core.c 213.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28
 */

29
#include <linux/kasan.h>
L
Linus Torvalds 已提交
30 31 32 33
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
34
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
35
#include <linux/highmem.h>
36
#include <linux/mmu_context.h>
L
Linus Torvalds 已提交
37
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
P
Peter Zijlstra 已提交
70
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
74
#include <linux/context_tracking.h>
75
#include <linux/compiler.h>
76
#include <linux/frame.h>
77
#include <linux/prefetch.h>
L
Linus Torvalds 已提交
78

79
#include <asm/switch_to.h>
80
#include <asm/tlb.h>
81
#include <asm/irq_regs.h>
82
#include <asm/mutex.h>
G
Glauber Costa 已提交
83 84 85
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
86

87
#include "sched.h"
88
#include "../workqueue_internal.h"
89
#include "../smpboot.h"
90

91
#define CREATE_TRACE_POINTS
92
#include <trace/events/sched.h>
93

94 95
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96

97
static void update_rq_clock_task(struct rq *rq, s64 delta);
98

99
void update_rq_clock(struct rq *rq)
100
{
101
	s64 delta;
102

103 104 105
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
106
		return;
107

108
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 110
	if (delta < 0)
		return;
111 112
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
113 114
}

I
Ingo Molnar 已提交
115 116 117
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
118 119 120 121

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
122
const_debug unsigned int sysctl_sched_features =
123
#include "features.h"
P
Peter Zijlstra 已提交
124 125 126 127
	0;

#undef SCHED_FEAT

128 129 130 131 132 133
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

134 135 136 137 138 139 140 141
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
142
/*
P
Peter Zijlstra 已提交
143
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
144 145
 * default: 1s
 */
P
Peter Zijlstra 已提交
146
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
147

148
__read_mostly int scheduler_running;
149

P
Peter Zijlstra 已提交
150 151 152 153 154
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
155

156 157 158
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
159
/*
160
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
161
 */
A
Alexey Dobriyan 已提交
162
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
163 164
	__acquires(rq->lock)
{
165
	struct rq *rq;
L
Linus Torvalds 已提交
166 167 168

	local_irq_disable();
	rq = this_rq();
169
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
170 171 172 173

	return rq;
}

174 175 176
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
177
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 179 180 181 182 183 184 185 186 187
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188
			rf->cookie = lockdep_pin_lock(&rq->lock);
189 190 191 192 193 194 195 196 197 198 199 200
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
201
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 203 204 205 206 207
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
208
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
		 * If we observe the new cpu in task_rq_lock, the acquire will
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228
			rf->cookie = lockdep_pin_lock(&rq->lock);
229 230 231
			return rq;
		}
		raw_spin_unlock(&rq->lock);
232
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233 234 235 236 237 238

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

P
Peter Zijlstra 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

260
	raw_spin_lock(&rq->lock);
261
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
262
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
264 265 266 267

	return HRTIMER_NORESTART;
}

268
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
269

270
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
271 272 273
{
	struct hrtimer *timer = &rq->hrtick_timer;

274
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
275 276
}

277 278 279 280
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
281
{
282
	struct rq *rq = arg;
283

284
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
285
	__hrtick_restart(rq);
286
	rq->hrtick_csd_pending = 0;
287
	raw_spin_unlock(&rq->lock);
288 289
}

290 291 292 293 294
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
295
void hrtick_start(struct rq *rq, u64 delay)
296
{
297
	struct hrtimer *timer = &rq->hrtick_timer;
298 299 300 301 302 303 304 305 306
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
307

308
	hrtimer_set_expires(timer, time);
309 310

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
311
		__hrtick_restart(rq);
312
	} else if (!rq->hrtick_csd_pending) {
313
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 315
		rq->hrtick_csd_pending = 1;
	}
316 317
}

318 319 320 321 322 323
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
324
void hrtick_start(struct rq *rq, u64 delay)
325
{
W
Wanpeng Li 已提交
326 327 328 329 330
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
331 332
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
333 334
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
335

