu)))
984
		return rq;
P
Peter Zijlstra 已提交
985 986

	/* Affinity changed (again). */
987
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
988
		return rq;
P
Peter Zijlstra 已提交
989

990
	rq = move_queued_task(rq, rf, p, dest_cpu);
991 992

	return rq;
P
Peter Zijlstra 已提交
993 994 995 996 997 998 999 1000 1001 1002
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1003 1004
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
1005
	struct rq_flags rf;
P
Peter Zijlstra 已提交
1006 1007

	/*
I
Ingo Molnar 已提交
1008 1009
	 * The original target CPU might have gone down and we might
	 * be on another CPU but it doesn't matter.
P
Peter Zijlstra 已提交
1010 1011 1012 1013 1014 1015 1016 1017
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1018 1019

	raw_spin_lock(&p->pi_lock);
1020
	rq_lock(rq, &rf);
1021 1022 1023 1024 1025
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
1026 1027
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
1028
			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1029 1030 1031
		else
			p->wake_cpu = arg->dest_cpu;
	}
1032
	rq_unlock(rq, &rf);
1033 1034
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1035 1036 1037 1038
	local_irq_enable();
	return 0;
}

1039 1040 1041 1042 1043
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1044 1045 1046 1047 1048
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1049 1050
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1051 1052 1053
	struct rq *rq = task_rq(p);
	bool queued, running;

1054
	lockdep_assert_held(&p->pi_lock);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1065
		dequeue_task(rq, p, DEQUEUE_SAVE);
1066 1067 1068 1069
	}
	if (running)
		put_prev_task(rq, p);

1070
	p->sched_class->set_cpus_allowed(p, new_mask);
1071 1072

	if (queued)
1073
		enqueue_task(rq, p, ENQUEUE_RESTORE);
1074
	if (running)
1075
		set_curr_task(rq, p);
1076 1077
}

P
Peter Zijlstra 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1087 1088
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1089
{
1090
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1091
	unsigned int dest_cpu;
1092 1093
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1094 1095
	int ret = 0;

1096
	rq = task_rq_lock(p, &rf);
1097
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1098

1099 1100 1101 1102 1103 1104 1105
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1106 1107 1108 1109 1110 1111 1112 1113 1114
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1115 1116 1117
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1118
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1119 1120 1121 1122 1123 1124
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1125 1126 1127
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
I
Ingo Molnar 已提交
1128
		 * !active we want to ensure they are strict per-CPU threads.
1129 1130 1131 1132 1133 1134
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1135 1136 1137 1138
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1139
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1140 1141 1142
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1143
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1144 1145 1146
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1147 1148 1149 1150 1151
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1152
		rq = move_queued_task(rq, &rf, p, dest_cpu);
1153
	}
P
Peter Zijlstra 已提交
1154
out:
1155
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1156 1157 1158

	return ret;
}
1159 1160 1161 1162 1163

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1164 1165
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1166
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1167
{
1168 1169 1170 1171 1172
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1173
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1174
			!p->on_rq);
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1185
#ifdef CONFIG_LOCKDEP
1186 1187 1188 1189 1190
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1191
	 * see task_group().
1192 1193 1194 1195
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1196 1197 1198
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1199 1200
#endif

1201
	trace_sched_migrate_task(p, new_cpu);
1202

1203
	if (task_cpu(p) != new_cpu) {
1204
		if (p->sched_class->migrate_task_rq)
1205
			p->sched_class->migrate_task_rq(p);
1206
		p->se.nr_migrations++;
1207
		perf_event_task_migrate(p);
1208
	}
I
Ingo Molnar 已提交
1209 1210

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1211 1212
}

1213 1214
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1215
	if (task_on_rq_queued(p)) {
1216
		struct rq *src_rq, *dst_rq;
1217
		struct rq_flags srf, drf;
1218 1219 1220 1221

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1222 1223 1224
		rq_pin_lock(src_rq, &srf);
		rq_pin_lock(dst_rq, &drf);

1225
		p->on_rq = TASK_ON_RQ_MIGRATING;
1226 1227 1228
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1229
		p->on_rq = TASK_ON_RQ_QUEUED;
1230
		check_preempt_curr(dst_rq, p, 0);
1231 1232 1233 1234

		rq_unpin_lock(dst_rq, &drf);
		rq_unpin_lock(src_rq, &srf);

1235 1236 1237 1238
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
I
Ingo Molnar 已提交
1239
		 * previous CPU our target instead of where it really is.
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1256 1257 1258
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1259 1260 1261
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1262 1263
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1264
	double_rq_lock(src_rq, dst_rq);
1265

1266 1267 1268 1269 1270 1271
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

1272
	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1273 1274
		goto unlock;

1275
	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1276 1277 1278 1279 1280 1281 1282 1283 1284
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1285 1286
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1309 1310 1311 1312
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1313 1314 1315
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

1316
	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1317 1318
		goto out;

1319
	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1320 1321
		goto out;

1322
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1323 1324 1325 1326 1327 1328
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1329 1330 1331
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1332 1333 1334 1335 1336 1337 1338
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1339 1340 1341 1342 1343 1344
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1345
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1346
{
1347
	int running, queued;
1348
	struct rq_flags rf;
R
Roland McGrath 已提交
1349
	unsigned long ncsw;
1350
	struct rq *rq;
L
Linus Torvalds 已提交
1351

1352 1353 1354 1355 1356 1357 1358 1359
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1360

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1372 1373 1374
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1375
			cpu_relax();
R
Roland McGrath 已提交
1376
		}
1377

1378 1379 1380 1381 1382
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1383
		rq = task_rq_lock(p, &rf);
1384
		trace_sched_wait_task(p);
1385
		running = task_running(rq, p);
1386
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1387
		ncsw = 0;
1388
		if (!match_state || p->state == match_state)
1389
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1390
		task_rq_unlock(rq, p, &rf);
1391

R
Roland McGrath 已提交
1392 1393 1394 1395 1396 1397
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1408

1409 1410 1411 1412 1413
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1414
		 * So if it was still runnable (but just not actively
1415 1416 1417
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1418
		if (unlikely(queued)) {
T
Thomas Gleixner 已提交
1419
			ktime_t to = NSEC_PER_SEC / HZ;
1420 1421 1422

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1423 1424
			continue;
		}
1425

1426 1427 1428 1429 1430 1431 1432
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1433 1434

	return ncsw;
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1444
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1445 1446 1447 1448 1449
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1450
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1460
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1461

1462
/*
1463
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1464 1465 1466 1467 1468 1469 1470
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
I
Ingo Molnar 已提交
1471
 *    CPU isn't yet part of the sched domains, and balancing will not
1472 1473
 *    see it.
 *
I
Ingo Molnar 已提交
1474
 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1475
 *    avoid the load balancer to place new tasks on the to be removed
I
Ingo Molnar 已提交
1476
 *    CPU. Existing tasks will remain running there and will be taken
1477 1478 1479 1480 1481 1482
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1483
 */
1484 1485
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1486 1487
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1488 1489
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1490

1491
	/*
I
Ingo Molnar 已提交
1492 1493 1494
	 * If the node that the CPU is on has been offlined, cpu_to_node()
	 * will return -1. There is no CPU on the node, and we should
	 * select the CPU on the other node.
1495 1496 1497 1498 1499 1500 1501 1502
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
1503
			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1504 1505
				return dest_cpu;
		}
1506
	}
1507

1508 1509
	for (;;) {
		/* Any allowed, online CPU? */
1510
		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1511 1512 1513
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1514 1515 1516
				continue;
			goto out;
		}
1517

1518
		/* No more Mr. Nice Guy. */
1519 1520
		switch (state) {
		case cpuset:
1521 1522 1523 1524 1525
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
I
Ingo Molnar 已提交
1526
			/* Fall-through */
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1546
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1547 1548
					task_pid_nr(p), p->comm, cpu);
		}
1549 1550 1551 1552 1553
	}

	return dest_cpu;
}

1554
/*
1555
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1556
 */
1557
static inline
1558
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1559
{
1560 1561
	lockdep_assert_held(&p->pi_lock);

1562
	if (p->nr_cpus_allowed > 1)
1563
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1564
	else
1565
		cpu = cpumask_any(&p->cpus_allowed);
1566 1567 1568 1569

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
I
Ingo Molnar 已提交
1570
	 * CPU.
1571 1572 1573 1574 1575 1576
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1577
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
1578
		     !cpu_online(cpu)))
1579
		cpu = select_fallback_rq(task_cpu(p), p);
1580 1581

	return cpu;
1582
}
1583 1584 1585 1586 1587 1588

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1589 1590 1591 1592 1593 1594 1595 1596 1597

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1598
#endif /* CONFIG_SMP */
1599

P
Peter Zijlstra 已提交
1600
static void
1601
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1602
{
1603
	struct rq *rq;
1604

1605 1606 1607 1608
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1609

1610 1611
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1612 1613
		schedstat_inc(rq->ttwu_local);
		schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1614 1615 1616
	} else {
		struct sched_domain *sd;

1617
		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1618
		rcu_read_lock();
1619
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1620
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1621
				schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1622 1623 1624
				break;
			}
		}
1625
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1626
	}
1627 1628

	if (wake_flags & WF_MIGRATED)
1629
		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1630 1631
#endif /* CONFIG_SMP */

1632 1633
	schedstat_inc(rq->ttwu_count);
	schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1634 1635

	if (wake_flags & WF_SYNC)
1636
		schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1637 1638
}

1639
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1640
{
T
Tejun Heo 已提交
1641
	activate_task(rq, p, en_flags);
1642
	p->on_rq = TASK_ON_RQ_QUEUED;
1643

I
Ingo Molnar 已提交
1644
	/* If a worker is waking up, notify the workqueue: */
1645 1646
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1647 1648
}

1649 1650 1651
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1652
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1653
			   struct rq_flags *rf)
T
Tejun Heo 已提交
1654 1655 1656
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1657 1658
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1659
#ifdef CONFIG_SMP
1660 1661
	if (p->sched_class->task_woken) {
		/*
1662 1663
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1664
		 */
1665
		rq_unpin_lock(rq, rf);
T
Tejun Heo 已提交
1666
		p->sched_class->task_woken(rq, p);
1667
		rq_repin_lock(rq, rf);
1668
	}
T
Tejun Heo 已提交
1669

1670
	if (rq->idle_stamp) {
1671
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1672
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1673

1674 1675 1676
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1677
			rq->avg_idle = max;
1678

T
Tejun Heo 已提交
1679 1680 1681 1682 1683
		rq->idle_stamp = 0;
	}
#endif
}

1684
static void
1685
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1686
		 struct rq_flags *rf)
1687
{
1688 1689
	int en_flags = ENQUEUE_WAKEUP;

1690 1691
	lockdep_assert_held(&rq->lock);

1692 1693 1694
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1695 1696

	if (wake_flags & WF_MIGRATED)
1697
		en_flags |= ENQUEUE_MIGRATED;
1698 1699
#endif

1700
	ttwu_activate(rq, p, en_flags);
1701
	ttwu_do_wakeup(rq, p, wake_flags, rf);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1712
	struct rq_flags rf;
1713 1714 1715
	struct rq *rq;
	int ret = 0;

1716
	rq = __task_rq_lock(p, &rf);
1717
	if (task_on_rq_queued(p)) {
1718 1719
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1720
		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1721 1722
		ret = 1;
	}
1723
	__task_rq_unlock(rq, &rf);
1724 1725 1726 1727

	return ret;
}

1728
#ifdef CONFIG_SMP
1729
void sched_ttwu_pending(void)
1730 1731
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1732 1733
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1734
	struct rq_flags rf;
1735

1736 1737 1738
	if (!llist)
		return;

1739
	rq_lock_irqsave(rq, &rf);
1740

P
Peter Zijlstra 已提交
1741
	while (llist) {
P
Peter Zijlstra 已提交
1742 1743
		int wake_flags = 0;

P
Peter Zijlstra 已提交
1744 1745
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
P
Peter Zijlstra 已提交
1746 1747 1748 1749

		if (p->sched_remote_wakeup)
			wake_flags = WF_MIGRATED;

1750
		ttwu_do_activate(rq, p, wake_flags, &rf);
1751 1752
	}

1753
	rq_unlock_irqrestore(rq, &rf);
1754 1755 1756 1757
}

void scheduler_ipi(void)
{
1758 1759 1760 1761 1762
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1763
	preempt_fold_need_resched();
1764

1765
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1782
	sched_ttwu_pending();
1783 1784 1785 1786

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1787
	if (unlikely(got_nohz_idle_kick())) {
1788
		this_rq()->idle_balance = 1;
1789
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1790
	}
1791
	irq_exit();
1792 1793
}

P
Peter Zijlstra 已提交
1794
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1795
{
1796 1797
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1798 1799
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1800 1801 1802 1803 1804 1805
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1806
}
1807

1808 1809 1810
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1811
	struct rq_flags rf;
1812

1813 1814 1815 1816
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1817 1818 1819 1820

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
1821
		rq_lock_irqsave(rq, &rf);
1822 1823
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
I
Ingo Molnar 已提交
1824
		/* Else CPU is not idle, do nothing here: */
1825
		rq_unlock_irqrestore(rq, &rf);
1826
	}
1827 1828 1829

out:
	rcu_read_unlock();
1830 1831
}

1832
bool cpus_share_cache(int this_cpu, int that_cpu)
1833 1834 1835
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1836
#endif /* CONFIG_SMP */
1837

1838
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1839 1840
{
	struct rq *rq = cpu_rq(cpu);
1841
	struct rq_flags rf;
1842

