core.c 212.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28
 */

29
#include <linux/kasan.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
34
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
35
#include <linux/highmem.h>
36
#include <linux/mmu_context.h>
L
Linus Torvalds 已提交
37
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
74
#include <linux/context_tracking.h>
75
#include <linux/compiler.h>
76
#include <linux/frame.h>
77
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
78

79
#include <asm/switch_to.h>
80
#include <asm/tlb.h>
81
#include <asm/irq_regs.h>
82
#include <asm/mutex.h>
G
Glauber Costa 已提交
83 84 85
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
86

87
#include "sched.h"
88
#include "../workqueue_internal.h"
89
#include "../smpboot.h"
90

91
#define CREATE_TRACE_POINTS
92
#include <trace/events/sched.h>
93

94 95
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96

97
static void update_rq_clock_task(struct rq *rq, s64 delta);
98

99
void update_rq_clock(struct rq *rq)
100
{
101
	s64 delta;
102

103 104 105
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
106
		return;
107

108
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 110
	if (delta < 0)
		return;
111 112
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
113 114
}

I
Ingo Molnar 已提交
115 116 117
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
118 119 120 121

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
122
const_debug unsigned int sysctl_sched_features =
123
#include "features.h"
P
Peter Zijlstra 已提交
124 125 126 127
	0;

#undef SCHED_FEAT

128 129 130 131 132 133
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

134 135 136 137 138 139 140 141
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
142
/*
P
Peter Zijlstra 已提交
143
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
144 145
 * default: 1s
 */
P
Peter Zijlstra 已提交
146
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
147

148
__read_mostly int scheduler_running;
149

P
Peter Zijlstra 已提交
150 151 152 153 154
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
155

156 157 158
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
159
/*
160
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
161
 */
A
Alexey Dobriyan 已提交
162
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
163 164
	__acquires(rq->lock)
{
165
	struct rq *rq;
L
Linus Torvalds 已提交
166 167 168

	local_irq_disable();
	rq = this_rq();
169
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
170 171 172 173

	return rq;
}

174 175 176
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
177
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 179 180 181 182 183 184 185 186 187
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188
			rf->cookie = lockdep_pin_lock(&rq->lock);
189 190 191 192 193 194 195 196 197 198 199 200
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
201
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 203 204 205 206 207
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
208
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
		 * If we observe the new cpu in task_rq_lock, the acquire will
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228
			rf->cookie = lockdep_pin_lock(&rq->lock);
229 230 231
			return rq;
		}
		raw_spin_unlock(&rq->lock);
232
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233 234 235 236 237 238

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

P
Peter Zijlstra 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

260
	raw_spin_lock(&rq->lock);
261
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
262
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
264 265 266 267

	return HRTIMER_NORESTART;
}

268
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
269

270
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
271 272 273
{
	struct hrtimer *timer = &rq->hrtick_timer;

274
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
275 276
}

277 278 279 280
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
281
{
282
	struct rq *rq = arg;
283

284
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
285
	__hrtick_restart(rq);
286
	rq->hrtick_csd_pending = 0;
287
	raw_spin_unlock(&rq->lock);
288 289
}

290 291 292 293 294
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
295
void hrtick_start(struct rq *rq, u64 delay)
296
{
297
	struct hrtimer *timer = &rq->hrtick_timer;
298 299 300 301 302 303 304 305 306
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
307

308
	hrtimer_set_expires(timer, time);
309 310

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
311
		__hrtick_restart(rq);
312
	} else if (!rq->hrtick_csd_pending) {
313
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 315
		rq->hrtick_csd_pending = 1;
	}
316 317
}

318 319 320 321 322 323
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
324
void hrtick_start(struct rq *rq, u64 delay)
325
{
W
Wanpeng Li 已提交
326 327 328 329 330
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
331 332
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
333 334
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
335

336
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
337
{
338 339
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
340

341 342 343 344
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
345

346 347
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
348
}
A
Andrew Morton 已提交
349
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
350 351 352 353 354 355 356
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
357
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

377
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 379 380 381 382 383 384 385 386 387
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
388 389 390 391 392 393 394 395 396 397

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
398
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399 400 401 402 403 404 405 406 407 408 409 410 411 412

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

413 414 415 416 417 418
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
419 420 421 422 423 424 425

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
426 427
#endif

428 429 430 431 432 433 434 435 436 437
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
438
	 * barrier implied by the wakeup in wake_up_q().
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
474
/*
475
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
476 477 478 479 480
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
481
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
482
{
483
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
484 485
	int cpu;

486
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
487

488
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
489 490
		return;

491
	cpu = cpu_of(rq);
492

493
	if (cpu == smp_processor_id()) {
494
		set_tsk_need_resched(curr);
495
		set_preempt_need_resched();
I
Ingo Molnar 已提交
496
		return;
497
	}
I
Ingo Molnar 已提交
498

499
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
500
		smp_send_reschedule(cpu);
501 502
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
503 504
}

505
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
506 507 508 509
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

510
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
511
		return;
512
	resched_curr(rq);
513
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
514
}
515

516
#ifdef CONFIG_SMP
517
#ifdef CONFIG_NO_HZ_COMMON
518 519 520 521 522 523 524 525
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
526
int get_nohz_timer_target(void)
527
{
528
	int i, cpu = smp_processor_id();
529 530
	struct sched_domain *sd;

531
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 533
		return cpu;

534
	rcu_read_lock();
535
	for_each_domain(cpu, sd) {
536
		for_each_cpu(i, sched_domain_span(sd)) {
537 538 539 540
			if (cpu == i)
				continue;

			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 542 543 544
				cpu = i;
				goto unlock;
			}
		}
545
	}
546 547 548

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
549 550
unlock:
	rcu_read_unlock();
551 552
	return cpu;
}
553 554 555 556 557 558 559 560 561 562
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
563
static void wake_up_idle_cpu(int cpu)
564 565 566 567 568 569
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

570
	if (set_nr_and_not_polling(rq->idle))
571
		smp_send_reschedule(cpu);
572 573
	else
		trace_sched_wake_idle_without_ipi(cpu);
574 575
}

576
static bool wake_up_full_nohz_cpu(int cpu)
577
{
578 579 580 581 582 583
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
584
	if (tick_nohz_full_cpu(cpu)) {
585 586
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
587
			tick_nohz_full_kick_cpu(cpu);
588 589 590 591 592 593 594 595
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
596
	if (!wake_up_full_nohz_cpu(cpu))
597 598 599
		wake_up_idle_cpu(cpu);
}

600
static inline bool got_nohz_idle_kick(void)
601
{
602
	int cpu = smp_processor_id();
603 604 605 606 607 608 609 610 611 612 613 614 615

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
616 617
}

618
#else /* CONFIG_NO_HZ_COMMON */
619

620
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
621
{
622
	return false;
P
Peter Zijlstra 已提交
623 624
}

625
#endif /* CONFIG_NO_HZ_COMMON */
626

627
#ifdef CONFIG_NO_HZ_FULL
628
bool sched_can_stop_tick(struct rq *rq)
629
{
630 631 632 633 634 635
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

636
	/*
637 638
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
639
	 */
640 641 642 643 644
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
645 646
	}

647 648 649 650 651 652 653 654 655 656 657 658 659 660
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
661
		return false;
662

663
	return true;
664 665
}
#endif /* CONFIG_NO_HZ_FULL */
666

667
void sched_avg_update(struct rq *rq)
668
{
669 670
	s64 period = sched_avg_period();

671
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
672 673 674 675 676 677
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
678 679 680
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
681 682
}

683
#endif /* CONFIG_SMP */
684

685 686
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
687
/*
688 689 690 691
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
692
 */
693
int walk_tg_tree_from(struct task_group *from,
694
			     tg_visitor down, tg_visitor up, void *data)
695 696
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
697
	int ret;
698

699 700
	parent = from;

701
down:
P
Peter Zijlstra 已提交
702 703
	ret = (*down)(parent, data);
	if (ret)
704
		goto out;
705 706 707 708 709 710 711
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
712
	ret = (*up)(parent, data);
713 714
	if (ret || parent == from)
		goto out;
715 716 717 718 719

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
720
out:
P
Peter Zijlstra 已提交
721
	return ret;
722 723
}

724
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
725
{
726
	return 0;
P
Peter Zijlstra 已提交
727
}
728 729
#endif

730 731
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
732 733 734
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
735 736 737
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
738
	if (idle_policy(p->policy)) {
739
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
740
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
741 742
		return;
	}
743

744 745
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
746 747
}

748
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
749
{
750
	update_rq_clock(rq);
751 752
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
753
	p->sched_class->enqueue_task(rq, p, flags);
754 755
}

756
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
757
{
758
	update_rq_clock(rq);
759 760
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
761
	p->sched_class->dequeue_task(rq, p, flags);
762 763
}

764
void activate_task(struct rq *rq, struct task_struct *p, int flags)
765 766 767 768
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

769
	enqueue_task(rq, p, flags);
770 771
}

772
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
773 774 775 776
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

777
	dequeue_task(rq, p, flags);
778 779
}

780
static void update_rq_clock_task(struct rq *rq, s64 delta)
781
{
782 783 784 785 786 787 788 789
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
790
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
812 813
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
814
	if (static_key_false((&paravirt_steal_rq_enabled))) {
815 816 817 818 819 820 821 822 823 824 825
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

826 827
	rq->clock_task += delta;

828
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
829
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
830 831
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
832 833
}

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

864
/*
I
Ingo Molnar 已提交
865
 * __normal_prio - return the priority that is based on the static prio
866 867 868
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
869
	return p->static_prio;
870 871
}

872 873 874 875 876 877 878
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
879
static inline int normal_prio(struct task_struct *p)
880 881 882
{
	int prio;

883 884 885
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
886 887 888 889 890 891 892 893 894 895 896 897 898
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
899
static int effective_prio(struct task_struct *p)
900 901 902 903 904 905 906 907 908 909 910 911
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
912 913 914
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
915 916
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
917
 */
918
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
919 920 921 922
{
	return cpu_curr(task_cpu(p)) == p;
}

923
/*
924 925 926 927 928
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
929
 */
930 931
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
932
				       int oldprio)
933 934 935
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
936
			prev_class->switched_from(rq, p);
937

P
Peter Zijlstra 已提交
938
		p->sched_class->switched_to(rq, p);
939
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
940
		p->sched_class->prio_changed(rq, p, oldprio);
941 942
}

943
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
944 945 946 947 948 949 950 951 952 953
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
954
				resched_curr(rq);
955 956 957 958 959 960 961 962 963
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
964
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
965
		rq_clock_skip_update(rq, true);
966 967
}

L
Linus Torvalds 已提交
968
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
988
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
989 990 991 992
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
993
	dequeue_task(rq, p, 0);
P
Peter Zijlstra 已提交
994 995 996 997 998 999 1000 1001
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
1002
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
1022
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
1023 1024
{
	if (unlikely(!cpu_active(dest_cpu)))
1025
		return rq;
P
Peter Zijlstra 已提交
1026 1027 1028

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1029
		return rq;
P
Peter Zijlstra 已提交
1030

1031 1032 1033
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1044 1045
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
	if (task_rq(p) == rq && task_on_rq_queued(p))
		rq = __migrate_task(rq, p, arg->dest_cpu);
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1071 1072 1073 1074
	local_irq_enable();
	return 0;
}

1075 1076 1077 1078 1079
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1080 1081 1082 1083 1084
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1085 1086
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1087 1088 1089
	struct rq *rq = task_rq(p);
	bool queued, running;

1090
	lockdep_assert_held(&p->pi_lock);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1101
		dequeue_task(rq, p, DEQUEUE_SAVE);
1102 1103 1104 1105
	}
	if (running)
		put_prev_task(rq, p);

1106
	p->sched_class->set_cpus_allowed(p, new_mask);
1107 1108 1109 1110

	if (running)
		p->sched_class->set_curr_task(rq);
	if (queued)
1111
		enqueue_task(rq, p, ENQUEUE_RESTORE);
1112 1113
}

P
Peter Zijlstra 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1123 1124
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1125
{
1126
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1127
	unsigned int dest_cpu;
1128 1129
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1130 1131
	int ret = 0;

1132
	rq = task_rq_lock(p, &rf);
P
Peter Zijlstra 已提交
1133

1134 1135 1136 1137 1138 1139 1140
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1141 1142 1143 1144 1145 1146 1147 1148 1149
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1150 1151 1152
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1153
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1154 1155 1156 1157 1158 1159
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
		 * !active we want to ensure they are strict per-cpu threads.
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1170 1171 1172 1173
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1174
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1175 1176 1177
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1178
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1179 1180 1181
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1182 1183 1184 1185 1186
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1187
		lockdep_unpin_lock(&rq->lock, rf.cookie);
1188
		rq = move_queued_task(rq, p, dest_cpu);
1189
		lockdep_repin_lock(&rq->lock, rf.cookie);
1190
	}
P
Peter Zijlstra 已提交
1191
out:
1192
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1193 1194 1195

	return ret;
}
1196 1197 1198 1199 1200

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1201 1202
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1203
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1204
{
1205 1206 1207 1208 1209
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1210
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1211
			!p->on_rq);
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1222
#ifdef CONFIG_LOCKDEP
1223 1224 1225 1226 1227
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1228
	 * see task_group().
1229 1230 1231 1232
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1233 1234 1235
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1236 1237
#endif

1238
	trace_sched_migrate_task(p, new_cpu);
1239

1240
	if (task_cpu(p) != new_cpu) {
1241
		if (p->sched_class->migrate_task_rq)
1242
			p->sched_class->migrate_task_rq(p);
1243
		p->se.nr_migrations++;
1244
		perf_event_task_migrate(p);
1245
	}
I
Ingo Molnar 已提交
1246 1247

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1248 1249
}

1250 1251
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1252
	if (task_on_rq_queued(p)) {
1253 1254 1255 1256 1257
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1258
		p->on_rq = TASK_ON_RQ_MIGRATING;
1259 1260 1261
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1262
		p->on_rq = TASK_ON_RQ_QUEUED;
1263 1264 1265 1266 1267
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
L
Leo Yan 已提交
1268
		 * previous cpu our target instead of where it really is.
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1285 1286 1287
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1288 1289 1290
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1291 1292
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1293
	double_rq_lock(src_rq, dst_rq);
1294

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1314 1315
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1338 1339 1340 1341
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1342 1343 1344 1345 1346 1347 1348 1349 1350
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1351
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1352 1353 1354 1355 1356 1357
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1358 1359 1360
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1361 1362 1363 1364 1365 1366 1367
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1368 1369 1370 1371 1372 1373
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1374
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1375
{
1376
	int running, queued;
1377
	struct rq_flags rf;
R
Roland McGrath 已提交
1378
	unsigned long ncsw;
1379
	struct rq *rq;
L
Linus Torvalds 已提交
1380

1381 1382 1383 1384 1385 1386 1387 1388
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1401 1402 1403
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1404
			cpu_relax();
R
Roland McGrath 已提交
1405
		}
1406

1407 1408 1409 1410 1411
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1412
		rq = task_rq_lock(p, &rf);
1413
		trace_sched_wait_task(p);
1414
		running = task_running(rq, p);
1415
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1416
		ncsw = 0;
1417
		if (!match_state || p->state == match_state)
1418
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1419
		task_rq_unlock(rq, p, &rf);
1420