336
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
337
{
338 339
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
340

341 342 343 344
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
345

346 347
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
348
}
A
Andrew Morton 已提交
349
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
350 351 352 353 354 355 356
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
357
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

377
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 379 380 381 382 383 384 385 386 387
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
388 389 390 391 392 393 394 395 396 397

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
398
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399 400 401 402 403 404 405 406 407 408 409 410 411 412

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

413 414 415 416 417 418
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
419 420 421 422 423 424 425

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
426 427
#endif

428 429 430 431 432 433 434 435 436 437
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
438
	 * barrier implied by the wakeup in wake_up_q().
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
474
/*
475
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
476 477 478 479 480
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
481
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
482
{
483
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
484 485
	int cpu;

486
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
487

488
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
489 490
		return;

491
	cpu = cpu_of(rq);
492

493
	if (cpu == smp_processor_id()) {
494
		set_tsk_need_resched(curr);
495
		set_preempt_need_resched();
I
Ingo Molnar 已提交
496
		return;
497
	}
I
Ingo Molnar 已提交
498

499
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
500
		smp_send_reschedule(cpu);
501 502
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
503 504
}

505
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
506 507 508 509
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

510
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
511
		return;
512
	resched_curr(rq);
513
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
514
}
515

516
#ifdef CONFIG_SMP
517
#ifdef CONFIG_NO_HZ_COMMON
518 519 520 521 522 523 524 525
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
526
int get_nohz_timer_target(void)
527
{
528
	int i, cpu = smp_processor_id();
529 530
	struct sched_domain *sd;

531
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 533
		return cpu;

534
	rcu_read_lock();
535
	for_each_domain(cpu, sd) {
536
		for_each_cpu(i, sched_domain_span(sd)) {
537 538 539 540
			if (cpu == i)
				continue;

			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 542 543 544
				cpu = i;
				goto unlock;
			}
		}
545
	}
546 547 548

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
549 550
unlock:
	rcu_read_unlock();
551 552
	return cpu;
}
553 554 555 556 557 558 559 560 561 562
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
563
static void wake_up_idle_cpu(int cpu)
564 565 566 567 568 569
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

570
	if (set_nr_and_not_polling(rq->idle))
571
		smp_send_reschedule(cpu);
572 573
	else
		trace_sched_wake_idle_without_ipi(cpu);
574 575
}

576
static bool wake_up_full_nohz_cpu(int cpu)
577
{
578 579 580 581 582 583
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
584
	if (tick_nohz_full_cpu(cpu)) {
585 586
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
587
			tick_nohz_full_kick_cpu(cpu);
588 589 590 591 592 593 594 595
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
596
	if (!wake_up_full_nohz_cpu(cpu))
597 598 599
		wake_up_idle_cpu(cpu);
}

600
static inline bool got_nohz_idle_kick(void)
601
{
602
	int cpu = smp_processor_id();
603 604 605 606 607 608 609 610 611 612 613 614 615

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
616 617
}

618
#else /* CONFIG_NO_HZ_COMMON */
619

620
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
621
{
622
	return false;
P
Peter Zijlstra 已提交
623 624
}

625
#endif /* CONFIG_NO_HZ_COMMON */
626

627
#ifdef CONFIG_NO_HZ_FULL
628
bool sched_can_stop_tick(struct rq *rq)
629
{
630 631 632 633 634 635
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

636
	/*
637 638
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
639
	 */
640 641 642 643 644
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
645 646
	}

647 648 649 650 651 652 653 654 655 656 657 658 659 660
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
661
		return false;
662

663
	return true;
664 665
}
#endif /* CONFIG_NO_HZ_FULL */
666

667
void sched_avg_update(struct rq *rq)
668
{
669 670
	s64 period = sched_avg_period();

671
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
672 673 674 675 676 677
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
678 679 680
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
681 682
}