1843
#if defined(CONFIG_SMP)
1844
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
I
Ingo Molnar 已提交
1845
		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
P
Peter Zijlstra 已提交
1846
		ttwu_queue_remote(p, cpu, wake_flags);
1847 1848 1849 1850
		return;
	}
#endif

1851
	rq_lock(rq, &rf);
1852
	ttwu_do_activate(rq, p, wake_flags, &rf);
1853
	rq_unlock(rq, &rf);
T
Tejun Heo 已提交
1854 1855
}

1856 1857 1858 1859 1860 1861
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
I
Ingo Molnar 已提交
1862 1863
 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 * execution on its new CPU [c1].
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
I
Ingo Molnar 已提交
1874
 * Note: the CPU doing B need not be c0 or c1
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1906
 *   2) smp_cond_load_acquire(!X->on_cpu)
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1917
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1943
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1944 1945 1946
 *
 */

T
Tejun Heo 已提交
1947
/**
L
Linus Torvalds 已提交
1948
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1949
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1950
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1951
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1952
 *
1953
 * If (@state & @p->state) @p->state = TASK_RUNNING.
L
Linus Torvalds 已提交
1954
 *
1955 1956 1957 1958 1959 1960 1961
 * If the task was not queued/runnable, also place it back on a runqueue.
 *
 * Atomic against schedule() which would dequeue a task, also see
 * set_current_state().
 *
 * Return: %true if @p->state changes (an actual wakeup was done),
 *	   %false otherwise.
L
Linus Torvalds 已提交
1962
 */
1963 1964
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1965 1966
{
	unsigned long flags;
1967
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1968

1969 1970 1971 1972 1973 1974 1975
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1976
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1977
	if (!(p->state & state))
L
Linus Torvalds 已提交
1978 1979
		goto out;

1980 1981
	trace_sched_waking(p);

I
Ingo Molnar 已提交
1982 1983
	/* We're going to change ->state: */
	success = 1;
L
Linus Torvalds 已提交
1984 1985
	cpu = task_cpu(p);

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
	 * sched_ttwu_pending()                 try_to_wake_up()
	 *   [S] p->on_rq = 1;                  [L] P->state
	 *       UNLOCK rq->lock  -----.
	 *                              \
	 *				 +---   RMB
	 * schedule()                   /
	 *       LOCK rq->lock    -----'
	 *       UNLOCK rq->lock
	 *
	 * [task p]
	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
	 *
	 * Pairs with the UNLOCK+LOCK on rq->lock from the
	 * last wakeup of our task and the schedule that got our task
	 * current.
	 */
	smp_rmb();
2008 2009
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2010 2011

#ifdef CONFIG_SMP
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2031
	/*
I
Ingo Molnar 已提交
2032
	 * If the owning (remote) CPU is still in the middle of schedule() with
2033
	 * this task as prev, wait until its done referencing the task.
2034 2035 2036 2037 2038
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2039
	 */
2040
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2041

2042
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2043
	p->state = TASK_WAKING;
2044

2045 2046 2047 2048 2049
	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

2050
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2051 2052
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2053
		set_task_cpu(p, cpu);
2054
	}
2055 2056 2057 2058 2059 2060 2061 2062

#else /* CONFIG_SMP */

	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

L
Linus Torvalds 已提交
2063 2064
#endif /* CONFIG_SMP */

2065
	ttwu_queue(p, cpu, wake_flags);
2066
stat:
2067
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2068
out:
2069
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2070 2071 2072 2073

	return success;
}

T
Tejun Heo 已提交
2074 2075 2076
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2077
 * @cookie: context's cookie for pinning
T
Tejun Heo 已提交
2078
 *
2079
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2080
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2081
 * the current task.
T
Tejun Heo 已提交
2082
 */
2083
static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
T
Tejun Heo 已提交
2084 2085 2086
{
	struct rq *rq = task_rq(p);

2087 2088 2089 2090
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2091 2092
	lockdep_assert_held(&rq->lock);

2093
	if (!raw_spin_trylock(&p->pi_lock)) {
2094 2095 2096 2097 2098 2099
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2100
		rq_unlock(rq, rf);
2101
		raw_spin_lock(&p->pi_lock);
2102
		rq_relock(rq, rf);
2103 2104
	}

T
Tejun Heo 已提交
2105
	if (!(p->state & TASK_NORMAL))
2106
		goto out;
T
Tejun Heo 已提交
2107

2108 2109
	trace_sched_waking(p);

2110 2111 2112 2113 2114
	if (!task_on_rq_queued(p)) {
		if (p->in_iowait) {
			delayacct_blkio_end();
			atomic_dec(&rq->nr_iowait);
		}
P
Peter Zijlstra 已提交
2115
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2116
	}
P
Peter Zijlstra 已提交
2117

2118
	ttwu_do_wakeup(rq, p, 0, rf);
2119
	ttwu_stat(p, smp_processor_id(), 0);
2120 2121
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2122 2123
}

2124 2125 2126 2127 2128
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2129 2130 2131
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2132 2133 2134 2135
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2136
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2137
{
2138
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2139 2140 2141
}
EXPORT_SYMBOL(wake_up_process);

2142
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2143 2144 2145 2146
{
	return try_to_wake_up(p, state, 0);
}

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2159 2160 2161

	dl_se->dl_throttled = 0;
	dl_se->dl_yielded = 0;
2162 2163
}

L
Linus Torvalds 已提交
2164 2165 2166
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2167 2168 2169
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2170
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2171
{
P
Peter Zijlstra 已提交
2172 2173 2174
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2175 2176
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2177
	p->se.prev_sum_exec_runtime	= 0;
2178
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2179
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2180
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2181

2182 2183 2184 2185
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2186
#ifdef CONFIG_SCHEDSTATS
2187
	/* Even if schedstat is disabled, there should not be garbage */
2188
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2189
#endif
N
Nick Piggin 已提交
2190

2191
	RB_CLEAR_NODE(&p->dl.rb_node);
2192
	init_dl_task_timer(&p->dl);
2193
	__dl_clear_params(p);
2194

P
Peter Zijlstra 已提交
2195
	INIT_LIST_HEAD(&p->rt.run_list);
2196 2197 2198 2199
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2200

2201 2202 2203
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2204 2205 2206

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2207
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2208 2209 2210
		p->mm->numa_scan_seq = 0;
	}

2211 2212 2213 2214 2215
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2216 2217
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2218
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2219
	p->numa_work.next = &p->numa_work;
2220
	p->numa_faults = NULL;
2221 2222
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2223 2224

	p->numa_group = NULL;
2225
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2226 2227
}

2228 2229
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2230
#ifdef CONFIG_NUMA_BALANCING
2231

2232 2233 2234
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2235
		static_branch_enable(&sched_numa_balancing);
2236
	else
2237
		static_branch_disable(&sched_numa_balancing);
2238
}
2239 2240 2241 2242 2243 2244 2245

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2246
	int state = static_branch_likely(&sched_numa_balancing);
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2262

2263 2264
#ifdef CONFIG_SCHEDSTATS

2265
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2266
static bool __initdata __sched_schedstats = false;
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2290 2291 2292 2293 2294
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2295
	if (!strcmp(str, "enable")) {
2296
		__sched_schedstats = true;
2297 2298
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2299
		__sched_schedstats = false;
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2310 2311 2312 2313 2314
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2335 2336 2337 2338
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2339 2340 2341 2342

/*
 * fork()/clone()-time setup:
 */
2343
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2344
{
2345
	unsigned long flags;
I
Ingo Molnar 已提交
2346 2347
	int cpu = get_cpu();

2348
	__sched_fork(clone_flags, p);
2349
	/*
2350
	 * We mark the process as NEW here. This guarantees that
2351 2352 2353
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2354
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2355

2356 2357 2358 2359 2360
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2361 2362 2363 2364
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2365
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2366
			p->policy = SCHED_NORMAL;
2367
			p->static_prio = NICE_TO_PRIO(0);
2368 2369 2370 2371 2372 2373
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2374

2375 2376 2377 2378 2379 2380
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2381

2382 2383 2384 2385 2386 2387
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2388
		p->sched_class = &fair_sched_class;
2389
	}
2390

2391
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2392

2393 2394 2395 2396 2397 2398 2399
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2400
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2401
	/*
I
Ingo Molnar 已提交
2402
	 * We're setting the CPU for the first time, we don't migrate,
2403 2404 2405 2406 2407
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2408
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2409

2410
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2411
	if (likely(sched_info_on()))
2412
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2413
#endif
P
Peter Zijlstra 已提交
2414 2415
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2416
#endif
2417
	init_task_preempt_count(p);
2418
#ifdef CONFIG_SMP
2419
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2420
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2421
#endif
2422

N
Nick Piggin 已提交
2423
	put_cpu();
2424
	return 0;
L
Linus Torvalds 已提交
2425 2426
}

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2446 2447
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2448 2449 2450
	return &cpu_rq(i)->rd->dl_bw;
}

2451
static inline int dl_bw_cpus(int i)
2452
{
2453 2454 2455
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2456 2457
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2458 2459 2460 2461
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2462 2463 2464 2465 2466 2467 2468
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2469
static inline int dl_bw_cpus(int i)
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2482 2483 2484
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2485 2486 2487 2488 2489 2490
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2491
	u64 period = attr->sched_period ?: attr->sched_deadline;
2492 2493
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2494
	int cpus, err = -1;
2495

2496 2497
	/* !deadline task may carry old deadline bandwidth */
	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2498 2499 2500 2501 2502 2503 2504 2505
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2506
	cpus = dl_bw_cpus(task_cpu(p));
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2527 2528 2529 2530 2531 2532 2533
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2534
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2535
{
2536
	struct rq_flags rf;
I
Ingo Molnar 已提交
2537
	struct rq *rq;
2538

2539
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2540
	p->state = TASK_RUNNING;
2541 2542 2543 2544
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
I
Ingo Molnar 已提交
2545
	 *  - any previously selected CPU might disappear through hotplug
2546 2547 2548
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2549
	 */
2550
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2551
#endif
2552
	rq = __task_rq_lock(p, &rf);
2553
	update_rq_clock(rq);
2554
	post_init_entity_util_avg(&p->se);
2555

P
Peter Zijlstra 已提交
2556
	activate_task(rq, p, 0);
2557
	p->on_rq = TASK_ON_RQ_QUEUED;
2558
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2559
	check_preempt_curr(rq, p, WF_FORK);
2560
#ifdef CONFIG_SMP
2561 2562 2563 2564 2565
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2566
		rq_unpin_lock(rq, &rf);
2567
		p->sched_class->task_woken(rq, p);
2568
		rq_repin_lock(rq, &rf);
2569
	}
2570
#endif
2571
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2572 2573
}

2574 2575
#ifdef CONFIG_PREEMPT_NOTIFIERS

2576 2577
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2590
/**
2591
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2592
 * @notifier: notifier struct to register
2593 2594 2595
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2596 2597 2598
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2599 2600 2601 2602 2603 2604
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2605
 * @notifier: notifier struct to unregister
2606
 *
2607
 * This is *not* safe to call from within a preemption notifier.
2608 2609 2610 2611 2612 2613 2614
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2615
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2616 2617 2618
{
	struct preempt_notifier *notifier;

2619
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2620 2621 2622
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2623 2624 2625 2626 2627 2628
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2629
static void
2630 2631
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2632 2633 2634
{
	struct preempt_notifier *notifier;

2635
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2636 2637 2638
		notifier->ops->sched_out(notifier, next);
}

2639 2640 2641 2642 2643 2644 2645 2646
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2647
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2648

2649
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2650 2651 2652
{
}

2653
static inline void
2654 2655 2656 2657 2658
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2659
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2660

2661 2662 2663
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2664
 * @prev: the current task that is being switched out
2665 2666 2667 2668 2669 2670 2671 2672 2673
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2674 2675 2676
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2677
{
2678
	sched_info_switch(rq, prev, next);
2679
	perf_event_task_sched_out(prev, next);
2680
	fire_sched_out_preempt_notifiers(prev, next);
2681 2682 2683 2684
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2685 2686 2687 2688
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2689 2690 2691 2692
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2693 2694
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2695
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2696 2697
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2698 2699 2700 2701 2702
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2703
 */
2704
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2705 2706
	__releases(rq->lock)
{
2707
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2708
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2709
	long prev_state;
L
Linus Torvalds 已提交
2710

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2722 2723 2724 2725
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2726

L
Linus Torvalds 已提交
2727 2728 2729 2730
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2731
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2732 2733
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2734 2735 2736 2737 2738
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2739
	 */
O
Oleg Nesterov 已提交
2740
	prev_state = prev->state;
2741
	vtime_task_switch(prev);
2742
	perf_event_task_sched_in(prev, current);
2743
	finish_lock_switch(rq, prev);
2744
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2745

2746
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2747 2748
	if (mm)
		mmdrop(mm);
2749
	if (unlikely(prev_state == TASK_DEAD)) {
2750 2751 2752
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2753 2754 2755
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2756
		 */
2757
		kprobe_flush_task(prev);
2758 2759 2760 2761

		/* Task is done with its stack. */
		put_task_stack(prev);

L
Linus Torvalds 已提交
2762
		put_task_struct(prev);
2763
	}
2764

2765
	tick_nohz_task_switch();
2766
	return rq;
L
Linus Torvalds 已提交
2767 2768
}

2769 2770 2771
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2772
static void __balance_callback(struct rq *rq)
2773
{
2774 2775
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
2776
	struct rq_flags rf;
2777

2778
	rq_lock_irqsave(rq, &rf);
2779 2780 2781 2782 2783 2784 2785
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2786

2787
		func(rq);
2788
	}
2789
	rq_unlock_irqrestore(rq, &rf);
2790 2791 2792 2793 2794 2795
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2796 2797 2798
}

