core.c 214.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28
 */

29
#include <linux/kasan.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
34
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
35
#include <linux/highmem.h>
36
#include <linux/mmu_context.h>
L
Linus Torvalds 已提交
37
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
74
#include <linux/context_tracking.h>
75
#include <linux/compiler.h>
76
#include <linux/frame.h>
77
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
78

79
#include <asm/switch_to.h>
80
#include <asm/tlb.h>
81
#include <asm/irq_regs.h>
82
#include <asm/mutex.h>
G
Glauber Costa 已提交
83 84 85
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
86

87
#include "sched.h"
88
#include "../workqueue_internal.h"
89
#include "../smpboot.h"
90

91
#define CREATE_TRACE_POINTS
92
#include <trace/events/sched.h>
93

94 95
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96

97
static void update_rq_clock_task(struct rq *rq, s64 delta);
98

99
void update_rq_clock(struct rq *rq)
100
{
101
	s64 delta;
102

103 104 105
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
106
		return;
107

108
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 110
	if (delta < 0)
		return;
111 112
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
113 114
}

I
Ingo Molnar 已提交
115 116 117
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
118 119 120 121

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
122
const_debug unsigned int sysctl_sched_features =
123
#include "features.h"
P
Peter Zijlstra 已提交
124 125 126 127
	0;

#undef SCHED_FEAT

128 129 130 131 132 133
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

134 135 136 137 138 139 140 141
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
142
/*
P
Peter Zijlstra 已提交
143
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
144 145
 * default: 1s
 */
P
Peter Zijlstra 已提交
146
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
147

148
__read_mostly int scheduler_running;
149

P
Peter Zijlstra 已提交
150 151 152 153 154
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
155

156 157 158
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
159
/*
160
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
161
 */
A
Alexey Dobriyan 已提交
162
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
163 164
	__acquires(rq->lock)
{
165
	struct rq *rq;
L
Linus Torvalds 已提交
166 167 168

	local_irq_disable();
	rq = this_rq();
169
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
170 171 172 173

	return rq;
}

174 175 176
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
177
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 179 180 181 182 183 184 185 186 187
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188
			rf->cookie = lockdep_pin_lock(&rq->lock);
189 190 191 192 193 194 195 196 197 198 199 200
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
201
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 203 204 205 206 207
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
208
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
		 * If we observe the new cpu in task_rq_lock, the acquire will
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228
			rf->cookie = lockdep_pin_lock(&rq->lock);
229 230 231
			return rq;
		}
		raw_spin_unlock(&rq->lock);
232
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233 234 235 236 237 238

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

P
Peter Zijlstra 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

260
	raw_spin_lock(&rq->lock);
261
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
262
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
264 265 266 267

	return HRTIMER_NORESTART;
}

268
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
269

270
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
271 272 273
{
	struct hrtimer *timer = &rq->hrtick_timer;

274
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
275 276
}

277 278 279 280
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
281
{
282
	struct rq *rq = arg;
283

284
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
285
	__hrtick_restart(rq);
286
	rq->hrtick_csd_pending = 0;
287
	raw_spin_unlock(&rq->lock);
288 289
}

290 291 292 293 294
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
295
void hrtick_start(struct rq *rq, u64 delay)
296
{
297
	struct hrtimer *timer = &rq->hrtick_timer;
298 299 300 301 302 303 304 305 306
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
307

308
	hrtimer_set_expires(timer, time);
309 310

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
311
		__hrtick_restart(rq);
312
	} else if (!rq->hrtick_csd_pending) {
313
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 315
		rq->hrtick_csd_pending = 1;
	}
316 317
}

318 319 320 321 322 323
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
324
void hrtick_start(struct rq *rq, u64 delay)
325
{
W
Wanpeng Li 已提交
326 327 328 329 330
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
331 332
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
333 334
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
335

336
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
337
{
338 339
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
340

341 342 343 344
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
345

346 347
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
348
}
A
Andrew Morton 已提交
349
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
350 351 352 353 354 355 356
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
357
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

377
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 379 380 381 382 383 384 385 386 387
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
388 389 390 391 392 393 394 395 396 397

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
398
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399 400 401 402 403 404 405 406 407 408 409 410 411 412

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

413 414 415 416 417 418
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
419 420 421 422 423 424 425

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
426 427
#endif

428 429 430 431 432 433 434 435 436 437
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
438
	 * barrier implied by the wakeup in wake_up_q().
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
474
/*
475
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
476 477 478 479 480
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
481
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
482
{
483
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
484 485
	int cpu;

486
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
487

488
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
489 490
		return;

491
	cpu = cpu_of(rq);
492

493
	if (cpu == smp_processor_id()) {
494
		set_tsk_need_resched(curr);
495
		set_preempt_need_resched();
I
Ingo Molnar 已提交
496
		return;
497
	}
I
Ingo Molnar 已提交
498

499
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
500
		smp_send_reschedule(cpu);
501 502
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
503 504
}

505
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
506 507 508 509
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

510
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
511
		return;
512
	resched_curr(rq);
513
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
514
}
515

516
#ifdef CONFIG_SMP
517
#ifdef CONFIG_NO_HZ_COMMON
518 519 520 521 522 523 524 525
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
526
int get_nohz_timer_target(void)
527
{
528
	int i, cpu = smp_processor_id();
529 530
	struct sched_domain *sd;

531
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 533
		return cpu;

534
	rcu_read_lock();
535
	for_each_domain(cpu, sd) {
536
		for_each_cpu(i, sched_domain_span(sd)) {
537 538 539 540
			if (cpu == i)
				continue;

			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 542 543 544
				cpu = i;
				goto unlock;
			}
		}
545
	}
546 547 548

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
549 550
unlock:
	rcu_read_unlock();
551 552
	return cpu;
}
553 554 555 556 557 558 559 560 561 562
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
563
static void wake_up_idle_cpu(int cpu)
564 565 566 567 568 569
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

570
	if (set_nr_and_not_polling(rq->idle))
571
		smp_send_reschedule(cpu);
572 573
	else
		trace_sched_wake_idle_without_ipi(cpu);
574 575
}

576
static bool wake_up_full_nohz_cpu(int cpu)
577
{
578 579 580 581 582 583
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
584
	if (tick_nohz_full_cpu(cpu)) {
585 586
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
587
			tick_nohz_full_kick_cpu(cpu);
588 589 590 591 592 593 594 595
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
596
	if (!wake_up_full_nohz_cpu(cpu))
597 598 599
		wake_up_idle_cpu(cpu);
}

600
static inline bool got_nohz_idle_kick(void)
601
{
602
	int cpu = smp_processor_id();
603 604 605 606 607 608 609 610 611 612 613 614 615

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
616 617
}

618
#else /* CONFIG_NO_HZ_COMMON */
619

620
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
621
{
622
	return false;
P
Peter Zijlstra 已提交
623 624
}

625
#endif /* CONFIG_NO_HZ_COMMON */
626

627
#ifdef CONFIG_NO_HZ_FULL
628
bool sched_can_stop_tick(struct rq *rq)
629
{
630 631 632 633 634 635
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

636
	/*
637 638
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
639
	 */
640 641 642 643 644
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
645 646
	}

647 648 649 650 651 652 653 654 655 656 657 658 659 660
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
661
		return false;
662

663
	return true;
664 665
}
#endif /* CONFIG_NO_HZ_FULL */
666

667
void sched_avg_update(struct rq *rq)
668
{
669 670
	s64 period = sched_avg_period();

671
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
672 673 674 675 676 677
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
678 679 680
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
681 682
}

683
#endif /* CONFIG_SMP */
684

685 686
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
687
/*
688 689 690 691
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
692
 */
693
int walk_tg_tree_from(struct task_group *from,
694
			     tg_visitor down, tg_visitor up, void *data)
695 696
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
697
	int ret;
698

699 700
	parent = from;

701
down:
P
Peter Zijlstra 已提交
702 703
	ret = (*down)(parent, data);
	if (ret)
704
		goto out;
705 706 707 708 709 710 711
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
712
	ret = (*up)(parent, data);
713 714
	if (ret || parent == from)
		goto out;
715 716 717 718 719

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
720
out:
P
Peter Zijlstra 已提交
721
	return ret;
722 723
}

724
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
725
{
726
	return 0;
P
Peter Zijlstra 已提交
727
}
728 729
#endif

730 731
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
732 733 734
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
735 736 737
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
738
	if (idle_policy(p->policy)) {
739
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
740
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
741 742
		return;
	}
743

744 745
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
746 747
}

748
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
749
{
750
	update_rq_clock(rq);
751 752
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
753
	p->sched_class->enqueue_task(rq, p, flags);
754 755
}

756
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
757
{
758
	update_rq_clock(rq);
759 760
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
761
	p->sched_class->dequeue_task(rq, p, flags);
762 763
}

764
void activate_task(struct rq *rq, struct task_struct *p, int flags)
765 766 767 768
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

769
	enqueue_task(rq, p, flags);
770 771
}

772
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
773 774 775 776
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

777
	dequeue_task(rq, p, flags);
778 779
}

780
static void update_rq_clock_task(struct rq *rq, s64 delta)
781
{
782 783 784 785 786 787 788 789
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
790
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
812 813
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
814
	if (static_key_false((&paravirt_steal_rq_enabled))) {
815 816 817 818 819 820 821 822 823 824 825
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

826 827
	rq->clock_task += delta;

828
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
829
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
830 831
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
832 833
}

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

864
/*
I
Ingo Molnar 已提交
865
 * __normal_prio - return the priority that is based on the static prio
866 867 868
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
869
	return p->static_prio;
870 871
}

872 873 874 875 876 877 878
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
879
static inline int normal_prio(struct task_struct *p)
880 881 882
{
	int prio;

883 884 885
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
886 887 888 889 890 891 892 893 894 895 896 897 898
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
899
static int effective_prio(struct task_struct *p)
900 901 902 903 904 905 906 907 908 909 910 911
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
912 913 914
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
915 916
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
917
 */
918
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
919 920 921 922
{
	return cpu_curr(task_cpu(p)) == p;
}

923
/*
924 925 926 927 928
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
929
 */
930 931
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
932
				       int oldprio)
933 934 935
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
936
			prev_class->switched_from(rq, p);
937

P
Peter Zijlstra 已提交
938
		p->sched_class->switched_to(rq, p);
939
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
940
		p->sched_class->prio_changed(rq, p, oldprio);
941 942
}

943
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
944 945 946 947 948 949 950 951 952 953
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
954
				resched_curr(rq);
955 956 957 958 959 960 961 962 963
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
964
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
965
		rq_clock_skip_update(rq, true);
966 967
}

L
Linus Torvalds 已提交
968
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
988
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
989 990 991 992
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
993
	dequeue_task(rq, p, 0);
P
Peter Zijlstra 已提交
994 995 996 997 998 999 1000 1001
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
1002
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
1022
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
1023 1024
{
	if (unlikely(!cpu_active(dest_cpu)))
1025
		return rq;
P
Peter Zijlstra 已提交
1026 1027 1028

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1029
		return rq;
P
Peter Zijlstra 已提交
1030

1031 1032 1033
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1044 1045
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
	if (task_rq(p) == rq && task_on_rq_queued(p))
		rq = __migrate_task(rq, p, arg->dest_cpu);
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1071 1072 1073 1074
	local_irq_enable();
	return 0;
}

1075 1076 1077 1078 1079
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1080 1081 1082 1083 1084
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1085 1086
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1087 1088 1089
	struct rq *rq = task_rq(p);
	bool queued, running;

1090
	lockdep_assert_held(&p->pi_lock);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1101
		dequeue_task(rq, p, DEQUEUE_SAVE);
1102 1103 1104 1105
	}
	if (running)
		put_prev_task(rq, p);

1106
	p->sched_class->set_cpus_allowed(p, new_mask);
1107 1108 1109 1110

	if (running)
		p->sched_class->set_curr_task(rq);
	if (queued)
1111
		enqueue_task(rq, p, ENQUEUE_RESTORE);
1112 1113
}

P
Peter Zijlstra 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1123 1124
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1125
{
1126
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1127
	unsigned int dest_cpu;
1128 1129
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1130 1131
	int ret = 0;

1132
	rq = task_rq_lock(p, &rf);
P
Peter Zijlstra 已提交
1133

1134 1135 1136 1137 1138 1139 1140
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1141 1142 1143 1144 1145 1146 1147 1148 1149
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1150 1151 1152
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1153
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1154 1155 1156 1157 1158 1159
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
		 * !active we want to ensure they are strict per-cpu threads.
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1170 1171 1172 1173
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1174
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1175 1176 1177
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1178
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1179 1180 1181
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1182 1183 1184 1185 1186
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1187
		lockdep_unpin_lock(&rq->lock, rf.cookie);
1188
		rq = move_queued_task(rq, p, dest_cpu);
1189
		lockdep_repin_lock(&rq->lock, rf.cookie);
1190
	}
P
Peter Zijlstra 已提交
1191
out:
1192
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1193 1194 1195

	return ret;
}
1196 1197 1198 1199 1200

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1201 1202
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1203
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1204
{
1205 1206 1207 1208 1209
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1210
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1211
			!p->on_rq);
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1222
#ifdef CONFIG_LOCKDEP
1223 1224 1225 1226 1227
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1228
	 * see task_group().
1229 1230 1231 1232
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1233 1234 1235
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1236 1237
#endif

1238
	trace_sched_migrate_task(p, new_cpu);
1239

1240
	if (task_cpu(p) != new_cpu) {
1241
		if (p->sched_class->migrate_task_rq)
1242
			p->sched_class->migrate_task_rq(p);
1243
		p->se.nr_migrations++;
1244
		perf_event_task_migrate(p);
1245
	}
I
Ingo Molnar 已提交
1246 1247

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1248 1249
}

1250 1251
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1252
	if (task_on_rq_queued(p)) {
1253 1254 1255 1256 1257
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1258
		p->on_rq = TASK_ON_RQ_MIGRATING;
1259 1260 1261
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1262
		p->on_rq = TASK_ON_RQ_QUEUED;
1263 1264 1265 1266 1267
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
L
Leo Yan 已提交
1268
		 * previous cpu our target instead of where it really is.
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1285 1286 1287
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1288 1289 1290
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1291 1292
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1293
	double_rq_lock(src_rq, dst_rq);
1294

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1314 1315
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1338 1339 1340 1341
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1342 1343 1344 1345 1346 1347 1348 1349 1350
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1351
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1352 1353 1354 1355 1356 1357
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1358 1359 1360
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1361 1362 1363 1364 1365 1366 1367
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1368 1369 1370 1371 1372 1373
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1374
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1375
{
1376
	int running, queued;
1377
	struct rq_flags rf;
R
Roland McGrath 已提交
1378
	unsigned long ncsw;
1379
	struct rq *rq;
L
Linus Torvalds 已提交
1380

1381 1382 1383 1384 1385 1386 1387 1388
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1401 1402 1403
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1404
			cpu_relax();
R
Roland McGrath 已提交
1405
		}
1406

1407 1408 1409 1410 1411
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1412
		rq = task_rq_lock(p, &rf);
1413
		trace_sched_wait_task(p);
1414
		running = task_running(rq, p);
1415
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1416
		ncsw = 0;
1417
		if (!match_state || p->state == match_state)
1418
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1419
		task_rq_unlock(rq, p, &rf);
1420

R
Roland McGrath 已提交
1421 1422 1423 1424 1425 1426
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1437