683
#endif /* CONFIG_SMP */
684

685 686
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
687
/*
688 689 690 691
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
692
 */
693
int walk_tg_tree_from(struct task_group *from,
694
			     tg_visitor down, tg_visitor up, void *data)
695 696
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
697
	int ret;
698

699 700
	parent = from;

701
down:
P
Peter Zijlstra 已提交
702 703
	ret = (*down)(parent, data);
	if (ret)
704
		goto out;
705 706 707 708 709 710 711
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
712
	ret = (*up)(parent, data);
713 714
	if (ret || parent == from)
		goto out;
715 716 717 718 719

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
720
out:
P
Peter Zijlstra 已提交
721
	return ret;
722 723
}

724
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
725
{
726
	return 0;
P
Peter Zijlstra 已提交
727
}
728 729
#endif

730 731
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
732 733 734
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
735 736 737
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
738
	if (idle_policy(p->policy)) {
739
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
740
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
741 742
		return;
	}
743

744 745
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
746 747
}

748
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
749
{
750
	update_rq_clock(rq);
751 752
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
753
	p->sched_class->enqueue_task(rq, p, flags);
754 755
}

756
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
757
{
758
	update_rq_clock(rq);
759 760
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
761
	p->sched_class->dequeue_task(rq, p, flags);
762 763
}

764
void activate_task(struct rq *rq, struct task_struct *p, int flags)
765 766 767 768
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

769
	enqueue_task(rq, p, flags);
770 771
}

772
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
773 774 775 776
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

777
	dequeue_task(rq, p, flags);
778 779
}

780
static void update_rq_clock_task(struct rq *rq, s64 delta)
781
{
782 783 784 785 786 787 788 789
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
790
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
812 813
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
814
	if (static_key_false((&paravirt_steal_rq_enabled))) {
815 816 817 818 819 820 821 822 823 824 825
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

826 827
	rq->clock_task += delta;

828
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
829
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
830 831
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
832 833
}

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

864
/*
I
Ingo Molnar 已提交
865
 * __normal_prio - return the priority that is based on the static prio
866 867 868
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
869
	return p->static_prio;
870 871
}

872 873 874 875 876 877 878
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
879
static inline int normal_prio(struct task_struct *p)
880 881 882
{
	int prio;

883 884 885
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
886 887 888 889 890 891 892 893 894 895 896 897 898
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
899
static int effective_prio(struct task_struct *p)
900 901 902 903 904 905 906 907 908 909 910 911
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
912 913 914
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
915 916
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
917
 */
918
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
919 920 921 922
{
	return cpu_curr(task_cpu(p)) == p;
}

923
/*
924 925 926 927 928
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
929
 */
930 931
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
932
				       int oldprio)
933 934 935
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
936
			prev_class->switched_from(rq, p);
937

P
Peter Zijlstra 已提交
938
		p->sched_class->switched_to(rq, p);
939
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
940
		p->sched_class->prio_changed(rq, p, oldprio);
941 942
}

943
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
944 945 946 947 948 949 950 951 952 953
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
954
				resched_curr(rq);
955 956 957 958 959 960 961 962 963
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
964
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
965
		rq_clock_skip_update(rq, true);
966 967
}

L
Linus Torvalds 已提交
968
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
988
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
989 990 991 992
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
993
	dequeue_task(rq, p, 0);
P
Peter Zijlstra 已提交
994 995 996 997 998 999 1000 1001
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
1002
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
1022
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
1023 1024
{
	if (unlikely(!cpu_active(dest_cpu)))
1025
		return rq;
P
Peter Zijlstra 已提交
1026 1027 1028

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1029
		return rq;
P
Peter Zijlstra 已提交
1030

1031 1032 1033
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1044 1045
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
	if (task_rq(p) == rq && task_on_rq_queued(p))
		rq = __migrate_task(rq, p, arg->dest_cpu);
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1071 1072 1073 1074
	local_irq_enable();
	return 0;
}