#else
2799

2800
static inline void balance_callback(struct rq *rq)
2801
{
L
Linus Torvalds 已提交
2802 2803
}

2804 2805
#endif

L
Linus Torvalds 已提交
2806 2807 2808 2809
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2810
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2811 2812
	__releases(rq->lock)
{
2813
	struct rq *rq;
2814

2815 2816 2817 2818 2819 2820 2821 2822 2823
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2824
	rq = finish_task_switch(prev);
2825
	balance_callback(rq);
2826
	preempt_enable();
2827

L
Linus Torvalds 已提交
2828
	if (current->set_child_tid)
2829
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2830 2831 2832
}

/*
2833
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2834
 */
2835
static __always_inline struct rq *
2836
context_switch(struct rq *rq, struct task_struct *prev,
2837
	       struct task_struct *next, struct rq_flags *rf)
L
Linus Torvalds 已提交
2838
{
I
Ingo Molnar 已提交
2839
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2840

2841
	prepare_task_switch(rq, prev, next);
2842

I
Ingo Molnar 已提交
2843 2844
	mm = next->mm;
	oldmm = prev->active_mm;
2845 2846 2847 2848 2849
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2850
	arch_start_context_switch(prev);
2851

2852
	if (!mm) {
L
Linus Torvalds 已提交
2853
		next->active_mm = oldmm;
V
Vegard Nossum 已提交
2854
		mmgrab(oldmm);
L
Linus Torvalds 已提交
2855 2856
		enter_lazy_tlb(oldmm, next);
	} else
2857
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2858

2859
	if (!prev->mm) {
L
Linus Torvalds 已提交
2860 2861 2862
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2863

2864
	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2865

2866 2867 2868 2869 2870 2871
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2872
	rq_unpin_lock(rq, rf);
2873
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2874 2875 2876

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2877
	barrier();
2878 2879

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2880 2881 2882
}

/*
2883
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2884 2885
 *
 * externally visible scheduler statistics: current number of runnable
2886
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2887 2888 2889 2890 2891 2892 2893 2894 2895
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2896
}
L
Linus Torvalds 已提交
2897

2898
/*
I
Ingo Molnar 已提交
2899
 * Check if only the current task is running on the CPU.
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2910 2911 2912
 */
bool single_task_running(void)
{
2913
	return raw_rq()->nr_running == 1;
2914 2915 2916
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2917
unsigned long long nr_context_switches(void)
2918
{
2919 2920
	int i;
	unsigned long long sum = 0;
2921

2922
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2923
		sum += cpu_rq(i)->nr_switches;
2924

L
Linus Torvalds 已提交
2925 2926
	return sum;
}
2927

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
/*
 * IO-wait accounting, and how its mostly bollocks (on SMP).
 *
 * The idea behind IO-wait account is to account the idle time that we could
 * have spend running if it were not for IO. That is, if we were to improve the
 * storage performance, we'd have a proportional reduction in IO-wait time.
 *
 * This all works nicely on UP, where, when a task blocks on IO, we account
 * idle time as IO-wait, because if the storage were faster, it could've been
 * running and we'd not be idle.
 *
 * This has been extended to SMP, by doing the same for each CPU. This however
 * is broken.
 *
 * Imagine for instance the case where two tasks block on one CPU, only the one
 * CPU will have IO-wait accounted, while the other has regular idle. Even
 * though, if the storage were faster, both could've ran at the same time,
 * utilising both CPUs.
 *
 * This means, that when looking globally, the current IO-wait accounting on
 * SMP is a lower bound, by reason of under accounting.
 *
 * Worse, since the numbers are provided per CPU, they are sometimes
 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 * associated with any one particular CPU, it can wake to another CPU than it
 * blocked on. This means the per CPU IO-wait number is meaningless.
 *
 * Task CPU affinities can make all that even more 'interesting'.
 */

L
Linus Torvalds 已提交
2958 2959 2960
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2961

2962
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2963
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2964

L
Linus Torvalds 已提交
2965 2966
	return sum;
}
2967

2968 2969 2970 2971 2972 2973 2974
/*
 * Consumers of these two interfaces, like for example the cpufreq menu
 * governor are using nonsensical data. Boosting frequency for a CPU that has
 * IO-wait which might not even end up running the task when it does become
 * runnable.
 */

2975
unsigned long nr_iowait_cpu(int cpu)
2976
{
2977
	struct rq *this = cpu_rq(cpu);
2978 2979
	return atomic_read(&this->nr_iowait);
}
2980

2981 2982
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2983 2984 2985
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2986 2987
}

I
Ingo Molnar 已提交
2988
#ifdef CONFIG_SMP
2989

2990
/*
P
Peter Zijlstra 已提交
2991 2992
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2993
 */
P
Peter Zijlstra 已提交
2994
void sched_exec(void)
2995
{
P
Peter Zijlstra 已提交
2996
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2997
	unsigned long flags;
2998
	int dest_cpu;
2999

3000
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3001
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3002 3003
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3004

3005
	if (likely(cpu_active(dest_cpu))) {
3006
		struct migration_arg arg = { p, dest_cpu };
3007

3008 3009
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3010 3011
		return;
	}
3012
unlock:
3013
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3014
}
I
Ingo Molnar 已提交
3015

L
Linus Torvalds 已提交
3016 3017 3018
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
3019
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
3020 3021

EXPORT_PER_CPU_SYMBOL(kstat);
3022
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
3023

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

3041 3042 3043 3044 3045 3046 3047
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
3048
	struct rq_flags rf;
3049
	struct rq *rq;
3050
	u64 ns;
3051

3052 3053 3054 3055 3056 3057
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
I
Ingo Molnar 已提交
3058 3059
	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
	 * If we race with it entering CPU, unaccounted time is 0. This is
3060
	 * indistinguishable from the read occurring a few cycles earlier.
3061 3062
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
3063
	 */
3064
	if (!p->on_cpu || !task_on_rq_queued(p))
3065 3066 3067
		return p->se.sum_exec_runtime;
#endif

3068
	rq = task_rq_lock(p, &rf);
3069 3070 3071 3072 3073 3074
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
3075
		prefetch_curr_exec_start(p);
3076 3077 3078 3079
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3080
	task_rq_unlock(rq, p, &rf);
3081 3082 3083

	return ns;
}
3084

3085 3086 3087 3088 3089 3090 3091 3092
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3093
	struct task_struct *curr = rq->curr;
3094
	struct rq_flags rf;
3095 3096

	sched_clock_tick();
I
Ingo Molnar 已提交
3097

3098 3099
	rq_lock(rq, &rf);

3100
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3101
	curr->sched_class->task_tick(rq, curr, 0);
3102
	cpu_load_update_active(rq);
3103
	calc_global_load_tick(rq);
3104 3105

	rq_unlock(rq, &rf);
3106

3107
	perf_event_task_tick();
3108

3109
#ifdef CONFIG_SMP
3110
	rq->idle_balance = idle_cpu(cpu);
3111
	trigger_load_balance(rq);
3112
#endif
3113
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3114 3115
}

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3127 3128
 *
 * Return: Maximum deferment in nanoseconds.
3129 3130 3131 3132
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3133
	unsigned long next, now = READ_ONCE(jiffies);
3134 3135 3136 3137 3138 3139

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3140
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3141
}
3142
#endif
L
Linus Torvalds 已提交
3143

3144 3145
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3160

3161
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3162
{
3163
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3164 3165 3166
	/*
	 * Underflow?
	 */
3167 3168
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3169
#endif
3170
	__preempt_count_add(val);
3171
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3172 3173 3174
	/*
	 * Spinlock count overflowing soon?
	 */
3175 3176
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3177
#endif
3178
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3179
}
3180
EXPORT_SYMBOL(preempt_count_add);
3181
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3182

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3193
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3194
{
3195
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3196 3197 3198
	/*
	 * Underflow?
	 */
3199
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3200
		return;
L
Linus Torvalds 已提交
3201 3202 3203
	/*
	 * Is the spinlock portion underflowing?
	 */
3204 3205 3206
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3207
#endif
3208

3209
	preempt_latency_stop(val);
3210
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3211
}
3212
EXPORT_SYMBOL(preempt_count_sub);
3213
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3214

3215 3216 3217
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3218 3219
#endif

3220 3221 3222 3223 3224 3225 3226 3227 3228
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
	return p->preempt_disable_ip;
#else
	return 0;
#endif
}

L
Linus Torvalds 已提交
3229
/*
I
Ingo Molnar 已提交
3230
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3231
 */
I
Ingo Molnar 已提交
3232
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3233
{
3234 3235 3236
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3237 3238 3239
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3240 3241
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3242

I
Ingo Molnar 已提交
3243
	debug_show_held_locks(prev);
3244
	print_modules();
I
Ingo Molnar 已提交
3245 3246
	if (irqs_disabled())
		print_irqtrace_events(prev);
3247 3248
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3249
		pr_err("Preemption disabled at:");
3250
		print_ip_sym(preempt_disable_ip);
3251 3252
		pr_cont("\n");
	}
3253 3254 3255
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3256
	dump_stack();
3257
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3258
}
L
Linus Torvalds 已提交
3259

I
Ingo Molnar 已提交
3260 3261 3262 3263 3264
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3265
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3266 3267
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3268
#endif
3269

3270
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3271
		__schedule_bug(prev);
3272 3273
		preempt_count_set(PREEMPT_DISABLED);
	}
3274
	rcu_sleep_check();
I
Ingo Molnar 已提交
3275

L
Linus Torvalds 已提交
3276 3277
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3278
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3279 3280 3281 3282 3283 3284
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3285
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
I
Ingo Molnar 已提交
3286
{
3287
	const struct sched_class *class;
I
Ingo Molnar 已提交
3288
	struct task_struct *p;
L
Linus Torvalds 已提交
3289 3290

	/*
3291 3292 3293 3294
	 * Optimization: we know that if all tasks are in the fair class we can
	 * call that function directly, but only if the @prev task wasn't of a
	 * higher scheduling class, because otherwise those loose the
	 * opportunity to pull in more work from other CPUs.
L
Linus Torvalds 已提交
3295
	 */
3296 3297 3298 3299
	if (likely((prev->sched_class == &idle_sched_class ||
		    prev->sched_class == &fair_sched_class) &&
		   rq->nr_running == rq->cfs.h_nr_running)) {

3300
		p = fair_sched_class.pick_next_task(rq, prev, rf);
3301 3302 3303
		if (unlikely(p == RETRY_TASK))
			goto again;

I
Ingo Molnar 已提交
3304
		/* Assumes fair_sched_class->next == idle_sched_class */
3305
		if (unlikely(!p))
3306
			p = idle_sched_class.pick_next_task(rq, prev, rf);
3307 3308

		return p;
L
Linus Torvalds 已提交
3309 3310
	}

3311
again:
3312
	for_each_class(class) {
3313
		p = class->pick_next_task(rq, prev, rf);
3314 3315 3316
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3317
			return p;
3318
		}
I
Ingo Molnar 已提交
3319
	}
3320

I
Ingo Molnar 已提交
3321 3322
	/* The idle class should always have a runnable task: */
	BUG();
I
Ingo Molnar 已提交
3323
}
L
Linus Torvalds 已提交
3324

I
Ingo Molnar 已提交
3325
/*
3326
 * __schedule() is the main scheduler function.
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3361
 *
3362
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3363
 */
3364
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3365 3366
{
	struct task_struct *prev, *next;
3367
	unsigned long *switch_count;
3368
	struct rq_flags rf;
I
Ingo Molnar 已提交
3369
	struct rq *rq;
3370
	int cpu;
I
Ingo Molnar 已提交
3371 3372 3373 3374 3375 3376

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3377

3378
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3379
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3380

3381 3382 3383
	local_irq_disable();
	rcu_note_context_switch();

3384 3385 3386 3387 3388 3389
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3390
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
3391

I
Ingo Molnar 已提交
3392 3393
	/* Promote REQ to ACT */
	rq->clock_update_flags <<= 1;
3394

3395
	switch_count = &prev->nivcsw;
3396
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3397
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3398
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3399
		} else {
3400 3401 3402
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

3403 3404 3405 3406 3407
			if (prev->in_iowait) {
				atomic_inc(&rq->nr_iowait);
				delayacct_blkio_start();
			}

T
Tejun Heo 已提交
3408
			/*
3409 3410 3411
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3412 3413 3414 3415
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3416
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3417
				if (to_wakeup)
3418
					try_to_wake_up_local(to_wakeup, &rf);
T
Tejun Heo 已提交
3419 3420
			}
		}
I
Ingo Molnar 已提交
3421
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3422 3423
	}

3424
	if (task_on_rq_queued(prev))
3425 3426
		update_rq_clock(rq);

3427
	next = pick_next_task(rq, prev, &rf);
3428
	clear_tsk_need_resched(prev);
3429
	clear_preempt_need_resched();
L
Linus Torvalds 已提交
3430 3431 3432 3433 3434 3435

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3436
		trace_sched_switch(preempt, prev, next);
I
Ingo Molnar 已提交
3437 3438 3439

		/* Also unlocks the rq: */
		rq = context_switch(rq, prev, next, &rf);
3440
	} else {
3441
		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3442
		rq_unlock_irq(rq, &rf);
3443
	}
L
Linus Torvalds 已提交
3444

3445
	balance_callback(rq);
L
Linus Torvalds 已提交
3446
}
3447

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
void __noreturn do_task_dead(void)
{
	/*
	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
	 * when the following two conditions become true.
	 *   - There is race condition of mmap_sem (It is acquired by
	 *     exit_mm()), and
	 *   - SMI occurs before setting TASK_RUNINNG.
	 *     (or hypervisor of virtual machine switches to other guest)
	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
	 *
	 * To avoid it, we have to wait for releasing tsk->pi_lock which
	 * is held by try_to_wake_up()
	 */
	smp_mb();
	raw_spin_unlock_wait(&current->pi_lock);