R
Roland McGrath 已提交
1421 1422 1423 1424 1425 1426
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1437

1438 1439 1440 1441 1442
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1443
		 * So if it was still runnable (but just not actively
1444 1445 1446
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1447
		if (unlikely(queued)) {
1448 1449 1450 1451
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1452 1453
			continue;
		}
1454

1455 1456 1457 1458 1459 1460 1461
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1462 1463

	return ncsw;
L
Linus Torvalds 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1473
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1474 1475 1476 1477 1478
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1479
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1489
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1490

1491
/*
1492
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
 *    cpu isn't yet part of the sched domains, and balancing will not
 *    see it.
 *
 *  - on cpu-down we clear cpu_active() to mask the sched domains and
 *    avoid the load balancer to place new tasks on the to be removed
 *    cpu. Existing tasks will remain running there and will be taken
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1512
 */
1513 1514
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1515 1516
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1517 1518
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1535
	}
1536

1537 1538
	for (;;) {
		/* Any allowed, online CPU? */
1539
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1540 1541 1542
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1543 1544 1545
				continue;
			goto out;
		}
1546

1547
		/* No more Mr. Nice Guy. */
1548 1549
		switch (state) {
		case cpuset:
1550 1551 1552 1553 1554 1555
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
			/* fall-through */
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1575
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1576 1577
					task_pid_nr(p), p->comm, cpu);
		}
1578 1579 1580 1581 1582
	}

	return dest_cpu;
}

1583
/*
1584
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1585
 */
1586
static inline
1587
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1588
{
1589 1590
	lockdep_assert_held(&p->pi_lock);

1591
	if (tsk_nr_cpus_allowed(p) > 1)
1592
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1593 1594
	else
		cpu = cpumask_any(tsk_cpus_allowed(p));
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1606
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1607
		     !cpu_online(cpu)))
1608
		cpu = select_fallback_rq(task_cpu(p), p);
1609 1610

	return cpu;
1611
}
1612 1613 1614 1615 1616 1617

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1618 1619 1620 1621 1622 1623 1624 1625 1626

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1627
#endif /* CONFIG_SMP */
1628

P
Peter Zijlstra 已提交
1629
static void
1630
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1631
{
P
Peter Zijlstra 已提交
1632
#ifdef CONFIG_SCHEDSTATS
1633 1634
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1645
		rcu_read_lock();
P
Peter Zijlstra 已提交
1646 1647 1648 1649 1650 1651
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1652
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1653
	}
1654 1655 1656 1657

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1658 1659 1660
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1661
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1662 1663

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1664
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1665 1666 1667 1668

#endif /* CONFIG_SCHEDSTATS */
}

1669
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1670
{
T
Tejun Heo 已提交
1671
	activate_task(rq, p, en_flags);
1672
	p->on_rq = TASK_ON_RQ_QUEUED;
1673 1674 1675 1676

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1677 1678
}

1679 1680 1681
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1682 1683
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
			   struct pin_cookie cookie)
T
Tejun Heo 已提交
1684 1685 1686
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1687 1688
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1689
#ifdef CONFIG_SMP
1690 1691
	if (p->sched_class->task_woken) {
		/*
1692 1693
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1694
		 */
1695
		lockdep_unpin_lock(&rq->lock, cookie);
T
Tejun Heo 已提交
1696
		p->sched_class->task_woken(rq, p);
1697
		lockdep_repin_lock(&rq->lock, cookie);
1698
	}
T
Tejun Heo 已提交
1699

1700
	if (rq->idle_stamp) {
1701
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1702
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1703

1704 1705 1706
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1707
			rq->avg_idle = max;
1708

T
Tejun Heo 已提交
1709 1710 1711 1712 1713
		rq->idle_stamp = 0;
	}
#endif
}

1714
static void
1715 1716
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
		 struct pin_cookie cookie)
1717
{
1718 1719
	int en_flags = ENQUEUE_WAKEUP;

1720 1721
	lockdep_assert_held(&rq->lock);

1722 1723 1724
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1725 1726

	if (wake_flags & WF_MIGRATED)
1727
		en_flags |= ENQUEUE_MIGRATED;
1728 1729
#endif

1730
	ttwu_activate(rq, p, en_flags);
1731
	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1742
	struct rq_flags rf;
1743 1744 1745
	struct rq *rq;
	int ret = 0;

1746
	rq = __task_rq_lock(p, &rf);
1747
	if (task_on_rq_queued(p)) {
1748 1749
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1750
		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1751 1752
		ret = 1;
	}
1753
	__task_rq_unlock(rq, &rf);
1754 1755 1756 1757

	return ret;
}

1758
#ifdef CONFIG_SMP
1759
void sched_ttwu_pending(void)
1760 1761
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1762
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1763
	struct pin_cookie cookie;
P
Peter Zijlstra 已提交
1764
	struct task_struct *p;
1765
	unsigned long flags;
1766

1767 1768 1769 1770
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1771
	cookie = lockdep_pin_lock(&rq->lock);
1772

P
Peter Zijlstra 已提交
1773
	while (llist) {
P
Peter Zijlstra 已提交
1774 1775
		int wake_flags = 0;

P
Peter Zijlstra 已提交
1776 1777
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
P
Peter Zijlstra 已提交
1778 1779 1780 1781 1782

		if (p->sched_remote_wakeup)
			wake_flags = WF_MIGRATED;

		ttwu_do_activate(rq, p, wake_flags, cookie);
1783 1784
	}

1785
	lockdep_unpin_lock(&rq->lock, cookie);
1786
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1787 1788 1789 1790
}

void scheduler_ipi(void)
{
1791 1792 1793 1794 1795
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1796
	preempt_fold_need_resched();
1797

1798
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1815
	sched_ttwu_pending();
1816 1817 1818 1819

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1820
	if (unlikely(got_nohz_idle_kick())) {
1821
		this_rq()->idle_balance = 1;
1822
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1823
	}
1824
	irq_exit();
1825 1826
}

P
Peter Zijlstra 已提交
1827
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1828
{
1829 1830
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1831 1832
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1833 1834 1835 1836 1837 1838
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1839
}
1840

1841 1842 1843 1844 1845
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1846 1847 1848 1849
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1860 1861 1862

out:
	rcu_read_unlock();
1863 1864
}

1865
bool cpus_share_cache(int this_cpu, int that_cpu)
1866 1867 1868
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1869
#endif /* CONFIG_SMP */
1870

1871
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1872 1873
{
	struct rq *rq = cpu_rq(cpu);
1874
	struct pin_cookie cookie;
1875

1876
#if defined(CONFIG_SMP)
1877
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1878
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
P
Peter Zijlstra 已提交
1879
		ttwu_queue_remote(p, cpu, wake_flags);
1880 1881 1882 1883
		return;
	}
#endif

1884
	raw_spin_lock(&rq->lock);
1885
	cookie = lockdep_pin_lock(&rq->lock);
1886
	ttwu_do_activate(rq, p, wake_flags, cookie);
1887
	lockdep_unpin_lock(&rq->lock, cookie);
1888
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1889 1890
}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
 * execution on its new cpu [c1].
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
 * Note: the cpu doing B need not be c0 or c1
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1941
 *   2) smp_cond_load_acquire(!X->on_cpu)
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1952
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1978
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1979 1980 1981
 *
 */

T
Tejun Heo 已提交
1982
/**
L
Linus Torvalds 已提交
1983
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1984
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1985
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1986
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1987 1988 1989 1990 1991 1992 1993
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1994
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1995
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1996
 */
1997 1998
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1999 2000
{
	unsigned long flags;
2001
	int cpu, success = 0;
P
Peter Zijlstra 已提交
2002

2003 2004 2005 2006 2007 2008 2009
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
2010
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
2011
	if (!(p->state & state))
L
Linus Torvalds 已提交
2012 2013
		goto out;

2014 2015
	trace_sched_waking(p);

2016
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
2017 2018
	cpu = task_cpu(p);

2019 2020
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2021 2022

#ifdef CONFIG_SMP
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2042
	/*
2043 2044
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
2045 2046 2047 2048 2049
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2050
	 */
2051
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2052

2053
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2054
	p->state = TASK_WAKING;
2055

2056
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2057 2058
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2059
		set_task_cpu(p, cpu);
2060
	}
L
Linus Torvalds 已提交
2061 2062
#endif /* CONFIG_SMP */

2063
	ttwu_queue(p, cpu, wake_flags);
2064
stat:
2065 2066
	if (schedstat_enabled())
		ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2067
out:
2068
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2069 2070 2071 2072

	return success;
}

T
Tejun Heo 已提交
2073 2074 2075
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2076
 * @cookie: context's cookie for pinning
T
Tejun Heo 已提交
2077
 *
2078
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2079
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2080
 * the current task.
T
Tejun Heo 已提交
2081
 */
2082
static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
T
Tejun Heo 已提交
2083 2084 2085
{
	struct rq *rq = task_rq(p);

2086 2087 2088 2089
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2090 2091
	lockdep_assert_held(&rq->lock);

2092
	if (!raw_spin_trylock(&p->pi_lock)) {
2093 2094 2095 2096 2097 2098
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2099
		lockdep_unpin_lock(&rq->lock, cookie);
2100 2101 2102
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
2103
		lockdep_repin_lock(&rq->lock, cookie);
2104 2105
	}

T
Tejun Heo 已提交
2106
	if (!(p->state & TASK_NORMAL))
2107
		goto out;
T
Tejun Heo 已提交
2108

2109 2110
	trace_sched_waking(p);

2111
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
2112 2113
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2114
	ttwu_do_wakeup(rq, p, 0, cookie);
2115 2116
	if (schedstat_enabled())
		ttwu_stat(p, smp_processor_id(), 0);
2117 2118
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2119 2120
}

2121 2122 2123 2124 2125
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2126 2127 2128
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2129 2130 2131 2132
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2133
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2134
{
2135
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2136 2137 2138
}
EXPORT_SYMBOL(wake_up_process);

2139
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2140 2141 2142 2143
{
	return try_to_wake_up(p, state, 0);
}

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2156 2157 2158

	dl_se->dl_throttled = 0;
	dl_se->dl_yielded = 0;
2159 2160
}

L
Linus Torvalds 已提交
2161 2162 2163
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2164 2165 2166
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2167
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2168
{
P
Peter Zijlstra 已提交
2169 2170 2171
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2172 2173
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2174
	p->se.prev_sum_exec_runtime	= 0;
2175
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2176
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2177
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2178

2179 2180 2181 2182
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2183
#ifdef CONFIG_SCHEDSTATS
2184
	/* Even if schedstat is disabled, there should not be garbage */
2185
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2186
#endif
N
Nick Piggin 已提交
2187

2188
	RB_CLEAR_NODE(&p->dl.rb_node);
2189
	init_dl_task_timer(&p->dl);
2190
	__dl_clear_params(p);
2191

P
Peter Zijlstra 已提交
2192
	INIT_LIST_HEAD(&p->rt.run_list);
2193 2194 2195 2196
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2197

2198 2199 2200
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2201 2202 2203

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2204
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2205 2206 2207
		p->mm->numa_scan_seq = 0;
	}

2208 2209 2210 2211 2212
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2213 2214
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2215
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2216
	p->numa_work.next = &p->numa_work;
2217
	p->numa_faults = NULL;
2218 2219
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2220 2221

	p->numa_group = NULL;
2222
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2223 2224
}

2225 2226
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2227
#ifdef CONFIG_NUMA_BALANCING
2228

2229 2230 2231
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2232
		static_branch_enable(&sched_numa_balancing);
2233
	else
2234
		static_branch_disable(&sched_numa_balancing);
2235
}
2236 2237 2238 2239 2240 2241 2242

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2243
	int state = static_branch_likely(&sched_numa_balancing);
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2259

2260 2261
#ifdef CONFIG_SCHEDSTATS

2262
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2263
static bool __initdata __sched_schedstats = false;
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2287 2288 2289 2290 2291
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2292
	if (!strcmp(str, "enable")) {
2293
		__sched_schedstats = true;
2294 2295
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2296
		__sched_schedstats = false;
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2307 2308 2309 2310 2311
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2332 2333 2334 2335
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2336 2337 2338 2339

/*
 * fork()/clone()-time setup:
 */
2340
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2341
{
2342
	unsigned long flags;
I
Ingo Molnar 已提交
2343 2344
	int cpu = get_cpu();

2345
	__sched_fork(clone_flags, p);
2346
	/*
2347
	 * We mark the process as NEW here. This guarantees that
2348 2349 2350
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2351
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2352

2353 2354 2355 2356 2357
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2358 2359 2360 2361
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2362
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2363
			p->policy = SCHED_NORMAL;
2364
			p->static_prio = NICE_TO_PRIO(0);
2365 2366 2367 2368 2369 2370
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2371

2372 2373 2374 2375 2376 2377
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2378

2379 2380 2381 2382 2383 2384
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2385
		p->sched_class = &fair_sched_class;
2386
	}
2387

2388
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2389

2390 2391 2392 2393 2394 2395 2396
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2397
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2398 2399 2400 2401 2402 2403 2404
	/*
	 * We're setting the cpu for the first time, we don't migrate,
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2405
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2406

2407
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2408
	if (likely(sched_info_on()))
2409
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2410
#endif
P
Peter Zijlstra 已提交
2411 2412
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2413
#endif
2414
	init_task_preempt_count(p);
2415
#ifdef CONFIG_SMP
2416
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2417
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2418
#endif
2419

N
Nick Piggin 已提交
2420
	put_cpu();
2421
	return 0;
L
Linus Torvalds 已提交
2422 2423
}

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2443 2444
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2445 2446 2447
	return &cpu_rq(i)->rd->dl_bw;
}

2448
static inline int dl_bw_cpus(int i)
2449
{
2450 2451 2452
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2453 2454
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2455 2456 2457 2458
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2459 2460 2461 2462 2463 2464 2465
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2466
static inline int dl_bw_cpus(int i)
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2479 2480 2481
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2482 2483 2484 2485 2486 2487
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2488
	u64 period = attr->sched_period ?: attr->sched_deadline;
2489 2490
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2491
	int cpus, err = -1;
2492

2493 2494
	/* !deadline task may carry old deadline bandwidth */
	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2495 2496 2497 2498 2499 2500 2501 2502
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2503
	cpus = dl_bw_cpus(task_cpu(p));
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2524 2525 2526 2527 2528 2529 2530
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2531
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2532
{
2533
	struct rq_flags rf;
I
Ingo Molnar 已提交
2534
	struct rq *rq;
2535

2536
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2537
	p->state = TASK_RUNNING;
2538 2539 2540 2541 2542
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
2543 2544 2545
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2546
	 */
2547
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2548
#endif
2549
	rq = __task_rq_lock(p, &rf);
2550
	post_init_entity_util_avg(&p->se);
2551

P
Peter Zijlstra 已提交
2552
	activate_task(rq, p, 0);
2553
	p->on_rq = TASK_ON_RQ_QUEUED;
2554
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2555
	check_preempt_curr(rq, p, WF_FORK);
2556
#ifdef CONFIG_SMP
2557 2558 2559 2560 2561
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2562
		lockdep_unpin_lock(&rq->lock, rf.cookie);
2563
		p->sched_class->task_woken(rq, p);
2564
		lockdep_repin_lock(&rq->lock, rf.cookie);
2565
	}
2566
#endif
2567
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2568 2569
}