1438 1439 1440 1441 1442
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1443
		 * So if it was still runnable (but just not actively
1444 1445 1446
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1447
		if (unlikely(queued)) {
1448 1449 1450 1451
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1452 1453
			continue;
		}
1454

1455 1456 1457 1458 1459 1460 1461
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1462 1463

	return ncsw;
L
Linus Torvalds 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1473
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1474 1475 1476 1477 1478
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1479
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1489
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1490

1491
/*
1492
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
 *    cpu isn't yet part of the sched domains, and balancing will not
 *    see it.
 *
 *  - on cpu-down we clear cpu_active() to mask the sched domains and
 *    avoid the load balancer to place new tasks on the to be removed
 *    cpu. Existing tasks will remain running there and will be taken
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1512
 */
1513 1514
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1515 1516
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1517 1518
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1535
	}
1536

1537 1538
	for (;;) {
		/* Any allowed, online CPU? */
1539
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1540 1541 1542
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1543 1544 1545
				continue;
			goto out;
		}
1546

1547
		/* No more Mr. Nice Guy. */
1548 1549
		switch (state) {
		case cpuset:
1550 1551 1552 1553 1554 1555
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
			/* fall-through */
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1575
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1576 1577
					task_pid_nr(p), p->comm, cpu);
		}
1578 1579 1580 1581 1582
	}

	return dest_cpu;
}

1583
/*
1584
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1585
 */
1586
static inline
1587
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1588
{
1589 1590
	lockdep_assert_held(&p->pi_lock);

1591
	if (tsk_nr_cpus_allowed(p) > 1)
1592
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1593 1594
	else
		cpu = cpumask_any(tsk_cpus_allowed(p));
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1606
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1607
		     !cpu_online(cpu)))
1608
		cpu = select_fallback_rq(task_cpu(p), p);
1609 1610

	return cpu;
1611
}
1612 1613 1614 1615 1616 1617

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1618 1619 1620 1621 1622 1623 1624 1625 1626

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1627
#endif /* CONFIG_SMP */
1628

P
Peter Zijlstra 已提交
1629
static void
1630
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1631
{
P
Peter Zijlstra 已提交
1632
#ifdef CONFIG_SCHEDSTATS
1633 1634
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1645
		rcu_read_lock();
P
Peter Zijlstra 已提交
1646 1647 1648 1649 1650 1651
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1652
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1653
	}
1654 1655 1656 1657

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1658 1659 1660
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1661
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1662 1663

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1664
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1665 1666 1667 1668

#endif /* CONFIG_SCHEDSTATS */
}

1669
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1670
{
T
Tejun Heo 已提交
1671
	activate_task(rq, p, en_flags);
1672
	p->on_rq = TASK_ON_RQ_QUEUED;
1673 1674 1675 1676

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1677 1678
}

1679 1680 1681
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1682 1683
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
			   struct pin_cookie cookie)
T
Tejun Heo 已提交
1684 1685 1686
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1687 1688
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1689
#ifdef CONFIG_SMP
1690 1691
	if (p->sched_class->task_woken) {
		/*
1692 1693
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1694
		 */
1695
		lockdep_unpin_lock(&rq->lock, cookie);
T
Tejun Heo 已提交
1696
		p->sched_class->task_woken(rq, p);
1697
		lockdep_repin_lock(&rq->lock, cookie);
1698
	}
T
Tejun Heo 已提交
1699

1700
	if (rq->idle_stamp) {
1701
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1702
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1703

1704 1705 1706
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1707
			rq->avg_idle = max;
1708

T
Tejun Heo 已提交
1709 1710 1711 1712 1713
		rq->idle_stamp = 0;
	}
#endif
}

1714
static void
1715 1716
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
		 struct pin_cookie cookie)
1717
{
1718 1719
	int en_flags = ENQUEUE_WAKEUP;

1720 1721
	lockdep_assert_held(&rq->lock);

1722 1723 1724
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1725 1726

	if (wake_flags & WF_MIGRATED)
1727
		en_flags |= ENQUEUE_MIGRATED;
1728 1729
#endif

1730
	ttwu_activate(rq, p, en_flags);
1731
	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1742
	struct rq_flags rf;
1743 1744 1745
	struct rq *rq;
	int ret = 0;

1746
	rq = __task_rq_lock(p, &rf);
1747
	if (task_on_rq_queued(p)) {
1748 1749
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1750
		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1751 1752
		ret = 1;
	}
1753
	__task_rq_unlock(rq, &rf);
1754 1755 1756 1757

	return ret;
}

1758
#ifdef CONFIG_SMP
1759
void sched_ttwu_pending(void)
1760 1761
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1762
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1763
	struct pin_cookie cookie;
P
Peter Zijlstra 已提交
1764
	struct task_struct *p;
1765
	unsigned long flags;
1766

1767 1768 1769 1770
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1771
	cookie = lockdep_pin_lock(&rq->lock);
1772

P
Peter Zijlstra 已提交
1773
	while (llist) {
P
Peter Zijlstra 已提交
1774 1775
		int wake_flags = 0;

P
Peter Zijlstra 已提交
1776 1777
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
P
Peter Zijlstra 已提交
1778 1779 1780 1781 1782

		if (p->sched_remote_wakeup)
			wake_flags = WF_MIGRATED;

		ttwu_do_activate(rq, p, wake_flags, cookie);
1783 1784
	}

1785
	lockdep_unpin_lock(&rq->lock, cookie);
1786
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1787 1788 1789 1790
}

void scheduler_ipi(void)
{
1791 1792 1793 1794 1795
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1796
	preempt_fold_need_resched();
1797

1798
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1815
	sched_ttwu_pending();
1816 1817 1818 1819

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1820
	if (unlikely(got_nohz_idle_kick())) {
1821
		this_rq()->idle_balance = 1;
1822
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1823
	}
1824
	irq_exit();
1825 1826
}

P
Peter Zijlstra 已提交
1827
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1828
{
1829 1830
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1831 1832
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1833 1834 1835 1836 1837 1838
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1839
}
1840

1841 1842 1843 1844 1845
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1846 1847 1848 1849
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1860 1861 1862

out:
	rcu_read_unlock();
1863 1864
}

1865
bool cpus_share_cache(int this_cpu, int that_cpu)
1866 1867 1868
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1869
#endif /* CONFIG_SMP */
1870

1871
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1872 1873
{
	struct rq *rq = cpu_rq(cpu);
1874
	struct pin_cookie cookie;
1875

1876
#if defined(CONFIG_SMP)
1877
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1878
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
P
Peter Zijlstra 已提交
1879
		ttwu_queue_remote(p, cpu, wake_flags);
1880 1881 1882 1883
		return;
	}
#endif

1884
	raw_spin_lock(&rq->lock);
1885
	cookie = lockdep_pin_lock(&rq->lock);
1886
	ttwu_do_activate(rq, p, wake_flags, cookie);
1887
	lockdep_unpin_lock(&rq->lock, cookie);
1888
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1889 1890
}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
 * execution on its new cpu [c1].
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
 * Note: the cpu doing B need not be c0 or c1
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1941
 *   2) smp_cond_load_acquire(!X->on_cpu)
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1952
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1978
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1979 1980 1981
 *
 */

T
Tejun Heo 已提交
1982
/**
L
Linus Torvalds 已提交
1983
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1984
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1985
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1986
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1987 1988 1989 1990 1991 1992 1993
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1994
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1995
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1996
 */
1997 1998
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1999 2000
{
	unsigned long flags;
2001
	int cpu, success = 0;
P
Peter Zijlstra 已提交
2002

2003 2004 2005 2006 2007 2008 2009
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
2010
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
2011
	if (!(p->state & state))
L
Linus Torvalds 已提交
2012 2013
		goto out;

2014 2015
	trace_sched_waking(p);

2016
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
2017 2018
	cpu = task_cpu(p);

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
	 * sched_ttwu_pending()                 try_to_wake_up()
	 *   [S] p->on_rq = 1;                  [L] P->state
	 *       UNLOCK rq->lock  -----.
	 *                              \
	 *				 +---   RMB
	 * schedule()                   /
	 *       LOCK rq->lock    -----'
	 *       UNLOCK rq->lock
	 *
	 * [task p]
	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
	 *
	 * Pairs with the UNLOCK+LOCK on rq->lock from the
	 * last wakeup of our task and the schedule that got our task
	 * current.
	 */
	smp_rmb();
2041 2042
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2043 2044

#ifdef CONFIG_SMP
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2064
	/*
2065 2066
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
2067 2068 2069 2070 2071
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2072
	 */
2073
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2074

2075
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2076
	p->state = TASK_WAKING;
2077

2078
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2079 2080
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2081
		set_task_cpu(p, cpu);
2082
	}
L
Linus Torvalds 已提交
2083 2084
#endif /* CONFIG_SMP */

2085
	ttwu_queue(p, cpu, wake_flags);
2086
stat:
2087 2088
	if (schedstat_enabled())
		ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2089
out:
2090
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2091 2092 2093 2094

	return success;
}

T
Tejun Heo 已提交
2095 2096 2097
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2098
 * @cookie: context's cookie for pinning
T
Tejun Heo 已提交
2099
 *
2100
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2101
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2102
 * the current task.
T
Tejun Heo 已提交
2103
 */
2104
static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
T
Tejun Heo 已提交
2105 2106 2107
{
	struct rq *rq = task_rq(p);

2108 2109 2110 2111
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2112 2113
	lockdep_assert_held(&rq->lock);

2114
	if (!raw_spin_trylock(&p->pi_lock)) {
2115 2116 2117 2118 2119 2120
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2121
		lockdep_unpin_lock(&rq->lock, cookie);
2122 2123 2124
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
2125
		lockdep_repin_lock(&rq->lock, cookie);
2126 2127
	}

T
Tejun Heo 已提交
2128
	if (!(p->state & TASK_NORMAL))
2129
		goto out;
T
Tejun Heo 已提交
2130

2131 2132
	trace_sched_waking(p);

2133
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
2134 2135
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2136
	ttwu_do_wakeup(rq, p, 0, cookie);
2137 2138
	if (schedstat_enabled())
		ttwu_stat(p, smp_processor_id(), 0);
2139 2140
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2141 2142
}

2143 2144 2145 2146 2147
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2148 2149 2150
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2151 2152 2153 2154
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2155
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2156
{
2157
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2158 2159 2160
}
EXPORT_SYMBOL(wake_up_process);

2161
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2162 2163 2164 2165
{
	return try_to_wake_up(p, state, 0);
}

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2178 2179 2180

	dl_se->dl_throttled = 0;
	dl_se->dl_yielded = 0;
2181 2182
}

L
Linus Torvalds 已提交
2183 2184 2185
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2186 2187 2188
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2189
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2190
{
P
Peter Zijlstra 已提交
2191 2192 2193
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2194 2195
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2196
	p->se.prev_sum_exec_runtime	= 0;
2197
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2198
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2199
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2200

2201 2202 2203 2204
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2205
#ifdef CONFIG_SCHEDSTATS
2206
	/* Even if schedstat is disabled, there should not be garbage */
2207
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2208
#endif
N
Nick Piggin 已提交
2209

2210
	RB_CLEAR_NODE(&p->dl.rb_node);
2211
	init_dl_task_timer(&p->dl);
2212
	__dl_clear_params(p);
2213

P
Peter Zijlstra 已提交
2214
	INIT_LIST_HEAD(&p->rt.run_list);
2215 2216 2217 2218
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2219

2220 2221 2222
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2223 2224 2225

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2226
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2227 2228 2229
		p->mm->numa_scan_seq = 0;
	}

2230 2231 2232 2233 2234
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2235 2236
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2237
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2238
	p->numa_work.next = &p->numa_work;
2239
	p->numa_faults = NULL;
2240 2241
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2242 2243

	p->numa_group = NULL;
2244
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2245 2246
}

2247 2248
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2249
#ifdef CONFIG_NUMA_BALANCING
2250

2251 2252 2253
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2254
		static_branch_enable(&sched_numa_balancing);
2255
	else
2256
		static_branch_disable(&sched_numa_balancing);
2257
}
2258 2259 2260 2261 2262 2263 2264

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2265
	int state = static_branch_likely(&sched_numa_balancing);
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2281

2282 2283
#ifdef CONFIG_SCHEDSTATS

2284
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2285
static bool __initdata __sched_schedstats = false;
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2309 2310 2311 2312 2313
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2314
	if (!strcmp(str, "enable")) {
2315
		__sched_schedstats = true;
2316 2317
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2318
		__sched_schedstats = false;
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2329 2330 2331 2332 2333
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2354 2355 2356 2357
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2358 2359 2360 2361

/*
 * fork()/clone()-time setup:
 */
2362
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2363
{
2364
	unsigned long flags;
I
Ingo Molnar 已提交
2365 2366
	int cpu = get_cpu();

2367
	__sched_fork(clone_flags, p);
2368
	/*
2369
	 * We mark the process as NEW here. This guarantees that
2370 2371 2372
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2373
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2374

2375 2376 2377 2378 2379
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2380 2381 2382 2383
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2384
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2385
			p->policy = SCHED_NORMAL;
2386
			p->static_prio = NICE_TO_PRIO(0);
2387 2388 2389 2390 2391 2392
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2393

2394 2395 2396 2397 2398 2399
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2400

2401 2402 2403 2404 2405 2406
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2407
		p->sched_class = &fair_sched_class;
2408
	}
2409

2410
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2411

2412 2413 2414 2415 2416 2417 2418
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2419
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2420 2421 2422 2423 2424 2425 2426
	/*
	 * We're setting the cpu for the first time, we don't migrate,
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2427
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2428

2429
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2430
	if (likely(sched_info_on()))
2431
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2432
#endif
P
Peter Zijlstra 已提交
2433 2434
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2435
#endif
2436
	init_task_preempt_count(p);
2437
#ifdef CONFIG_SMP
2438
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2439
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2440
#endif
2441

N
Nick Piggin 已提交
2442
	put_cpu();
2443
	return 0;
L
Linus Torvalds 已提交
2444 2445
}

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2465 2466
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2467 2468 2469
	return &cpu_rq(i)->rd->dl_bw;
}

2470
static inline int dl_bw_cpus(int i)
2471
{
2472 2473 2474
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2475 2476
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2477 2478 2479 2480
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2481 2482 2483 2484 2485 2486 2487
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2488
static inline int dl_bw_cpus(int i)
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2501 2502 2503
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2504 2505 2506 2507 2508 2509
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2510
	u64 period = attr->sched_period ?: attr->sched_deadline;
2511 2512
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2513
	int cpus, err = -1;
2514

2515 2516
	/* !deadline task may carry old deadline bandwidth */
	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2517 2518 2519 2520 2521 2522 2523 2524
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2525
	cpus = dl_bw_cpus(task_cpu(p));
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2546 2547 2548 2549 2550 2551 2552
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2553
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2554
{
2555
	struct rq_flags rf;
I
Ingo Molnar 已提交
2556
	struct rq *rq;
2557

2558
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2559
	p->state = TASK_RUNNING;
2560 2561 2562 2563 2564
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
2565 2566 2567
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2568
	 */
2569
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2570
#endif
2571
	rq = __task_rq_lock(p, &rf);
2572
	post_init_entity_util_avg(&p->se);
2573

P
Peter Zijlstra 已提交
2574
	activate_task(rq, p, 0);
2575
	p->on_rq = TASK_ON_RQ_QUEUED;
2576
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2577
	check_preempt_curr(rq, p, WF_FORK);
2578
#ifdef CONFIG_SMP
2579 2580 2581 2582 2583
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2584
		lockdep_unpin_lock(&rq->lock, rf.cookie);
2585
		p->sched_class->task_woken(rq, p);
2586
		lockdep_repin_lock(&rq->lock, rf.cookie);
2587
	}
2588
#endif
2589
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2590 2591
}