I
Ingo Molnar 已提交
3465
	/* Causes final put_task_struct in finish_task_switch(): */
3466
	__set_current_state(TASK_DEAD);
I
Ingo Molnar 已提交
3467 3468 3469 3470

	/* Tell freezer to ignore us: */
	current->flags |= PF_NOFREEZE;

3471 3472
	__schedule(false);
	BUG();
I
Ingo Molnar 已提交
3473 3474

	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3475
	for (;;)
I
Ingo Molnar 已提交
3476
		cpu_relax();
3477 3478
}

3479 3480
static inline void sched_submit_work(struct task_struct *tsk)
{
3481
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3482 3483 3484 3485 3486 3487 3488 3489 3490
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3491
asmlinkage __visible void __sched schedule(void)
3492
{
3493 3494 3495
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3496
	do {
3497
		preempt_disable();
3498
		__schedule(false);
3499
		sched_preempt_enable_no_resched();
3500
	} while (need_resched());
3501
}
L
Linus Torvalds 已提交
3502 3503
EXPORT_SYMBOL(schedule);

3504
#ifdef CONFIG_CONTEXT_TRACKING
3505
asmlinkage __visible void __sched schedule_user(void)
3506 3507 3508 3509 3510 3511
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3512 3513
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3514
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3515
	 * too frequently to make sense yet.
3516
	 */
3517
	enum ctx_state prev_state = exception_enter();
3518
	schedule();
3519
	exception_exit(prev_state);
3520 3521 3522
}
#endif

3523 3524 3525 3526 3527 3528 3529
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3530
	sched_preempt_enable_no_resched();
3531 3532 3533 3534
	schedule();
	preempt_disable();
}

3535
static void __sched notrace preempt_schedule_common(void)
3536 3537
{
	do {
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3551
		preempt_disable_notrace();
3552
		preempt_latency_start(1);
3553
		__schedule(true);
3554
		preempt_latency_stop(1);
3555
		preempt_enable_no_resched_notrace();
3556 3557 3558 3559 3560 3561 3562 3563

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3564 3565
#ifdef CONFIG_PREEMPT
/*
3566
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3567
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3568 3569
 * occur there and call schedule directly.
 */
3570
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3571 3572 3573
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3574
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3575
	 */
3576
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3577 3578
		return;

3579
	preempt_schedule_common();
L
Linus Torvalds 已提交
3580
}
3581
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3582
EXPORT_SYMBOL(preempt_schedule);
3583 3584

/**
3585
 * preempt_schedule_notrace - preempt_schedule called by tracing
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3598
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3599 3600 3601 3602 3603 3604 3605
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3619
		preempt_disable_notrace();
3620
		preempt_latency_start(1);
3621 3622 3623 3624 3625 3626
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3627
		__schedule(true);
3628 3629
		exception_exit(prev_ctx);

3630
		preempt_latency_stop(1);
3631
		preempt_enable_no_resched_notrace();
3632 3633
	} while (need_resched());
}
3634
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3635

3636
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3637 3638

/*
3639
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3640 3641 3642 3643
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3644
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3645
{
3646
	enum ctx_state prev_state;
3647

3648
	/* Catch callers which need to be fixed */
3649
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3650

3651 3652
	prev_state = exception_enter();

3653
	do {
3654
		preempt_disable();
3655
		local_irq_enable();
3656
		__schedule(true);
3657
		local_irq_disable();
3658
		sched_preempt_enable_no_resched();
3659
	} while (need_resched());
3660 3661

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3662 3663
}

P
Peter Zijlstra 已提交
3664
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3665
			  void *key)
L
Linus Torvalds 已提交
3666
{
P
Peter Zijlstra 已提交
3667
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3668 3669 3670
}
EXPORT_SYMBOL(default_wake_function);

3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3681 3682
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3683
 */
3684
void rt_mutex_setprio(struct task_struct *p, int prio)
3685
{
3686
	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3687
	const struct sched_class *prev_class;
3688 3689
	struct rq_flags rf;
	struct rq *rq;
3690

3691
	BUG_ON(prio > MAX_PRIO);
3692

3693
	rq = __task_rq_lock(p, &rf);
3694
	update_rq_clock(rq);
3695

3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3714
	trace_sched_pi_setprio(p, prio);
3715
	oldprio = p->prio;
3716 3717 3718 3719

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3720
	prev_class = p->sched_class;
3721
	queued = task_on_rq_queued(p);
3722
	running = task_current(rq, p);
3723
	if (queued)
3724
		dequeue_task(rq, p, queue_flag);
3725
	if (running)
3726
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3727

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3738 3739 3740
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3741
			p->dl.dl_boosted = 1;
3742
			queue_flag |= ENQUEUE_REPLENISH;
3743 3744
		} else
			p->dl.dl_boosted = 0;
3745
		p->sched_class = &dl_sched_class;
3746 3747 3748 3749
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3750
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3751
		p->sched_class = &rt_sched_class;
3752 3753 3754
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3755 3756
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3757
		p->sched_class = &fair_sched_class;
3758
	}
I
Ingo Molnar 已提交
3759

3760 3761
	p->prio = prio;

3762
	if (queued)
3763
		enqueue_task(rq, p, queue_flag);
3764
	if (running)
3765
		set_curr_task(rq, p);
3766

P
Peter Zijlstra 已提交
3767
	check_class_changed(rq, p, prev_class, oldprio);
3768
out_unlock:
I
Ingo Molnar 已提交
3769 3770
	/* Avoid rq from going away on us: */
	preempt_disable();
3771
	__task_rq_unlock(rq, &rf);
3772 3773 3774

	balance_callback(rq);
	preempt_enable();
3775 3776
}
#endif
3777

3778
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3779
{
P
Peter Zijlstra 已提交
3780 3781
	bool queued, running;
	int old_prio, delta;
3782
	struct rq_flags rf;
3783
	struct rq *rq;
L
Linus Torvalds 已提交
3784

3785
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3786 3787 3788 3789 3790
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3791
	rq = task_rq_lock(p, &rf);
3792 3793
	update_rq_clock(rq);

L
Linus Torvalds 已提交
3794 3795 3796 3797
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3798
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3799
	 */
3800
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3801 3802 3803
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3804
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3805
	running = task_current(rq, p);
3806
	if (queued)
3807
		dequeue_task(rq, p, DEQUEUE_SAVE);
P
Peter Zijlstra 已提交
3808 3809
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3810 3811

	p->static_prio = NICE_TO_PRIO(nice);
3812
	set_load_weight(p);
3813 3814 3815
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3816

3817
	if (queued) {
3818
		enqueue_task(rq, p, ENQUEUE_RESTORE);
L
Linus Torvalds 已提交
3819
		/*
3820 3821
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3822
		 */
3823
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3824
			resched_curr(rq);
L
Linus Torvalds 已提交
3825
	}
P
Peter Zijlstra 已提交
3826 3827
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3828
out_unlock:
3829
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3830 3831 3832
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3833 3834 3835 3836 3837
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3838
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3839
{
I
Ingo Molnar 已提交
3840
	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3841
	int nice_rlim = nice_to_rlimit(nice);
3842

3843
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3844 3845 3846
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3847 3848 3849 3850 3851 3852 3853 3854 3855
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3856
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3857
{
3858
	long nice, retval;
L
Linus Torvalds 已提交
3859 3860 3861 3862 3863 3864

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3865
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3866
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3867

3868
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3869 3870 3871
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3886
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3887 3888 3889
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3890
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3891 3892 3893 3894 3895
{
	return p->prio - MAX_RT_PRIO;
}

/**
I
Ingo Molnar 已提交
3896
 * idle_cpu - is a given CPU idle currently?
L
Linus Torvalds 已提交
3897
 * @cpu: the processor in question.
3898 3899
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3900 3901 3902
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3917 3918 3919
}

/**
I
Ingo Molnar 已提交
3920
 * idle_task - return the idle task for a given CPU.
L
Linus Torvalds 已提交
3921
 * @cpu: the processor in question.
3922
 *
I
Ingo Molnar 已提交
3923
 * Return: The idle task for the CPU @cpu.
L
Linus Torvalds 已提交
3924
 */
3925
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3926 3927 3928 3929 3930 3931 3932
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3933 3934
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3935
 */
A
Alexey Dobriyan 已提交
3936
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3937
{
3938
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3939 3940
}

3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3956
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3957
	dl_se->flags = attr->sched_flags;
3958
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3979 3980
}

3981 3982 3983 3984 3985 3986
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3987 3988
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3989
{
3990 3991
	int policy = attr->sched_policy;

3992
	if (policy == SETPARAM_POLICY)
3993 3994
		policy = p->policy;

L
Linus Torvalds 已提交
3995
	p->policy = policy;
3996

3997 3998
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3999
	else if (fair_policy(policy))
4000 4001
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

4002 4003 4004 4005 4006 4007
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
4008
	p->normal_prio = normal_prio(p);
4009 4010
	set_load_weight(p);
}
4011

4012 4013
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
4014
			   const struct sched_attr *attr, bool keep_boost)
4015 4016
{
	__setscheduler_params(p, attr);
4017

4018
	/*
4019 4020
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
4021
	 */
4022 4023 4024 4025
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
4026

4027 4028 4029
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
4030 4031 4032
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
4033
}
4034 4035 4036 4037 4038 4039 4040 4041 4042

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
4043
	attr->sched_period = dl_se->dl_period;
4044 4045 4046 4047 4048 4049
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
4050
 * than the runtime, as well as the period of being zero or
4051
 * greater than deadline. Furthermore, we have to be sure that
4052 4053 4054 4055
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
4056 4057 4058 4059
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
4086 4087
}

4088
/*
I
Ingo Molnar 已提交
4089
 * Check the target process has a UID that matches the current process's:
4090 4091 4092 4093 4094 4095 4096 4097
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4098 4099
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4100 4101 4102 4103
	rcu_read_unlock();
	return match;
}

I
Ingo Molnar 已提交
4104
static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

4117 4118
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4119
				bool user, bool pi)
L
Linus Torvalds 已提交
4120
{
4121 4122
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4123
	int retval, oldprio, oldpolicy = -1, queued, running;
4124
	int new_effective_prio, policy = attr->sched_policy;
4125
	const struct sched_class *prev_class;
4126
	struct rq_flags rf;
4127
	int reset_on_fork;
4128
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4129
	struct rq *rq;
L
Linus Torvalds 已提交
4130

I
Ingo Molnar 已提交
4131
	/* May grab non-irq protected spin_locks: */
4132
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4133
recheck:
I
Ingo Molnar 已提交
4134
	/* Double check policy once rq lock held: */
4135 4136
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4137
		policy = oldpolicy = p->policy;
4138
	} else {
4139
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4140

4141
		if (!valid_policy(policy))
4142 4143 4144
			return -EINVAL;
	}

4145 4146 4147
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
4148 4149
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4150 4151
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4152
	 */
4153
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4154
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4155
		return -EINVAL;
4156 4157
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4158 4159
		return -EINVAL;

4160 4161 4162
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4163
	if (user && !capable(CAP_SYS_NICE)) {
4164
		if (fair_policy(policy)) {
4165
			if (attr->sched_nice < task_nice(p) &&
4166
			    !can_nice(p, attr->sched_nice))
4167 4168 4169
				return -EPERM;
		}

4170
		if (rt_policy(policy)) {
4171 4172
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4173

I
Ingo Molnar 已提交
4174
			/* Can't set/change the rt policy: */
4175 4176 4177
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

I
Ingo Molnar 已提交
4178
			/* Can't increase priority: */
4179 4180
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4181 4182
				return -EPERM;
		}
4183

4184 4185 4186 4187 4188 4189 4190 4191 4192
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4193
		/*
4194 4195
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4196
		 */
4197
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4198
			if (!can_nice(p, task_nice(p)))
4199 4200
				return -EPERM;
		}
4201

I
Ingo Molnar 已提交
4202
		/* Can't change other user's priorities: */
4203
		if (!check_same_owner(p))
4204
			return -EPERM;
4205

I
Ingo Molnar 已提交
4206
		/* Normal users shall not reset the sched_reset_on_fork flag: */
4207 4208
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4209
	}
L
Linus Torvalds 已提交
4210

4211
	if (user) {
4212
		retval = security_task_setscheduler(p);
4213 4214 4215 4216
		if (retval)
			return retval;
	}

4217
	/*
I
Ingo Molnar 已提交
4218
	 * Make sure no PI-waiters arrive (or leave) while we are
4219
	 * changing the priority of the task:
4220
	 *
L
Lucas De Marchi 已提交
4221
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4222 4223
	 * runqueue lock must be held.
	 */
4224
	rq = task_rq_lock(p, &rf);
4225
	update_rq_clock(rq);
4226

4227
	/*
I
Ingo Molnar 已提交
4228
	 * Changing the policy of the stop threads its a very bad idea:
4229 4230
	 */
	if (p == rq->stop) {
4231
		task_rq_unlock(rq, p, &rf);
4232 4233 4234
		return -EINVAL;
	}

4235
	/*
4236 4237
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4238
	 */
4239
	if (unlikely(policy == p->policy)) {
4240
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4241 4242 4243
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4244
		if (dl_policy(policy) && dl_param_changed(p, attr))
4245
			goto change;
4246

4247
		p->sched_reset_on_fork = reset_on_fork;
4248
		task_rq_unlock(rq, p, &rf);
4249 4250
		return 0;
	}
4251
change:
4252