2570 2571
#ifdef CONFIG_PREEMPT_NOTIFIERS

2572 2573
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2586
/**
2587
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2588
 * @notifier: notifier struct to register
2589 2590 2591
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2592 2593 2594
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2595 2596 2597 2598 2599 2600
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2601
 * @notifier: notifier struct to unregister
2602
 *
2603
 * This is *not* safe to call from within a preemption notifier.
2604 2605 2606 2607 2608 2609 2610
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2611
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2612 2613 2614
{
	struct preempt_notifier *notifier;

2615
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2616 2617 2618
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2619 2620 2621 2622 2623 2624
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2625
static void
2626 2627
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2628 2629 2630
{
	struct preempt_notifier *notifier;

2631
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2632 2633 2634
		notifier->ops->sched_out(notifier, next);
}

2635 2636 2637 2638 2639 2640 2641 2642
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2643
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2644

2645
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2646 2647 2648
{
}

2649
static inline void
2650 2651 2652 2653 2654
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2655
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2656

2657 2658 2659
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2660
 * @prev: the current task that is being switched out
2661 2662 2663 2664 2665 2666 2667 2668 2669
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2670 2671 2672
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2673
{
2674
	sched_info_switch(rq, prev, next);
2675
	perf_event_task_sched_out(prev, next);
2676
	fire_sched_out_preempt_notifiers(prev, next);
2677 2678 2679 2680
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2681 2682 2683 2684
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2685 2686 2687 2688
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2689 2690
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2691
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2692 2693
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2694 2695 2696 2697 2698
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2699
 */
2700
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2701 2702
	__releases(rq->lock)
{
2703
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2704
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2705
	long prev_state;
L
Linus Torvalds 已提交
2706

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2718 2719 2720 2721
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2722

L
Linus Torvalds 已提交
2723 2724 2725 2726
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2727
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2728 2729
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2730 2731 2732 2733 2734
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2735
	 */
O
Oleg Nesterov 已提交
2736
	prev_state = prev->state;
2737
	vtime_task_switch(prev);
2738
	perf_event_task_sched_in(prev, current);
2739
	finish_lock_switch(rq, prev);
2740
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2741

2742
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2743 2744
	if (mm)
		mmdrop(mm);
2745
	if (unlikely(prev_state == TASK_DEAD)) {
2746 2747 2748
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2749 2750 2751
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2752
		 */
2753
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2754
		put_task_struct(prev);
2755
	}
2756

2757
	tick_nohz_task_switch();
2758
	return rq;
L
Linus Torvalds 已提交
2759 2760
}

2761 2762 2763
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2764
static void __balance_callback(struct rq *rq)
2765
{
2766 2767 2768
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2769

2770 2771 2772 2773 2774 2775 2776 2777
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2778

2779
		func(rq);
2780
	}
2781 2782 2783 2784 2785 2786 2787
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2788 2789 2790
}

#else
2791

2792
static inline void balance_callback(struct rq *rq)
2793
{
L
Linus Torvalds 已提交
2794 2795
}

2796 2797
#endif

L
Linus Torvalds 已提交
2798 2799 2800 2801
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2802
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2803 2804
	__releases(rq->lock)
{
2805
	struct rq *rq;
2806

2807 2808 2809 2810 2811 2812 2813 2814 2815
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2816
	rq = finish_task_switch(prev);
2817
	balance_callback(rq);
2818
	preempt_enable();
2819

L
Linus Torvalds 已提交
2820
	if (current->set_child_tid)
2821
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2822 2823 2824
}

/*
2825
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2826
 */
2827
static __always_inline struct rq *
2828
context_switch(struct rq *rq, struct task_struct *prev,
2829
	       struct task_struct *next, struct pin_cookie cookie)
L
Linus Torvalds 已提交
2830
{
I
Ingo Molnar 已提交
2831
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2832

2833
	prepare_task_switch(rq, prev, next);
2834

I
Ingo Molnar 已提交
2835 2836
	mm = next->mm;
	oldmm = prev->active_mm;
2837 2838 2839 2840 2841
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2842
	arch_start_context_switch(prev);
2843

2844
	if (!mm) {
L
Linus Torvalds 已提交
2845 2846 2847 2848
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
2849
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2850

2851
	if (!prev->mm) {
L
Linus Torvalds 已提交
2852 2853 2854
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2855 2856 2857 2858 2859 2860
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2861
	lockdep_unpin_lock(&rq->lock, cookie);
2862
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2863 2864 2865

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2866
	barrier();
2867 2868

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2869 2870 2871
}

/*
2872
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2873 2874
 *
 * externally visible scheduler statistics: current number of runnable
2875
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2876 2877 2878 2879 2880 2881 2882 2883 2884
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2885
}
L
Linus Torvalds 已提交
2886

2887 2888
/*
 * Check if only the current task is running on the cpu.
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2899 2900 2901
 */
bool single_task_running(void)
{
2902
	return raw_rq()->nr_running == 1;
2903 2904 2905
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2906
unsigned long long nr_context_switches(void)
2907
{
2908 2909
	int i;
	unsigned long long sum = 0;
2910

2911
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2912
		sum += cpu_rq(i)->nr_switches;
2913

L
Linus Torvalds 已提交
2914 2915
	return sum;
}
2916

L
Linus Torvalds 已提交
2917 2918 2919
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2920

2921
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2922
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2923

L
Linus Torvalds 已提交
2924 2925
	return sum;
}
2926

2927
unsigned long nr_iowait_cpu(int cpu)
2928
{
2929
	struct rq *this = cpu_rq(cpu);
2930 2931
	return atomic_read(&this->nr_iowait);
}
2932

2933 2934
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2935 2936 2937
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2938 2939
}

I
Ingo Molnar 已提交
2940
#ifdef CONFIG_SMP
2941

2942
/*
P
Peter Zijlstra 已提交
2943 2944
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2945
 */
P
Peter Zijlstra 已提交
2946
void sched_exec(void)
2947
{
P
Peter Zijlstra 已提交
2948
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2949
	unsigned long flags;
2950
	int dest_cpu;
2951

2952
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2953
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2954 2955
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2956

2957
	if (likely(cpu_active(dest_cpu))) {
2958
		struct migration_arg arg = { p, dest_cpu };
2959

2960 2961
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2962 2963
		return;
	}
2964
unlock:
2965
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2966
}
I
Ingo Molnar 已提交
2967

L
Linus Torvalds 已提交
2968 2969 2970
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2971
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2972 2973

EXPORT_PER_CPU_SYMBOL(kstat);
2974
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2975

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

2993 2994 2995 2996 2997 2998 2999
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
3000
	struct rq_flags rf;
3001
	struct rq *rq;
3002
	u64 ns;
3003

3004 3005 3006 3007 3008 3009 3010 3011 3012
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
3013 3014
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
3015
	 */
3016
	if (!p->on_cpu || !task_on_rq_queued(p))
3017 3018 3019
		return p->se.sum_exec_runtime;
#endif

3020
	rq = task_rq_lock(p, &rf);
3021 3022 3023 3024 3025 3026
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
3027
		prefetch_curr_exec_start(p);
3028 3029 3030 3031
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3032
	task_rq_unlock(rq, p, &rf);
3033 3034 3035

	return ns;
}
3036

3037 3038 3039 3040 3041 3042 3043 3044
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3045
	struct task_struct *curr = rq->curr;
3046 3047

	sched_clock_tick();
I
Ingo Molnar 已提交
3048

3049
	raw_spin_lock(&rq->lock);
3050
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3051
	curr->sched_class->task_tick(rq, curr, 0);
3052
	cpu_load_update_active(rq);
3053
	calc_global_load_tick(rq);
3054
	raw_spin_unlock(&rq->lock);
3055

3056
	perf_event_task_tick();
3057

3058
#ifdef CONFIG_SMP
3059
	rq->idle_balance = idle_cpu(cpu);
3060
	trigger_load_balance(rq);
3061
#endif
3062
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3063 3064
}

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3076 3077
 *
 * Return: Maximum deferment in nanoseconds.
3078 3079 3080 3081
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3082
	unsigned long next, now = READ_ONCE(jiffies);
3083 3084 3085 3086 3087 3088

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3089
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3090
}
3091
#endif
L
Linus Torvalds 已提交
3092

3093 3094
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3109

3110
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3111
{
3112
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3113 3114 3115
	/*
	 * Underflow?
	 */
3116 3117
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3118
#endif
3119
	__preempt_count_add(val);
3120
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3121 3122 3123
	/*
	 * Spinlock count overflowing soon?
	 */
3124 3125
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3126
#endif
3127
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3128
}
3129
EXPORT_SYMBOL(preempt_count_add);
3130
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3131

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3142
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3143
{
3144
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3145 3146 3147
	/*
	 * Underflow?
	 */
3148
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3149
		return;
L
Linus Torvalds 已提交
3150 3151 3152
	/*
	 * Is the spinlock portion underflowing?
	 */
3153 3154 3155
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3156
#endif
3157

3158
	preempt_latency_stop(val);
3159
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3160
}
3161
EXPORT_SYMBOL(preempt_count_sub);
3162
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3163

3164 3165 3166
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3167 3168 3169
#endif

/*
I
Ingo Molnar 已提交
3170
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3171
 */
I
Ingo Molnar 已提交
3172
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3173
{
3174 3175 3176
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3177 3178
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3179

I
Ingo Molnar 已提交
3180
	debug_show_held_locks(prev);
3181
	print_modules();
I
Ingo Molnar 已提交
3182 3183
	if (irqs_disabled())
		print_irqtrace_events(prev);
3184 3185 3186 3187 3188 3189 3190
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
3191 3192 3193
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3194
	dump_stack();
3195
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3196
}
L
Linus Torvalds 已提交
3197

I
Ingo Molnar 已提交
3198 3199 3200 3201 3202
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3203
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3204 3205
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3206
#endif
3207

3208
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3209
		__schedule_bug(prev);
3210 3211
		preempt_count_set(PREEMPT_DISABLED);
	}
3212
	rcu_sleep_check();
I
Ingo Molnar 已提交
3213

L
Linus Torvalds 已提交
3214 3215
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3216
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3217 3218 3219 3220 3221 3222
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3223
pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
I
Ingo Molnar 已提交
3224
{
3225
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
3226
	struct task_struct *p;
L
Linus Torvalds 已提交
3227 3228

	/*
I
Ingo Molnar 已提交
3229 3230
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3231
	 */
3232
	if (likely(prev->sched_class == class &&
3233
		   rq->nr_running == rq->cfs.h_nr_running)) {
3234
		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3235 3236 3237 3238 3239
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
3240
			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3241 3242

		return p;
L
Linus Torvalds 已提交
3243 3244
	}

3245
again:
3246
	for_each_class(class) {
3247
		p = class->pick_next_task(rq, prev, cookie);
3248 3249 3250
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3251
			return p;
3252
		}
I
Ingo Molnar 已提交
3253
	}
3254 3255

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3256
}
L
Linus Torvalds 已提交
3257

I
Ingo Molnar 已提交
3258
/*
3259
 * __schedule() is the main scheduler function.
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3294
 *
3295
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3296
 */
3297
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3298 3299
{
	struct task_struct *prev, *next;
3300
	unsigned long *switch_count;
3301
	struct pin_cookie cookie;
I
Ingo Molnar 已提交
3302
	struct rq *rq;
3303
	int cpu;
I
Ingo Molnar 已提交
3304 3305 3306 3307 3308

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
	/*
	 * do_exit() calls schedule() with preemption disabled as an exception;
	 * however we must fix that up, otherwise the next task will see an
	 * inconsistent (higher) preempt count.
	 *
	 * It also avoids the below schedule_debug() test from complaining
	 * about this.
	 */
	if (unlikely(prev->state == TASK_DEAD))
		preempt_enable_no_resched_notrace();

I
Ingo Molnar 已提交
3320
	schedule_debug(prev);
L
Linus Torvalds 已提交
3321

3322
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3323
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3324

3325 3326 3327
	local_irq_disable();
	rcu_note_context_switch();

3328 3329 3330 3331 3332 3333
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3334
	raw_spin_lock(&rq->lock);
3335
	cookie = lockdep_pin_lock(&rq->lock);
L
Linus Torvalds 已提交
3336

3337 3338
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

3339
	switch_count = &prev->nivcsw;
3340
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3341
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3342
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3343
		} else {
3344 3345 3346
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3347
			/*
3348 3349 3350
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3351 3352 3353 3354
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3355
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3356
				if (to_wakeup)
3357
					try_to_wake_up_local(to_wakeup, cookie);
T
Tejun Heo 已提交
3358 3359
			}
		}
I
Ingo Molnar 已提交
3360
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3361 3362
	}

3363
	if (task_on_rq_queued(prev))
3364 3365
		update_rq_clock(rq);

3366
	next = pick_next_task(rq, prev, cookie);
3367
	clear_tsk_need_resched(prev);
3368
	clear_preempt_need_resched();
3369
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
3370 3371 3372 3373 3374 3375

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3376
		trace_sched_switch(preempt, prev, next);
3377
		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3378
	} else {
3379
		lockdep_unpin_lock(&rq->lock, cookie);
3380
		raw_spin_unlock_irq(&rq->lock);
3381
	}
L
Linus Torvalds 已提交
3382

3383
	balance_callback(rq);
L
Linus Torvalds 已提交
3384
}
3385
STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3386

3387 3388
static inline void sched_submit_work(struct task_struct *tsk)
{
3389
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3390 3391 3392 3393 3394 3395 3396 3397 3398
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3399
asmlinkage __visible void __sched schedule(void)
3400
{
3401 3402 3403
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3404
	do {
3405
		preempt_disable();
3406
		__schedule(false);
3407
		sched_preempt_enable_no_resched();
3408
	} while (need_resched());
3409
}
L
Linus Torvalds 已提交
3410 3411
EXPORT_SYMBOL(schedule);

3412
#ifdef CONFIG_CONTEXT_TRACKING
3413
asmlinkage __visible void __sched schedule_user(void)
3414 3415 3416 3417 3418 3419
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3420 3421
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3422
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3423
	 * too frequently to make sense yet.
3424
	 */
3425
	enum ctx_state prev_state = exception_enter();
3426
	schedule();
3427
	exception_exit(prev_state);
3428 3429 3430
}
#endif

3431 3432 3433 3434 3435 3436 3437
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3438
	sched_preempt_enable_no_resched();
3439 3440 3441 3442
	schedule();
	preempt_disable();
}

3443
static void __sched notrace preempt_schedule_common(void)
3444 3445
{
	do {
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3459
		preempt_disable_notrace();
3460
		preempt_latency_start(1);
3461
		__schedule(true);
3462
		preempt_latency_stop(1);
3463
		preempt_enable_no_resched_notrace();
3464 3465 3466 3467 3468 3469 3470 3471

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3472 3473
#ifdef CONFIG_PREEMPT
/*
3474
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3475
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3476 3477
 * occur there and call schedule directly.
 */
3478
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3479 3480 3481
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3482
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3483
	 */
3484
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3485 3486
		return;