2592 2593
#ifdef CONFIG_PREEMPT_NOTIFIERS

2594 2595
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2608
/**
2609
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2610
 * @notifier: notifier struct to register
2611 2612 2613
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2614 2615 2616
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2617 2618 2619 2620 2621 2622
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2623
 * @notifier: notifier struct to unregister
2624
 *
2625
 * This is *not* safe to call from within a preemption notifier.
2626 2627 2628 2629 2630 2631 2632
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2633
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2634 2635 2636
{
	struct preempt_notifier *notifier;

2637
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2638 2639 2640
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2641 2642 2643 2644 2645 2646
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2647
static void
2648 2649
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2650 2651 2652
{
	struct preempt_notifier *notifier;

2653
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2654 2655 2656
		notifier->ops->sched_out(notifier, next);
}

2657 2658 2659 2660 2661 2662 2663 2664
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2665
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2666

2667
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2668 2669 2670
{
}

2671
static inline void
2672 2673 2674 2675 2676
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2677
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2678

2679 2680 2681
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2682
 * @prev: the current task that is being switched out
2683 2684 2685 2686 2687 2688 2689 2690 2691
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2692 2693 2694
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2695
{
2696
	sched_info_switch(rq, prev, next);
2697
	perf_event_task_sched_out(prev, next);
2698
	fire_sched_out_preempt_notifiers(prev, next);
2699 2700 2701 2702
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2703 2704 2705 2706
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2707 2708 2709 2710
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2711 2712
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2713
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2714 2715
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2716 2717 2718 2719 2720
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2721
 */
2722
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2723 2724
	__releases(rq->lock)
{
2725
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2726
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2727
	long prev_state;
L
Linus Torvalds 已提交
2728

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2740 2741 2742 2743
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2744

L
Linus Torvalds 已提交
2745 2746 2747 2748
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2749
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2750 2751
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2752 2753 2754 2755 2756
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2757
	 */
O
Oleg Nesterov 已提交
2758
	prev_state = prev->state;
2759
	vtime_task_switch(prev);
2760
	perf_event_task_sched_in(prev, current);
2761
	finish_lock_switch(rq, prev);
2762
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2763

2764
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2765 2766
	if (mm)
		mmdrop(mm);
2767
	if (unlikely(prev_state == TASK_DEAD)) {
2768 2769 2770
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2771 2772 2773
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2774
		 */
2775
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2776
		put_task_struct(prev);
2777
	}
2778

2779
	tick_nohz_task_switch();
2780
	return rq;
L
Linus Torvalds 已提交
2781 2782
}

2783 2784 2785
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2786
static void __balance_callback(struct rq *rq)
2787
{
2788 2789 2790
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2791

2792 2793 2794 2795 2796 2797 2798 2799
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2800

2801
		func(rq);
2802
	}
2803 2804 2805 2806 2807 2808 2809
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2810 2811 2812
}

#else
2813

2814
static inline void balance_callback(struct rq *rq)
2815
{
L
Linus Torvalds 已提交
2816 2817
}

2818 2819
#endif

L
Linus Torvalds 已提交
2820 2821 2822 2823
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2824
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2825 2826
	__releases(rq->lock)
{
2827
	struct rq *rq;
2828

2829 2830 2831 2832 2833 2834 2835 2836 2837
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2838
	rq = finish_task_switch(prev);
2839
	balance_callback(rq);
2840
	preempt_enable();
2841

L
Linus Torvalds 已提交
2842
	if (current->set_child_tid)
2843
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2844 2845 2846
}

/*
2847
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2848
 */
2849
static __always_inline struct rq *
2850
context_switch(struct rq *rq, struct task_struct *prev,
2851
	       struct task_struct *next, struct pin_cookie cookie)
L
Linus Torvalds 已提交
2852
{
I
Ingo Molnar 已提交
2853
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2854

2855
	prepare_task_switch(rq, prev, next);
2856

I
Ingo Molnar 已提交
2857 2858
	mm = next->mm;
	oldmm = prev->active_mm;
2859 2860 2861 2862 2863
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2864
	arch_start_context_switch(prev);
2865

2866
	if (!mm) {
L
Linus Torvalds 已提交
2867 2868 2869 2870
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
2871
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2872

2873
	if (!prev->mm) {
L
Linus Torvalds 已提交
2874 2875 2876
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2877 2878 2879 2880 2881 2882
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2883
	lockdep_unpin_lock(&rq->lock, cookie);
2884
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2885 2886 2887

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2888
	barrier();
2889 2890

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2891 2892 2893
}

/*
2894
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2895 2896
 *
 * externally visible scheduler statistics: current number of runnable
2897
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2898 2899 2900 2901 2902 2903 2904 2905 2906
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2907
}
L
Linus Torvalds 已提交
2908

2909 2910
/*
 * Check if only the current task is running on the cpu.
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2921 2922 2923
 */
bool single_task_running(void)
{
2924
	return raw_rq()->nr_running == 1;
2925 2926 2927
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2928
unsigned long long nr_context_switches(void)
2929
{
2930 2931
	int i;
	unsigned long long sum = 0;
2932

2933
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2934
		sum += cpu_rq(i)->nr_switches;
2935

L
Linus Torvalds 已提交
2936 2937
	return sum;
}
2938

L
Linus Torvalds 已提交
2939 2940 2941
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2942

2943
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2944
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2945

L
Linus Torvalds 已提交
2946 2947
	return sum;
}
2948

2949
unsigned long nr_iowait_cpu(int cpu)
2950
{
2951
	struct rq *this = cpu_rq(cpu);
2952 2953
	return atomic_read(&this->nr_iowait);
}
2954

2955 2956
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2957 2958 2959
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2960 2961
}

I
Ingo Molnar 已提交
2962
#ifdef CONFIG_SMP
2963

2964
/*
P
Peter Zijlstra 已提交
2965 2966
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2967
 */
P
Peter Zijlstra 已提交
2968
void sched_exec(void)
2969
{
P
Peter Zijlstra 已提交
2970
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2971
	unsigned long flags;
2972
	int dest_cpu;
2973

2974
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2975
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2976 2977
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2978

2979
	if (likely(cpu_active(dest_cpu))) {
2980
		struct migration_arg arg = { p, dest_cpu };
2981

2982 2983
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2984 2985
		return;
	}
2986
unlock:
2987
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2988
}
I
Ingo Molnar 已提交
2989

L
Linus Torvalds 已提交
2990 2991 2992
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2993
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2994 2995

EXPORT_PER_CPU_SYMBOL(kstat);
2996
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2997

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

3015 3016 3017 3018 3019 3020 3021
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
3022
	struct rq_flags rf;
3023
	struct rq *rq;
3024
	u64 ns;
3025

3026 3027 3028 3029 3030 3031 3032 3033 3034
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
3035 3036
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
3037
	 */
3038
	if (!p->on_cpu || !task_on_rq_queued(p))
3039 3040 3041
		return p->se.sum_exec_runtime;
#endif

3042
	rq = task_rq_lock(p, &rf);
3043 3044 3045 3046 3047 3048
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
3049
		prefetch_curr_exec_start(p);
3050 3051 3052 3053
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3054
	task_rq_unlock(rq, p, &rf);
3055 3056 3057

	return ns;
}
3058

3059 3060 3061 3062 3063 3064 3065 3066
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3067
	struct task_struct *curr = rq->curr;
3068 3069

	sched_clock_tick();
I
Ingo Molnar 已提交
3070

3071
	raw_spin_lock(&rq->lock);
3072
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3073
	curr->sched_class->task_tick(rq, curr, 0);
3074
	cpu_load_update_active(rq);
3075
	calc_global_load_tick(rq);
3076
	raw_spin_unlock(&rq->lock);
3077

3078
	perf_event_task_tick();
3079

3080
#ifdef CONFIG_SMP
3081
	rq->idle_balance = idle_cpu(cpu);
3082
	trigger_load_balance(rq);
3083
#endif
3084
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3085 3086
}

3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3098 3099
 *
 * Return: Maximum deferment in nanoseconds.
3100 3101 3102 3103
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3104
	unsigned long next, now = READ_ONCE(jiffies);
3105 3106 3107 3108 3109 3110

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3111
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3112
}
3113
#endif
L
Linus Torvalds 已提交
3114

3115 3116
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3131

3132
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3133
{
3134
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3135 3136 3137
	/*
	 * Underflow?
	 */
3138 3139
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3140
#endif
3141
	__preempt_count_add(val);
3142
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3143 3144 3145
	/*
	 * Spinlock count overflowing soon?
	 */
3146 3147
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3148
#endif
3149
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3150
}
3151
EXPORT_SYMBOL(preempt_count_add);
3152
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3153

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3164
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3165
{
3166
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3167 3168 3169
	/*
	 * Underflow?
	 */
3170
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3171
		return;
L
Linus Torvalds 已提交
3172 3173 3174
	/*
	 * Is the spinlock portion underflowing?
	 */
3175 3176 3177
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3178
#endif
3179

3180
	preempt_latency_stop(val);
3181
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3182
}
3183
EXPORT_SYMBOL(preempt_count_sub);
3184
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3185

3186 3187 3188
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3189 3190 3191
#endif

/*
I
Ingo Molnar 已提交
3192
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3193
 */
I
Ingo Molnar 已提交
3194
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3195
{
3196 3197 3198
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3199 3200 3201
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3202 3203
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3204

I
Ingo Molnar 已提交
3205
	debug_show_held_locks(prev);
3206
	print_modules();
I
Ingo Molnar 已提交
3207 3208
	if (irqs_disabled())
		print_irqtrace_events(prev);
3209 3210
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3211
		pr_err("Preemption disabled at:");
3212
		print_ip_sym(preempt_disable_ip);
3213 3214
		pr_cont("\n");
	}
3215 3216 3217
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3218
	dump_stack();
3219
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3220
}
L
Linus Torvalds 已提交
3221

I
Ingo Molnar 已提交
3222 3223 3224 3225 3226
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3227
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3228 3229
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3230
#endif
3231

3232
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3233
		__schedule_bug(prev);
3234 3235
		preempt_count_set(PREEMPT_DISABLED);
	}
3236
	rcu_sleep_check();
I
Ingo Molnar 已提交
3237

L
Linus Torvalds 已提交
3238 3239
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3240
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3241 3242 3243 3244 3245 3246
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3247
pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
I
Ingo Molnar 已提交
3248
{
3249
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
3250
	struct task_struct *p;
L
Linus Torvalds 已提交
3251 3252

	/*
I
Ingo Molnar 已提交
3253 3254
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3255
	 */
3256
	if (likely(prev->sched_class == class &&
3257
		   rq->nr_running == rq->cfs.h_nr_running)) {
3258
		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3259 3260 3261 3262 3263
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
3264
			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3265 3266

		return p;
L
Linus Torvalds 已提交
3267 3268
	}

3269
again:
3270
	for_each_class(class) {
3271
		p = class->pick_next_task(rq, prev, cookie);
3272 3273 3274
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3275
			return p;
3276
		}
I
Ingo Molnar 已提交
3277
	}
3278 3279

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3280
}
L
Linus Torvalds 已提交
3281

I
Ingo Molnar 已提交
3282
/*
3283
 * __schedule() is the main scheduler function.
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3318
 *
3319
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3320
 */
3321
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3322 3323
{
	struct task_struct *prev, *next;
3324
	unsigned long *switch_count;
3325
	struct pin_cookie cookie;
I
Ingo Molnar 已提交
3326
	struct rq *rq;
3327
	int cpu;
I
Ingo Molnar 已提交
3328 3329 3330 3331 3332

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
	/*
	 * do_exit() calls schedule() with preemption disabled as an exception;
	 * however we must fix that up, otherwise the next task will see an
	 * inconsistent (higher) preempt count.
	 *
	 * It also avoids the below schedule_debug() test from complaining
	 * about this.
	 */
	if (unlikely(prev->state == TASK_DEAD))
		preempt_enable_no_resched_notrace();

I
Ingo Molnar 已提交
3344
	schedule_debug(prev);
L
Linus Torvalds 已提交
3345

3346
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3347
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3348

3349 3350 3351
	local_irq_disable();
	rcu_note_context_switch();

3352 3353 3354 3355 3356 3357
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3358
	raw_spin_lock(&rq->lock);
3359
	cookie = lockdep_pin_lock(&rq->lock);
L
Linus Torvalds 已提交
3360

3361 3362
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

3363
	switch_count = &prev->nivcsw;
3364
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3365
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3366
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3367
		} else {
3368 3369 3370
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3371
			/*
3372 3373 3374
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3375 3376 3377 3378
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3379
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3380
				if (to_wakeup)
3381
					try_to_wake_up_local(to_wakeup, cookie);
T
Tejun Heo 已提交
3382 3383
			}
		}
I
Ingo Molnar 已提交
3384
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3385 3386
	}

3387
	if (task_on_rq_queued(prev))
3388 3389
		update_rq_clock(rq);

3390
	next = pick_next_task(rq, prev, cookie);
3391
	clear_tsk_need_resched(prev);
3392
	clear_preempt_need_resched();
3393
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
3394 3395 3396 3397 3398 3399

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3400
		trace_sched_switch(preempt, prev, next);
3401
		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3402
	} else {
3403
		lockdep_unpin_lock(&rq->lock, cookie);
3404
		raw_spin_unlock_irq(&rq->lock);
3405
	}
L
Linus Torvalds 已提交
3406

3407
	balance_callback(rq);
L
Linus Torvalds 已提交
3408
}
3409
STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3410

3411 3412
static inline void sched_submit_work(struct task_struct *tsk)
{
3413
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3414 3415 3416 3417 3418 3419 3420 3421 3422
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3423
asmlinkage __visible void __sched schedule(void)
3424
{
3425 3426 3427
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3428
	do {
3429
		preempt_disable();
3430
		__schedule(false);
3431
		sched_preempt_enable_no_resched();
3432
	} while (need_resched());
3433
}
L
Linus Torvalds 已提交
3434 3435
EXPORT_SYMBOL(schedule);

3436
#ifdef CONFIG_CONTEXT_TRACKING
3437
asmlinkage __visible void __sched schedule_user(void)
3438 3439 3440 3441 3442 3443
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3444 3445
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3446
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3447
	 * too frequently to make sense yet.
3448
	 */
3449
	enum ctx_state prev_state = exception_enter();
3450
	schedule();
3451
	exception_exit(prev_state);
3452 3453 3454
}
#endif

3455 3456 3457 3458 3459 3460 3461
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3462
	sched_preempt_enable_no_resched();
3463 3464 3465 3466
	schedule();
	preempt_disable();
}

3467
static void __sched notrace preempt_schedule_common(void)
3468 3469
{
	do {
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3483
		preempt_disable_notrace();
3484
		preempt_latency_start(1);
3485
		__schedule(true);
3486
		preempt_latency_stop(1);
3487
		preempt_enable_no_resched_notrace();
3488 3489 3490 3491 3492 3493 3494 3495

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3496 3497
#ifdef CONFIG_PREEMPT
/*
3498
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3499
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3500 3501
 * occur there and call schedule directly.
 */
3502
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3503 3504 3505
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3506
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3507
	 */
3508
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3509 3510
		return;

3511
	preempt_schedule_common();
L
Linus Torvalds 已提交
3512
}
3513
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3514
EXPORT_SYMBOL(preempt_schedule);
3515 3516