4253
	if (user) {
4254
#ifdef CONFIG_RT_GROUP_SCHED
4255 4256 4257 4258 4259
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4260 4261
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4262
			task_rq_unlock(rq, p, &rf);
4263 4264 4265
			return -EPERM;
		}
#endif
4266 4267 4268 4269 4270 4271 4272 4273 4274
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4275 4276
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4277
				task_rq_unlock(rq, p, &rf);
4278 4279 4280 4281 4282
				return -EPERM;
			}
		}
#endif
	}
4283

I
Ingo Molnar 已提交
4284
	/* Re-check policy now with rq lock held: */
L
Linus Torvalds 已提交
4285 4286
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4287
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4288 4289
		goto recheck;
	}
4290 4291 4292 4293 4294 4295

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4296
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4297
		task_rq_unlock(rq, p, &rf);
4298 4299 4300
		return -EBUSY;
	}

4301 4302 4303
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4304 4305 4306 4307 4308 4309 4310 4311 4312
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4313 4314
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4315 4316
	}

4317
	queued = task_on_rq_queued(p);
4318
	running = task_current(rq, p);
4319
	if (queued)
4320
		dequeue_task(rq, p, queue_flags);
4321
	if (running)
4322
		put_prev_task(rq, p);
4323

4324
	prev_class = p->sched_class;
4325
	__setscheduler(rq, p, attr, pi);
4326

4327
	if (queued) {
4328 4329 4330 4331
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4332 4333
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4334

4335
		enqueue_task(rq, p, queue_flags);
4336
	}
4337
	if (running)
4338
		set_curr_task(rq, p);
4339

P
Peter Zijlstra 已提交
4340
	check_class_changed(rq, p, prev_class, oldprio);
I
Ingo Molnar 已提交
4341 4342 4343

	/* Avoid rq from going away on us: */
	preempt_disable();
4344
	task_rq_unlock(rq, p, &rf);
4345

4346 4347
	if (pi)
		rt_mutex_adjust_pi(p);
4348

I
Ingo Molnar 已提交
4349
	/* Run balance callbacks after we've adjusted the PI chain: */
4350 4351
	balance_callback(rq);
	preempt_enable();
4352

L
Linus Torvalds 已提交
4353 4354
	return 0;
}
4355

4356 4357 4358 4359 4360 4361 4362 4363 4364
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4365 4366
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4367 4368 4369 4370 4371
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4372
	return __sched_setscheduler(p, &attr, check, true);
4373
}
4374 4375 4376 4377 4378 4379
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4380 4381
 * Return: 0 on success. An error code otherwise.
 *
4382 4383 4384
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4385
		       const struct sched_param *param)
4386
{
4387
	return _sched_setscheduler(p, policy, param, true);
4388
}
L
Linus Torvalds 已提交
4389 4390
EXPORT_SYMBOL_GPL(sched_setscheduler);

4391 4392
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4393
	return __sched_setscheduler(p, attr, true, true);
4394 4395 4396
}
EXPORT_SYMBOL_GPL(sched_setattr);

4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4407 4408
 *
 * Return: 0 on success. An error code otherwise.
4409 4410
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4411
			       const struct sched_param *param)
4412
{
4413
	return _sched_setscheduler(p, policy, param, false);
4414
}
4415
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4416

I
Ingo Molnar 已提交
4417 4418
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4419 4420 4421
{
	struct sched_param lparam;
	struct task_struct *p;
4422
	int retval;
L
Linus Torvalds 已提交
4423 4424 4425 4426 4427

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4428 4429 4430

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4431
	p = find_process_by_pid(pid);
4432 4433 4434
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4435

L
Linus Torvalds 已提交
4436 4437 4438
	return retval;
}

4439 4440 4441
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
I
Ingo Molnar 已提交
4442
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4443 4444 4445 4446 4447 4448 4449
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

I
Ingo Molnar 已提交
4450
	/* Zero the full structure, so that a short copy will be nice: */
4451 4452 4453 4454 4455 4456
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

I
Ingo Molnar 已提交
4457 4458
	/* Bail out on silly large: */
	if (size > PAGE_SIZE)
4459 4460
		goto err_size;

I
Ingo Molnar 已提交
4461 4462
	/* ABI compatibility quirk: */
	if (!size)
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
I
Ingo Molnar 已提交
4497
	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4498 4499
	 * to be strict and return an error on out-of-bounds values?
	 */
4500
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4501

4502
	return 0;
4503 4504 4505

err_size:
	put_user(sizeof(*attr), &uattr->size);
4506
	return -E2BIG;
4507 4508
}

L
Linus Torvalds 已提交
4509 4510 4511 4512 4513
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4514 4515
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4516
 */
I
Ingo Molnar 已提交
4517
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4518
{
4519 4520 4521
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4522 4523 4524 4525 4526 4527 4528
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4529 4530
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4531
 */
4532
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4533
{
4534
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4535 4536
}

4537 4538 4539
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4540
 * @uattr: structure containing the extended parameters.
4541
 * @flags: for future extension.
4542
 */
4543 4544
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4545 4546 4547 4548 4549
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4550
	if (!uattr || pid < 0 || flags)
4551 4552
		return -EINVAL;

4553 4554 4555
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4556

4557
	if ((int)attr.sched_policy < 0)
4558
		return -EINVAL;
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4570 4571 4572
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4573 4574 4575
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4576
 */
4577
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4578
{
4579
	struct task_struct *p;
4580
	int retval;
L
Linus Torvalds 已提交
4581 4582

	if (pid < 0)
4583
		return -EINVAL;
L
Linus Torvalds 已提交
4584 4585

	retval = -ESRCH;
4586
	rcu_read_lock();
L
Linus Torvalds 已提交
4587 4588 4589 4590
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4591 4592
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4593
	}
4594
	rcu_read_unlock();
L
Linus Torvalds 已提交
4595 4596 4597 4598
	return retval;
}

/**
4599
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4600 4601
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4602 4603 4604
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4605
 */
4606
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4607
{
4608
	struct sched_param lp = { .sched_priority = 0 };
4609
	struct task_struct *p;
4610
	int retval;
L
Linus Torvalds 已提交
4611 4612

	if (!param || pid < 0)
4613
		return -EINVAL;
L
Linus Torvalds 已提交
4614

4615
	rcu_read_lock();
L
Linus Torvalds 已提交
4616 4617 4618 4619 4620 4621 4622 4623 4624
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4625 4626
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4627
	rcu_read_unlock();
L
Linus Torvalds 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4637
	rcu_read_unlock();
L
Linus Torvalds 已提交
4638 4639 4640
	return retval;
}

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4664
				return -EFBIG;
4665 4666 4667 4668 4669
		}

		attr->size = usize;
	}

4670
	ret = copy_to_user(uattr, attr, attr->size);
4671 4672 4673
	if (ret)
		return -EFAULT;

4674
	return 0;
4675 4676 4677
}

/**
4678
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4679
 * @pid: the pid in question.
J
Juri Lelli 已提交
4680
 * @uattr: structure containing the extended parameters.
4681
 * @size: sizeof(attr) for fwd/bwd comp.
4682
 * @flags: for future extension.
4683
 */
4684 4685
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4686 4687 4688 4689 4690 4691 4692 4693
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4694
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4708 4709
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4710 4711 4712
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4713 4714
		attr.sched_priority = p->rt_priority;
	else
4715
		attr.sched_nice = task_nice(p);
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4727
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4728
{
4729
	cpumask_var_t cpus_allowed, new_mask;
4730 4731
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4732

4733
	rcu_read_lock();
L
Linus Torvalds 已提交
4734 4735 4736

	p = find_process_by_pid(pid);
	if (!p) {
4737
		rcu_read_unlock();
L
Linus Torvalds 已提交
4738 4739 4740
		return -ESRCH;
	}

4741
	/* Prevent p going away */
L
Linus Torvalds 已提交
4742
	get_task_struct(p);
4743
	rcu_read_unlock();
L
Linus Torvalds 已提交
4744

4745 4746 4747 4748
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4749 4750 4751 4752 4753 4754 4755 4756
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4757
	retval = -EPERM;
E
Eric W. Biederman 已提交
4758 4759 4760 4761
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4762
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4763 4764 4765
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4766

4767
	retval = security_task_setscheduler(p);
4768
	if (retval)
4769
		goto out_free_new_mask;
4770

4771 4772 4773 4774

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4775 4776 4777 4778 4779 4780 4781
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4782 4783 4784
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4785
			retval = -EBUSY;
4786
			rcu_read_unlock();
4787
			goto out_free_new_mask;
4788
		}
4789
		rcu_read_unlock();
4790 4791
	}
#endif
P
Peter Zijlstra 已提交
4792
again:
4793
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4794

P
Paul Menage 已提交
4795
	if (!retval) {
4796 4797
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4798 4799 4800 4801 4802
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4803
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4804 4805 4806
			goto again;
		}
	}
4807
out_free_new_mask:
4808 4809 4810 4811
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4812 4813 4814 4815 4816
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4817
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4818
{
4819 4820 4821 4822 4823
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4824 4825 4826 4827
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
I
Ingo Molnar 已提交
4828
 * sys_sched_setaffinity - set the CPU affinity of a process
L
Linus Torvalds 已提交
4829 4830
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4831
 * @user_mask_ptr: user-space pointer to the new CPU mask
4832 4833
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4834
 */
4835 4836
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4837
{
4838
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4839 4840
	int retval;

4841 4842
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4843

4844 4845 4846 4847 4848
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4849 4850
}

4851
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4852
{
4853
	struct task_struct *p;
4854
	unsigned long flags;
L
Linus Torvalds 已提交
4855 4856
	int retval;

4857
	rcu_read_lock();
L
Linus Torvalds 已提交
4858 4859 4860 4861 4862 4863

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4864 4865 4866 4867
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4868
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4869
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4870
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4871 4872

out_unlock:
4873
	rcu_read_unlock();
L
Linus Torvalds 已提交
4874

4875
	return retval;
L
Linus Torvalds 已提交
4876 4877 4878
}

/**
I
Ingo Molnar 已提交
4879
 * sys_sched_getaffinity - get the CPU affinity of a process
L
Linus Torvalds 已提交
4880 4881
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4882
 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4883
 *
4884 4885
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4886
 */
4887 4888
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4889 4890
{
	int ret;
4891
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4892

A
Anton Blanchard 已提交
4893
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4894 4895
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4896 4897
		return -EINVAL;

4898 4899
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4900

4901 4902
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4903
		size_t retlen = min_t(size_t, len, cpumask_size());
4904 4905

		if (copy_to_user(user_mask_ptr, mask, retlen))
4906 4907
			ret = -EFAULT;
		else
4908
			ret = retlen;
4909 4910
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4911

4912
	return ret;
L
Linus Torvalds 已提交
4913 4914 4915 4916 4917
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4918 4919
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4920 4921
 *
 * Return: 0.
L
Linus Torvalds 已提交
4922
 */
4923
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4924
{
4925 4926 4927 4928 4929 4930
	struct rq_flags rf;
	struct rq *rq;

	local_irq_disable();
	rq = this_rq();
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
4931

4932
	schedstat_inc(rq->yld_count);
4933
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4934 4935 4936 4937 4938

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
4939 4940
	preempt_disable();
	rq_unlock(rq, &rf);
4941
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4942 4943 4944 4945 4946 4947

	schedule();

	return 0;
}

4948
#ifndef CONFIG_PREEMPT
4949
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4950
{
4951
	if (should_resched(0)) {
4952
		preempt_schedule_common();
L
Linus Torvalds 已提交
4953 4954 4955 4956
		return 1;
	}
	return 0;
}
4957
EXPORT_SYMBOL(_cond_resched);
4958
#endif
L
Linus Torvalds 已提交
4959 4960

/*
4961
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4962 4963
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4964
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4965 4966 4967
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4968
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4969
{
4970
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4971 4972
	int ret = 0;

4973 4974
	lockdep_assert_held(lock);

4975
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4976
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4977
		if (resched)
4978
			preempt_schedule_common();
N
Nick Piggin 已提交
4979 4980
		else
			cpu_relax();
J
Jan Kara 已提交
4981
		ret = 1;
L
Linus Torvalds 已提交
4982 4983
		spin_lock(lock);
	}
J
Jan Kara 已提交
4984
	return ret;
L
Linus Torvalds 已提交
4985
}
4986
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4987

4988
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4989 4990 4991
{
	BUG_ON(!in_softirq());

4992
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4993
		local_bh_enable();
4994
		preempt_schedule_common();
L
Linus Torvalds 已提交
4995 4996 4997 4998 4999
		local_bh_disable();
		return 1;
	}
	return 0;
}
5000
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5001 5002 5003 5004

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
5005 5006 5007 5008 5009 5010 5011 5012 5013
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
I
Ingo Molnar 已提交
5014
 *	yield();
P
Peter Zijlstra 已提交
5015 5016 5017 5018 5019 5020 5021 5022
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
5023 5024 5025 5026 5027 5028 5029 5030
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

5031 5032 5033 5034
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5035 5036
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5037 5038 5039 5040
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
5041
 * Return:
5042 5043 5044
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
5045
 */
5046
int __sched yield_to(struct task_struct *p, bool preempt)
5047 5048 5049 5050
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
5051
	int yielded = 0;
5052 5053 5054 5055 5056 5057

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
5058 5059 5060 5061 5062 5063 5064 5065 5066
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