3487
	preempt_schedule_common();
L
Linus Torvalds 已提交
3488
}
3489
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3490
EXPORT_SYMBOL(preempt_schedule);
3491 3492

/**
3493
 * preempt_schedule_notrace - preempt_schedule called by tracing
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3506
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3507 3508 3509 3510 3511 3512 3513
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3527
		preempt_disable_notrace();
3528
		preempt_latency_start(1);
3529 3530 3531 3532 3533 3534
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3535
		__schedule(true);
3536 3537
		exception_exit(prev_ctx);

3538
		preempt_latency_stop(1);
3539
		preempt_enable_no_resched_notrace();
3540 3541
	} while (need_resched());
}
3542
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3543

3544
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3545 3546

/*
3547
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3548 3549 3550 3551
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3552
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3553
{
3554
	enum ctx_state prev_state;
3555

3556
	/* Catch callers which need to be fixed */
3557
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3558

3559 3560
	prev_state = exception_enter();

3561
	do {
3562
		preempt_disable();
3563
		local_irq_enable();
3564
		__schedule(true);
3565
		local_irq_disable();
3566
		sched_preempt_enable_no_resched();
3567
	} while (need_resched());
3568 3569

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3570 3571
}

P
Peter Zijlstra 已提交
3572
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3573
			  void *key)
L
Linus Torvalds 已提交
3574
{
P
Peter Zijlstra 已提交
3575
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3576 3577 3578
}
EXPORT_SYMBOL(default_wake_function);

3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3589 3590
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3591
 */
3592
void rt_mutex_setprio(struct task_struct *p, int prio)
3593
{
3594
	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3595
	const struct sched_class *prev_class;
3596 3597
	struct rq_flags rf;
	struct rq *rq;
3598

3599
	BUG_ON(prio > MAX_PRIO);
3600

3601
	rq = __task_rq_lock(p, &rf);
3602

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3621
	trace_sched_pi_setprio(p, prio);
3622
	oldprio = p->prio;
3623 3624 3625 3626

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3627
	prev_class = p->sched_class;
3628
	queued = task_on_rq_queued(p);
3629
	running = task_current(rq, p);
3630
	if (queued)
3631
		dequeue_task(rq, p, queue_flag);
3632
	if (running)
3633
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3634

3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3645 3646 3647
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3648
			p->dl.dl_boosted = 1;
3649
			queue_flag |= ENQUEUE_REPLENISH;
3650 3651
		} else
			p->dl.dl_boosted = 0;
3652
		p->sched_class = &dl_sched_class;
3653 3654 3655 3656
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3657
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3658
		p->sched_class = &rt_sched_class;
3659 3660 3661
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3662 3663
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3664
		p->sched_class = &fair_sched_class;
3665
	}
I
Ingo Molnar 已提交
3666

3667 3668
	p->prio = prio;

3669 3670
	if (running)
		p->sched_class->set_curr_task(rq);
3671
	if (queued)
3672
		enqueue_task(rq, p, queue_flag);
3673

P
Peter Zijlstra 已提交
3674
	check_class_changed(rq, p, prev_class, oldprio);
3675
out_unlock:
3676
	preempt_disable(); /* avoid rq from going away on us */
3677
	__task_rq_unlock(rq, &rf);
3678 3679 3680

	balance_callback(rq);
	preempt_enable();
3681 3682
}
#endif
3683

3684
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3685
{
3686
	int old_prio, delta, queued;
3687
	struct rq_flags rf;
3688
	struct rq *rq;
L
Linus Torvalds 已提交
3689

3690
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3691 3692 3693 3694 3695
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3696
	rq = task_rq_lock(p, &rf);
L
Linus Torvalds 已提交
3697 3698 3699 3700
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3701
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3702
	 */
3703
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3704 3705 3706
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3707 3708
	queued = task_on_rq_queued(p);
	if (queued)
3709
		dequeue_task(rq, p, DEQUEUE_SAVE);
L
Linus Torvalds 已提交
3710 3711

	p->static_prio = NICE_TO_PRIO(nice);
3712
	set_load_weight(p);
3713 3714 3715
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3716

3717
	if (queued) {
3718
		enqueue_task(rq, p, ENQUEUE_RESTORE);
L
Linus Torvalds 已提交
3719
		/*
3720 3721
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3722
		 */
3723
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3724
			resched_curr(rq);
L
Linus Torvalds 已提交
3725 3726
	}
out_unlock:
3727
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3728 3729 3730
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3731 3732 3733 3734 3735
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3736
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3737
{
3738
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3739
	int nice_rlim = nice_to_rlimit(nice);
3740

3741
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3742 3743 3744
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3745 3746 3747 3748 3749 3750 3751 3752 3753
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3754
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3755
{
3756
	long nice, retval;
L
Linus Torvalds 已提交
3757 3758 3759 3760 3761 3762

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3763
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3764
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3765

3766
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3767 3768 3769
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3784
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3785 3786 3787
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3788
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3789 3790 3791 3792 3793 3794 3795
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3796 3797
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3798 3799 3800
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3815 3816 3817 3818 3819
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3820 3821
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3822
 */
3823
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3824 3825 3826 3827 3828 3829 3830
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3831 3832
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3833
 */
A
Alexey Dobriyan 已提交
3834
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3835
{
3836
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3837 3838
}

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3854
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3855
	dl_se->flags = attr->sched_flags;
3856
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3877 3878
}

3879 3880 3881 3882 3883 3884
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3885 3886
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3887
{
3888 3889
	int policy = attr->sched_policy;

3890
	if (policy == SETPARAM_POLICY)
3891 3892
		policy = p->policy;

L
Linus Torvalds 已提交
3893
	p->policy = policy;
3894

3895 3896
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3897
	else if (fair_policy(policy))
3898 3899
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3900 3901 3902 3903 3904 3905
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3906
	p->normal_prio = normal_prio(p);
3907 3908
	set_load_weight(p);
}
3909

3910 3911
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3912
			   const struct sched_attr *attr, bool keep_boost)
3913 3914
{
	__setscheduler_params(p, attr);
3915

3916
	/*
3917 3918
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3919
	 */
3920 3921 3922 3923
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3924

3925 3926 3927
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3928 3929 3930
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3931
}
3932 3933 3934 3935 3936 3937 3938 3939 3940

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3941
	attr->sched_period = dl_se->dl_period;
3942 3943 3944 3945 3946 3947
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3948
 * than the runtime, as well as the period of being zero or
3949
 * greater than deadline. Furthermore, we have to be sure that
3950 3951 3952 3953
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3954 3955 3956 3957
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3984 3985
}

3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3996 3997
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3998 3999 4000 4001
	rcu_read_unlock();
	return match;
}

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

4016 4017
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4018
				bool user, bool pi)
L
Linus Torvalds 已提交
4019
{
4020 4021
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4022
	int retval, oldprio, oldpolicy = -1, queued, running;
4023
	int new_effective_prio, policy = attr->sched_policy;
4024
	const struct sched_class *prev_class;
4025
	struct rq_flags rf;
4026
	int reset_on_fork;
4027
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4028
	struct rq *rq;
L
Linus Torvalds 已提交
4029

4030 4031
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4032 4033
recheck:
	/* double check policy once rq lock held */
4034 4035
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4036
		policy = oldpolicy = p->policy;
4037
	} else {
4038
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4039

4040
		if (!valid_policy(policy))
4041 4042 4043
			return -EINVAL;
	}

4044 4045 4046
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
4047 4048
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4049 4050
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4051
	 */
4052
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4053
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4054
		return -EINVAL;
4055 4056
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4057 4058
		return -EINVAL;

4059 4060 4061
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4062
	if (user && !capable(CAP_SYS_NICE)) {
4063
		if (fair_policy(policy)) {
4064
			if (attr->sched_nice < task_nice(p) &&
4065
			    !can_nice(p, attr->sched_nice))
4066 4067 4068
				return -EPERM;
		}

4069
		if (rt_policy(policy)) {
4070 4071
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4072 4073 4074 4075 4076 4077

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
4078 4079
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4080 4081
				return -EPERM;
		}
4082

4083 4084 4085 4086 4087 4088 4089 4090 4091
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4092
		/*
4093 4094
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4095
		 */
4096
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4097
			if (!can_nice(p, task_nice(p)))
4098 4099
				return -EPERM;
		}
4100

4101
		/* can't change other user's priorities */
4102
		if (!check_same_owner(p))
4103
			return -EPERM;
4104 4105 4106 4107

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4108
	}
L
Linus Torvalds 已提交
4109

4110
	if (user) {
4111
		retval = security_task_setscheduler(p);
4112 4113 4114 4115
		if (retval)
			return retval;
	}

4116 4117 4118
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4119
	 *
L
Lucas De Marchi 已提交
4120
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4121 4122
	 * runqueue lock must be held.
	 */
4123
	rq = task_rq_lock(p, &rf);
4124

4125 4126 4127 4128
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4129
		task_rq_unlock(rq, p, &rf);
4130 4131 4132
		return -EINVAL;
	}

4133
	/*
4134 4135
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4136
	 */
4137
	if (unlikely(policy == p->policy)) {
4138
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4139 4140 4141
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4142
		if (dl_policy(policy) && dl_param_changed(p, attr))
4143
			goto change;
4144

4145
		p->sched_reset_on_fork = reset_on_fork;
4146
		task_rq_unlock(rq, p, &rf);
4147 4148
		return 0;
	}
4149
change:
4150

4151
	if (user) {
4152
#ifdef CONFIG_RT_GROUP_SCHED
4153 4154 4155 4156 4157
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4158 4159
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4160
			task_rq_unlock(rq, p, &rf);
4161 4162 4163
			return -EPERM;
		}
#endif
4164 4165 4166 4167 4168 4169 4170 4171 4172
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4173 4174
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4175
				task_rq_unlock(rq, p, &rf);
4176 4177 4178 4179 4180
				return -EPERM;
			}
		}
#endif
	}
4181

L
Linus Torvalds 已提交
4182 4183 4184
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4185
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4186 4187
		goto recheck;
	}
4188 4189 4190 4191 4192 4193

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4194
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4195
		task_rq_unlock(rq, p, &rf);
4196 4197 4198
		return -EBUSY;
	}

4199 4200 4201
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4202 4203 4204 4205 4206 4207 4208 4209 4210
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4211 4212
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4213 4214
	}

4215
	queued = task_on_rq_queued(p);
4216
	running = task_current(rq, p);
4217
	if (queued)
4218
		dequeue_task(rq, p, queue_flags);
4219
	if (running)
4220
		put_prev_task(rq, p);
4221

4222
	prev_class = p->sched_class;
4223
	__setscheduler(rq, p, attr, pi);
4224

4225 4226
	if (running)
		p->sched_class->set_curr_task(rq);
4227
	if (queued) {
4228 4229 4230 4231
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4232 4233
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4234

4235
		enqueue_task(rq, p, queue_flags);
4236
	}
4237

P
Peter Zijlstra 已提交
4238
	check_class_changed(rq, p, prev_class, oldprio);
4239
	preempt_disable(); /* avoid rq from going away on us */
4240
	task_rq_unlock(rq, p, &rf);
4241

4242 4243
	if (pi)
		rt_mutex_adjust_pi(p);
4244

4245 4246 4247 4248 4249
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();
4250

L
Linus Torvalds 已提交
4251 4252
	return 0;
}
4253

4254 4255 4256 4257 4258 4259 4260 4261 4262
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4263 4264
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4265 4266 4267 4268 4269
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4270
	return __sched_setscheduler(p, &attr, check, true);
4271
}
4272 4273 4274 4275 4276 4277
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4278 4279
 * Return: 0 on success. An error code otherwise.
 *
4280 4281 4282
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4283
		       const struct sched_param *param)
4284
{
4285
	return _sched_setscheduler(p, policy, param, true);
4286
}
L
Linus Torvalds 已提交
4287 4288
EXPORT_SYMBOL_GPL(sched_setscheduler);

4289 4290
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4291
	return __sched_setscheduler(p, attr, true, true);
4292 4293 4294
}
EXPORT_SYMBOL_GPL(sched_setattr);

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4305 4306
 *
 * Return: 0 on success. An error code otherwise.
4307 4308
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4309
			       const struct sched_param *param)
4310
{
4311
	return _sched_setscheduler(p, policy, param, false);
4312
}
4313
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4314

I
Ingo Molnar 已提交
4315 4316
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4317 4318 4319
{
	struct sched_param lparam;
	struct task_struct *p;
4320
	int retval;
L
Linus Torvalds 已提交
4321 4322 4323 4324 4325

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4326 4327 4328

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4329
	p = find_process_by_pid(pid);
4330 4331 4332
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4333

L
Linus Torvalds 已提交
4334 4335 4336
	return retval;
}

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4399
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4400

4401
	return 0;
4402 4403 4404

err_size:
	put_user(sizeof(*attr), &uattr->size);
4405
	return -E2BIG;
4406 4407
}

L
Linus Torvalds 已提交
4408 4409 4410 4411 4412
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4413 4414
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4415
 */
4416 4417
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4418
{
4419 4420 4421 4422
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4423 4424 4425 4426 4427 4428 4429
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4430 4431
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4432
 */
4433
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4434
{
4435
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4436 4437
}

4438 4439 4440
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4441
 * @uattr: structure containing the extended parameters.
4442
 * @flags: for future extension.
4443
 */
4444 4445
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4446 4447 4448 4449 4450
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4451
	if (!uattr || pid < 0 || flags)
4452 4453
		return -EINVAL;

4454 4455 4456
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4457

4458
	if ((int)attr.sched_policy < 0)
4459
		return -EINVAL;
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4471 4472 4473
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4474 4475 4476
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4477
 */
4478
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4479
{
4480
	struct task_struct *p;
4481
	int retval;
L
Linus Torvalds 已提交
4482 4483

	if (pid < 0)
4484
		return -EINVAL;
L
Linus Torvalds 已提交
4485 4486

	retval = -ESRCH;
4487
	rcu_read_lock();
L
Linus Torvalds 已提交
4488 4489 4490 4491
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4492 4493
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4494
	}
4495
	rcu_read_unlock();
L
Linus Torvalds 已提交
4496 4497 4498 4499
	return retval;
}

/**
4500
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4501 4502
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4503 4504 4505
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4506
 */
4507
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4508
{
4509
	struct sched_param lp = { .sched_priority = 0 };
4510
	struct task_struct *p;
4511
	int retval;
L
Linus Torvalds 已提交
4512 4513

	if (!param || pid < 0)
4514
		return -EINVAL;
L
Linus Torvalds 已提交
4515

4516
	rcu_read_lock();
L
Linus Torvalds 已提交
4517 4518 4519 4520 4521 4522 4523 4524 4525
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4526 4527
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4528
	rcu_read_unlock();
L
Linus Torvalds 已提交
4529 4530 4531 4532 4533 4534 4535 4536 4537

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4538
	rcu_read_unlock();
L
Linus Torvalds 已提交
4539 4540 4541
	return retval;
}

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4565
				return -EFBIG;
4566 4567 4568 4569 4570
		}

		attr->size = usize;
	}

4571
	ret = copy_to_user(uattr, attr, attr->size);
4572 4573 4574
	if (ret)
		return -EFAULT;