/**
3517
 * preempt_schedule_notrace - preempt_schedule called by tracing
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3530
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3531 3532 3533 3534 3535 3536 3537
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3551
		preempt_disable_notrace();
3552
		preempt_latency_start(1);
3553 3554 3555 3556 3557 3558
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3559
		__schedule(true);
3560 3561
		exception_exit(prev_ctx);

3562
		preempt_latency_stop(1);
3563
		preempt_enable_no_resched_notrace();
3564 3565
	} while (need_resched());
}
3566
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3567

3568
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3569 3570

/*
3571
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3572 3573 3574 3575
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3576
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3577
{
3578
	enum ctx_state prev_state;
3579

3580
	/* Catch callers which need to be fixed */
3581
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3582

3583 3584
	prev_state = exception_enter();

3585
	do {
3586
		preempt_disable();
3587
		local_irq_enable();
3588
		__schedule(true);
3589
		local_irq_disable();
3590
		sched_preempt_enable_no_resched();
3591
	} while (need_resched());
3592 3593

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3594 3595
}

P
Peter Zijlstra 已提交
3596
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3597
			  void *key)
L
Linus Torvalds 已提交
3598
{
P
Peter Zijlstra 已提交
3599
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3600 3601 3602
}
EXPORT_SYMBOL(default_wake_function);

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3613 3614
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3615
 */
3616
void rt_mutex_setprio(struct task_struct *p, int prio)
3617
{
3618
	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3619
	const struct sched_class *prev_class;
3620 3621
	struct rq_flags rf;
	struct rq *rq;
3622

3623
	BUG_ON(prio > MAX_PRIO);
3624

3625
	rq = __task_rq_lock(p, &rf);
3626

3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3645
	trace_sched_pi_setprio(p, prio);
3646
	oldprio = p->prio;
3647 3648 3649 3650

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3651
	prev_class = p->sched_class;
3652
	queued = task_on_rq_queued(p);
3653
	running = task_current(rq, p);
3654
	if (queued)
3655
		dequeue_task(rq, p, queue_flag);
3656
	if (running)
3657
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3658

3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3669 3670 3671
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3672
			p->dl.dl_boosted = 1;
3673
			queue_flag |= ENQUEUE_REPLENISH;
3674 3675
		} else
			p->dl.dl_boosted = 0;
3676
		p->sched_class = &dl_sched_class;
3677 3678 3679 3680
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3681
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3682
		p->sched_class = &rt_sched_class;
3683 3684 3685
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3686 3687
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3688
		p->sched_class = &fair_sched_class;
3689
	}
I
Ingo Molnar 已提交
3690

3691 3692
	p->prio = prio;

3693 3694
	if (running)
		p->sched_class->set_curr_task(rq);
3695
	if (queued)
3696
		enqueue_task(rq, p, queue_flag);
3697

P
Peter Zijlstra 已提交
3698
	check_class_changed(rq, p, prev_class, oldprio);
3699
out_unlock:
3700
	preempt_disable(); /* avoid rq from going away on us */
3701
	__task_rq_unlock(rq, &rf);
3702 3703 3704

	balance_callback(rq);
	preempt_enable();
3705 3706
}
#endif
3707

3708
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3709
{
3710
	int old_prio, delta, queued;
3711
	struct rq_flags rf;
3712
	struct rq *rq;
L
Linus Torvalds 已提交
3713

3714
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3715 3716 3717 3718 3719
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3720
	rq = task_rq_lock(p, &rf);
L
Linus Torvalds 已提交
3721 3722 3723 3724
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3725
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3726
	 */
3727
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3728 3729 3730
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3731 3732
	queued = task_on_rq_queued(p);
	if (queued)
3733
		dequeue_task(rq, p, DEQUEUE_SAVE);
L
Linus Torvalds 已提交
3734 3735

	p->static_prio = NICE_TO_PRIO(nice);
3736
	set_load_weight(p);
3737 3738 3739
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3740

3741
	if (queued) {
3742
		enqueue_task(rq, p, ENQUEUE_RESTORE);
L
Linus Torvalds 已提交
3743
		/*
3744 3745
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3746
		 */
3747
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3748
			resched_curr(rq);
L
Linus Torvalds 已提交
3749 3750
	}
out_unlock:
3751
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3752 3753 3754
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3755 3756 3757 3758 3759
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3760
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3761
{
3762
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3763
	int nice_rlim = nice_to_rlimit(nice);
3764

3765
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3766 3767 3768
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3769 3770 3771 3772 3773 3774 3775 3776 3777
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3778
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3779
{
3780
	long nice, retval;
L
Linus Torvalds 已提交
3781 3782 3783 3784 3785 3786

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3787
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3788
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3789

3790
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3791 3792 3793
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3808
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3809 3810 3811
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3812
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3813 3814 3815 3816 3817 3818 3819
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3820 3821
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3822 3823 3824
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3839 3840 3841 3842 3843
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3844 3845
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3846
 */
3847
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3848 3849 3850 3851 3852 3853 3854
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3855 3856
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3857
 */
A
Alexey Dobriyan 已提交
3858
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3859
{
3860
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3861 3862
}

3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3878
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3879
	dl_se->flags = attr->sched_flags;
3880
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3901 3902
}

3903 3904 3905 3906 3907 3908
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3909 3910
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3911
{
3912 3913
	int policy = attr->sched_policy;

3914
	if (policy == SETPARAM_POLICY)
3915 3916
		policy = p->policy;

L
Linus Torvalds 已提交
3917
	p->policy = policy;
3918

3919 3920
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3921
	else if (fair_policy(policy))
3922 3923
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3924 3925 3926 3927 3928 3929
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3930
	p->normal_prio = normal_prio(p);
3931 3932
	set_load_weight(p);
}
3933

3934 3935
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3936
			   const struct sched_attr *attr, bool keep_boost)
3937 3938
{
	__setscheduler_params(p, attr);
3939

3940
	/*
3941 3942
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3943
	 */
3944 3945 3946 3947
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3948

3949 3950 3951
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3952 3953 3954
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3955
}
3956 3957 3958 3959 3960 3961 3962 3963 3964

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3965
	attr->sched_period = dl_se->dl_period;
3966 3967 3968 3969 3970 3971
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3972
 * than the runtime, as well as the period of being zero or
3973
 * greater than deadline. Furthermore, we have to be sure that
3974 3975 3976 3977
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3978 3979 3980 3981
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
4008 4009
}

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4020 4021
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4022 4023 4024 4025
	rcu_read_unlock();
	return match;
}

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

4040 4041
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4042
				bool user, bool pi)
L
Linus Torvalds 已提交
4043
{
4044 4045
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4046
	int retval, oldprio, oldpolicy = -1, queued, running;
4047
	int new_effective_prio, policy = attr->sched_policy;
4048
	const struct sched_class *prev_class;
4049
	struct rq_flags rf;
4050
	int reset_on_fork;
4051
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4052
	struct rq *rq;
L
Linus Torvalds 已提交
4053

4054 4055
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4056 4057
recheck:
	/* double check policy once rq lock held */
4058 4059
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4060
		policy = oldpolicy = p->policy;
4061
	} else {
4062
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4063

4064
		if (!valid_policy(policy))
4065 4066 4067
			return -EINVAL;
	}

4068 4069 4070
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
4071 4072
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4073 4074
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4075
	 */
4076
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4077
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4078
		return -EINVAL;
4079 4080
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4081 4082
		return -EINVAL;

4083 4084 4085
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4086
	if (user && !capable(CAP_SYS_NICE)) {
4087
		if (fair_policy(policy)) {
4088
			if (attr->sched_nice < task_nice(p) &&
4089
			    !can_nice(p, attr->sched_nice))
4090 4091 4092
				return -EPERM;
		}

4093
		if (rt_policy(policy)) {
4094 4095
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4096 4097 4098 4099 4100 4101

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
4102 4103
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4104 4105
				return -EPERM;
		}
4106

4107 4108 4109 4110 4111 4112 4113 4114 4115
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4116
		/*
4117 4118
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4119
		 */
4120
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4121
			if (!can_nice(p, task_nice(p)))
4122 4123
				return -EPERM;
		}
4124

4125
		/* can't change other user's priorities */
4126
		if (!check_same_owner(p))
4127
			return -EPERM;
4128 4129 4130 4131

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4132
	}
L
Linus Torvalds 已提交
4133

4134
	if (user) {
4135
		retval = security_task_setscheduler(p);
4136 4137 4138 4139
		if (retval)
			return retval;
	}

4140 4141 4142
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4143
	 *
L
Lucas De Marchi 已提交
4144
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4145 4146
	 * runqueue lock must be held.
	 */
4147
	rq = task_rq_lock(p, &rf);
4148

4149 4150 4151 4152
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4153
		task_rq_unlock(rq, p, &rf);
4154 4155 4156
		return -EINVAL;
	}

4157
	/*
4158 4159
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4160
	 */
4161
	if (unlikely(policy == p->policy)) {
4162
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4163 4164 4165
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4166
		if (dl_policy(policy) && dl_param_changed(p, attr))
4167
			goto change;
4168

4169
		p->sched_reset_on_fork = reset_on_fork;
4170
		task_rq_unlock(rq, p, &rf);
4171 4172
		return 0;
	}
4173
change:
4174

4175
	if (user) {
4176
#ifdef CONFIG_RT_GROUP_SCHED
4177 4178 4179 4180 4181
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4182 4183
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4184
			task_rq_unlock(rq, p, &rf);
4185 4186 4187
			return -EPERM;
		}
#endif
4188 4189 4190 4191 4192 4193 4194 4195 4196
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4197 4198
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4199
				task_rq_unlock(rq, p, &rf);
4200 4201 4202 4203 4204
				return -EPERM;
			}
		}
#endif
	}
4205

L
Linus Torvalds 已提交
4206 4207 4208
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4209
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4210 4211
		goto recheck;
	}
4212 4213 4214 4215 4216 4217

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4218
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4219
		task_rq_unlock(rq, p, &rf);
4220 4221 4222
		return -EBUSY;
	}

4223 4224 4225
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4226 4227 4228 4229 4230 4231 4232 4233 4234
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4235 4236
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4237 4238
	}

4239
	queued = task_on_rq_queued(p);
4240
	running = task_current(rq, p);
4241
	if (queued)
4242
		dequeue_task(rq, p, queue_flags);
4243
	if (running)
4244
		put_prev_task(rq, p);
4245

4246
	prev_class = p->sched_class;
4247
	__setscheduler(rq, p, attr, pi);
4248

4249 4250
	if (running)
		p->sched_class->set_curr_task(rq);
4251
	if (queued) {
4252 4253 4254 4255
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4256 4257
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4258

4259
		enqueue_task(rq, p, queue_flags);
4260
	}
4261

P
Peter Zijlstra 已提交
4262
	check_class_changed(rq, p, prev_class, oldprio);
4263
	preempt_disable(); /* avoid rq from going away on us */
4264
	task_rq_unlock(rq, p, &rf);
4265

4266 4267
	if (pi)
		rt_mutex_adjust_pi(p);
4268

4269 4270 4271 4272 4273
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();
4274

L
Linus Torvalds 已提交
4275 4276
	return 0;
}
4277

4278 4279 4280 4281 4282 4283 4284 4285 4286
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4287 4288
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4289 4290 4291 4292 4293
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4294
	return __sched_setscheduler(p, &attr, check, true);
4295
}
4296 4297 4298 4299 4300 4301
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4302 4303
 * Return: 0 on success. An error code otherwise.
 *
4304 4305 4306
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4307
		       const struct sched_param *param)
4308
{
4309
	return _sched_setscheduler(p, policy, param, true);
4310
}
L
Linus Torvalds 已提交
4311 4312
EXPORT_SYMBOL_GPL(sched_setscheduler);

4313 4314
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4315
	return __sched_setscheduler(p, attr, true, true);
4316 4317 4318
}
EXPORT_SYMBOL_GPL(sched_setattr);

4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4329 4330
 *
 * Return: 0 on success. An error code otherwise.
4331 4332
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4333
			       const struct sched_param *param)
4334
{
4335
	return _sched_setscheduler(p, policy, param, false);
4336
}
4337
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4338

I
Ingo Molnar 已提交
4339 4340
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4341 4342 4343
{
	struct sched_param lparam;
	struct task_struct *p;
4344
	int retval;
L
Linus Torvalds 已提交
4345 4346 4347 4348 4349

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4350 4351 4352

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4353
	p = find_process_by_pid(pid);
4354 4355 4356
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4357

L
Linus Torvalds 已提交
4358 4359 4360
	return retval;
}

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4423
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4424

4425
	return 0;
4426 4427 4428

err_size:
	put_user(sizeof(*attr), &uattr->size);
4429
	return -E2BIG;
4430 4431
}

L
Linus Torvalds 已提交
4432 4433 4434 4435 4436
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4437 4438
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4439
 */
4440 4441
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4442
{
4443 4444 4445 4446
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4447 4448 4449 4450 4451 4452 4453
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4454 4455
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4456
 */
4457
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4458
{
4459
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4460 4461
}

4462 4463 4464
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4465
 * @uattr: structure containing the extended parameters.
4466
 * @flags: for future extension.
4467
 */
4468 4469
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4470 4471 4472 4473 4474
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4475
	if (!uattr || pid < 0 || flags)
4476 4477
		return -EINVAL;

4478 4479 4480
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4481

4482
	if ((int)attr.sched_policy < 0)
4483
		return -EINVAL;
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4495 4496 4497
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4498 4499 4500
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4501
 */
4502
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4503
{
4504
	struct task_struct *p;
4505
	int retval;
L
Linus Torvalds 已提交
4506 4507

	if (pid < 0)
4508
		return -EINVAL;
L
Linus Torvalds 已提交
4509 4510

	retval = -ESRCH;
4511
	rcu_read_lock();
L
Linus Torvalds 已提交
4512 4513 4514 4515
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4516 4517
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4518
	}
4519
	rcu_read_unlock();
L
Linus Torvalds 已提交
4520 4521 4522 4523
	return retval;
}

/**
4524
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4525 4526
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4527 4528 4529
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4530
 */
4531
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4532
{
4533
	struct sched_param lp = { .sched_priority = 0 };
4534
	struct task_struct *p;
4535
	int retval;
L
Linus Torvalds 已提交
4536 4537

	if (!param || pid < 0)
4538
		return -EINVAL;
L
Linus Torvalds 已提交
4539

4540
	rcu_read_lock();
L
Linus Torvalds 已提交
4541 4542 4543 4544 4545 4546 4547 4548 4549
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4550 4551
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4552
	rcu_read_unlock();
L
Linus Torvalds 已提交
4553 4554 4555 4556 4557 4558 4559 4560 4561

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4562
	rcu_read_unlock();
L
Linus Torvalds 已提交
4563 4564 4565
	return retval;
}

4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4589
				return -EFBIG;
4590 4591 4592 4593 4594
		}

		attr->size = usize;
	}

4595
	ret = copy_to_user(uattr, attr, attr->size);
4596 4597 4598
	if (ret)
		return -EFAULT;

4599
	return 0;
4600 4601 4602
}

/**
4603
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4604
 * @pid: the pid in question.
J
Juri Lelli 已提交
4605
 * @uattr: structure containing the extended parameters.
4606
 * @size: sizeof(attr) for fwd/bwd comp.
4607
 * @flags: for future extension.
4608
 */
4609 4610
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4611 4612 4613 4614 4615 4616 4617 4618
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4619
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4633 4634
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4635 4636 4637
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4638 4639
		attr.sched_priority = p->rt_priority;
	else
4640
		attr.sched_nice = task_nice(p);
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4652
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4653
{
4654
	cpumask_var_t cpus_allowed, new_mask;
4655 4656
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4657