5067
	double_rq_lock(rq, p_rq);
5068
	if (task_rq(p) != p_rq) {
5069 5070 5071 5072 5073
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
5074
		goto out_unlock;
5075 5076

	if (curr->sched_class != p->sched_class)
5077
		goto out_unlock;
5078 5079

	if (task_running(p_rq, p) || p->state)
5080
		goto out_unlock;
5081 5082

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5083
	if (yielded) {
5084
		schedstat_inc(rq->yld_count);
5085 5086 5087 5088 5089
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
5090
			resched_curr(p_rq);
5091
	}
5092

5093
out_unlock:
5094
	double_rq_unlock(rq, p_rq);
5095
out_irq:
5096 5097
	local_irq_restore(flags);

5098
	if (yielded > 0)
5099 5100 5101 5102 5103 5104
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
int io_schedule_prepare(void)
{
	int old_iowait = current->in_iowait;

	current->in_iowait = 1;
	blk_schedule_flush_plug(current);

	return old_iowait;
}

void io_schedule_finish(int token)
{
	current->in_iowait = token;
}

L
Linus Torvalds 已提交
5120
/*
I
Ingo Molnar 已提交
5121
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5122 5123 5124 5125
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5126
	int token;
L
Linus Torvalds 已提交
5127 5128
	long ret;

5129
	token = io_schedule_prepare();
L
Linus Torvalds 已提交
5130
	ret = schedule_timeout(timeout);
5131
	io_schedule_finish(token);
5132

L
Linus Torvalds 已提交
5133 5134
	return ret;
}
5135
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5136

5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
void io_schedule(void)
{
	int token;

	token = io_schedule_prepare();
	schedule();
	io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);

L
Linus Torvalds 已提交
5147 5148 5149 5150
/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5151 5152 5153
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5154
 */
5155
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5156 5157 5158 5159 5160 5161 5162 5163
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5164
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5165
	case SCHED_NORMAL:
5166
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5167
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5178 5179 5180
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5181
 */
5182
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5183 5184 5185 5186 5187 5188 5189 5190
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5191
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5192
	case SCHED_NORMAL:
5193
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5194
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
5207 5208 5209
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
5210
 */
5211
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5212
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5213
{
5214
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5215
	unsigned int time_slice;
5216 5217
	struct rq_flags rf;
	struct timespec t;
5218
	struct rq *rq;
5219
	int retval;
L
Linus Torvalds 已提交
5220 5221

	if (pid < 0)
5222
		return -EINVAL;
L
Linus Torvalds 已提交
5223 5224

	retval = -ESRCH;
5225
	rcu_read_lock();
L
Linus Torvalds 已提交
5226 5227 5228 5229 5230 5231 5232 5233
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5234
	rq = task_rq_lock(p, &rf);
5235 5236 5237
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5238
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5239

5240
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5241
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5242 5243
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5244

L
Linus Torvalds 已提交
5245
out_unlock:
5246
	rcu_read_unlock();
L
Linus Torvalds 已提交
5247 5248 5249
	return retval;
}

5250
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5251

5252
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5253 5254
{
	unsigned long free = 0;
5255
	int ppid;
5256
	unsigned long state = p->state;
L
Linus Torvalds 已提交
5257

5258 5259 5260
	/* Make sure the string lines up properly with the number of task states: */
	BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);

5261 5262
	if (!try_get_task_stack(p))
		return;
5263 5264
	if (state)
		state = __ffs(state) + 1;
5265
	printk(KERN_INFO "%-15.15s %c", p->comm,
5266
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
5267
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5268
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5269
#ifdef CONFIG_DEBUG_STACK_USAGE
5270
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5271
#endif
5272
	ppid = 0;
5273
	rcu_read_lock();
5274 5275
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5276
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5277
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5278
		task_pid_nr(p), ppid,
5279
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5280

5281
	print_worker_info(KERN_INFO, p);
5282
	show_stack(p, NULL);
5283
	put_task_stack(p);
L
Linus Torvalds 已提交
5284 5285
}

I
Ingo Molnar 已提交
5286
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5287
{
5288
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5289

5290
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5291 5292
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5293
#else
P
Peter Zijlstra 已提交
5294 5295
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5296
#endif
5297
	rcu_read_lock();
5298
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5299 5300
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5301
		 * console might take a lot of time:
5302 5303 5304
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5305 5306
		 */
		touch_nmi_watchdog();
5307
		touch_all_softlockup_watchdogs();
I
Ingo Molnar 已提交
5308
		if (!state_filter || (p->state & state_filter))
5309
			sched_show_task(p);
5310
	}
L
Linus Torvalds 已提交
5311

I
Ingo Molnar 已提交
5312
#ifdef CONFIG_SCHED_DEBUG
5313 5314
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5315
#endif
5316
	rcu_read_unlock();
I
Ingo Molnar 已提交
5317 5318 5319
	/*
	 * Only show locks if all tasks are dumped:
	 */
5320
	if (!state_filter)
I
Ingo Molnar 已提交
5321
		debug_show_all_locks();
L
Linus Torvalds 已提交
5322 5323
}

5324
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
5325
{
I
Ingo Molnar 已提交
5326
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5327 5328
}

5329 5330 5331
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
I
Ingo Molnar 已提交
5332
 * @cpu: CPU the idle task belongs to
5333 5334 5335 5336
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5337
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5338
{
5339
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5340 5341
	unsigned long flags;

5342 5343
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5344

5345
	__sched_fork(0, idle);
5346
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5347
	idle->se.exec_start = sched_clock();
5348
	idle->flags |= PF_IDLE;
I
Ingo Molnar 已提交
5349

5350 5351
	kasan_unpoison_task_stack(idle);

5352 5353 5354 5355 5356 5357 5358 5359 5360
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5361 5362
	/*
	 * We're having a chicken and egg problem, even though we are
I
Ingo Molnar 已提交
5363
	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5364 5365 5366 5367 5368 5369 5370 5371
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5372
	__set_task_cpu(idle, cpu);
5373
	rcu_read_unlock();
L
Linus Torvalds 已提交
5374 5375

	rq->curr = rq->idle = idle;
5376
	idle->on_rq = TASK_ON_RQ_QUEUED;
5377
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5378
	idle->on_cpu = 1;
5379
#endif
5380 5381
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5382 5383

	/* Set the preempt count _outside_ the spinlocks! */
5384
	init_idle_preempt_count(idle, cpu);
5385

I
Ingo Molnar 已提交
5386 5387 5388 5389
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5390
	ftrace_graph_init_idle_task(idle, cpu);
5391
	vtime_init_idle(idle, cpu);
5392
#ifdef CONFIG_SMP
5393 5394
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5395 5396
}

5397 5398 5399 5400 5401 5402 5403
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

5404 5405 5406
	if (!cpumask_weight(cur))
		return ret;

5407
	rcu_read_lock_sched();
5408 5409 5410 5411 5412 5413 5414 5415
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5416
	rcu_read_unlock_sched();
5417 5418 5419 5420

	return ret;
}

5421 5422 5423 5424 5425 5426 5427
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
I
Ingo Molnar 已提交
5428
	 * to a new cpuset; we don't want to change their CPU
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5445
		struct dl_bw *dl_b;
5446 5447 5448 5449
		bool overflow;
		int cpus;
		unsigned long flags;

5450 5451
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5467
		rcu_read_unlock_sched();
5468 5469 5470 5471 5472 5473 5474

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5475 5476
#ifdef CONFIG_SMP

5477
bool sched_smp_initialized __read_mostly;
5478

5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

5489
	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5490 5491 5492 5493
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5494
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5495 5496
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5497 5498 5499 5500 5501 5502 5503

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5504
	bool queued, running;
5505 5506
	struct rq_flags rf;
	struct rq *rq;
5507

5508
	rq = task_rq_lock(p, &rf);
5509
	queued = task_on_rq_queued(p);
5510 5511
	running = task_current(rq, p);

5512
	if (queued)
5513
		dequeue_task(rq, p, DEQUEUE_SAVE);
5514
	if (running)
5515
		put_prev_task(rq, p);
5516 5517 5518

	p->numa_preferred_nid = nid;

5519
	if (queued)
5520
		enqueue_task(rq, p, ENQUEUE_RESTORE);
5521
	if (running)
5522
		set_curr_task(rq, p);
5523
	task_rq_unlock(rq, p, &rf);
5524
}
P
Peter Zijlstra 已提交
5525
#endif /* CONFIG_NUMA_BALANCING */
5526

L
Linus Torvalds 已提交
5527
#ifdef CONFIG_HOTPLUG_CPU
5528
/*
I
Ingo Molnar 已提交
5529
 * Ensure that the idle task is using init_mm right before its CPU goes
5530
 * offline.
5531
 */
5532
void idle_task_exit(void)
L
Linus Torvalds 已提交
5533
{
5534
	struct mm_struct *mm = current->active_mm;
5535

5536
	BUG_ON(cpu_online(smp_processor_id()));
5537

5538
	if (mm != &init_mm) {
5539
		switch_mm_irqs_off(mm, &init_mm, current);
5540 5541
		finish_arch_post_lock_switch();
	}
5542
	mmdrop(mm);
L
Linus Torvalds 已提交
5543 5544 5545
}

/*
5546 5547
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5548 5549 5550
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5551 5552
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5553
 */
5554
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5555
{
5556
	long delta = calc_load_fold_active(rq, 1);
5557 5558
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5559 5560
}

5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5577
/*
5578 5579 5580 5581 5582 5583
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5584
 */
5585
static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
L
Linus Torvalds 已提交
5586
{
5587
	struct rq *rq = dead_rq;
5588
	struct task_struct *next, *stop = rq->stop;
5589
	struct rq_flags orf = *rf;
5590
	int dest_cpu;
L
Linus Torvalds 已提交
5591 5592

	/*
5593 5594 5595 5596 5597 5598 5599
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5600
	 */
5601
	rq->stop = NULL;
5602

5603 5604 5605 5606 5607 5608 5609
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5610
	for (;;) {
5611 5612
		/*
		 * There's this thread running, bail when that's the only
I
Ingo Molnar 已提交
5613
		 * remaining thread:
5614 5615
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5616
			break;
5617

5618
		/*
I
Ingo Molnar 已提交
5619
		 * pick_next_task() assumes pinned rq->lock:
5620
		 */
5621
		next = pick_next_task(rq, &fake_task, rf);
5622
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5623
		next->sched_class->put_prev_task(rq, next);
5624

W
Wanpeng Li 已提交
5625 5626 5627 5628 5629 5630 5631 5632 5633
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5634
		rq_unlock(rq, rf);
W
Wanpeng Li 已提交
5635
		raw_spin_lock(&next->pi_lock);
5636
		rq_relock(rq, rf);
W
Wanpeng Li 已提交
5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5648
		/* Find suitable destination for @next, with force if needed. */
5649
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5650
		rq = __migrate_task(rq, rf, next, dest_cpu);
5651
		if (rq != dead_rq) {
5652
			rq_unlock(rq, rf);
5653
			rq = dead_rq;
5654 5655
			*rf = orf;
			rq_relock(rq, rf);
5656
		}
W
Wanpeng Li 已提交
5657
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5658
	}
5659

5660
	rq->stop = stop;
5661
}
L
Linus Torvalds 已提交
5662 5663
#endif /* CONFIG_HOTPLUG_CPU */

5664
void set_rq_online(struct rq *rq)
5665 5666 5667 5668
{
	if (!rq->online) {
		const struct sched_class *class;

5669
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5670 5671 5672 5673 5674 5675 5676 5677 5678
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

5679
void set_rq_offline(struct rq *rq)
5680 5681 5682 5683 5684 5685 5686 5687 5688
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5689
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5690 5691 5692 5693
		rq->online = 0;
	}
}

5694
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5695
{
5696
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5697

5698 5699 5700
	rq->age_stamp = sched_clock_cpu(cpu);
}

I
Ingo Molnar 已提交
5701 5702 5703 5704
/*
 * used to mark begin/end of suspend/resume:
 */
static int num_cpus_frozen;
5705

L
Linus Torvalds 已提交
5706
/*
5707 5708 5709
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
5710 5711 5712
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
5713
 */
5714
static void cpuset_cpu_active(void)
5715
{
5716
	if (cpuhp_tasks_frozen) {
5717 5718 5719 5720 5721 5722 5723 5724 5725
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
5726
			return;
5727 5728 5729 5730 5731 5732
		}
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
5733
	}
5734
	cpuset_update_active_cpus(true);
5735
}
5736

5737
static int cpuset_cpu_inactive(unsigned int cpu)
5738
{
5739 5740
	unsigned long flags;
	struct dl_bw *dl_b;
5741 5742
	bool overflow;
	int cpus;
5743

5744
	if (!cpuhp_tasks_frozen) {
5745 5746
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
5747

5748 5749 5750 5751
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5752

5753
		rcu_read_unlock_sched();
5754

5755
		if (overflow)
5756
			return -EBUSY;
5757
		cpuset_update_active_cpus(false);
5758
	} else {
5759 5760
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
5761
	}
5762
	return 0;
5763 5764
}

5765
int sched_cpu_activate(unsigned int cpu)
5766
{
5767
	struct rq *rq = cpu_rq(cpu);
5768
	struct rq_flags rf;
5769

5770
	set_cpu_active(cpu, true);
5771

5772
	if (sched_smp_initialized) {
5773
		sched_domains_numa_masks_set(cpu);
5774
		cpuset_cpu_active();
5775
	}
5776 5777 5778 5779 5780

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
I
Ingo Molnar 已提交
5781
	 *    after all CPUs have been brought up.
5782 5783 5784 5785
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
5786
	rq_lock_irqsave(rq, &rf);
5787 5788 5789 5790
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
5791
	rq_unlock_irqrestore(rq, &rf);
5792 5793 5794

	update_max_interval();