4575
	return 0;
4576 4577 4578
}

/**
4579
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4580
 * @pid: the pid in question.
J
Juri Lelli 已提交
4581
 * @uattr: structure containing the extended parameters.
4582
 * @size: sizeof(attr) for fwd/bwd comp.
4583
 * @flags: for future extension.
4584
 */
4585 4586
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4587 4588 4589 4590 4591 4592 4593 4594
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4595
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4609 4610
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4611 4612 4613
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4614 4615
		attr.sched_priority = p->rt_priority;
	else
4616
		attr.sched_nice = task_nice(p);
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4628
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4629
{
4630
	cpumask_var_t cpus_allowed, new_mask;
4631 4632
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4633

4634
	rcu_read_lock();
L
Linus Torvalds 已提交
4635 4636 4637

	p = find_process_by_pid(pid);
	if (!p) {
4638
		rcu_read_unlock();
L
Linus Torvalds 已提交
4639 4640 4641
		return -ESRCH;
	}

4642
	/* Prevent p going away */
L
Linus Torvalds 已提交
4643
	get_task_struct(p);
4644
	rcu_read_unlock();
L
Linus Torvalds 已提交
4645

4646 4647 4648 4649
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4650 4651 4652 4653 4654 4655 4656 4657
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4658
	retval = -EPERM;
E
Eric W. Biederman 已提交
4659 4660 4661 4662
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4663
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4664 4665 4666
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4667

4668
	retval = security_task_setscheduler(p);
4669
	if (retval)
4670
		goto out_free_new_mask;
4671

4672 4673 4674 4675

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4676 4677 4678 4679 4680 4681 4682
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4683 4684 4685
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4686
			retval = -EBUSY;
4687
			rcu_read_unlock();
4688
			goto out_free_new_mask;
4689
		}
4690
		rcu_read_unlock();
4691 4692
	}
#endif
P
Peter Zijlstra 已提交
4693
again:
4694
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4695

P
Paul Menage 已提交
4696
	if (!retval) {
4697 4698
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4699 4700 4701 4702 4703
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4704
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4705 4706 4707
			goto again;
		}
	}
4708
out_free_new_mask:
4709 4710 4711 4712
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4713 4714 4715 4716 4717
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4718
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4719
{
4720 4721 4722 4723 4724
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4725 4726 4727 4728 4729 4730 4731 4732
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4733 4734
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4735
 */
4736 4737
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4738
{
4739
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4740 4741
	int retval;

4742 4743
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4744

4745 4746 4747 4748 4749
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4750 4751
}

4752
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4753
{
4754
	struct task_struct *p;
4755
	unsigned long flags;
L
Linus Torvalds 已提交
4756 4757
	int retval;

4758
	rcu_read_lock();
L
Linus Torvalds 已提交
4759 4760 4761 4762 4763 4764

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4765 4766 4767 4768
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4769
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4770
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4771
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4772 4773

out_unlock:
4774
	rcu_read_unlock();
L
Linus Torvalds 已提交
4775

4776
	return retval;
L
Linus Torvalds 已提交
4777 4778 4779 4780 4781 4782 4783
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4784
 *
4785 4786
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4787
 */
4788 4789
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4790 4791
{
	int ret;
4792
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4793

A
Anton Blanchard 已提交
4794
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4795 4796
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4797 4798
		return -EINVAL;

4799 4800
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4801

4802 4803
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4804
		size_t retlen = min_t(size_t, len, cpumask_size());
4805 4806

		if (copy_to_user(user_mask_ptr, mask, retlen))
4807 4808
			ret = -EFAULT;
		else
4809
			ret = retlen;
4810 4811
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4812

4813
	return ret;
L
Linus Torvalds 已提交
4814 4815 4816 4817 4818
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4819 4820
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4821 4822
 *
 * Return: 0.
L
Linus Torvalds 已提交
4823
 */
4824
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4825
{
4826
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4827

4828
	schedstat_inc(rq, yld_count);
4829
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4830 4831 4832 4833 4834 4835

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4836
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4837
	do_raw_spin_unlock(&rq->lock);
4838
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4839 4840 4841 4842 4843 4844

	schedule();

	return 0;
}

4845
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4846
{
4847
	if (should_resched(0)) {
4848
		preempt_schedule_common();
L
Linus Torvalds 已提交
4849 4850 4851 4852
		return 1;
	}
	return 0;
}
4853
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4854 4855

/*
4856
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4857 4858
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4859
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4860 4861 4862
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4863
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4864
{
4865
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4866 4867
	int ret = 0;

4868 4869
	lockdep_assert_held(lock);

4870
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4871
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4872
		if (resched)
4873
			preempt_schedule_common();
N
Nick Piggin 已提交
4874 4875
		else
			cpu_relax();
J
Jan Kara 已提交
4876
		ret = 1;
L
Linus Torvalds 已提交
4877 4878
		spin_lock(lock);
	}
J
Jan Kara 已提交
4879
	return ret;
L
Linus Torvalds 已提交
4880
}
4881
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4882

4883
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4884 4885 4886
{
	BUG_ON(!in_softirq());

4887
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4888
		local_bh_enable();
4889
		preempt_schedule_common();
L
Linus Torvalds 已提交
4890 4891 4892 4893 4894
		local_bh_disable();
		return 1;
	}
	return 0;
}
4895
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4896 4897 4898 4899

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4918 4919 4920 4921 4922 4923 4924 4925
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4926 4927 4928 4929
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4930 4931
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4932 4933 4934 4935
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4936
 * Return:
4937 4938 4939
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4940
 */
4941
int __sched yield_to(struct task_struct *p, bool preempt)
4942 4943 4944 4945
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4946
	int yielded = 0;
4947 4948 4949 4950 4951 4952

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4953 4954 4955 4956 4957 4958 4959 4960 4961
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4962
	double_rq_lock(rq, p_rq);
4963
	if (task_rq(p) != p_rq) {
4964 4965 4966 4967 4968
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4969
		goto out_unlock;
4970 4971

	if (curr->sched_class != p->sched_class)
4972
		goto out_unlock;
4973 4974

	if (task_running(p_rq, p) || p->state)
4975
		goto out_unlock;
4976 4977

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4978
	if (yielded) {
4979
		schedstat_inc(rq, yld_count);
4980 4981 4982 4983 4984
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4985
			resched_curr(p_rq);
4986
	}
4987

4988
out_unlock:
4989
	double_rq_unlock(rq, p_rq);
4990
out_irq:
4991 4992
	local_irq_restore(flags);

4993
	if (yielded > 0)
4994 4995 4996 4997 4998 4999
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
5000
/*
I
Ingo Molnar 已提交
5001
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5002 5003 5004 5005
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5006 5007
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
5008 5009
	long ret;

5010
	current->in_iowait = 1;
5011
	blk_schedule_flush_plug(current);
5012

5013
	delayacct_blkio_start();
5014
	rq = raw_rq();
L
Linus Torvalds 已提交
5015 5016
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
5017
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
5018
	atomic_dec(&rq->nr_iowait);
5019
	delayacct_blkio_end();
5020

L
Linus Torvalds 已提交
5021 5022
	return ret;
}
5023
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5024 5025 5026 5027 5028

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5029 5030 5031
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5032
 */
5033
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5034 5035 5036 5037 5038 5039 5040 5041
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5042
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5043
	case SCHED_NORMAL:
5044
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5045
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5056 5057 5058
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5059
 */
5060
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5061 5062 5063 5064 5065 5066 5067 5068
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5069
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5070
	case SCHED_NORMAL:
5071
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5072
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
5085 5086 5087
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
5088
 */
5089
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5090
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5091
{
5092
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5093
	unsigned int time_slice;
5094 5095
	struct rq_flags rf;
	struct timespec t;
5096
	struct rq *rq;
5097
	int retval;
L
Linus Torvalds 已提交
5098 5099

	if (pid < 0)
5100
		return -EINVAL;
L
Linus Torvalds 已提交
5101 5102

	retval = -ESRCH;
5103
	rcu_read_lock();
L
Linus Torvalds 已提交
5104 5105 5106 5107 5108 5109 5110 5111
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5112
	rq = task_rq_lock(p, &rf);
5113 5114 5115
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5116
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5117

5118
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5119
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5120 5121
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5122

L
Linus Torvalds 已提交
5123
out_unlock:
5124
	rcu_read_unlock();
L
Linus Torvalds 已提交
5125 5126 5127
	return retval;
}

5128
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5129

5130
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5131 5132
{
	unsigned long free = 0;
5133
	int ppid;
5134
	unsigned long state = p->state;
L
Linus Torvalds 已提交
5135

5136 5137
	if (state)
		state = __ffs(state) + 1;
5138
	printk(KERN_INFO "%-15.15s %c", p->comm,
5139
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5140
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5141
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5142
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5143
	else
P
Peter Zijlstra 已提交
5144
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5145 5146
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5147
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5148
	else
P
Peter Zijlstra 已提交
5149
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5150 5151
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5152
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5153
#endif
5154
	ppid = 0;
5155
	rcu_read_lock();
5156 5157
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5158
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5159
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5160
		task_pid_nr(p), ppid,
5161
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5162

5163
	print_worker_info(KERN_INFO, p);
5164
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5165 5166
}

I
Ingo Molnar 已提交
5167
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5168
{
5169
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5170

5171
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5172 5173
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5174
#else
P
Peter Zijlstra 已提交
5175 5176
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5177
#endif
5178
	rcu_read_lock();
5179
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5180 5181
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5182
		 * console might take a lot of time:
5183 5184 5185
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5186 5187
		 */
		touch_nmi_watchdog();
5188
		touch_all_softlockup_watchdogs();
I
Ingo Molnar 已提交
5189
		if (!state_filter || (p->state & state_filter))
5190
			sched_show_task(p);
5191
	}
L
Linus Torvalds 已提交
5192

I
Ingo Molnar 已提交
5193
#ifdef CONFIG_SCHED_DEBUG
5194 5195
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5196
#endif
5197
	rcu_read_unlock();
I
Ingo Molnar 已提交
5198 5199 5200
	/*
	 * Only show locks if all tasks are dumped:
	 */
5201
	if (!state_filter)
I
Ingo Molnar 已提交
5202
		debug_show_all_locks();
L
Linus Torvalds 已提交
5203 5204
}

5205
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
5206
{
I
Ingo Molnar 已提交
5207
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5208 5209
}

5210 5211 5212 5213 5214 5215 5216 5217
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5218
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5219
{
5220
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5221 5222
	unsigned long flags;

5223 5224
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5225

5226
	__sched_fork(0, idle);
5227
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5228 5229
	idle->se.exec_start = sched_clock();

5230 5231
	kasan_unpoison_task_stack(idle);

5232 5233 5234 5235 5236 5237 5238 5239 5240
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5252
	__set_task_cpu(idle, cpu);
5253
	rcu_read_unlock();
L
Linus Torvalds 已提交
5254 5255

	rq->curr = rq->idle = idle;
5256
	idle->on_rq = TASK_ON_RQ_QUEUED;
5257
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5258
	idle->on_cpu = 1;
5259
#endif
5260 5261
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5262 5263

	/* Set the preempt count _outside_ the spinlocks! */
5264
	init_idle_preempt_count(idle, cpu);
5265

I
Ingo Molnar 已提交
5266 5267 5268 5269
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5270
	ftrace_graph_init_idle_task(idle, cpu);
5271
	vtime_init_idle(idle, cpu);
5272
#ifdef CONFIG_SMP
5273 5274
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5275 5276
}

5277 5278 5279 5280 5281 5282 5283
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

5284 5285 5286
	if (!cpumask_weight(cur))
		return ret;

5287
	rcu_read_lock_sched();
5288 5289 5290 5291 5292 5293 5294 5295
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5296
	rcu_read_unlock_sched();
5297 5298 5299 5300

	return ret;
}

5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5325
		struct dl_bw *dl_b;
5326 5327 5328 5329
		bool overflow;
		int cpus;
		unsigned long flags;

5330 5331
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5347
		rcu_read_unlock_sched();
5348 5349 5350 5351 5352 5353 5354

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5355 5356
#ifdef CONFIG_SMP

5357 5358
static bool sched_smp_initialized __read_mostly;

5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5374
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5375 5376
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5377 5378 5379 5380 5381 5382 5383

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5384
	bool queued, running;
5385 5386
	struct rq_flags rf;
	struct rq *rq;
5387

5388
	rq = task_rq_lock(p, &rf);
5389
	queued = task_on_rq_queued(p);
5390 5391
	running = task_current(rq, p);

5392
	if (queued)
5393
		dequeue_task(rq, p, DEQUEUE_SAVE);
5394
	if (running)
5395
		put_prev_task(rq, p);
5396 5397 5398 5399 5400

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
5401
	if (queued)
5402
		enqueue_task(rq, p, ENQUEUE_RESTORE);
5403
	task_rq_unlock(rq, p, &rf);
5404
}
P
Peter Zijlstra 已提交
5405
#endif /* CONFIG_NUMA_BALANCING */
5406

L
Linus Torvalds 已提交
5407
#ifdef CONFIG_HOTPLUG_CPU
5408
/*
5409 5410
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5411
 */
5412
void idle_task_exit(void)
L
Linus Torvalds 已提交
5413
{
5414
	struct mm_struct *mm = current->active_mm;
5415

5416
	BUG_ON(cpu_online(smp_processor_id()));
5417

5418
	if (mm != &init_mm) {
5419
		switch_mm_irqs_off(mm, &init_mm, current);
5420 5421
		finish_arch_post_lock_switch();
	}
5422
	mmdrop(mm);
L
Linus Torvalds 已提交
5423 5424 5425
}

/*
5426 5427
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5428 5429 5430
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5431 5432
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5433
 */
5434
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5435
{
5436
	long delta = calc_load_fold_active(rq, 1);
5437 5438
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5439 5440
}

5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5457
/*
5458 5459 5460 5461 5462 5463
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5464
 */
5465
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5466
{
5467
	struct rq *rq = dead_rq;
5468
	struct task_struct *next, *stop = rq->stop;
5469
	struct pin_cookie cookie;
5470
	int dest_cpu;
L
Linus Torvalds 已提交
5471 5472

	/*
5473 5474 5475 5476 5477 5478 5479
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5480
	 */
5481
	rq->stop = NULL;
5482

5483 5484 5485 5486 5487 5488 5489
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5490
	for (;;) {
5491 5492 5493 5494 5495
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5496
			break;
5497

5498
		/*
W
Wanpeng Li 已提交
5499
		 * pick_next_task assumes pinned rq->lock.
5500
		 */
5501 5502
		cookie = lockdep_pin_lock(&rq->lock);
		next = pick_next_task(rq, &fake_task, cookie);
5503
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5504
		next->sched_class->put_prev_task(rq, next);
5505

W
Wanpeng Li 已提交
5506 5507 5508 5509 5510 5511 5512 5513 5514
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5515
		lockdep_unpin_lock(&rq->lock, cookie);
W
Wanpeng Li 已提交
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&next->pi_lock);
		raw_spin_lock(&rq->lock);

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5530
		/* Find suitable destination for @next, with force if needed. */
5531
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5532