1075 1076 1077 1078 1079
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1080 1081 1082 1083 1084
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1085 1086
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1087 1088 1089
	struct rq *rq = task_rq(p);
	bool queued, running;

1090
	lockdep_assert_held(&p->pi_lock);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1101
		dequeue_task(rq, p, DEQUEUE_SAVE);
1102 1103 1104 1105
	}
	if (running)
		put_prev_task(rq, p);

1106
	p->sched_class->set_cpus_allowed(p, new_mask);
1107 1108 1109 1110

	if (running)
		p->sched_class->set_curr_task(rq);
	if (queued)
1111
		enqueue_task(rq, p, ENQUEUE_RESTORE);
1112 1113
}

P
Peter Zijlstra 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1123 1124
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1125
{
1126
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1127
	unsigned int dest_cpu;
1128 1129
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1130 1131
	int ret = 0;

1132
	rq = task_rq_lock(p, &rf);
P
Peter Zijlstra 已提交
1133

1134 1135 1136 1137 1138 1139 1140
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1141 1142 1143 1144 1145 1146 1147 1148 1149
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1150 1151 1152
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1153
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1154 1155 1156 1157 1158 1159
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
		 * !active we want to ensure they are strict per-cpu threads.
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1170 1171 1172 1173
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1174
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1175 1176 1177
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1178
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1179 1180 1181
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1182 1183 1184 1185 1186
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1187
		lockdep_unpin_lock(&rq->lock, rf.cookie);
1188
		rq = move_queued_task(rq, p, dest_cpu);
1189
		lockdep_repin_lock(&rq->lock, rf.cookie);
1190
	}
P
Peter Zijlstra 已提交
1191
out:
1192
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1193 1194 1195

	return ret;
}
1196 1197 1198 1199 1200

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1201 1202
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1203
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1204
{
1205 1206 1207 1208 1209
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1210
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1211
			!p->on_rq);
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1222
#ifdef CONFIG_LOCKDEP
1223 1224 1225 1226 1227
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1228
	 * see task_group().
1229 1230 1231 1232
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1233 1234 1235
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1236 1237
#endif

1238
	trace_sched_migrate_task(p, new_cpu);
1239

1240
	if (task_cpu(p) != new_cpu) {
1241
		if (p->sched_class->migrate_task_rq)
1242
			p->sched_class->migrate_task_rq(p);
1243
		p->se.nr_migrations++;
1244
		perf_event_task_migrate(p);
1245
	}
I
Ingo Molnar 已提交
1246 1247

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1248 1249
}

1250 1251
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1252
	if (task_on_rq_queued(p)) {
1253 1254 1255 1256 1257
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1258
		p->on_rq = TASK_ON_RQ_MIGRATING;
1259 1260 1261
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1262
		p->on_rq = TASK_ON_RQ_QUEUED;
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1285 1286 1287
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1288 1289 1290
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1291 1292
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1293
	double_rq_lock(src_rq, dst_rq);
1294

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1314 1315
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1338 1339 1340 1341
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1342 1343 1344 1345 1346 1347 1348 1349 1350
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1351
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1352 1353 1354 1355 1356 1357
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1358 1359 1360
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1361 1362 1363 1364 1365 1366 1367
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1368 1369 1370 1371 1372 1373
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1374
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1375
{
1376
	int running, queued;
1377
	struct rq_flags rf;
R
Roland McGrath 已提交
1378
	unsigned long ncsw;
1379
	struct rq *rq;
L
Linus Torvalds 已提交
1380

1381 1382 1383 1384 1385 1386 1387 1388
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1401 1402 1403
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1404
			cpu_relax();
R
Roland McGrath 已提交
1405
		}
1406

1407 1408 1409 1410 1411
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1412
		rq = task_rq_lock(p, &rf);
1413
		trace_sched_wait_task(p);
1414
		running = task_running(rq, p);
1415
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1416
		ncsw = 0;
1417
		if (!match_state || p->state == match_state)
1418
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1419
		task_rq_unlock(rq, p, &rf);
1420