4658
	rcu_read_lock();
L
Linus Torvalds 已提交
4659 4660 4661

	p = find_process_by_pid(pid);
	if (!p) {
4662
		rcu_read_unlock();
L
Linus Torvalds 已提交
4663 4664 4665
		return -ESRCH;
	}

4666
	/* Prevent p going away */
L
Linus Torvalds 已提交
4667
	get_task_struct(p);
4668
	rcu_read_unlock();
L
Linus Torvalds 已提交
4669

4670 4671 4672 4673
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4674 4675 4676 4677 4678 4679 4680 4681
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4682
	retval = -EPERM;
E
Eric W. Biederman 已提交
4683 4684 4685 4686
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4687
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4688 4689 4690
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4691

4692
	retval = security_task_setscheduler(p);
4693
	if (retval)
4694
		goto out_free_new_mask;
4695

4696 4697 4698 4699

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4700 4701 4702 4703 4704 4705 4706
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4707 4708 4709
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4710
			retval = -EBUSY;
4711
			rcu_read_unlock();
4712
			goto out_free_new_mask;
4713
		}
4714
		rcu_read_unlock();
4715 4716
	}
#endif
P
Peter Zijlstra 已提交
4717
again:
4718
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4719

P
Paul Menage 已提交
4720
	if (!retval) {
4721 4722
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4723 4724 4725 4726 4727
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4728
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4729 4730 4731
			goto again;
		}
	}
4732
out_free_new_mask:
4733 4734 4735 4736
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4737 4738 4739 4740 4741
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4742
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4743
{
4744 4745 4746 4747 4748
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4749 4750 4751 4752 4753 4754 4755 4756
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4757 4758
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4759
 */
4760 4761
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4762
{
4763
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4764 4765
	int retval;

4766 4767
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4768

4769 4770 4771 4772 4773
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4774 4775
}

4776
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4777
{
4778
	struct task_struct *p;
4779
	unsigned long flags;
L
Linus Torvalds 已提交
4780 4781
	int retval;

4782
	rcu_read_lock();
L
Linus Torvalds 已提交
4783 4784 4785 4786 4787 4788

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4789 4790 4791 4792
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4793
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4794
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4795
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4796 4797

out_unlock:
4798
	rcu_read_unlock();
L
Linus Torvalds 已提交
4799

4800
	return retval;
L
Linus Torvalds 已提交
4801 4802 4803 4804 4805 4806 4807
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4808
 *
4809 4810
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4811
 */
4812 4813
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4814 4815
{
	int ret;
4816
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4817

A
Anton Blanchard 已提交
4818
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4819 4820
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4821 4822
		return -EINVAL;

4823 4824
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4825

4826 4827
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4828
		size_t retlen = min_t(size_t, len, cpumask_size());
4829 4830

		if (copy_to_user(user_mask_ptr, mask, retlen))
4831 4832
			ret = -EFAULT;
		else
4833
			ret = retlen;
4834 4835
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4836

4837
	return ret;
L
Linus Torvalds 已提交
4838 4839 4840 4841 4842
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4843 4844
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4845 4846
 *
 * Return: 0.
L
Linus Torvalds 已提交
4847
 */
4848
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4849
{
4850
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4851

4852
	schedstat_inc(rq, yld_count);
4853
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4854 4855 4856 4857 4858 4859

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4860
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4861
	do_raw_spin_unlock(&rq->lock);
4862
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4863 4864 4865 4866 4867 4868

	schedule();

	return 0;
}

4869
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4870
{
4871
	if (should_resched(0)) {
4872
		preempt_schedule_common();
L
Linus Torvalds 已提交
4873 4874 4875 4876
		return 1;
	}
	return 0;
}
4877
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4878 4879

/*
4880
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4881 4882
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4883
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4884 4885 4886
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4887
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4888
{
4889
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4890 4891
	int ret = 0;

4892 4893
	lockdep_assert_held(lock);

4894
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4895
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4896
		if (resched)
4897
			preempt_schedule_common();
N
Nick Piggin 已提交
4898 4899
		else
			cpu_relax();
J
Jan Kara 已提交
4900
		ret = 1;
L
Linus Torvalds 已提交
4901 4902
		spin_lock(lock);
	}
J
Jan Kara 已提交
4903
	return ret;
L
Linus Torvalds 已提交
4904
}
4905
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4906

4907
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4908 4909 4910
{
	BUG_ON(!in_softirq());

4911
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4912
		local_bh_enable();
4913
		preempt_schedule_common();
L
Linus Torvalds 已提交
4914 4915 4916 4917 4918
		local_bh_disable();
		return 1;
	}
	return 0;
}
4919
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4920 4921 4922 4923

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4942 4943 4944 4945 4946 4947 4948 4949
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4950 4951 4952 4953
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4954 4955
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4956 4957 4958 4959
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4960
 * Return:
4961 4962 4963
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4964
 */
4965
int __sched yield_to(struct task_struct *p, bool preempt)
4966 4967 4968 4969
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4970
	int yielded = 0;
4971 4972 4973 4974 4975 4976

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4977 4978 4979 4980 4981 4982 4983 4984 4985
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4986
	double_rq_lock(rq, p_rq);
4987
	if (task_rq(p) != p_rq) {
4988 4989 4990 4991 4992
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4993
		goto out_unlock;
4994 4995

	if (curr->sched_class != p->sched_class)
4996
		goto out_unlock;
4997 4998

	if (task_running(p_rq, p) || p->state)
4999
		goto out_unlock;
5000 5001

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5002
	if (yielded) {
5003
		schedstat_inc(rq, yld_count);
5004 5005 5006 5007 5008
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
5009
			resched_curr(p_rq);
5010
	}
5011

5012
out_unlock:
5013
	double_rq_unlock(rq, p_rq);
5014
out_irq:
5015 5016
	local_irq_restore(flags);

5017
	if (yielded > 0)
5018 5019 5020 5021 5022 5023
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
5024
/*
I
Ingo Molnar 已提交
5025
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5026 5027 5028 5029
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5030 5031
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
5032 5033
	long ret;

5034
	current->in_iowait = 1;
5035
	blk_schedule_flush_plug(current);
5036

5037
	delayacct_blkio_start();
5038
	rq = raw_rq();
L
Linus Torvalds 已提交
5039 5040
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
5041
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
5042
	atomic_dec(&rq->nr_iowait);
5043
	delayacct_blkio_end();
5044

L
Linus Torvalds 已提交
5045 5046
	return ret;
}
5047
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5048 5049 5050 5051 5052

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5053 5054 5055
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5056
 */
5057
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062 5063 5064 5065
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5066
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5067
	case SCHED_NORMAL:
5068
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5069
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5080 5081 5082
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5083
 */
5084
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5085 5086 5087 5088 5089 5090 5091 5092
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5093
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5094
	case SCHED_NORMAL:
5095
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5096
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
5109 5110 5111
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
5112
 */
5113
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5114
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5115
{
5116
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5117
	unsigned int time_slice;
5118 5119
	struct rq_flags rf;
	struct timespec t;
5120
	struct rq *rq;
5121
	int retval;
L
Linus Torvalds 已提交
5122 5123

	if (pid < 0)
5124
		return -EINVAL;
L
Linus Torvalds 已提交
5125 5126

	retval = -ESRCH;
5127
	rcu_read_lock();
L
Linus Torvalds 已提交
5128 5129 5130 5131 5132 5133 5134 5135
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5136
	rq = task_rq_lock(p, &rf);
5137 5138 5139
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5140
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5141

5142
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5143
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5144 5145
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5146

L
Linus Torvalds 已提交
5147
out_unlock:
5148
	rcu_read_unlock();
L
Linus Torvalds 已提交
5149 5150 5151
	return retval;
}

5152
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5153

5154
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5155 5156
{
	unsigned long free = 0;
5157
	int ppid;
5158
	unsigned long state = p->state;
L
Linus Torvalds 已提交
5159

5160 5161
	if (state)
		state = __ffs(state) + 1;
5162
	printk(KERN_INFO "%-15.15s %c", p->comm,
5163
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5164
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5165
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5166
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5167
	else
P
Peter Zijlstra 已提交
5168
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5169 5170
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5171
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5172
	else
P
Peter Zijlstra 已提交
5173
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5174 5175
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5176
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5177
#endif
5178
	ppid = 0;
5179
	rcu_read_lock();
5180 5181
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5182
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5183
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5184
		task_pid_nr(p), ppid,
5185
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5186

5187
	print_worker_info(KERN_INFO, p);
5188
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5189 5190
}

I
Ingo Molnar 已提交
5191
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5192
{
5193
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5194

5195
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5196 5197
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5198
#else
P
Peter Zijlstra 已提交
5199 5200
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5201
#endif
5202
	rcu_read_lock();
5203
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5204 5205
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5206
		 * console might take a lot of time:
5207 5208 5209
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5210 5211
		 */
		touch_nmi_watchdog();
5212
		touch_all_softlockup_watchdogs();
I
Ingo Molnar 已提交
5213
		if (!state_filter || (p->state & state_filter))
5214
			sched_show_task(p);
5215
	}
L
Linus Torvalds 已提交
5216

I
Ingo Molnar 已提交
5217
#ifdef CONFIG_SCHED_DEBUG
5218 5219
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5220
#endif
5221
	rcu_read_unlock();
I
Ingo Molnar 已提交
5222 5223 5224
	/*
	 * Only show locks if all tasks are dumped:
	 */
5225
	if (!state_filter)
I
Ingo Molnar 已提交
5226
		debug_show_all_locks();
L
Linus Torvalds 已提交
5227 5228
}

5229
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
5230
{
I
Ingo Molnar 已提交
5231
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5232 5233
}

5234 5235 5236 5237 5238 5239 5240 5241
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5242
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5243
{
5244
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5245 5246
	unsigned long flags;

5247 5248
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5249

5250
	__sched_fork(0, idle);
5251
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5252 5253
	idle->se.exec_start = sched_clock();

5254 5255
	kasan_unpoison_task_stack(idle);

5256 5257 5258 5259 5260 5261 5262 5263 5264
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5276
	__set_task_cpu(idle, cpu);
5277
	rcu_read_unlock();
L
Linus Torvalds 已提交
5278 5279

	rq->curr = rq->idle = idle;
5280
	idle->on_rq = TASK_ON_RQ_QUEUED;
5281
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5282
	idle->on_cpu = 1;
5283
#endif
5284 5285
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5286 5287

	/* Set the preempt count _outside_ the spinlocks! */
5288
	init_idle_preempt_count(idle, cpu);
5289

I
Ingo Molnar 已提交
5290 5291 5292 5293
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5294
	ftrace_graph_init_idle_task(idle, cpu);
5295
	vtime_init_idle(idle, cpu);
5296
#ifdef CONFIG_SMP
5297 5298
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5299 5300
}

5301 5302 5303 5304 5305 5306 5307
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

5308 5309 5310
	if (!cpumask_weight(cur))
		return ret;

5311
	rcu_read_lock_sched();
5312 5313 5314 5315 5316 5317 5318 5319
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5320
	rcu_read_unlock_sched();
5321 5322 5323 5324

	return ret;
}

5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5349
		struct dl_bw *dl_b;
5350 5351 5352 5353
		bool overflow;
		int cpus;
		unsigned long flags;

5354 5355
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5371
		rcu_read_unlock_sched();
5372 5373 5374 5375 5376 5377 5378

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5379 5380
#ifdef CONFIG_SMP

5381 5382
static bool sched_smp_initialized __read_mostly;

5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5398
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5399 5400
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5401 5402 5403 5404 5405 5406 5407

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5408
	bool queued, running;
5409 5410
	struct rq_flags rf;
	struct rq *rq;
5411

5412
	rq = task_rq_lock(p, &rf);
5413
	queued = task_on_rq_queued(p);
5414 5415
	running = task_current(rq, p);

5416
	if (queued)
5417
		dequeue_task(rq, p, DEQUEUE_SAVE);
5418
	if (running)
5419
		put_prev_task(rq, p);
5420 5421 5422 5423 5424

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
5425
	if (queued)
5426
		enqueue_task(rq, p, ENQUEUE_RESTORE);
5427
	task_rq_unlock(rq, p, &rf);
5428
}
P
Peter Zijlstra 已提交
5429
#endif /* CONFIG_NUMA_BALANCING */
5430

L
Linus Torvalds 已提交
5431
#ifdef CONFIG_HOTPLUG_CPU
5432
/*
5433 5434
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5435
 */
5436
void idle_task_exit(void)
L
Linus Torvalds 已提交
5437
{
5438
	struct mm_struct *mm = current->active_mm;
5439

5440
	BUG_ON(cpu_online(smp_processor_id()));
5441

5442
	if (mm != &init_mm) {
5443
		switch_mm_irqs_off(mm, &init_mm, current);
5444 5445
		finish_arch_post_lock_switch();
	}
5446
	mmdrop(mm);
L
Linus Torvalds 已提交
5447 5448 5449
}

/*
5450 5451
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5452 5453 5454
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5455 5456
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5457
 */
5458
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5459
{
5460
	long delta = calc_load_fold_active(rq, 1);
5461 5462
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5463 5464
}

5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5481
/*
5482 5483 5484 5485 5486 5487
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5488
 */
5489
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5490
{
5491
	struct rq *rq = dead_rq;
5492
	struct task_struct *next, *stop = rq->stop;
5493
	struct pin_cookie cookie;
5494
	int dest_cpu;
L
Linus Torvalds 已提交
5495 5496

	/*
5497 5498 5499 5500 5501 5502 5503
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5504
	 */
5505
	rq->stop = NULL;
5506

5507 5508 5509 5510 5511 5512 5513
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5514
	for (;;) {
5515 5516 5517 5518 5519
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5520
			break;
5521

5522
		/*
W
Wanpeng Li 已提交
5523
		 * pick_next_task assumes pinned rq->lock.
5524
		 */
5525 5526
		cookie = lockdep_pin_lock(&rq->lock);
		next = pick_next_task(rq, &fake_task, cookie);
5527
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5528
		next->sched_class->put_prev_task(rq, next);
5529

W
Wanpeng Li 已提交
5530 5531 5532 5533 5534 5535 5536 5537 5538
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5539
		lockdep_unpin_lock(&rq->lock, cookie);
W
Wanpeng Li 已提交
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&next->pi_lock);
		raw_spin_lock(&rq->lock);

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5554
		/* Find suitable destination for @next, with force if needed. */
5555
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5556

5557 5558 5559 5560 5561 5562
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
W
Wanpeng Li 已提交
5563
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5564
	}
5565

5566
	rq->stop = stop;
5567
}
L
Linus Torvalds 已提交
5568 5569
#endif /* CONFIG_HOTPLUG_CPU */

5570 5571 5572 5573 5574
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5575
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5595
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5596 5597 5598 5599
		rq->online = 0;
	}
}

5600
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5601
{
5602
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5603

5604 5605 5606
	rq->age_stamp = sched_clock_cpu(cpu);
}

5607 5608
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5609
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5610

5611
static __read_mostly int sched_debug_enabled;
5612

5613
static int __init sched_debug_setup(char *str)
5614
{
5615
	sched_debug_enabled = 1;
5616 5617 5618

	return 0;
}
5619 5620 5621 5622 5623 5624
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5625