5533 5534 5535 5536 5537 5538
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
W
Wanpeng Li 已提交
5539
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5540
	}
5541

5542
	rq->stop = stop;
5543
}
L
Linus Torvalds 已提交
5544 5545
#endif /* CONFIG_HOTPLUG_CPU */

5546 5547 5548 5549 5550
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5551
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5571
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5572 5573 5574 5575
		rq->online = 0;
	}
}

5576
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5577
{
5578
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5579

5580 5581 5582
	rq->age_stamp = sched_clock_cpu(cpu);
}

5583 5584
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5585
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5586

5587
static __read_mostly int sched_debug_enabled;
5588

5589
static int __init sched_debug_setup(char *str)
5590
{
5591
	sched_debug_enabled = 1;
5592 5593 5594

	return 0;
}
5595 5596 5597 5598 5599 5600
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5601

5602
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5603
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5604
{
I
Ingo Molnar 已提交
5605
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5606

5607
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5608 5609 5610 5611

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5612
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5613
		if (sd->parent)
P
Peter Zijlstra 已提交
5614 5615
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5616
		return -1;
N
Nick Piggin 已提交
5617 5618
	}

5619 5620
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5621

5622
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5623 5624
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5625
	}
5626
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5627 5628
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5629
	}
L
Linus Torvalds 已提交
5630

I
Ingo Molnar 已提交
5631
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5632
	do {
I
Ingo Molnar 已提交
5633
		if (!group) {
P
Peter Zijlstra 已提交
5634 5635
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5636 5637 5638
			break;
		}

5639
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5640 5641
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5642 5643
			break;
		}
L
Linus Torvalds 已提交
5644

5645 5646
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5647 5648
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5649 5650
			break;
		}
L
Linus Torvalds 已提交
5651

5652
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5653

5654 5655
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5656
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5657 5658
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5659
		}
L
Linus Torvalds 已提交
5660

I
Ingo Molnar 已提交
5661 5662
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5663
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5664

5665
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5666
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5667

5668 5669
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5670 5671
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5672 5673
	return 0;
}
L
Linus Torvalds 已提交
5674

I
Ingo Molnar 已提交
5675 5676 5677
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5678

5679
	if (!sched_debug_enabled)
5680 5681
		return;

I
Ingo Molnar 已提交
5682 5683 5684 5685
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5686

I
Ingo Molnar 已提交
5687 5688 5689
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5690
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5691
			break;
L
Linus Torvalds 已提交
5692 5693
		level++;
		sd = sd->parent;
5694
		if (!sd)
I
Ingo Molnar 已提交
5695 5696
			break;
	}
L
Linus Torvalds 已提交
5697
}
5698
#else /* !CONFIG_SCHED_DEBUG */
5699
# define sched_domain_debug(sd, cpu) do { } while (0)
5700 5701 5702 5703
static inline bool sched_debug(void)
{
	return false;
}
5704
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5705

5706
static int sd_degenerate(struct sched_domain *sd)
5707
{
5708
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5709 5710 5711 5712 5713 5714
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5715
			 SD_BALANCE_EXEC |
5716
			 SD_SHARE_CPUCAPACITY |
5717 5718
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5719 5720 5721 5722 5723
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5724
	if (sd->flags & (SD_WAKE_AFFINE))
5725 5726 5727 5728 5729
		return 0;

	return 1;
}

5730 5731
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5732 5733 5734 5735 5736 5737
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5738
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5739 5740 5741 5742 5743 5744 5745
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5746
				SD_BALANCE_EXEC |
5747
				SD_SHARE_CPUCAPACITY |
5748
				SD_SHARE_PKG_RESOURCES |
5749 5750
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5751 5752
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5753 5754 5755 5756 5757 5758 5759
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5760
static void free_rootdomain(struct rcu_head *rcu)
5761
{
5762
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5763

5764
	cpupri_cleanup(&rd->cpupri);
5765
	cpudl_cleanup(&rd->cpudl);
5766
	free_cpumask_var(rd->dlo_mask);
5767 5768 5769 5770 5771 5772
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5773 5774
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5775
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5776 5777
	unsigned long flags;

5778
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5779 5780

	if (rq->rd) {
I
Ingo Molnar 已提交
5781
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5782

5783
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5784
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5785

5786
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5787

I
Ingo Molnar 已提交
5788
		/*
5789
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5790 5791 5792 5793 5794
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5795 5796 5797 5798 5799
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5800
	cpumask_set_cpu(rq->cpu, rd->span);
5801
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5802
		set_rq_online(rq);
G
Gregory Haskins 已提交
5803

5804
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5805 5806

	if (old_rd)
5807
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5808 5809
}

5810
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5811 5812 5813
{
	memset(rd, 0, sizeof(*rd));

5814
	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5815
		goto out;
5816
	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5817
		goto free_span;
5818
	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5819
		goto free_online;
5820
	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5821
		goto free_dlo_mask;
5822

5823
	init_dl_bw(&rd->dl_bw);
5824 5825
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5826

5827
	if (cpupri_init(&rd->cpupri) != 0)
5828
		goto free_rto_mask;
5829
	return 0;
5830

5831 5832
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5833 5834
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5835 5836 5837 5838
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5839
out:
5840
	return -ENOMEM;
G
Gregory Haskins 已提交
5841 5842
}

5843 5844 5845 5846 5847 5848
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5849 5850
static void init_defrootdomain(void)
{
5851
	init_rootdomain(&def_root_domain);
5852

G
Gregory Haskins 已提交
5853 5854 5855
	atomic_set(&def_root_domain.refcount, 1);
}

5856
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5857 5858 5859 5860 5861 5862 5863
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5864
	if (init_rootdomain(rd) != 0) {
5865 5866 5867
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5868 5869 5870 5871

	return rd;
}

5872
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5883 5884
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5885 5886 5887 5888 5889 5890

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5891 5892 5893
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5894 5895 5896 5897 5898 5899 5900 5901

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5902
		kfree(sd->groups->sgc);
5903
		kfree(sd->groups);
5904
	}
5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5919 5920 5921 5922 5923 5924 5925
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5926
 * two cpus are in the same cache domain, see cpus_share_cache().
5927 5928
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5929
DEFINE_PER_CPU(int, sd_llc_size);
5930
DEFINE_PER_CPU(int, sd_llc_id);
5931
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5932 5933
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5934 5935 5936 5937

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5938
	struct sched_domain *busy_sd = NULL;
5939
	int id = cpu;
5940
	int size = 1;
5941 5942

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5943
	if (sd) {
5944
		id = cpumask_first(sched_domain_span(sd));
5945
		size = cpumask_weight(sched_domain_span(sd));
5946
		busy_sd = sd->parent; /* sd_busy */
5947
	}
5948
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5949 5950

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5951
	per_cpu(sd_llc_size, cpu) = size;
5952
	per_cpu(sd_llc_id, cpu) = id;
5953 5954 5955

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5956 5957 5958

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5959 5960
}

L
Linus Torvalds 已提交
5961
/*
I
Ingo Molnar 已提交
5962
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5963 5964
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5965 5966
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5967
{
5968
	struct rq *rq = cpu_rq(cpu);
5969 5970 5971
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5972
	for (tmp = sd; tmp; ) {
5973 5974 5975
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5976

5977
		if (sd_parent_degenerate(tmp, parent)) {
5978
			tmp->parent = parent->parent;
5979 5980
			if (parent->parent)
				parent->parent->child = tmp;
5981 5982 5983 5984 5985 5986 5987
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5988
			destroy_sched_domain(parent, cpu);
5989 5990
		} else
			tmp = tmp->parent;
5991 5992
	}

5993
	if (sd && sd_degenerate(sd)) {
5994
		tmp = sd;
5995
		sd = sd->parent;
5996
		destroy_sched_domain(tmp, cpu);
5997 5998 5999
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6000

6001
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
6002

G
Gregory Haskins 已提交
6003
	rq_attach_root(rq, rd);
6004
	tmp = rq->sd;
N
Nick Piggin 已提交
6005
	rcu_assign_pointer(rq->sd, sd);
6006
	destroy_sched_domains(tmp, cpu);
6007 6008

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
6009 6010 6011 6012 6013
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6014 6015
	int ret;

R
Rusty Russell 已提交
6016
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6017 6018 6019 6020 6021
	ret = cpulist_parse(str, cpu_isolated_map);
	if (ret) {
		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
		return 0;
	}
L
Linus Torvalds 已提交
6022 6023
	return 1;
}
I
Ingo Molnar 已提交
6024
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6025

6026
struct s_data {
6027
	struct sched_domain ** __percpu sd;
6028 6029 6030
	struct root_domain	*rd;
};

6031 6032
enum s_alloc {
	sa_rootdomain,
6033
	sa_sd,
6034
	sa_sd_storage,
6035 6036 6037
	sa_none,
};

P
Peter Zijlstra 已提交
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

6076 6077 6078 6079 6080 6081 6082
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
6083
	struct sched_domain *sibling;
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

6094
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
6095 6096

		/* See the comment near build_group_mask(). */
6097
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
6098 6099
			continue;

6100
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6101
				GFP_KERNEL, cpu_to_node(cpu));
6102 6103 6104 6105 6106

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
6107 6108 6109
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
6110 6111 6112 6113
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

6114 6115
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
6116 6117
			build_group_mask(sd, sg);

6118
		/*
6119
		 * Initialize sgc->capacity such that even if we mess up the
6120 6121 6122
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
6123
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6124

P
Peter Zijlstra 已提交
6125 6126 6127 6128 6129
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6130
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6131
		    group_balance_cpu(sg) == cpu)
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6151
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6152
{
6153 6154
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6155

6156 6157
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6158

6159
	if (sg) {
6160
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6161 6162
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6163
	}
6164 6165

	return cpu;
6166 6167
}

6168
/*
6169 6170
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6171
 * and ->cpu_capacity to 0.
6172 6173
 *
 * Assumes the sched_domain tree is fully constructed
6174
 */
6175 6176
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6177
{
6178 6179 6180
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6181
	struct cpumask *covered;
6182
	int i;
6183

6184 6185 6186
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6187
	if (cpu != cpumask_first(span))
6188 6189
		return 0;

6190 6191 6192
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6193
	cpumask_clear(covered);
6194

6195 6196
	for_each_cpu(i, span) {
		struct sched_group *sg;
6197
		int group, j;
6198

6199 6200
		if (cpumask_test_cpu(i, covered))
			continue;
6201

6202
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6203
		cpumask_setall(sched_group_mask(sg));
6204

6205 6206 6207
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6208

6209 6210 6211
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6212

6213 6214 6215 6216 6217 6218 6219
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6220 6221

	return 0;
6222
}
6223

6224
/*
6225
 * Initialize sched groups cpu_capacity.
6226
 *
6227
 * cpu_capacity indicates the capacity of sched group, which is used while
6228
 * distributing the load between different sched groups in a sched domain.
6229 6230 6231 6232
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6233
 */
6234
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6235
{
6236
	struct sched_group *sg = sd->groups;
6237

6238
	WARN_ON(!sg);
6239 6240 6241 6242 6243

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6244

P
Peter Zijlstra 已提交
6245
	if (cpu != group_balance_cpu(sg))
6246
		return;
6247

6248 6249
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6250 6251
}

6252 6253 6254 6255 6256
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6257
static int default_relax_domain_level = -1;
6258
int sched_domain_level_max;
6259 6260 6261

static int __init setup_relax_domain_level(char *str)
{
6262 6263
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6264

6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6283
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6284 6285
	} else {
		/* turn on idle balance on this domain */
6286
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6287 6288 6289
	}
}

6290 6291 6292
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6293 6294 6295 6296 6297
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6298 6299
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6300 6301
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6302
	case sa_sd_storage:
6303
		__sdt_free(cpu_map); /* fall through */
6304 6305 6306 6307
	case sa_none:
		break;
	}
}
6308

6309 6310 6311
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6312 6313
	memset(d, 0, sizeof(*d));

6314 6315
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6316 6317 6318
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6319
	d->rd = alloc_rootdomain();
6320
	if (!d->rd)
6321
		return sa_sd;
6322 6323
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6324

6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6337
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6338
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6339

6340 6341
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6342 6343
}

6344 6345
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6346
enum numa_topology_type sched_numa_topology_type;
6347
static int *sched_domains_numa_distance;
6348
int sched_max_numa_distance;
6349 6350
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6351
#endif
6352

6353 6354 6355
/*
 * SD_flags allowed in topology descriptions.
 *
6356
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6357 6358
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6359
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6360 6361 6362 6363 6364
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6365
	(SD_SHARE_CPUCAPACITY |		\
6366 6367
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6368 6369
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6370 6371

static struct sched_domain *
6372
sd_init(struct sched_domain_topology_level *tl, int cpu)
6373 6374
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6391 6392 6393 6394 6395

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6396
		.imbalance_pct		= 125,
6397 6398 6399 6400

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6401 6402 6403 6404 6405 6406
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6407 6408
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6409
					| 0*SD_BALANCE_WAKE
6410
					| 1*SD_WAKE_AFFINE
6411
					| 0*SD_SHARE_CPUCAPACITY
6412
					| 0*SD_SHARE_PKG_RESOURCES
6413
					| 0*SD_SERIALIZE
6414
					| 0*SD_PREFER_SIBLING
6415 6416
					| 0*SD_NUMA
					| sd_flags
6417
					,
6418

6419 6420
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6421
		.smt_gain		= 0,
6422 6423
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6424 6425 6426
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6427 6428 6429
	};

	/*
6430
	 * Convert topological properties into behaviour.
6431
	 */
6432

6433
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6434
		sd->flags |= SD_PREFER_SIBLING;
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6465 6466 6467 6468

	return sd;
}

6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

6483 6484
static struct sched_domain_topology_level *sched_domain_topology =
	default_topology;
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6496 6497 6498 6499 6500
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6522
bool find_numa_distance(int distance)
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

6562
	if (sched_domains_numa_levels <= 1) {
6563
		sched_numa_topology_type = NUMA_DIRECT;
6564 6565
		return;
	}
6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6634
		}
6635 6636 6637 6638 6639 6640

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6641
	}
6642 6643 6644 6645

	if (!level)
		return;

6646 6647 6648 6649
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6650
	 * The sched_domains_numa_distance[] array includes the actual distance
6651 6652 6653
	 * numbers.
	 */

6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6680
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6681 6682 6683 6684 6685
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

6686
			for_each_node(k) {
6687
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6688 6689 6690 6691 6692 6693 6694
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6695 6696 6697
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6698
	tl = kzalloc((i + level + 1) *
6699 6700 6701 6702 6703 6704 6705
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6706 6707
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6708 6709 6710 6711 6712 6713 6714

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6715
			.sd_flags = cpu_numa_flags,
6716 6717
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6718
			SD_INIT_NAME(NUMA)
6719 6720 6721 6722
		};
	}

	sched_domain_topology = tl;
6723 6724

	sched_domains_numa_levels = level;
6725
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6726 6727

	init_numa_topology_type();
6728
}
6729

6730
static void sched_domains_numa_masks_set(unsigned int cpu)
6731 6732
{
	int node = cpu_to_node(cpu);
6733
	int i, j;
6734 6735 6736 6737 6738 6739 6740 6741 6742