R
Roland McGrath 已提交
1421 1422 1423 1424 1425 1426
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1437

1438 1439 1440 1441 1442
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1443
		 * So if it was still runnable (but just not actively
1444 1445 1446
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1447
		if (unlikely(queued)) {
1448 1449 1450 1451
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1452 1453
			continue;
		}
1454

1455 1456 1457 1458 1459 1460 1461
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1462 1463

	return ncsw;
L
Linus Torvalds 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1473
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1474 1475 1476 1477 1478
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1479
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1489
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1490

1491
/*
1492
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
 *    cpu isn't yet part of the sched domains, and balancing will not
 *    see it.
 *
 *  - on cpu-down we clear cpu_active() to mask the sched domains and
 *    avoid the load balancer to place new tasks on the to be removed
 *    cpu. Existing tasks will remain running there and will be taken
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1512
 */
1513 1514
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1515 1516
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1517 1518
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1535
	}
1536

1537 1538
	for (;;) {
		/* Any allowed, online CPU? */
1539
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1540 1541 1542
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1543 1544 1545
				continue;
			goto out;
		}
1546

1547
		/* No more Mr. Nice Guy. */
1548 1549
		switch (state) {
		case cpuset:
1550 1551 1552 1553 1554 1555
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
			/* fall-through */
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1575
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1576 1577
					task_pid_nr(p), p->comm, cpu);
		}
1578 1579 1580 1581 1582
	}

	return dest_cpu;
}

1583
/*
1584
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1585
 */
1586
static inline
1587
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1588
{
1589 1590
	lockdep_assert_held(&p->pi_lock);

1591
	if (tsk_nr_cpus_allowed(p) > 1)
1592
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1593 1594
	else
		cpu = cpumask_any(tsk_cpus_allowed(p));
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1606
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1607
		     !cpu_online(cpu)))
1608
		cpu = select_fallback_rq(task_cpu(p), p);
1609 1610

	return cpu;
1611
}
1612 1613 1614 1615 1616 1617

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1618 1619 1620 1621 1622 1623 1624 1625 1626

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1627
#endif /* CONFIG_SMP */
1628

P
Peter Zijlstra 已提交
1629
static void
1630
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1631
{
P
Peter Zijlstra 已提交
1632
#ifdef CONFIG_SCHEDSTATS
1633 1634
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1645
		rcu_read_lock();
P
Peter Zijlstra 已提交
1646 1647 1648 1649 1650 1651
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1652
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1653
	}
1654 1655 1656 1657

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1658 1659 1660
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1661
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1662 1663

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1664
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1665 1666 1667 1668

#endif /* CONFIG_SCHEDSTATS */
}

1669
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1670
{
T
Tejun Heo 已提交
1671
	activate_task(rq, p, en_flags);
1672
	p->on_rq = TASK_ON_RQ_QUEUED;
1673 1674 1675 1676

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1677 1678
}

1679 1680 1681
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1682 1683
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
			   struct pin_cookie cookie)
T
Tejun Heo 已提交
1684 1685 1686
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1687 1688
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1689
#ifdef CONFIG_SMP
1690 1691
	if (p->sched_class->task_woken) {
		/*
1692 1693
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1694
		 */
1695
		lockdep_unpin_lock(&rq->lock, cookie);
T
Tejun Heo 已提交
1696
		p->sched_class->task_woken(rq, p);
1697
		lockdep_repin_lock(&rq->lock, cookie);
1698
	}
T
Tejun Heo 已提交
1699

1700
	if (rq->idle_stamp) {
1701
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1702
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1703

1704 1705 1706
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1707
			rq->avg_idle = max;
1708

T
Tejun Heo 已提交
1709 1710 1711 1712 1713
		rq->idle_stamp = 0;
	}
#endif
}

1714
static void
1715 1716
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
		 struct pin_cookie cookie)
1717
{
1718 1719
	int en_flags = ENQUEUE_WAKEUP;