5795
	return 0;
5796 5797
}

5798
int sched_cpu_deactivate(unsigned int cpu)
5799 5800 5801
{
	int ret;

5802
	set_cpu_active(cpu, false);
5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
	 * not imply sync_sched(), so wait for both.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
	if (IS_ENABLED(CONFIG_PREEMPT))
		synchronize_rcu_mult(call_rcu, call_rcu_sched);
	else
		synchronize_rcu();
5817 5818 5819 5820 5821 5822 5823 5824

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
5825
	}
5826 5827
	sched_domains_numa_masks_clear(cpu);
	return 0;
5828 5829
}

5830 5831 5832 5833 5834 5835 5836 5837
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

5838 5839 5840
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
5841
	sched_rq_cpu_starting(cpu);
5842
	return 0;
5843 5844
}

5845 5846 5847 5848
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5849
	struct rq_flags rf;
5850 5851 5852

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
5853 5854

	rq_lock_irqsave(rq, &rf);
5855 5856 5857 5858
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
5859
	migrate_tasks(rq, &rf);
5860
	BUG_ON(rq->nr_running != 1);
5861 5862
	rq_unlock_irqrestore(rq, &rf);

5863 5864
	calc_load_migrate(rq);
	update_max_interval();
5865
	nohz_balance_exit_idle(cpu);
5866
	hrtick_clear(rq);
5867 5868 5869 5870
	return 0;
}
#endif

P
Peter Zijlstra 已提交
5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);

static void sched_init_smt(void)
{
	/*
	 * We've enumerated all CPUs and will assume that if any CPU
	 * has SMT siblings, CPU0 will too.
	 */
	if (cpumask_weight(cpu_smt_mask(0)) > 1)
		static_branch_enable(&sched_smt_present);
}
#else
static inline void sched_init_smt(void) { }
#endif

L
Linus Torvalds 已提交
5887 5888
void __init sched_init_smp(void)
{
5889 5890 5891
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5892
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5893

5894 5895
	sched_init_numa();

5896 5897
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
I
Ingo Molnar 已提交
5898
	 * CPU masks are stable and all blatant races in the below code cannot
5899 5900
	 * happen.
	 */
5901
	mutex_lock(&sched_domains_mutex);
5902
	init_sched_domains(cpu_active_mask);
5903 5904 5905
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5906
	mutex_unlock(&sched_domains_mutex);
5907

5908
	/* Move init over to a non-isolated CPU */
5909
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5910
		BUG();
I
Ingo Molnar 已提交
5911
	sched_init_granularity();
5912
	free_cpumask_var(non_isolated_cpus);
5913

5914
	init_sched_rt_class();
5915
	init_sched_dl_class();
P
Peter Zijlstra 已提交
5916 5917

	sched_init_smt();
5918
	sched_clock_init_late();
P
Peter Zijlstra 已提交
5919

5920
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
5921
}
5922 5923 5924

static int __init migration_init(void)
{
5925
	sched_rq_cpu_starting(smp_processor_id());
5926
	return 0;
L
Linus Torvalds 已提交
5927
}
5928 5929
early_initcall(migration_init);

L
Linus Torvalds 已提交
5930 5931 5932
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
5933
	sched_init_granularity();
5934
	sched_clock_init_late();
L
Linus Torvalds 已提交
5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

5945
#ifdef CONFIG_CGROUP_SCHED
5946 5947 5948 5949
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
5950
struct task_group root_task_group;
5951
LIST_HEAD(task_groups);
5952 5953 5954

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
5955
#endif
P
Peter Zijlstra 已提交
5956

5957
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5958
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
5959

5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
#define WAIT_TABLE_BITS 8
#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;

wait_queue_head_t *bit_waitqueue(void *word, int bit)
{
	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
	unsigned long val = (unsigned long)word << shift | bit;

	return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
}
EXPORT_SYMBOL(bit_waitqueue);

L
Linus Torvalds 已提交
5973 5974
void __init sched_init(void)
{
I
Ingo Molnar 已提交
5975
	int i, j;
5976 5977
	unsigned long alloc_size = 0, ptr;

5978 5979
	sched_clock_init();

5980 5981 5982
	for (i = 0; i < WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(bit_wait_table + i);

5983 5984 5985 5986 5987 5988 5989
#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
5990
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5991 5992

#ifdef CONFIG_FAIR_GROUP_SCHED
5993
		root_task_group.se = (struct sched_entity **)ptr;
5994 5995
		ptr += nr_cpu_ids * sizeof(void **);

5996
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5997
		ptr += nr_cpu_ids * sizeof(void **);
5998

5999
#endif /* CONFIG_FAIR_GROUP_SCHED */
6000
#ifdef CONFIG_RT_GROUP_SCHED
6001
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6002 6003
		ptr += nr_cpu_ids * sizeof(void **);

6004
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6005 6006
		ptr += nr_cpu_ids * sizeof(void **);

6007
#endif /* CONFIG_RT_GROUP_SCHED */
6008
	}
6009
#ifdef CONFIG_CPUMASK_OFFSTACK
6010 6011 6012
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6013 6014
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6015
	}
6016
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
6017

I
Ingo Molnar 已提交
6018 6019
	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6020

G
Gregory Haskins 已提交
6021 6022 6023 6024
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6025
#ifdef CONFIG_RT_GROUP_SCHED
6026
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6027
			global_rt_period(), global_rt_runtime());
6028
#endif /* CONFIG_RT_GROUP_SCHED */
6029

D
Dhaval Giani 已提交
6030
#ifdef CONFIG_CGROUP_SCHED
6031 6032
	task_group_cache = KMEM_CACHE(task_group, 0);

6033 6034
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6035
	INIT_LIST_HEAD(&root_task_group.siblings);
6036
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
6037
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6038

6039
	for_each_possible_cpu(i) {
6040
		struct rq *rq;
L
Linus Torvalds 已提交
6041 6042

		rq = cpu_rq(i);
6043
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6044
		rq->nr_running = 0;
6045 6046
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6047
		init_cfs_rq(&rq->cfs);
6048 6049
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
6050
#ifdef CONFIG_FAIR_GROUP_SCHED
6051
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6052
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6053
		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
D
Dhaval Giani 已提交
6054
		/*
I
Ingo Molnar 已提交
6055
		 * How much CPU bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6056 6057
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
I
Ingo Molnar 已提交
6058 6059
		 * gets 100% of the CPU resources in the system. This overall
		 * system CPU resource is divided among the tasks of
6060
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6061 6062 6063
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6064
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6065
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
I
Ingo Molnar 已提交
6066
		 * then A0's share of the CPU resource is:
D
Dhaval Giani 已提交
6067
		 *
6068
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6069
		 *
6070 6071
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6072
		 */
6073
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6074
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6075 6076 6077
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6078
#ifdef CONFIG_RT_GROUP_SCHED
6079
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6080
#endif
L
Linus Torvalds 已提交
6081

I
Ingo Molnar 已提交
6082 6083
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6084

L
Linus Torvalds 已提交
6085
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6086
		rq->sd = NULL;
G
Gregory Haskins 已提交
6087
		rq->rd = NULL;
6088
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6089
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
6090
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6091
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6092
		rq->push_cpu = 0;
6093
		rq->cpu = i;
6094
		rq->online = 0;
6095 6096
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6097
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6098 6099 6100

		INIT_LIST_HEAD(&rq->cfs_tasks);

6101
		rq_attach_root(rq, &def_root_domain);
6102
#ifdef CONFIG_NO_HZ_COMMON
6103
		rq->last_load_update_tick = jiffies;
6104
		rq->nohz_flags = 0;
6105
#endif
6106 6107 6108
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
6109
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
6110
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6111 6112 6113
		atomic_set(&rq->nr_iowait, 0);
	}

6114
	set_load_weight(&init_task);
6115

L
Linus Torvalds 已提交
6116 6117 6118
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
V
Vegard Nossum 已提交
6119
	mmgrab(&init_mm);
L
Linus Torvalds 已提交
6120 6121 6122 6123 6124 6125 6126 6127 6128
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6129 6130 6131

	calc_load_update = jiffies + LOAD_FREQ;

6132
#ifdef CONFIG_SMP
6133
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6134 6135 6136
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6137
	idle_thread_set_boot_cpu();
6138
	set_cpu_rq_start_time(smp_processor_id());
6139 6140
#endif
	init_sched_fair_class();
6141

6142 6143
	init_schedstats();

6144
	scheduler_running = 1;
L
Linus Torvalds 已提交
6145 6146
}

6147
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6148 6149
static inline int preempt_count_equals(int preempt_offset)
{
6150
	int nested = preempt_count() + rcu_preempt_depth();
6151

A
Arnd Bergmann 已提交
6152
	return (nested == preempt_offset);
6153 6154
}

6155
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6156
{
P
Peter Zijlstra 已提交
6157 6158 6159 6160 6161
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
6162
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
6163 6164 6165 6166
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
6167
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
6168

6169 6170 6171 6172 6173
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6174
{
I
Ingo Molnar 已提交
6175 6176 6177
	/* Ratelimiting timestamp: */
	static unsigned long prev_jiffy;

6178
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
6179

I
Ingo Molnar 已提交
6180 6181 6182
	/* WARN_ON_ONCE() by default, no rate limit required: */
	rcu_sleep_check();

6183 6184
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
6185
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6186 6187 6188 6189 6190
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

I
Ingo Molnar 已提交
6191
	/* Save this before calling printk(), since that will clobber it: */
6192 6193
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
6194 6195 6196 6197 6198 6199 6200
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6201

6202 6203 6204
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
6205 6206 6207
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6208 6209
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
6210
		pr_err("Preemption disabled at:");
6211
		print_ip_sym(preempt_disable_ip);
6212 6213
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
6214
	dump_stack();
6215
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
6216
}
6217
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
6218 6219 6220
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6221
void normalize_rt_tasks(void)
6222
{
6223
	struct task_struct *g, *p;
6224 6225 6226
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
6227

6228
	read_lock(&tasklist_lock);
6229
	for_each_process_thread(g, p) {
6230 6231 6232
		/*
		 * Only normalize user tasks:
		 */
6233
		if (p->flags & PF_KTHREAD)
6234 6235
			continue;

6236 6237 6238 6239
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
6240

6241
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
6242 6243 6244 6245
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
6246
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
6247
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6248
			continue;
I
Ingo Molnar 已提交
6249
		}
L
Linus Torvalds 已提交
6250

6251
		__sched_setscheduler(p, &attr, false, false);
6252
	}
6253
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6254 6255 6256
}

#endif /* CONFIG_MAGIC_SYSRQ */
6257

6258
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6259
/*
6260
 * These functions are only useful for the IA64 MCA handling, or kdb.
6261 6262 6263 6264 6265 6266 6267 6268 6269
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
I
Ingo Molnar 已提交
6270
 * curr_task - return the current task for a given CPU.
6271 6272 6273
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6274 6275
 *
 * Return: The current task for @cpu.
6276
 */
6277
struct task_struct *curr_task(int cpu)
6278 6279 6280 6281
{
	return cpu_curr(cpu);
}

6282 6283 6284
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6285
/**
I
Ingo Molnar 已提交
6286
 * set_curr_task - set the current task for a given CPU.
6287 6288 6289 6290
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6291
 * are serviced on a separate stack. It allows the architecture to switch the
I
Ingo Molnar 已提交
6292
 * notion of the current task on a CPU in a non-blocking manner. This function
6293 6294 6295 6296 6297 6298 6299
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6300
void ia64_set_curr_task(int cpu, struct task_struct *p)
6301 6302 6303 6304 6305
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6306

D
Dhaval Giani 已提交
6307
#ifdef CONFIG_CGROUP_SCHED
6308 6309 6310
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6311
static void sched_free_group(struct task_group *tg)
6312 6313 6314
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6315
	autogroup_free(tg);
6316
	kmem_cache_free(task_group_cache, tg);
6317 6318 6319
}

/* allocate runqueue etc for a new task group */
6320
struct task_group *sched_create_group(struct task_group *parent)
6321 6322 6323
{
	struct task_group *tg;

6324
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6325 6326 6327
	if (!tg)
		return ERR_PTR(-ENOMEM);

6328
	if (!alloc_fair_sched_group(tg, parent))
6329 6330
		goto err;

6331
	if (!alloc_rt_sched_group(tg, parent))
6332 6333
		goto err;

6334 6335 6336
	return tg;

err:
6337
	sched_free_group(tg);
6338 6339 6340 6341 6342 6343 6344
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6345
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6346
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6347

I
Ingo Molnar 已提交
6348 6349
	/* Root should already exist: */
	WARN_ON(!parent);
P
Peter Zijlstra 已提交
6350 6351 6352

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6353
	list_add_rcu(&tg->siblings, &parent->children);
6354
	spin_unlock_irqrestore(&task_group_lock, flags);
6355 6356

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
6357 6358
}

6359
/* rcu callback to free various structures associated with a task group */
6360
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6361
{
I
Ingo Molnar 已提交
6362
	/* Now it should be safe to free those cfs_rqs: */
6363
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6364 6365
}

6366
void sched_destroy_group(struct task_group *tg)
6367
{
I
Ingo Molnar 已提交
6368
	/* Wait for possible concurrent references to cfs_rqs complete: */
6369
	call_rcu(&tg->rcu, sched_free_group_rcu);
6370 6371 6372
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6373
{
6374
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
6375

I
Ingo Molnar 已提交
6376
	/* End participation in shares distribution: */
6377
	unregister_fair_sched_group(tg);
6378 6379

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6380
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6381
	list_del_rcu(&tg->siblings);
6382
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6383 6384
}

6385
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
6386
{
P
Peter Zijlstra 已提交
6387
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6388