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

6743
static void sched_domains_numa_masks_clear(unsigned int cpu)
6744 6745
{
	int i, j;
6746

6747 6748 6749 6750 6751 6752
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

6753
#else
6754 6755 6756
static inline void sched_init_numa(void) { }
static void sched_domains_numa_masks_set(unsigned int cpu) { }
static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6757 6758
#endif /* CONFIG_NUMA */

6759 6760 6761 6762 6763
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6764
	for_each_sd_topology(tl) {
6765 6766 6767 6768 6769 6770 6771 6772 6773 6774
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6775 6776
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6777 6778
			return -ENOMEM;

6779 6780 6781
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6782
			struct sched_group_capacity *sgc;
6783

P
Peter Zijlstra 已提交
6784
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6796 6797
			sg->next = sg;

6798
			*per_cpu_ptr(sdd->sg, j) = sg;
6799

6800
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6801
					GFP_KERNEL, cpu_to_node(j));
6802
			if (!sgc)
6803 6804
				return -ENOMEM;

6805
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6817
	for_each_sd_topology(tl) {
6818 6819 6820
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6832 6833
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6834 6835
		}
		free_percpu(sdd->sd);
6836
		sdd->sd = NULL;
6837
		free_percpu(sdd->sg);
6838
		sdd->sg = NULL;
6839 6840
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6841 6842 6843
	}
}

6844
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6845 6846
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6847
{
6848
	struct sched_domain *sd = sd_init(tl, cpu);
6849
	if (!sd)
6850
		return child;
6851 6852

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6853 6854 6855
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6856
		child->parent = sd;
6857
		sd->child = child;
P
Peter Zijlstra 已提交
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6872
	}
6873
	set_domain_attribute(sd, attr);
6874 6875 6876 6877

	return sd;
}

6878 6879 6880 6881
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6882 6883
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6884
{
6885
	enum s_alloc alloc_state;
6886
	struct sched_domain *sd;
6887
	struct s_data d;
6888
	int i, ret = -ENOMEM;
6889

6890 6891 6892
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6893

6894
	/* Set up domains for cpus specified by the cpu_map. */
6895
	for_each_cpu(i, cpu_map) {
6896 6897
		struct sched_domain_topology_level *tl;

6898
		sd = NULL;
6899
		for_each_sd_topology(tl) {
6900
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6901 6902
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6903 6904
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6905 6906
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6907
		}
6908 6909 6910 6911 6912 6913
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6914 6915 6916 6917 6918 6919 6920
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6921
		}
6922
	}
6923

6924
	/* Calculate CPU capacity for physical packages and nodes */
6925 6926 6927
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6928

6929 6930
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6931
			init_sched_groups_capacity(i, sd);
6932
		}
6933
	}
6934

L
Linus Torvalds 已提交
6935
	/* Attach the domains */
6936
	rcu_read_lock();
6937
	for_each_cpu(i, cpu_map) {
6938
		sd = *per_cpu_ptr(d.sd, i);
6939
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6940
	}
6941
	rcu_read_unlock();
6942

6943
	ret = 0;
6944
error:
6945
	__free_domain_allocs(&d, alloc_state, cpu_map);
6946
	return ret;
L
Linus Torvalds 已提交
6947
}
P
Paul Jackson 已提交
6948

6949
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6950
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6951 6952
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6953 6954 6955

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6956 6957
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6958
 */
6959
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6960

6961 6962 6963 6964 6965
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6966
int __weak arch_update_cpu_topology(void)
6967
{
6968
	return 0;
6969 6970
}

6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6996
/*
I
Ingo Molnar 已提交
6997
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6998 6999
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7000
 */
7001
static int init_sched_domains(const struct cpumask *cpu_map)
7002
{
7003 7004
	int err;

7005
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7006
	ndoms_cur = 1;
7007
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7008
	if (!doms_cur)
7009 7010
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7011
	err = build_sched_domains(doms_cur[0], NULL);
7012
	register_sched_domain_sysctl();
7013 7014

	return err;
7015 7016 7017 7018 7019 7020
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7021
static void detach_destroy_domains(const struct cpumask *cpu_map)
7022 7023 7024
{
	int i;

7025
	rcu_read_lock();
7026
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7027
		cpu_attach_domain(NULL, &def_root_domain, i);
7028
	rcu_read_unlock();
7029 7030
}

7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7047 7048
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7049
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7050 7051 7052
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7053
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7054 7055 7056
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7057 7058 7059
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7060 7061 7062 7063 7064 7065
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7066
 *
7067
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7068 7069
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7070
 *
P
Paul Jackson 已提交
7071 7072
 * Call with hotplug lock held
 */
7073
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7074
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7075
{
7076
	int i, j, n;
7077
	int new_topology;
P
Paul Jackson 已提交
7078

7079
	mutex_lock(&sched_domains_mutex);
7080

7081 7082 7083
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7084 7085 7086
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7087
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7088 7089 7090

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7091
		for (j = 0; j < n && !new_topology; j++) {
7092
			if (cpumask_equal(doms_cur[i], doms_new[j])
7093
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7094 7095 7096
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7097
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7098 7099 7100 7101
match1:
		;
	}

7102
	n = ndoms_cur;
7103
	if (doms_new == NULL) {
7104
		n = 0;
7105
		doms_new = &fallback_doms;
7106
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7107
		WARN_ON_ONCE(dattr_new);
7108 7109
	}

P
Paul Jackson 已提交
7110 7111
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7112
		for (j = 0; j < n && !new_topology; j++) {
7113
			if (cpumask_equal(doms_new[i], doms_cur[j])
7114
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7115 7116 7117
				goto match2;
		}
		/* no match - add a new doms_new */
7118
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7119 7120 7121 7122 7123
match2:
		;
	}

	/* Remember the new sched domains */
7124 7125
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7126
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7127
	doms_cur = doms_new;
7128
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7129
	ndoms_cur = ndoms_new;
7130 7131

	register_sched_domain_sysctl();
7132

7133
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7134 7135
}

7136 7137
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7138
/*
7139 7140 7141
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7142 7143 7144
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7145
 */
7146
static void cpuset_cpu_active(void)
7147
{
7148
	if (cpuhp_tasks_frozen) {
7149 7150 7151 7152 7153 7154 7155 7156 7157
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
7158
			return;
7159 7160 7161 7162 7163 7164
		}
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
7165
	}
7166
	cpuset_update_active_cpus(true);
7167
}
7168

7169
static int cpuset_cpu_inactive(unsigned int cpu)
7170
{
7171 7172
	unsigned long flags;
	struct dl_bw *dl_b;
7173 7174
	bool overflow;
	int cpus;
7175

7176
	if (!cpuhp_tasks_frozen) {
7177 7178
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7179

7180 7181 7182 7183
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7184

7185
		rcu_read_unlock_sched();
7186

7187
		if (overflow)
7188
			return -EBUSY;
7189
		cpuset_update_active_cpus(false);
7190
	} else {
7191 7192
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
7193
	}
7194
	return 0;
7195 7196
}

7197
int sched_cpu_activate(unsigned int cpu)
7198
{
7199 7200 7201
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

7202
	set_cpu_active(cpu, true);
7203

7204
	if (sched_smp_initialized) {
7205
		sched_domains_numa_masks_set(cpu);
7206
		cpuset_cpu_active();
7207
	}
7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
	 *    after all cpus have been brought up.
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
	raw_spin_unlock_irqrestore(&rq->lock, flags);

	update_max_interval();

7227
	return 0;
7228 7229
}

7230
int sched_cpu_deactivate(unsigned int cpu)
7231 7232 7233
{
	int ret;

7234
	set_cpu_active(cpu, false);
7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
	 * not imply sync_sched(), so wait for both.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
	if (IS_ENABLED(CONFIG_PREEMPT))
		synchronize_rcu_mult(call_rcu, call_rcu_sched);
	else
		synchronize_rcu();
7249 7250 7251 7252 7253 7254 7255 7256

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
7257
	}
7258 7259
	sched_domains_numa_masks_clear(cpu);
	return 0;
7260 7261
}

7262 7263 7264 7265 7266 7267 7268 7269
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

7270 7271 7272
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
7273
	sched_rq_cpu_starting(cpu);
7274
	return 0;
7275 7276
}

7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
	migrate_tasks(rq);
	BUG_ON(rq->nr_running != 1);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
	calc_load_migrate(rq);
	update_max_interval();
7295
	nohz_balance_exit_idle(cpu);
7296
	hrtick_clear(rq);
7297 7298 7299 7300
	return 0;
}
#endif

L
Linus Torvalds 已提交
7301 7302
void __init sched_init_smp(void)
{
7303 7304 7305
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7306
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7307

7308 7309
	sched_init_numa();

7310 7311 7312 7313 7314
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7315
	mutex_lock(&sched_domains_mutex);
7316
	init_sched_domains(cpu_active_mask);
7317 7318 7319
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7320
	mutex_unlock(&sched_domains_mutex);
7321

7322
	/* Move init over to a non-isolated CPU */
7323
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7324
		BUG();
I
Ingo Molnar 已提交
7325
	sched_init_granularity();
7326
	free_cpumask_var(non_isolated_cpus);
7327

7328
	init_sched_rt_class();
7329
	init_sched_dl_class();
7330
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
7331
}
7332 7333 7334

static int __init migration_init(void)
{
7335
	sched_rq_cpu_starting(smp_processor_id());
7336
	return 0;
L
Linus Torvalds 已提交
7337
}
7338 7339
early_initcall(migration_init);

L
Linus Torvalds 已提交
7340 7341 7342
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7343
	sched_init_granularity();
L
Linus Torvalds 已提交
7344 7345 7346 7347 7348 7349 7350 7351 7352 7353
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7354
#ifdef CONFIG_CGROUP_SCHED
7355 7356 7357 7358
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7359
struct task_group root_task_group;
7360
LIST_HEAD(task_groups);
7361 7362 7363

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
7364
#endif
P
Peter Zijlstra 已提交
7365

7366
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7367

L
Linus Torvalds 已提交
7368 7369
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7370
	int i, j;
7371 7372 7373 7374 7375 7376 7377 7378 7379
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7380
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7381 7382

#ifdef CONFIG_FAIR_GROUP_SCHED
7383
		root_task_group.se = (struct sched_entity **)ptr;
7384 7385
		ptr += nr_cpu_ids * sizeof(void **);

7386
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7387
		ptr += nr_cpu_ids * sizeof(void **);
7388

7389
#endif /* CONFIG_FAIR_GROUP_SCHED */
7390
#ifdef CONFIG_RT_GROUP_SCHED
7391
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7392 7393
		ptr += nr_cpu_ids * sizeof(void **);

7394
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7395 7396
		ptr += nr_cpu_ids * sizeof(void **);

7397
#endif /* CONFIG_RT_GROUP_SCHED */
7398
	}
7399
#ifdef CONFIG_CPUMASK_OFFSTACK
7400 7401 7402
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7403
	}
7404
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7405

7406 7407 7408
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7409
			global_rt_period(), global_rt_runtime());
7410

G
Gregory Haskins 已提交
7411 7412 7413 7414
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7415
#ifdef CONFIG_RT_GROUP_SCHED
7416
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7417
			global_rt_period(), global_rt_runtime());
7418
#endif /* CONFIG_RT_GROUP_SCHED */
7419

D
Dhaval Giani 已提交
7420
#ifdef CONFIG_CGROUP_SCHED
7421 7422
	task_group_cache = KMEM_CACHE(task_group, 0);

7423 7424
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7425
	INIT_LIST_HEAD(&root_task_group.siblings);
7426
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
7427
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7428

7429
	for_each_possible_cpu(i) {
7430
		struct rq *rq;
L
Linus Torvalds 已提交
7431 7432

		rq = cpu_rq(i);
7433
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7434
		rq->nr_running = 0;
7435 7436
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7437
		init_cfs_rq(&rq->cfs);
7438 7439
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7440
#ifdef CONFIG_FAIR_GROUP_SCHED
7441
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7442
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7443
		/*
7444
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7445 7446 7447 7448
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7449
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7450 7451 7452
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7453
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7454 7455 7456
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7457
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7458
		 *
7459 7460
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7461
		 */
7462
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7463
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7464 7465 7466
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7467
#ifdef CONFIG_RT_GROUP_SCHED
7468
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7469
#endif
L
Linus Torvalds 已提交
7470

I
Ingo Molnar 已提交
7471 7472
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7473

L
Linus Torvalds 已提交
7474
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7475
		rq->sd = NULL;
G
Gregory Haskins 已提交
7476
		rq->rd = NULL;
7477
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7478
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7479
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7480
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7481
		rq->push_cpu = 0;
7482
		rq->cpu = i;
7483
		rq->online = 0;
7484 7485
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7486
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7487 7488 7489

		INIT_LIST_HEAD(&rq->cfs_tasks);

7490
		rq_attach_root(rq, &def_root_domain);
7491
#ifdef CONFIG_NO_HZ_COMMON
7492
		rq->last_load_update_tick = jiffies;
7493
		rq->nohz_flags = 0;
7494
#endif
7495 7496 7497
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
7498
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
7499
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7500 7501 7502
		atomic_set(&rq->nr_iowait, 0);
	}

7503
	set_load_weight(&init_task);
7504

7505 7506 7507 7508
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7509 7510 7511 7512 7513 7514
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7515 7516 7517 7518 7519
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7520 7521 7522 7523 7524 7525 7526
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7527 7528 7529

	calc_load_update = jiffies + LOAD_FREQ;

7530
#ifdef CONFIG_SMP
7531
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7532 7533 7534
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7535
	idle_thread_set_boot_cpu();
7536
	set_cpu_rq_start_time(smp_processor_id());
7537 7538
#endif
	init_sched_fair_class();
7539

7540 7541
	init_schedstats();

7542
	scheduler_running = 1;
L
Linus Torvalds 已提交
7543 7544
}

7545
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7546 7547
static inline int preempt_count_equals(int preempt_offset)
{
7548
	int nested = preempt_count() + rcu_preempt_depth();
7549

A
Arnd Bergmann 已提交
7550
	return (nested == preempt_offset);
7551 7552
}

7553
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7554
{
P
Peter Zijlstra 已提交
7555 7556 7557 7558 7559
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7560
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7561 7562 7563 7564
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7565
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7566

7567 7568 7569 7570 7571
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7572 7573 7574
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7575
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7576 7577
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7578
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7579 7580 7581 7582 7583
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7584 7585 7586 7587 7588 7589 7590
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7591

7592 7593 7594
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7595 7596 7597
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7598 7599 7600 7601 7602 7603 7604
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7605
	dump_stack();
L
Linus Torvalds 已提交
7606
}
7607
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7608 7609 7610
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7611
void normalize_rt_tasks(void)
7612
{
7613
	struct task_struct *g, *p;
7614 7615 7616
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7617

7618
	read_lock(&tasklist_lock);
7619
	for_each_process_thread(g, p) {
7620 7621 7622
		/*
		 * Only normalize user tasks:
		 */
7623
		if (p->flags & PF_KTHREAD)
7624 7625
			continue;

I
Ingo Molnar 已提交
7626 7627
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7628 7629 7630
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7631
#endif
I
Ingo Molnar 已提交
7632