5626
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5627
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5628
{
I
Ingo Molnar 已提交
5629
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5630

5631
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5632 5633 5634 5635

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5636
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5637
		if (sd->parent)
P
Peter Zijlstra 已提交
5638 5639
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5640
		return -1;
N
Nick Piggin 已提交
5641 5642
	}

5643 5644
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5645

5646
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5647 5648
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5649
	}
5650
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5651 5652
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5653
	}
L
Linus Torvalds 已提交
5654

I
Ingo Molnar 已提交
5655
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5656
	do {
I
Ingo Molnar 已提交
5657
		if (!group) {
P
Peter Zijlstra 已提交
5658 5659
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5660 5661 5662
			break;
		}

5663
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5664 5665
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5666 5667
			break;
		}
L
Linus Torvalds 已提交
5668

5669 5670
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5671 5672
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5673 5674
			break;
		}
L
Linus Torvalds 已提交
5675

5676
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5677

5678 5679
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5680
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5681 5682
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5683
		}
L
Linus Torvalds 已提交
5684

I
Ingo Molnar 已提交
5685 5686
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5687
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5688

5689
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5690
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5691

5692 5693
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5694 5695
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5696 5697
	return 0;
}
L
Linus Torvalds 已提交
5698

I
Ingo Molnar 已提交
5699 5700 5701
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5702

5703
	if (!sched_debug_enabled)
5704 5705
		return;

I
Ingo Molnar 已提交
5706 5707 5708 5709
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5710

I
Ingo Molnar 已提交
5711 5712 5713
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5714
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5715
			break;
L
Linus Torvalds 已提交
5716 5717
		level++;
		sd = sd->parent;
5718
		if (!sd)
I
Ingo Molnar 已提交
5719 5720
			break;
	}
L
Linus Torvalds 已提交
5721
}
5722
#else /* !CONFIG_SCHED_DEBUG */
5723
# define sched_domain_debug(sd, cpu) do { } while (0)
5724 5725 5726 5727
static inline bool sched_debug(void)
{
	return false;
}
5728
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5729

5730
static int sd_degenerate(struct sched_domain *sd)
5731
{
5732
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5733 5734 5735 5736 5737 5738
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5739
			 SD_BALANCE_EXEC |
5740
			 SD_SHARE_CPUCAPACITY |
5741
			 SD_ASYM_CPUCAPACITY |
5742 5743
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5744 5745 5746 5747 5748
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5749
	if (sd->flags & (SD_WAKE_AFFINE))
5750 5751 5752 5753 5754
		return 0;

	return 1;
}

5755 5756
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5757 5758 5759 5760 5761 5762
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5763
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5764 5765 5766 5767 5768 5769 5770
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5771
				SD_BALANCE_EXEC |
5772
				SD_ASYM_CPUCAPACITY |
5773
				SD_SHARE_CPUCAPACITY |
5774
				SD_SHARE_PKG_RESOURCES |
5775 5776
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5777 5778
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5779 5780 5781 5782 5783 5784 5785
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5786
static void free_rootdomain(struct rcu_head *rcu)
5787
{
5788
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5789

5790
	cpupri_cleanup(&rd->cpupri);
5791
	cpudl_cleanup(&rd->cpudl);
5792
	free_cpumask_var(rd->dlo_mask);
5793 5794 5795 5796 5797 5798
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5799 5800
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5801
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5802 5803
	unsigned long flags;

5804
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5805 5806

	if (rq->rd) {
I
Ingo Molnar 已提交
5807
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5808

5809
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5810
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5811

5812
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5813

I
Ingo Molnar 已提交
5814
		/*
5815
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5816 5817 5818 5819 5820
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5821 5822 5823 5824 5825
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5826
	cpumask_set_cpu(rq->cpu, rd->span);
5827
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5828
		set_rq_online(rq);
G
Gregory Haskins 已提交
5829

5830
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5831 5832

	if (old_rd)
5833
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5834 5835
}

5836
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5837 5838 5839
{
	memset(rd, 0, sizeof(*rd));

5840
	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5841
		goto out;
5842
	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5843
		goto free_span;
5844
	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5845
		goto free_online;
5846
	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5847
		goto free_dlo_mask;
5848

5849
	init_dl_bw(&rd->dl_bw);
5850 5851
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5852

5853
	if (cpupri_init(&rd->cpupri) != 0)
5854
		goto free_rto_mask;
5855
	return 0;
5856

5857 5858
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5859 5860
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5861 5862 5863 5864
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5865
out:
5866
	return -ENOMEM;
G
Gregory Haskins 已提交
5867 5868
}

5869 5870 5871 5872 5873 5874
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5875 5876
static void init_defrootdomain(void)
{
5877
	init_rootdomain(&def_root_domain);
5878

G
Gregory Haskins 已提交
5879 5880 5881
	atomic_set(&def_root_domain.refcount, 1);
}

5882
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5883 5884 5885 5886 5887 5888 5889
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5890
	if (init_rootdomain(rd) != 0) {
5891 5892 5893
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5894 5895 5896 5897

	return rd;
}

5898
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5909 5910
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5911 5912 5913 5914 5915 5916

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5917 5918 5919
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5920 5921 5922 5923 5924 5925 5926 5927

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5928
		kfree(sd->groups->sgc);
5929
		kfree(sd->groups);
5930
	}
5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5945 5946 5947 5948 5949 5950 5951
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5952
 * two cpus are in the same cache domain, see cpus_share_cache().
5953 5954
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5955
DEFINE_PER_CPU(int, sd_llc_size);
5956
DEFINE_PER_CPU(int, sd_llc_id);
5957
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5958 5959
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5960 5961 5962 5963

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5964
	struct sched_domain *busy_sd = NULL;
5965
	int id = cpu;
5966
	int size = 1;
5967 5968

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5969
	if (sd) {
5970
		id = cpumask_first(sched_domain_span(sd));
5971
		size = cpumask_weight(sched_domain_span(sd));
5972
		busy_sd = sd->parent; /* sd_busy */
5973
	}
5974
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5975 5976

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5977
	per_cpu(sd_llc_size, cpu) = size;
5978
	per_cpu(sd_llc_id, cpu) = id;
5979 5980 5981

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5982 5983 5984

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5985 5986
}

L
Linus Torvalds 已提交
5987
/*
I
Ingo Molnar 已提交
5988
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5989 5990
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5991 5992
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5993
{
5994
	struct rq *rq = cpu_rq(cpu);
5995 5996 5997
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5998
	for (tmp = sd; tmp; ) {
5999 6000 6001
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6002

6003
		if (sd_parent_degenerate(tmp, parent)) {
6004
			tmp->parent = parent->parent;
6005 6006
			if (parent->parent)
				parent->parent->child = tmp;
6007 6008 6009 6010 6011 6012 6013
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
6014
			destroy_sched_domain(parent, cpu);
6015 6016
		} else
			tmp = tmp->parent;
6017 6018
	}

6019
	if (sd && sd_degenerate(sd)) {
6020
		tmp = sd;
6021
		sd = sd->parent;
6022
		destroy_sched_domain(tmp, cpu);
6023 6024 6025
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6026

6027
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
6028

G
Gregory Haskins 已提交
6029
	rq_attach_root(rq, rd);
6030
	tmp = rq->sd;
N
Nick Piggin 已提交
6031
	rcu_assign_pointer(rq->sd, sd);
6032
	destroy_sched_domains(tmp, cpu);
6033 6034

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
6035 6036 6037 6038 6039
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6040 6041
	int ret;

R
Rusty Russell 已提交
6042
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6043 6044 6045 6046 6047
	ret = cpulist_parse(str, cpu_isolated_map);
	if (ret) {
		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
		return 0;
	}
L
Linus Torvalds 已提交
6048 6049
	return 1;
}
I
Ingo Molnar 已提交
6050
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6051

6052
struct s_data {
6053
	struct sched_domain ** __percpu sd;
6054 6055 6056
	struct root_domain	*rd;
};

6057 6058
enum s_alloc {
	sa_rootdomain,
6059
	sa_sd,
6060
	sa_sd_storage,
6061 6062 6063
	sa_none,
};

P
Peter Zijlstra 已提交
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

6102 6103 6104 6105 6106 6107 6108
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
6109
	struct sched_domain *sibling;
6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

6120
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
6121 6122

		/* See the comment near build_group_mask(). */
6123
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
6124 6125
			continue;

6126
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6127
				GFP_KERNEL, cpu_to_node(cpu));
6128 6129 6130 6131 6132

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
6133 6134 6135
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
6136 6137 6138 6139
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

6140 6141
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
6142 6143
			build_group_mask(sd, sg);

6144
		/*
6145
		 * Initialize sgc->capacity such that even if we mess up the
6146 6147 6148
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
6149
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6150

P
Peter Zijlstra 已提交
6151 6152 6153 6154 6155
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6156
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6157
		    group_balance_cpu(sg) == cpu)
6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6177
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6178
{
6179 6180
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6181

6182 6183
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6184

6185
	if (sg) {
6186
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6187 6188
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6189
	}
6190 6191

	return cpu;
6192 6193
}

6194
/*
6195 6196
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6197
 * and ->cpu_capacity to 0.
6198 6199
 *
 * Assumes the sched_domain tree is fully constructed
6200
 */
6201 6202
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6203
{
6204 6205 6206
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6207
	struct cpumask *covered;
6208
	int i;
6209

6210 6211 6212
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6213
	if (cpu != cpumask_first(span))
6214 6215
		return 0;

6216 6217 6218
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6219
	cpumask_clear(covered);
6220

6221 6222
	for_each_cpu(i, span) {
		struct sched_group *sg;
6223
		int group, j;
6224

6225 6226
		if (cpumask_test_cpu(i, covered))
			continue;
6227

6228
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6229
		cpumask_setall(sched_group_mask(sg));
6230

6231 6232 6233
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6234

6235 6236 6237
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6238

6239 6240 6241 6242 6243 6244 6245
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6246 6247

	return 0;
6248
}
6249

6250
/*
6251
 * Initialize sched groups cpu_capacity.
6252
 *
6253
 * cpu_capacity indicates the capacity of sched group, which is used while
6254
 * distributing the load between different sched groups in a sched domain.
6255 6256 6257 6258
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6259
 */
6260
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6261
{
6262
	struct sched_group *sg = sd->groups;
6263

6264
	WARN_ON(!sg);
6265 6266 6267 6268 6269

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6270

P
Peter Zijlstra 已提交
6271
	if (cpu != group_balance_cpu(sg))
6272
		return;
6273

6274 6275
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6276 6277
}

6278 6279 6280 6281 6282
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6283
static int default_relax_domain_level = -1;
6284
int sched_domain_level_max;
6285 6286 6287

static int __init setup_relax_domain_level(char *str)
{
6288 6289
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6290

6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6309
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6310 6311
	} else {
		/* turn on idle balance on this domain */
6312
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6313 6314 6315
	}
}

6316 6317 6318
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6319 6320 6321 6322 6323
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6324 6325
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6326 6327
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6328
	case sa_sd_storage:
6329
		__sdt_free(cpu_map); /* fall through */
6330 6331 6332 6333
	case sa_none:
		break;
	}
}
6334

6335 6336 6337
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6338 6339
	memset(d, 0, sizeof(*d));

6340 6341
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6342 6343 6344
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6345
	d->rd = alloc_rootdomain();
6346
	if (!d->rd)
6347
		return sa_sd;
6348 6349
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6350

6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6363
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6364
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6365

6366 6367
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6368 6369
}

6370 6371
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6372
enum numa_topology_type sched_numa_topology_type;
6373
static int *sched_domains_numa_distance;
6374
int sched_max_numa_distance;
6375 6376
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6377
#endif
6378

6379 6380 6381
/*
 * SD_flags allowed in topology descriptions.
 *
6382 6383 6384
 * These flags are purely descriptive of the topology and do not prescribe
 * behaviour. Behaviour is artificial and mapped in the below sd_init()
 * function:
6385
 *
6386 6387 6388 6389
 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
 *   SD_SHARE_PKG_RESOURCES - describes shared caches
 *   SD_NUMA                - describes NUMA topologies
 *   SD_SHARE_POWERDOMAIN   - describes shared power domain
6390
 *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
6391 6392 6393 6394 6395
 *
 * Odd one out, which beside describing the topology has a quirk also
 * prescribes the desired behaviour that goes along with it:
 *
 *   SD_ASYM_PACKING        - describes SMT quirks
6396 6397
 */
#define TOPOLOGY_SD_FLAGS		\
6398
	(SD_SHARE_CPUCAPACITY |		\
6399 6400
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6401
	 SD_ASYM_PACKING |		\
6402
	 SD_ASYM_CPUCAPACITY |		\
6403
	 SD_SHARE_POWERDOMAIN)
6404 6405

static struct sched_domain *
6406 6407
sd_init(struct sched_domain_topology_level *tl,
	struct sched_domain *child, int cpu)
6408 6409
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6426 6427 6428 6429 6430

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6431
		.imbalance_pct		= 125,
6432 6433 6434 6435

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6436 6437 6438 6439 6440 6441
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6442 6443
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6444
					| 0*SD_BALANCE_WAKE
6445
					| 1*SD_WAKE_AFFINE
6446
					| 0*SD_SHARE_CPUCAPACITY
6447
					| 0*SD_SHARE_PKG_RESOURCES
6448
					| 0*SD_SERIALIZE
6449
					| 0*SD_PREFER_SIBLING
6450 6451
					| 0*SD_NUMA
					| sd_flags
6452
					,
6453

6454 6455
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6456
		.smt_gain		= 0,
6457 6458
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6459
		.child			= child,
6460 6461 6462
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6463 6464 6465
	};

	/*
6466
	 * Convert topological properties into behaviour.
6467
	 */
6468

6469 6470 6471 6472 6473 6474 6475
	if (sd->flags & SD_ASYM_CPUCAPACITY) {
		struct sched_domain *t = sd;

		for_each_lower_domain(t)
			t->flags |= SD_BALANCE_WAKE;
	}

6476
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6477
		sd->flags |= SD_PREFER_SIBLING;
6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6508 6509 6510 6511

	return sd;
}

6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

6526 6527
static struct sched_domain_topology_level *sched_domain_topology =
	default_topology;
6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6539 6540 6541 6542 6543
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6565
bool find_numa_distance(int distance)
6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

6605
	if (sched_domains_numa_levels <= 1) {
6606
		sched_numa_topology_type = NUMA_DIRECT;
6607 6608
		return;
	}
6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6677
		}
6678 6679 6680 6681 6682 6683

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6684
	}
6685 6686 6687 6688

	if (!level)
		return;

6689 6690 6691 6692
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6693
	 * The sched_domains_numa_distance[] array includes the actual distance
6694 6695 6696
	 * numbers.
	 */

6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6723
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6724 6725 6726 6727 6728
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

6729
			for_each_node(k) {
6730
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6731 6732 6733 6734 6735 6736 6737
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6738 6739 6740
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6741
	tl = kzalloc((i + level + 1) *
6742 6743 6744 6745 6746 6747 6748
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6749 6750
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6751 6752 6753 6754 6755 6756 6757

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6758
			.sd_flags = cpu_numa_flags,
6759 6760
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6761
			SD_INIT_NAME(NUMA)
6762 6763 6764 6765
		};
	}

	sched_domain_topology = tl;
6766 6767

	sched_domains_numa_levels = level;
6768
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6769 6770

	init_numa_topology_type();
6771
}
6772

6773
static void sched_domains_numa_masks_set(unsigned int cpu)
6774 6775
{
	int node = cpu_to_node(cpu);
6776
	int i, j;
6777 6778 6779 6780 6781 6782 6783 6784 6785