6389 6390 6391 6392 6393 6394
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
6395 6396 6397 6398
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6399
#ifdef CONFIG_FAIR_GROUP_SCHED
6400 6401
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
6402
	else
P
Peter Zijlstra 已提交
6403
#endif
6404
		set_task_rq(tsk, task_cpu(tsk));
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
	int queued, running;
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);
6421
	update_rq_clock(rq);
6422 6423 6424 6425 6426 6427

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
6428
	if (running)
6429 6430 6431
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
6432

6433
	if (queued)
6434
		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
6435
	if (running)
6436
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6437

6438
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
6439
}
D
Dhaval Giani 已提交
6440
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
6441

6442 6443 6444 6445 6446
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
6447

P
Peter Zijlstra 已提交
6448 6449
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
6450
{
P
Peter Zijlstra 已提交
6451
	struct task_struct *g, *p;
6452

6453 6454 6455 6456 6457 6458
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

6459
	for_each_process_thread(g, p) {
6460
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
6461
			return 1;
6462
	}
6463

P
Peter Zijlstra 已提交
6464 6465
	return 0;
}
6466

P
Peter Zijlstra 已提交
6467 6468 6469 6470 6471
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
6472

6473
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
6474 6475 6476 6477 6478
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
6479

P
Peter Zijlstra 已提交
6480 6481
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
6482

P
Peter Zijlstra 已提交
6483 6484 6485
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
6486 6487
	}

6488 6489 6490 6491 6492
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
6493

6494 6495 6496
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
6497 6498
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
6499

P
Peter Zijlstra 已提交
6500
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6501

6502 6503 6504 6505 6506
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
6507

6508 6509 6510
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
6511 6512 6513
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6514

P
Peter Zijlstra 已提交
6515 6516 6517 6518
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
6519

P
Peter Zijlstra 已提交
6520
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6521
	}
P
Peter Zijlstra 已提交
6522

P
Peter Zijlstra 已提交
6523 6524 6525 6526
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
6527 6528
}

P
Peter Zijlstra 已提交
6529
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6530
{
6531 6532
	int ret;

P
Peter Zijlstra 已提交
6533 6534 6535 6536 6537 6538
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

6539 6540 6541 6542 6543
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6544 6545
}

6546
static int tg_set_rt_bandwidth(struct task_group *tg,
6547
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
6548
{
P
Peter Zijlstra 已提交
6549
	int i, err = 0;
P
Peter Zijlstra 已提交
6550

6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
6562
	mutex_lock(&rt_constraints_mutex);
6563
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
6564 6565
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
6566
		goto unlock;
P
Peter Zijlstra 已提交
6567

6568
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6569 6570
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
6571 6572 6573 6574

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

6575
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6576
		rt_rq->rt_runtime = rt_runtime;
6577
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6578
	}
6579
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
6580
unlock:
6581
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
6582 6583 6584
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
6585 6586
}

6587
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6588 6589 6590 6591 6592 6593 6594 6595
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

6596
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6597 6598
}

6599
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
6600 6601 6602
{
	u64 rt_runtime_us;

6603
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
6604 6605
		return -1;

6606
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6607 6608 6609
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
6610

6611
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
6612 6613 6614
{
	u64 rt_runtime, rt_period;

6615
	rt_period = rt_period_us * NSEC_PER_USEC;
6616 6617
	rt_runtime = tg->rt_bandwidth.rt_runtime;

6618
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6619 6620
}

6621
static long sched_group_rt_period(struct task_group *tg)
6622 6623 6624 6625 6626 6627 6628
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
6629
#endif /* CONFIG_RT_GROUP_SCHED */
6630

6631
#ifdef CONFIG_RT_GROUP_SCHED
6632 6633 6634 6635 6636
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
6637
	read_lock(&tasklist_lock);
6638
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
6639
	read_unlock(&tasklist_lock);
6640 6641 6642 6643
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
6644

6645
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6646 6647 6648 6649 6650 6651 6652 6653
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

6654
#else /* !CONFIG_RT_GROUP_SCHED */
6655 6656
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
6657
	unsigned long flags;
6658
	int i;
6659

6660
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
6661 6662 6663
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

6664
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6665
		rt_rq->rt_runtime = global_rt_runtime();
6666
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6667
	}
6668
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
6669

6670
	return 0;
6671
}
6672
#endif /* CONFIG_RT_GROUP_SCHED */
6673

6674
static int sched_dl_global_validate(void)
6675
{
6676 6677
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
6678
	u64 new_bw = to_ratio(period, runtime);
6679
	struct dl_bw *dl_b;
6680
	int cpu, ret = 0;
6681
	unsigned long flags;
6682 6683 6684 6685 6686 6687 6688 6689 6690 6691

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
6692
	for_each_possible_cpu(cpu) {
6693 6694
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
6695

6696
		raw_spin_lock_irqsave(&dl_b->lock, flags);
6697 6698
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
6699
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6700

6701 6702
		rcu_read_unlock_sched();

6703 6704
		if (ret)
			break;
6705 6706
	}

6707
	return ret;
6708 6709
}

6710
static void sched_dl_do_global(void)
6711
{
6712
	u64 new_bw = -1;
6713
	struct dl_bw *dl_b;
6714
	int cpu;
6715
	unsigned long flags;
6716

6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
6727 6728
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
6729

6730
		raw_spin_lock_irqsave(&dl_b->lock, flags);
6731
		dl_b->bw = new_bw;
6732
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6733 6734

		rcu_read_unlock_sched();
6735
	}
6736 6737 6738 6739 6740 6741 6742
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

6743 6744
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
6745 6746 6747 6748 6749 6750 6751 6752 6753
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
6754 6755
}

6756
int sched_rt_handler(struct ctl_table *table, int write,
6757
		void __user *buffer, size_t *lenp,
6758 6759 6760 6761
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
6762
	int ret;
6763 6764 6765 6766 6767

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

6768
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6769 6770

	if (!ret && write) {
6771 6772 6773 6774
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

6775
		ret = sched_dl_global_validate();
6776 6777 6778
		if (ret)
			goto undo;

6779
		ret = sched_rt_global_constraints();
6780 6781 6782 6783 6784 6785 6786 6787 6788 6789
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
6790 6791 6792 6793 6794
	}
	mutex_unlock(&mutex);

	return ret;
}
6795

6796
int sched_rr_handler(struct ctl_table *table, int write,
6797 6798 6799 6800 6801 6802 6803 6804
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
I
Ingo Molnar 已提交
6805 6806 6807 6808
	/*
	 * Make sure that internally we keep jiffies.
	 * Also, writing zero resets the timeslice to default:
	 */
6809
	if (!ret && write) {
6810 6811 6812
		sched_rr_timeslice =
			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
			msecs_to_jiffies(sysctl_sched_rr_timeslice);
6813 6814 6815 6816 6817
	}
	mutex_unlock(&mutex);
	return ret;
}

6818
#ifdef CONFIG_CGROUP_SCHED
6819

6820
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6821
{
6822
	return css ? container_of(css, struct task_group, css) : NULL;
6823 6824
}

6825 6826
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6827
{
6828 6829
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
6830

6831
	if (!parent) {
6832
		/* This is early initialization for the top cgroup */
6833
		return &root_task_group.css;
6834 6835
	}

6836
	tg = sched_create_group(parent);
6837 6838 6839 6840 6841 6842
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
/* Expose task group only after completing cgroup initialization */
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css->parent);

	if (parent)
		sched_online_group(tg, parent);
	return 0;
}

6854
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6855
{
6856
	struct task_group *tg = css_tg(css);
6857

6858
	sched_offline_group(tg);
6859 6860
}

6861
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6862
{
6863
	struct task_group *tg = css_tg(css);
6864

6865 6866 6867 6868
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
6869 6870
}

6871 6872 6873 6874
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
6875
static void cpu_cgroup_fork(struct task_struct *task)
6876
{
6877 6878 6879 6880 6881
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

6882
	update_rq_clock(rq);
6883 6884 6885
	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
6886 6887
}

6888
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6889
{
6890
	struct task_struct *task;
6891
	struct cgroup_subsys_state *css;
6892
	int ret = 0;
6893

6894
	cgroup_taskset_for_each(task, css, tset) {
6895
#ifdef CONFIG_RT_GROUP_SCHED
6896
		if (!sched_rt_can_attach(css_tg(css), task))
6897
			return -EINVAL;
6898
#else
6899 6900 6901
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
6902
#endif
6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
6919
	}
6920
	return ret;
6921
}
6922

6923
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6924
{
6925
	struct task_struct *task;
6926
	struct cgroup_subsys_state *css;
6927

6928
	cgroup_taskset_for_each(task, css, tset)
6929
		sched_move_task(task);
6930 6931
}

6932
#ifdef CONFIG_FAIR_GROUP_SCHED
6933 6934
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
6935
{
6936
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6937 6938
}

6939 6940
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
6941
{
6942
	struct task_group *tg = css_tg(css);
6943

6944
	return (u64) scale_load_down(tg->shares);
6945
}
6946 6947

#ifdef CONFIG_CFS_BANDWIDTH
6948 6949
static DEFINE_MUTEX(cfs_constraints_mutex);

6950 6951 6952
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

6953 6954
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

6955 6956
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
6957
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6958
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

6979 6980 6981 6982 6983
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
6984 6985 6986 6987 6988
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

6989
	runtime_enabled = quota != RUNTIME_INF;
6990
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6991 6992 6993 6994 6995 6996
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
6997 6998 6999
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7000

P
Paul Turner 已提交
7001
	__refill_cfs_bandwidth_runtime(cfs_b);
I
Ingo Molnar 已提交
7002 7003

	/* Restart the period timer (if active) to handle new period expiry: */
P
Peter Zijlstra 已提交
7004 7005
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
I
Ingo Molnar 已提交
7006

7007 7008
	raw_spin_unlock_irq(&cfs_b->lock);

7009
	for_each_online_cpu(i) {
7010
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7011
		struct rq *rq = cfs_rq->rq;
7012
		struct rq_flags rf;
7013

7014
		rq_lock_irq(rq, &rf);
7015
		cfs_rq->runtime_enabled = runtime_enabled;
7016
		cfs_rq->runtime_remaining = 0;
7017

7018
		if (cfs_rq->throttled)
7019
			unthrottle_cfs_rq(cfs_rq);
7020
		rq_unlock_irq(rq, &rf);
7021
	}
7022 7023
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
7024 7025
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7026
	put_online_cpus();
7027

7028
	return ret;
7029 7030 7031 7032 7033 7034
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7035
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7048
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7049 7050
		return -1;

7051
	quota_us = tg->cfs_bandwidth.quota;
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7062
	quota = tg->cfs_bandwidth.quota;
7063 7064 7065 7066 7067 7068 7069 7070

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7071
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7072 7073 7074 7075 7076
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7077 7078
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7079
{
7080
	return tg_get_cfs_quota(css_tg(css));
7081 7082
}

7083 7084
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7085
{
7086
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7087 7088
}

7089 7090
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7091
{
7092
	return tg_get_cfs_period(css_tg(css));
7093 7094
}

7095 7096
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7097
{
7098
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7099 7100
}

7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7133
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7134 7135 7136 7137 7138
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7139
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7140 7141

		quota = normalize_cfs_quota(tg, d);
7142
		parent_quota = parent_b->hierarchical_quota;
7143 7144

		/*
I
Ingo Molnar 已提交
7145 7146
		 * Ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set:
7147 7148 7149 7150 7151 7152
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
7153
	cfs_b->hierarchical_quota = quota;
7154 7155 7156 7157 7158 7159

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7160
	int ret;
7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7172 7173 7174 7175 7176
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7177
}
7178

7179
static int cpu_stats_show(struct seq_file *sf, void *v)
7180
{
7181
	struct task_group *tg = css_tg(seq_css(sf));
7182
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7183

7184 7185 7186
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7187 7188 7189

	return 0;
}
7190
#endif /* CONFIG_CFS_BANDWIDTH */
7191
#endif /* CONFIG_FAIR_GROUP_SCHED */
7192

7193
#ifdef CONFIG_RT_GROUP_SCHED
7194 7195
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
7196
{
7197
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
7198 7199
}

7200 7201
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
7202
{
7203
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
7204
}
7205

7206 7207
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
7208
{
7209
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7210 7211
}

7212 7213
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7214
{
7215
	return sched_group_rt_period(css_tg(css));
7216
}
7217
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7218

7219
static struct cftype cpu_files[] = {
7220
#ifdef CONFIG_FAIR_GROUP_SCHED
7221 7222
	{
		.name = "shares",
7223 7224
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7225
	},
7226
#endif
7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7238 7239
	{
		.name = "stat",
7240
		.seq_show = cpu_stats_show,
7241
	},
7242
#endif
7243
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7244
	{
P
Peter Zijlstra 已提交
7245
		.name = "rt_runtime_us",
7246 7247
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7248
	},
7249 7250
	{
		.name = "rt_period_us",
7251 7252
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7253
	},
7254
#endif
I
Ingo Molnar 已提交
7255
	{ }	/* Terminate */
7256 7257
};

7258
struct cgroup_subsys cpu_cgrp_subsys = {
7259
	.css_alloc	= cpu_cgroup_css_alloc,
7260
	.css_online	= cpu_cgroup_css_online,
7261
	.css_released	= cpu_cgroup_css_released,
7262
	.css_free	= cpu_cgroup_css_free,
7263
	.fork		= cpu_cgroup_fork,
7264 7265
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7266
	.legacy_cftypes	= cpu_files,
7267
	.early_init	= true,
7268 7269
};

7270
#endif	/* CONFIG_CGROUP_SCHED */
7271

7272 7273 7274 7275 7276
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};