7633
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7634 7635 7636 7637
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7638
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7639
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7640
			continue;
I
Ingo Molnar 已提交
7641
		}
L
Linus Torvalds 已提交
7642

7643
		__sched_setscheduler(p, &attr, false, false);
7644
	}
7645
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7646 7647 7648
}

#endif /* CONFIG_MAGIC_SYSRQ */
7649

7650
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7651
/*
7652
 * These functions are only useful for the IA64 MCA handling, or kdb.
7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7666 7667
 *
 * Return: The current task for @cpu.
7668
 */
7669
struct task_struct *curr_task(int cpu)
7670 7671 7672 7673
{
	return cpu_curr(cpu);
}

7674 7675 7676
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7677 7678 7679 7680 7681 7682
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7683 7684
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7685 7686 7687 7688 7689 7690 7691
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7692
void set_curr_task(int cpu, struct task_struct *p)
7693 7694 7695 7696 7697
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7698

D
Dhaval Giani 已提交
7699
#ifdef CONFIG_CGROUP_SCHED
7700 7701 7702
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7703
static void sched_free_group(struct task_group *tg)
7704 7705 7706
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7707
	autogroup_free(tg);
7708
	kmem_cache_free(task_group_cache, tg);
7709 7710 7711
}

/* allocate runqueue etc for a new task group */
7712
struct task_group *sched_create_group(struct task_group *parent)
7713 7714 7715
{
	struct task_group *tg;

7716
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7717 7718 7719
	if (!tg)
		return ERR_PTR(-ENOMEM);

7720
	if (!alloc_fair_sched_group(tg, parent))
7721 7722
		goto err;

7723
	if (!alloc_rt_sched_group(tg, parent))
7724 7725
		goto err;

7726 7727 7728
	return tg;

err:
7729
	sched_free_group(tg);
7730 7731 7732 7733 7734 7735 7736
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7737
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7738
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7739 7740 7741 7742 7743

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7744
	list_add_rcu(&tg->siblings, &parent->children);
7745
	spin_unlock_irqrestore(&task_group_lock, flags);
7746 7747

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7748 7749
}

7750
/* rcu callback to free various structures associated with a task group */
7751
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7752 7753
{
	/* now it should be safe to free those cfs_rqs */
7754
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7755 7756
}

7757
void sched_destroy_group(struct task_group *tg)
7758 7759
{
	/* wait for possible concurrent references to cfs_rqs complete */
7760
	call_rcu(&tg->rcu, sched_free_group_rcu);
7761 7762 7763
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7764
{
7765
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
7766

7767
	/* end participation in shares distribution */
7768
	unregister_fair_sched_group(tg);
7769 7770

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7771
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7772
	list_del_rcu(&tg->siblings);
7773
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7774 7775
}

7776
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
7777
{
P
Peter Zijlstra 已提交
7778
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7779

7780 7781 7782 7783 7784 7785
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7786 7787 7788 7789
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7790
#ifdef CONFIG_FAIR_GROUP_SCHED
7791 7792
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
7793
	else
P
Peter Zijlstra 已提交
7794
#endif
7795
		set_task_rq(tsk, task_cpu(tsk));
7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
	int queued, running;
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
	if (unlikely(running))
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
7822

7823 7824
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7825
	if (queued)
7826
		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
S
Srivatsa Vaddagiri 已提交
7827

7828
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
7829
}
D
Dhaval Giani 已提交
7830
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7831

7832 7833 7834 7835 7836
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7837

P
Peter Zijlstra 已提交
7838 7839
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7840
{
P
Peter Zijlstra 已提交
7841
	struct task_struct *g, *p;
7842

7843 7844 7845 7846 7847 7848
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7849
	for_each_process_thread(g, p) {
7850
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7851
			return 1;
7852
	}
7853

P
Peter Zijlstra 已提交
7854 7855
	return 0;
}
7856

P
Peter Zijlstra 已提交
7857 7858 7859 7860 7861
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7862

7863
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7864 7865 7866 7867 7868
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7869

P
Peter Zijlstra 已提交
7870 7871
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7872

P
Peter Zijlstra 已提交
7873 7874 7875
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7876 7877
	}

7878 7879 7880 7881 7882
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7883

7884 7885 7886
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7887 7888
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7889

P
Peter Zijlstra 已提交
7890
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7891

7892 7893 7894 7895 7896
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7897

7898 7899 7900
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7901 7902 7903
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7904

P
Peter Zijlstra 已提交
7905 7906 7907 7908
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7909

P
Peter Zijlstra 已提交
7910
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7911
	}
P
Peter Zijlstra 已提交
7912

P
Peter Zijlstra 已提交
7913 7914 7915 7916
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7917 7918
}

P
Peter Zijlstra 已提交
7919
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7920
{
7921 7922
	int ret;

P
Peter Zijlstra 已提交
7923 7924 7925 7926 7927 7928
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7929 7930 7931 7932 7933
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7934 7935
}

7936
static int tg_set_rt_bandwidth(struct task_group *tg,
7937
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7938
{
P
Peter Zijlstra 已提交
7939
	int i, err = 0;
P
Peter Zijlstra 已提交
7940

7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
7952
	mutex_lock(&rt_constraints_mutex);
7953
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7954 7955
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7956
		goto unlock;
P
Peter Zijlstra 已提交
7957

7958
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7959 7960
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7961 7962 7963 7964

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7965
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7966
		rt_rq->rt_runtime = rt_runtime;
7967
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7968
	}
7969
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7970
unlock:
7971
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7972 7973 7974
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7975 7976
}

7977
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7978 7979 7980 7981 7982 7983 7984 7985
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7986
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7987 7988
}

7989
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7990 7991 7992
{
	u64 rt_runtime_us;

7993
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7994 7995
		return -1;

7996
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7997 7998 7999
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8000

8001
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8002 8003 8004
{
	u64 rt_runtime, rt_period;

8005
	rt_period = rt_period_us * NSEC_PER_USEC;
8006 8007
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8008
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8009 8010
}

8011
static long sched_group_rt_period(struct task_group *tg)
8012 8013 8014 8015 8016 8017 8018
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
8019
#endif /* CONFIG_RT_GROUP_SCHED */
8020

8021
#ifdef CONFIG_RT_GROUP_SCHED
8022 8023 8024 8025 8026
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8027
	read_lock(&tasklist_lock);
8028
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8029
	read_unlock(&tasklist_lock);
8030 8031 8032 8033
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8034

8035
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8036 8037 8038 8039 8040 8041 8042 8043
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8044
#else /* !CONFIG_RT_GROUP_SCHED */
8045 8046
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8047
	unsigned long flags;
8048
	int i;
8049

8050
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8051 8052 8053
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8054
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8055
		rt_rq->rt_runtime = global_rt_runtime();
8056
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8057
	}
8058
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8059

8060
	return 0;
8061
}
8062
#endif /* CONFIG_RT_GROUP_SCHED */
8063

8064
static int sched_dl_global_validate(void)
8065
{
8066 8067
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
8068
	u64 new_bw = to_ratio(period, runtime);
8069
	struct dl_bw *dl_b;
8070
	int cpu, ret = 0;
8071
	unsigned long flags;
8072 8073 8074 8075 8076 8077 8078 8079 8080 8081

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
8082
	for_each_possible_cpu(cpu) {
8083 8084
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8085

8086
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8087 8088
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
8089
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8090

8091 8092
		rcu_read_unlock_sched();

8093 8094
		if (ret)
			break;
8095 8096
	}

8097
	return ret;
8098 8099
}

8100
static void sched_dl_do_global(void)
8101
{
8102
	u64 new_bw = -1;
8103
	struct dl_bw *dl_b;
8104
	int cpu;
8105
	unsigned long flags;
8106

8107 8108 8109 8110 8111 8112 8113 8114 8115 8116
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
8117 8118
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8119

8120
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8121
		dl_b->bw = new_bw;
8122
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8123 8124

		rcu_read_unlock_sched();
8125
	}
8126 8127 8128 8129 8130 8131 8132
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8133 8134
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8135 8136 8137 8138 8139 8140 8141 8142 8143
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8144 8145
}

8146
int sched_rt_handler(struct ctl_table *table, int write,
8147
		void __user *buffer, size_t *lenp,
8148 8149 8150 8151
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
8152
	int ret;
8153 8154 8155 8156 8157

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8158
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8159 8160

	if (!ret && write) {
8161 8162 8163 8164
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

8165
		ret = sched_dl_global_validate();
8166 8167 8168
		if (ret)
			goto undo;

8169
		ret = sched_rt_global_constraints();
8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
8180 8181 8182 8183 8184
	}
	mutex_unlock(&mutex);

	return ret;
}
8185

8186
int sched_rr_handler(struct ctl_table *table, int write,
8187 8188 8189 8190 8191 8192 8193 8194
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8195 8196
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
8197
	if (!ret && write) {
8198 8199
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8200 8201 8202 8203 8204
	}
	mutex_unlock(&mutex);
	return ret;
}

8205
#ifdef CONFIG_CGROUP_SCHED
8206

8207
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8208
{
8209
	return css ? container_of(css, struct task_group, css) : NULL;
8210 8211
}

8212 8213
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8214
{
8215 8216
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
8217

8218
	if (!parent) {
8219
		/* This is early initialization for the top cgroup */
8220
		return &root_task_group.css;
8221 8222
	}

8223
	tg = sched_create_group(parent);
8224 8225 8226
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

8227 8228
	sched_online_group(tg, parent);

8229 8230 8231
	return &tg->css;
}

8232
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8233
{
8234
	struct task_group *tg = css_tg(css);
8235

8236
	sched_offline_group(tg);
8237 8238
}

8239
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8240
{
8241
	struct task_group *tg = css_tg(css);
8242

8243 8244 8245 8246
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
8247 8248
}

8249 8250 8251 8252
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
8253
static void cpu_cgroup_fork(struct task_struct *task)
8254
{
8255 8256 8257 8258 8259 8260 8261 8262
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
8263 8264
}

8265
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8266
{
8267
	struct task_struct *task;
8268
	struct cgroup_subsys_state *css;
8269
	int ret = 0;
8270

8271
	cgroup_taskset_for_each(task, css, tset) {
8272
#ifdef CONFIG_RT_GROUP_SCHED
8273
		if (!sched_rt_can_attach(css_tg(css), task))
8274
			return -EINVAL;
8275
#else
8276 8277 8278
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8279
#endif
8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
8296
	}
8297
	return ret;
8298
}
8299

8300
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8301
{
8302
	struct task_struct *task;
8303
	struct cgroup_subsys_state *css;
8304

8305
	cgroup_taskset_for_each(task, css, tset)
8306
		sched_move_task(task);
8307 8308
}

8309
#ifdef CONFIG_FAIR_GROUP_SCHED
8310 8311
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8312
{
8313
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8314 8315
}

8316 8317
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8318
{
8319
	struct task_group *tg = css_tg(css);
8320

8321
	return (u64) scale_load_down(tg->shares);
8322
}
8323 8324

#ifdef CONFIG_CFS_BANDWIDTH
8325 8326
static DEFINE_MUTEX(cfs_constraints_mutex);

8327 8328 8329
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8330 8331
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8332 8333
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8334
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8335
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8356 8357 8358 8359 8360
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8361 8362 8363 8364 8365
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8366
	runtime_enabled = quota != RUNTIME_INF;
8367
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8368 8369 8370 8371 8372 8373
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8374 8375 8376
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8377

P
Paul Turner 已提交
8378
	__refill_cfs_bandwidth_runtime(cfs_b);
8379
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8380 8381
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8382 8383
	raw_spin_unlock_irq(&cfs_b->lock);

8384
	for_each_online_cpu(i) {
8385
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8386
		struct rq *rq = cfs_rq->rq;
8387 8388

		raw_spin_lock_irq(&rq->lock);
8389
		cfs_rq->runtime_enabled = runtime_enabled;
8390
		cfs_rq->runtime_remaining = 0;
8391

8392
		if (cfs_rq->throttled)
8393
			unthrottle_cfs_rq(cfs_rq);
8394 8395
		raw_spin_unlock_irq(&rq->lock);
	}
8396 8397
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8398 8399
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8400
	put_online_cpus();
8401

8402
	return ret;
8403 8404 8405 8406 8407 8408
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8409
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8422
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8423 8424
		return -1;

8425
	quota_us = tg->cfs_bandwidth.quota;
8426 8427 8428 8429 8430 8431 8432 8433 8434 8435
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8436
	quota = tg->cfs_bandwidth.quota;
8437 8438 8439 8440 8441 8442 8443 8444

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8445
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8446 8447 8448 8449 8450
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8451 8452
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8453
{
8454
	return tg_get_cfs_quota(css_tg(css));
8455 8456
}

8457 8458
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8459
{
8460
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8461 8462
}

8463 8464
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8465
{
8466
	return tg_get_cfs_period(css_tg(css));
8467 8468
}

8469 8470
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8471
{
8472
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8473 8474
}

8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8507
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8508 8509 8510 8511 8512
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8513
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8514 8515

		quota = normalize_cfs_quota(tg, d);
8516
		parent_quota = parent_b->hierarchical_quota;
8517 8518 8519 8520 8521 8522 8523 8524 8525 8526

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8527
	cfs_b->hierarchical_quota = quota;
8528 8529 8530 8531 8532 8533

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8534
	int ret;
8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8546 8547 8548 8549 8550
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8551
}
8552

8553
static int cpu_stats_show(struct seq_file *sf, void *v)
8554
{
8555
	struct task_group *tg = css_tg(seq_css(sf));
8556
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8557

8558 8559 8560
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8561 8562 8563

	return 0;
}
8564
#endif /* CONFIG_CFS_BANDWIDTH */
8565
#endif /* CONFIG_FAIR_GROUP_SCHED */
8566

8567
#ifdef CONFIG_RT_GROUP_SCHED
8568 8569
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8570
{
8571
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8572 8573
}

8574 8575
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8576
{
8577
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8578
}
8579

8580 8581
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8582
{
8583
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8584 8585
}

8586 8587
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8588
{
8589
	return sched_group_rt_period(css_tg(css));
8590
}
8591
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8592

8593
static struct cftype cpu_files[] = {
8594
#ifdef CONFIG_FAIR_GROUP_SCHED
8595 8596
	{
		.name = "shares",
8597 8598
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8599
	},
8600
#endif
8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8612 8613
	{
		.name = "stat",
8614
		.seq_show = cpu_stats_show,
8615
	},
8616
#endif
8617
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8618
	{
P
Peter Zijlstra 已提交
8619
		.name = "rt_runtime_us",
8620 8621
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8622
	},
8623 8624
	{
		.name = "rt_period_us",
8625 8626
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8627
	},
8628
#endif
8629
	{ }	/* terminate */
8630 8631
};

8632
struct cgroup_subsys cpu_cgrp_subsys = {
8633
	.css_alloc	= cpu_cgroup_css_alloc,
8634
	.css_released	= cpu_cgroup_css_released,
8635
	.css_free	= cpu_cgroup_css_free,
8636
	.fork		= cpu_cgroup_fork,
8637 8638
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8639
	.legacy_cftypes	= cpu_files,
8640
	.early_init	= true,
8641 8642
};

8643
#endif	/* CONFIG_CGROUP_SCHED */
8644

8645 8646 8647 8648 8649
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};