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

6786
static void sched_domains_numa_masks_clear(unsigned int cpu)
6787 6788
{
	int i, j;
6789

6790 6791 6792 6793 6794 6795
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

6796
#else
6797 6798 6799
static inline void sched_init_numa(void) { }
static void sched_domains_numa_masks_set(unsigned int cpu) { }
static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6800 6801
#endif /* CONFIG_NUMA */

6802 6803 6804 6805 6806
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6807
	for_each_sd_topology(tl) {
6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6818 6819
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6820 6821
			return -ENOMEM;

6822 6823 6824
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6825
			struct sched_group_capacity *sgc;
6826

P
Peter Zijlstra 已提交
6827
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6839 6840
			sg->next = sg;

6841
			*per_cpu_ptr(sdd->sg, j) = sg;
6842

6843
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6844
					GFP_KERNEL, cpu_to_node(j));
6845
			if (!sgc)
6846 6847
				return -ENOMEM;

6848
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6860
	for_each_sd_topology(tl) {
6861 6862 6863
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6875 6876
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6877 6878
		}
		free_percpu(sdd->sd);
6879
		sdd->sd = NULL;
6880
		free_percpu(sdd->sg);
6881
		sdd->sg = NULL;
6882 6883
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6884 6885 6886
	}
}

6887
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6888 6889
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6890
{
6891
	struct sched_domain *sd = sd_init(tl, child, cpu);
6892 6893

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6894 6895 6896
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6897
		child->parent = sd;
P
Peter Zijlstra 已提交
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6912
	}
6913
	set_domain_attribute(sd, attr);
6914 6915 6916 6917

	return sd;
}

6918 6919 6920 6921
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6922 6923
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6924
{
6925
	enum s_alloc alloc_state;
6926
	struct sched_domain *sd;
6927
	struct s_data d;
6928
	struct rq *rq = NULL;
6929
	int i, ret = -ENOMEM;
6930

6931 6932 6933
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6934

6935
	/* Set up domains for cpus specified by the cpu_map. */
6936
	for_each_cpu(i, cpu_map) {
6937 6938
		struct sched_domain_topology_level *tl;

6939
		sd = NULL;
6940
		for_each_sd_topology(tl) {
6941
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6942 6943
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6944 6945
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6946 6947
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6948
		}
6949 6950 6951 6952 6953 6954
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6955 6956 6957 6958 6959 6960 6961
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6962
		}
6963
	}
6964

6965
	/* Calculate CPU capacity for physical packages and nodes */
6966 6967 6968
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6969

6970 6971
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6972
			init_sched_groups_capacity(i, sd);
6973
		}
6974
	}
6975

L
Linus Torvalds 已提交
6976
	/* Attach the domains */
6977
	rcu_read_lock();
6978
	for_each_cpu(i, cpu_map) {
6979
		rq = cpu_rq(i);
6980
		sd = *per_cpu_ptr(d.sd, i);
6981 6982 6983 6984 6985

		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);

6986
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6987
	}
6988
	rcu_read_unlock();
6989

6990 6991 6992 6993 6994
	if (rq) {
		pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
	}

6995
	ret = 0;
6996
error:
6997
	__free_domain_allocs(&d, alloc_state, cpu_map);
6998
	return ret;
L
Linus Torvalds 已提交
6999
}
P
Paul Jackson 已提交
7000

7001
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7002
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7003 7004
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7005 7006 7007

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7008 7009
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7010
 */
7011
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7012

7013 7014 7015 7016 7017
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
7018
int __weak arch_update_cpu_topology(void)
7019
{
7020
	return 0;
7021 7022
}

7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7048
/*
I
Ingo Molnar 已提交
7049
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7050 7051
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7052
 */
7053
static int init_sched_domains(const struct cpumask *cpu_map)
7054
{
7055 7056
	int err;

7057
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7058
	ndoms_cur = 1;
7059
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7060
	if (!doms_cur)
7061 7062
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7063
	err = build_sched_domains(doms_cur[0], NULL);
7064
	register_sched_domain_sysctl();
7065 7066

	return err;
7067 7068 7069 7070 7071 7072
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7073
static void detach_destroy_domains(const struct cpumask *cpu_map)
7074 7075 7076
{
	int i;

7077
	rcu_read_lock();
7078
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7079
		cpu_attach_domain(NULL, &def_root_domain, i);
7080
	rcu_read_unlock();
7081 7082
}

7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7099 7100
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7101
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7102 7103 7104
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7105
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7106 7107 7108
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7109 7110 7111
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7112 7113 7114 7115 7116 7117
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7118
 *
7119
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7120 7121
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7122
 *
P
Paul Jackson 已提交
7123 7124
 * Call with hotplug lock held
 */
7125
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7126
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7127
{
7128
	int i, j, n;
7129
	int new_topology;
P
Paul Jackson 已提交
7130

7131
	mutex_lock(&sched_domains_mutex);
7132

7133 7134 7135
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7136 7137 7138
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7139
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7140 7141 7142

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7143
		for (j = 0; j < n && !new_topology; j++) {
7144
			if (cpumask_equal(doms_cur[i], doms_new[j])
7145
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7146 7147 7148
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7149
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7150 7151 7152 7153
match1:
		;
	}

7154
	n = ndoms_cur;
7155
	if (doms_new == NULL) {
7156
		n = 0;
7157
		doms_new = &fallback_doms;
7158
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7159
		WARN_ON_ONCE(dattr_new);
7160 7161
	}

P
Paul Jackson 已提交
7162 7163
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7164
		for (j = 0; j < n && !new_topology; j++) {
7165
			if (cpumask_equal(doms_new[i], doms_cur[j])
7166
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7167 7168 7169
				goto match2;
		}
		/* no match - add a new doms_new */
7170
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7171 7172 7173 7174 7175
match2:
		;
	}

	/* Remember the new sched domains */
7176 7177
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7178
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7179
	doms_cur = doms_new;
7180
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7181
	ndoms_cur = ndoms_new;
7182 7183

	register_sched_domain_sysctl();
7184

7185
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7186 7187
}

7188 7189
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7190
/*
7191 7192 7193
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7194 7195 7196
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7197
 */
7198
static void cpuset_cpu_active(void)
7199
{
7200
	if (cpuhp_tasks_frozen) {
7201 7202 7203 7204 7205 7206 7207 7208 7209
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
7210
			return;
7211 7212 7213 7214 7215 7216
		}
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
7217
	}
7218
	cpuset_update_active_cpus(true);
7219
}
7220

7221
static int cpuset_cpu_inactive(unsigned int cpu)
7222
{
7223 7224
	unsigned long flags;
	struct dl_bw *dl_b;
7225 7226
	bool overflow;
	int cpus;
7227

7228
	if (!cpuhp_tasks_frozen) {
7229 7230
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7231

7232 7233 7234 7235
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7236

7237
		rcu_read_unlock_sched();
7238

7239
		if (overflow)
7240
			return -EBUSY;
7241
		cpuset_update_active_cpus(false);
7242
	} else {
7243 7244
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
7245
	}
7246
	return 0;
7247 7248
}

7249
int sched_cpu_activate(unsigned int cpu)
7250
{
7251 7252 7253
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

7254
	set_cpu_active(cpu, true);
7255

7256
	if (sched_smp_initialized) {
7257
		sched_domains_numa_masks_set(cpu);
7258
		cpuset_cpu_active();
7259
	}
7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
	 *    after all cpus have been brought up.
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
	raw_spin_unlock_irqrestore(&rq->lock, flags);

	update_max_interval();

7279
	return 0;
7280 7281
}

7282
int sched_cpu_deactivate(unsigned int cpu)
7283 7284 7285
{
	int ret;

7286
	set_cpu_active(cpu, false);
7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
	 * not imply sync_sched(), so wait for both.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
	if (IS_ENABLED(CONFIG_PREEMPT))
		synchronize_rcu_mult(call_rcu, call_rcu_sched);
	else
		synchronize_rcu();
7301 7302 7303 7304 7305 7306 7307 7308

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
7309
	}
7310 7311
	sched_domains_numa_masks_clear(cpu);
	return 0;
7312 7313
}

7314 7315 7316 7317 7318 7319 7320 7321
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

7322 7323 7324
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
7325
	sched_rq_cpu_starting(cpu);
7326
	return 0;
7327 7328
}

7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
	migrate_tasks(rq);
	BUG_ON(rq->nr_running != 1);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
	calc_load_migrate(rq);
	update_max_interval();
7347
	nohz_balance_exit_idle(cpu);
7348
	hrtick_clear(rq);
7349 7350 7351 7352
	return 0;
}
#endif

L
Linus Torvalds 已提交
7353 7354
void __init sched_init_smp(void)
{
7355 7356 7357
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7358
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7359

7360 7361
	sched_init_numa();

7362 7363 7364 7365 7366
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7367
	mutex_lock(&sched_domains_mutex);
7368
	init_sched_domains(cpu_active_mask);
7369 7370 7371
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7372
	mutex_unlock(&sched_domains_mutex);
7373

7374
	/* Move init over to a non-isolated CPU */
7375
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7376
		BUG();
I
Ingo Molnar 已提交
7377
	sched_init_granularity();
7378
	free_cpumask_var(non_isolated_cpus);
7379

7380
	init_sched_rt_class();
7381
	init_sched_dl_class();
7382
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
7383
}
7384 7385 7386

static int __init migration_init(void)
{
7387
	sched_rq_cpu_starting(smp_processor_id());
7388
	return 0;
L
Linus Torvalds 已提交
7389
}
7390 7391
early_initcall(migration_init);

L
Linus Torvalds 已提交
7392 7393 7394
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7395
	sched_init_granularity();
L
Linus Torvalds 已提交
7396 7397 7398 7399 7400 7401 7402 7403 7404 7405
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7406
#ifdef CONFIG_CGROUP_SCHED
7407 7408 7409 7410
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7411
struct task_group root_task_group;
7412
LIST_HEAD(task_groups);
7413 7414 7415

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
7416
#endif
P
Peter Zijlstra 已提交
7417

7418
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7419

L
Linus Torvalds 已提交
7420 7421
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7422
	int i, j;
7423 7424 7425 7426 7427 7428 7429 7430 7431
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7432
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7433 7434

#ifdef CONFIG_FAIR_GROUP_SCHED
7435
		root_task_group.se = (struct sched_entity **)ptr;
7436 7437
		ptr += nr_cpu_ids * sizeof(void **);

7438
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7439
		ptr += nr_cpu_ids * sizeof(void **);
7440

7441
#endif /* CONFIG_FAIR_GROUP_SCHED */
7442
#ifdef CONFIG_RT_GROUP_SCHED
7443
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7444 7445
		ptr += nr_cpu_ids * sizeof(void **);

7446
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7447 7448
		ptr += nr_cpu_ids * sizeof(void **);

7449
#endif /* CONFIG_RT_GROUP_SCHED */
7450
	}
7451
#ifdef CONFIG_CPUMASK_OFFSTACK
7452 7453 7454
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7455
	}
7456
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7457

7458 7459 7460
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7461
			global_rt_period(), global_rt_runtime());
7462

G
Gregory Haskins 已提交
7463 7464 7465 7466
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7467
#ifdef CONFIG_RT_GROUP_SCHED
7468
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7469
			global_rt_period(), global_rt_runtime());
7470
#endif /* CONFIG_RT_GROUP_SCHED */
7471

D
Dhaval Giani 已提交
7472
#ifdef CONFIG_CGROUP_SCHED
7473 7474
	task_group_cache = KMEM_CACHE(task_group, 0);

7475 7476
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7477
	INIT_LIST_HEAD(&root_task_group.siblings);
7478
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
7479
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7480

7481
	for_each_possible_cpu(i) {
7482
		struct rq *rq;
L
Linus Torvalds 已提交
7483 7484

		rq = cpu_rq(i);
7485
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7486
		rq->nr_running = 0;
7487 7488
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7489
		init_cfs_rq(&rq->cfs);
7490 7491
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7492
#ifdef CONFIG_FAIR_GROUP_SCHED
7493
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7494
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7495
		/*
7496
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7497 7498 7499 7500
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7501
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7502 7503 7504
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7505
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7506 7507 7508
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7509
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7510
		 *
7511 7512
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7513
		 */
7514
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7515
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7516 7517 7518
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7519
#ifdef CONFIG_RT_GROUP_SCHED
7520
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7521
#endif
L
Linus Torvalds 已提交
7522

I
Ingo Molnar 已提交
7523 7524
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7525

L
Linus Torvalds 已提交
7526
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7527
		rq->sd = NULL;
G
Gregory Haskins 已提交
7528
		rq->rd = NULL;
7529
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7530
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7531
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7532
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7533
		rq->push_cpu = 0;
7534
		rq->cpu = i;
7535
		rq->online = 0;
7536 7537
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7538
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7539 7540 7541

		INIT_LIST_HEAD(&rq->cfs_tasks);

7542
		rq_attach_root(rq, &def_root_domain);
7543
#ifdef CONFIG_NO_HZ_COMMON
7544
		rq->last_load_update_tick = jiffies;
7545
		rq->nohz_flags = 0;
7546
#endif
7547 7548 7549
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
7550
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
7551
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7552 7553 7554
		atomic_set(&rq->nr_iowait, 0);
	}

7555
	set_load_weight(&init_task);
7556

L
Linus Torvalds 已提交
7557 7558 7559 7560 7561 7562
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7563 7564 7565 7566 7567
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7568 7569 7570 7571 7572 7573 7574
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7575 7576 7577

	calc_load_update = jiffies + LOAD_FREQ;

7578
#ifdef CONFIG_SMP
7579
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7580 7581 7582
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7583
	idle_thread_set_boot_cpu();
7584
	set_cpu_rq_start_time(smp_processor_id());
7585 7586
#endif
	init_sched_fair_class();
7587

7588 7589
	init_schedstats();

7590
	scheduler_running = 1;
L
Linus Torvalds 已提交
7591 7592
}

7593
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7594 7595
static inline int preempt_count_equals(int preempt_offset)
{
7596
	int nested = preempt_count() + rcu_preempt_depth();
7597

A
Arnd Bergmann 已提交
7598
	return (nested == preempt_offset);
7599 7600
}

7601
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7602
{
P
Peter Zijlstra 已提交
7603 7604 7605 7606 7607
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7608
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7609 7610 7611 7612
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7613
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7614

7615 7616 7617 7618 7619
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7620 7621
{
	static unsigned long prev_jiffy;	/* ratelimiting */
7622
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
7623

7624
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7625 7626
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7627
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7628 7629 7630 7631 7632
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

7633 7634 7635
	/* Save this before calling printk(), since that will clobber it */
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
7636 7637 7638 7639 7640 7641 7642
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7643

7644 7645 7646
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7647 7648 7649
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7650 7651
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
7652
		pr_err("Preemption disabled at:");
7653
		print_ip_sym(preempt_disable_ip);
7654 7655
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
7656
	dump_stack();
7657
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
7658
}
7659
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7660 7661 7662
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7663
void normalize_rt_tasks(void)
7664
{
7665
	struct task_struct *g, *p;
7666 7667 7668
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7669

7670
	read_lock(&tasklist_lock);
7671
	for_each_process_thread(g, p) {
7672 7673 7674
		/*
		 * Only normalize user tasks:
		 */
7675
		if (p->flags & PF_KTHREAD)
7676 7677
			continue;

I
Ingo Molnar 已提交
7678 7679
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7680 7681 7682
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7683
#endif
I
Ingo Molnar 已提交
7684

7685
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7686 7687 7688 7689
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7690
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7691
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7692
			continue;
I
Ingo Molnar 已提交
7693
		}
L
Linus Torvalds 已提交
7694

7695
		__sched_setscheduler(p, &attr, false, false);
7696
	}
7697
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7698 7699 7700
}

#endif /* CONFIG_MAGIC_SYSRQ */
7701

7702
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7703
/*
7704
 * These functions are only useful for the IA64 MCA handling, or kdb.
7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7718 7719
 *
 * Return: The current task for @cpu.
7720
 */
7721
struct task_struct *curr_task(int cpu)
7722 7723 7724 7725
{
	return cpu_curr(cpu);
}

7726 7727 7728
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7729 7730 7731 7732 7733 7734
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7735 7736
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7737 7738 7739 7740 7741 7742 7743
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7744
void set_curr_task(int cpu, struct task_struct *p)
7745 7746 7747 7748 7749
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7750

D
Dhaval Giani 已提交
7751
#ifdef CONFIG_CGROUP_SCHED
7752 7753 7754
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7755
static void sched_free_group(struct task_group *tg)
7756 7757 7758
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7759
	autogroup_free(tg);
7760
	kmem_cache_free(task_group_cache, tg);
7761 7762 7763
}

/* allocate runqueue etc for a new task group */
7764
struct task_group *sched_create_group(struct task_group *parent)
7765 7766 7767
{
	struct task_group *tg;

7768
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7769 7770 7771
	if (!tg)
		return ERR_PTR(-ENOMEM);

7772
	if (!alloc_fair_sched_group(tg, parent))
7773 7774
		goto err;

7775
	if (!alloc_rt_sched_group(tg, parent))
7776 7777
		goto err;

7778 7779 7780
	return tg;

err:
7781
	sched_free_group(tg);
7782 7783 7784 7785 7786 7787 7788
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7789
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7790
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7791 7792 7793 7794 7795

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7796
	list_add_rcu(&tg->siblings, &parent->children);
7797
	spin_unlock_irqrestore(&task_group_lock, flags);
7798 7799

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7800 7801
}

7802
/* rcu callback to free various structures associated with a task group */
7803
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7804 7805
{
	/* now it should be safe to free those cfs_rqs */
7806
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7807 7808
}

7809
void sched_destroy_group(struct task_group *tg)
7810 7811
{
	/* wait for possible concurrent references to cfs_rqs complete */
7812
	call_rcu(&tg->rcu, sched_free_group_rcu);
7813 7814 7815
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7816
{
7817
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
7818

7819
	/* end participation in shares distribution */
7820
	unregister_fair_sched_group(tg);
7821 7822

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7823
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7824
	list_del_rcu(&tg->siblings);
7825
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7826 7827
}

7828
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
7829
{
P
Peter Zijlstra 已提交
7830
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7831

7832 7833 7834 7835 7836 7837
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7838 7839 7840 7841
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7842
#ifdef CONFIG_FAIR_GROUP_SCHED
7843 7844
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
7845
	else
P
Peter Zijlstra 已提交
7846
#endif
7847
		set_task_rq(tsk, task_cpu(tsk));
7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
	int queued, running;
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
	if (unlikely(running))
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
7874

7875 7876
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7877
	if (queued)
7878
		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
S
Srivatsa Vaddagiri 已提交
7879

7880
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
7881
}
D
Dhaval Giani 已提交
7882
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7883

7884 7885 7886 7887 7888
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7889

P
Peter Zijlstra 已提交
7890 7891
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7892
{
P
Peter Zijlstra 已提交
7893
	struct task_struct *g, *p;
7894

7895 7896 7897 7898 7899 7900
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7901
	for_each_process_thread(g, p) {
7902
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7903
			return 1;
7904
	}
7905

P
Peter Zijlstra 已提交
7906 7907
	return 0;
}
7908

P
Peter Zijlstra 已提交
7909 7910 7911 7912 7913
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7914

7915
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7916 7917 7918 7919 7920
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7921

P
Peter Zijlstra 已提交
7922 7923
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7924

P
Peter Zijlstra 已提交
7925 7926 7927
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7928 7929
	}

7930 7931 7932 7933 7934
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7935

7936 7937 7938
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7939 7940
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7941

P
Peter Zijlstra 已提交
7942
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7943

7944 7945 7946 7947 7948
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7949

7950 7951 7952
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7953 7954 7955
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7956

P
Peter Zijlstra 已提交
7957 7958 7959 7960
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7961

P
Peter Zijlstra 已提交
7962
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7963
	}
P
Peter Zijlstra 已提交
7964

P
Peter Zijlstra 已提交
7965 7966 7967 7968
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7969 7970
}

P
Peter Zijlstra 已提交
7971
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7972
{
7973 7974
	int ret;

P
Peter Zijlstra 已提交
7975 7976 7977 7978 7979 7980
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7981 7982 7983 7984 7985
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7986 7987
}

7988
static int tg_set_rt_bandwidth(struct task_group *tg,
7989
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7990
{
P
Peter Zijlstra 已提交
7991
	int i, err = 0;
P
Peter Zijlstra 已提交
7992

7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
8004
	mutex_lock(&rt_constraints_mutex);
8005
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8006 8007
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8008
		goto unlock;
P
Peter Zijlstra 已提交
8009

8010
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8011 8012
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8013 8014 8015 8016

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8017
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8018
		rt_rq->rt_runtime = rt_runtime;
8019
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8020
	}
8021
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8022
unlock:
8023
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8024 8025 8026
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8027 8028
}

8029
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8030 8031 8032 8033 8034 8035 8036 8037
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

8038
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8039 8040
}

8041
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
8042 8043 8044
{
	u64 rt_runtime_us;

8045
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8046 8047
		return -1;

8048
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8049 8050 8051
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8052

8053
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8054 8055 8056
{
	u64 rt_runtime, rt_period;

8057
	rt_period = rt_period_us * NSEC_PER_USEC;
8058 8059
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8060
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8061 8062
}

8063
static long sched_group_rt_period(struct task_group *tg)
8064 8065 8066 8067 8068 8069 8070
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
8071
#endif /* CONFIG_RT_GROUP_SCHED */
8072

8073
#ifdef CONFIG_RT_GROUP_SCHED
8074 8075 8076 8077 8078
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8079
	read_lock(&tasklist_lock);
8080
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8081
	read_unlock(&tasklist_lock);
8082 8083 8084 8085
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8086

8087
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8088 8089 8090 8091 8092 8093 8094 8095
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8096
#else /* !CONFIG_RT_GROUP_SCHED */
8097 8098
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8099
	unsigned long flags;
8100
	int i;
8101

8102
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8103 8104 8105
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8106
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8107
		rt_rq->rt_runtime = global_rt_runtime();
8108
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8109
	}
8110
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8111

8112
	return 0;
8113
}
8114
#endif /* CONFIG_RT_GROUP_SCHED */
8115

8116
static int sched_dl_global_validate(void)
8117
{
8118 8119
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
8120
	u64 new_bw = to_ratio(period, runtime);
8121
	struct dl_bw *dl_b;
8122
	int cpu, ret = 0;
8123
	unsigned long flags;
8124 8125 8126 8127 8128 8129 8130 8131 8132 8133

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
8134
	for_each_possible_cpu(cpu) {
8135 8136
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8137

8138
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8139 8140
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
8141
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8142

8143 8144
		rcu_read_unlock_sched();

8145 8146
		if (ret)
			break;
8147 8148
	}

8149
	return ret;
8150 8151
}

8152
static void sched_dl_do_global(void)
8153
{
8154
	u64 new_bw = -1;
8155
	struct dl_bw *dl_b;
8156
	int cpu;
8157
	unsigned long flags;
8158

8159 8160 8161 8162 8163 8164 8165 8166 8167 8168
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
8169 8170
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8171

8172
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8173
		dl_b->bw = new_bw;
8174
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8175 8176

		rcu_read_unlock_sched();
8177
	}
8178 8179 8180 8181 8182 8183 8184
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8185 8186
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8187 8188 8189 8190 8191 8192 8193 8194 8195
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8196 8197
}

8198
int sched_rt_handler(struct ctl_table *table, int write,
8199
		void __user *buffer, size_t *lenp,
8200 8201 8202 8203
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
8204
	int ret;
8205 8206 8207 8208 8209

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8210
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8211 8212

	if (!ret && write) {
8213 8214 8215 8216
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

8217
		ret = sched_dl_global_validate();
8218 8219 8220
		if (ret)
			goto undo;

8221
		ret = sched_rt_global_constraints();
8222 8223 8224 8225 8226 8227 8228 8229 8230 8231
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
8232 8233 8234 8235 8236
	}
	mutex_unlock(&mutex);

	return ret;
}
8237

8238
int sched_rr_handler(struct ctl_table *table, int write,
8239 8240 8241 8242 8243 8244 8245 8246
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8247 8248
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
8249
	if (!ret && write) {
8250 8251
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8252 8253 8254 8255 8256
	}
	mutex_unlock(&mutex);
	return ret;
}

8257
#ifdef CONFIG_CGROUP_SCHED
8258

8259
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8260
{
8261
	return css ? container_of(css, struct task_group, css) : NULL;
8262 8263
}

8264 8265
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8266
{
8267 8268
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
8269

8270
	if (!parent) {
8271
		/* This is early initialization for the top cgroup */
8272
		return &root_task_group.css;
8273 8274
	}

8275
	tg = sched_create_group(parent);
8276 8277 8278
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

8279 8280
	sched_online_group(tg, parent);

8281 8282 8283
	return &tg->css;
}

8284
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8285
{
8286
	struct task_group *tg = css_tg(css);
8287

8288
	sched_offline_group(tg);
8289 8290
}

8291
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8292
{
8293
	struct task_group *tg = css_tg(css);
8294

8295 8296 8297 8298
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
8299 8300
}

8301 8302 8303 8304
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
8305
static void cpu_cgroup_fork(struct task_struct *task)
8306
{
8307 8308 8309 8310 8311 8312 8313 8314
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
8315 8316
}

8317
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8318
{
8319
	struct task_struct *task;
8320
	struct cgroup_subsys_state *css;
8321
	int ret = 0;
8322

8323
	cgroup_taskset_for_each(task, css, tset) {
8324
#ifdef CONFIG_RT_GROUP_SCHED
8325
		if (!sched_rt_can_attach(css_tg(css), task))
8326
			return -EINVAL;
8327
#else
8328 8329 8330
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8331
#endif
8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
8348
	}
8349
	return ret;
8350
}
8351

8352
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8353
{
8354
	struct task_struct *task;
8355
	struct cgroup_subsys_state *css;
8356

8357
	cgroup_taskset_for_each(task, css, tset)
8358
		sched_move_task(task);
8359 8360
}

8361
#ifdef CONFIG_FAIR_GROUP_SCHED
8362 8363
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8364
{
8365
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8366 8367
}

8368 8369
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8370
{
8371
	struct task_group *tg = css_tg(css);
8372

8373
	return (u64) scale_load_down(tg->shares);
8374
}
8375 8376

#ifdef CONFIG_CFS_BANDWIDTH
8377 8378
static DEFINE_MUTEX(cfs_constraints_mutex);

8379 8380 8381
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8382 8383
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8384 8385
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8386
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8387
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8408 8409 8410 8411 8412
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8413 8414 8415 8416 8417
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8418
	runtime_enabled = quota != RUNTIME_INF;
8419
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8420 8421 8422 8423 8424 8425
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8426 8427 8428
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8429

P
Paul Turner 已提交
8430
	__refill_cfs_bandwidth_runtime(cfs_b);
8431
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8432 8433
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8434 8435
	raw_spin_unlock_irq(&cfs_b->lock);

8436
	for_each_online_cpu(i) {
8437
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8438
		struct rq *rq = cfs_rq->rq;
8439 8440

		raw_spin_lock_irq(&rq->lock);
8441
		cfs_rq->runtime_enabled = runtime_enabled;
8442
		cfs_rq->runtime_remaining = 0;
8443

8444
		if (cfs_rq->throttled)
8445
			unthrottle_cfs_rq(cfs_rq);
8446 8447
		raw_spin_unlock_irq(&rq->lock);
	}
8448 8449
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8450 8451
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8452
	put_online_cpus();
8453

8454
	return ret;
8455 8456 8457 8458 8459 8460
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8461
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8474
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8475 8476
		return -1;

8477
	quota_us = tg->cfs_bandwidth.quota;
8478 8479 8480 8481 8482 8483 8484 8485 8486 8487
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8488
	quota = tg->cfs_bandwidth.quota;
8489 8490 8491 8492 8493 8494 8495 8496

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8497
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8498 8499 8500 8501 8502
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8503 8504
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8505
{
8506
	return tg_get_cfs_quota(css_tg(css));
8507 8508
}

8509 8510
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8511
{
8512
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8513 8514
}

8515 8516
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8517
{
8518
	return tg_get_cfs_period(css_tg(css));
8519 8520
}

8521 8522
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8523
{
8524
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8525 8526
}

8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8559
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8560 8561 8562 8563 8564
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8565
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8566 8567

		quota = normalize_cfs_quota(tg, d);
8568
		parent_quota = parent_b->hierarchical_quota;
8569 8570 8571 8572 8573 8574 8575 8576 8577 8578

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8579
	cfs_b->hierarchical_quota = quota;
8580 8581 8582 8583 8584 8585

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8586
	int ret;
8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8598 8599 8600 8601 8602
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8603
}
8604

8605
static int cpu_stats_show(struct seq_file *sf, void *v)
8606
{
8607
	struct task_group *tg = css_tg(seq_css(sf));
8608
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8609

8610 8611 8612
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8613 8614 8615

	return 0;
}
8616
#endif /* CONFIG_CFS_BANDWIDTH */
8617
#endif /* CONFIG_FAIR_GROUP_SCHED */
8618

8619
#ifdef CONFIG_RT_GROUP_SCHED
8620 8621
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8622
{
8623
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8624 8625
}

8626 8627
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8628
{
8629
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8630
}
8631

8632 8633
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8634
{
8635
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8636 8637
}

8638 8639
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8640
{
8641
	return sched_group_rt_period(css_tg(css));
8642
}
8643
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8644

8645
static struct cftype cpu_files[] = {
8646
#ifdef CONFIG_FAIR_GROUP_SCHED
8647 8648
	{
		.name = "shares",
8649 8650
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8651
	},
8652
#endif
8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8664 8665
	{
		.name = "stat",
8666
		.seq_show = cpu_stats_show,
8667
	},
8668
#endif
8669
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8670
	{
P
Peter Zijlstra 已提交
8671
		.name = "rt_runtime_us",
8672 8673
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8674
	},
8675 8676
	{
		.name = "rt_period_us",
8677 8678
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8679
	},
8680
#endif
8681
	{ }	/* terminate */
8682 8683
};

8684
struct cgroup_subsys cpu_cgrp_subsys = {
8685
	.css_alloc	= cpu_cgroup_css_alloc,
8686
	.css_released	= cpu_cgroup_css_released,
8687
	.css_free	= cpu_cgroup_css_free,
8688
	.fork		= cpu_cgroup_fork,
8689 8690
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8691
	.legacy_cftypes	= cpu_files,
8692
	.early_init	= true,
8693 8694
};

8695
#endif	/* CONFIG_CGROUP_SCHED */
8696

8697 8698 8699 8700 8701
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};