1720 1721
	lockdep_assert_held(&rq->lock);

1722 1723 1724
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1725 1726

	if (wake_flags & WF_MIGRATED)
1727
		en_flags |= ENQUEUE_MIGRATED;
1728 1729
#endif

1730
	ttwu_activate(rq, p, en_flags);
1731
	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1742
	struct rq_flags rf;
1743 1744 1745
	struct rq *rq;
	int ret = 0;

1746
	rq = __task_rq_lock(p, &rf);
1747
	if (task_on_rq_queued(p)) {
1748 1749
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1750
		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1751 1752
		ret = 1;
	}
1753
	__task_rq_unlock(rq, &rf);
1754 1755 1756 1757

	return ret;
}

1758
#ifdef CONFIG_SMP
1759
void sched_ttwu_pending(void)
1760 1761
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1762
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1763
	struct pin_cookie cookie;
P
Peter Zijlstra 已提交
1764
	struct task_struct *p;
1765
	unsigned long flags;
1766

1767 1768 1769 1770
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1771
	cookie = lockdep_pin_lock(&rq->lock);
1772

P
Peter Zijlstra 已提交
1773
	while (llist) {
P
Peter Zijlstra 已提交
1774 1775
		int wake_flags = 0;

P
Peter Zijlstra 已提交
1776 1777
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
P
Peter Zijlstra 已提交
1778 1779 1780 1781 1782

		if (p->sched_remote_wakeup)
			wake_flags = WF_MIGRATED;

		ttwu_do_activate(rq, p, wake_flags, cookie);
1783 1784
	}

1785
	lockdep_unpin_lock(&rq->lock, cookie);
1786
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1787 1788 1789 1790
}

void scheduler_ipi(void)
{
1791 1792 1793 1794 1795
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1796
	preempt_fold_need_resched();
1797

1798
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1815
	sched_ttwu_pending();
1816 1817 1818 1819

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1820
	if (unlikely(got_nohz_idle_kick())) {
1821
		this_rq()->idle_balance = 1;
1822
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1823
	}
1824
	irq_exit();
1825 1826
}

P
Peter Zijlstra 已提交
1827
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1828
{
1829 1830
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1831 1832
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1833 1834 1835 1836 1837 1838
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1839
}
1840

1841 1842 1843 1844 1845
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1846 1847 1848 1849
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1860 1861 1862

out:
	rcu_read_unlock();
1863 1864
}

1865
bool cpus_share_cache(int this_cpu, int that_cpu)
1866 1867 1868
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1869
#endif /* CONFIG_SMP */
1870

1871
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1872 1873
{
	struct rq *rq = cpu_rq(cpu);
1874
	struct pin_cookie cookie;
1875

1876
#if defined(CONFIG_SMP)
1877
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1878
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
P
Peter Zijlstra 已提交
1879
		ttwu_queue_remote(p, cpu, wake_flags);
1880 1881 1882 1883
		return;
	}
#endif

1884
	raw_spin_lock(&rq->lock);
1885
	cookie = lockdep_pin_lock(&rq->lock);
1886
	ttwu_do_activate(rq, p, wake_flags, cookie);
1887
	lockdep_unpin_lock(&rq->lock, cookie);
1888
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1889 1890
}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
 * execution on its new cpu [c1].
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
 * Note: the cpu doing B need not be c0 or c1
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1941
 *   2) smp_cond_load_acquire(!X->on_cpu)
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1952
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1978
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1979 1980 1981
 *
 */

T
Tejun Heo 已提交
1982
/**
L
Linus Torvalds 已提交
1983
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1984
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1985
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1986
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1987 1988 1989 1990 1991 1992 1993
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1994
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1995
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1996
 */
1997 1998
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1999 2000
{
	unsigned long flags;
2001
	int cpu, success = 0;
P
Peter Zijlstra 已提交
2002

2003 2004 2005 2006 2007 2008 2009
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
2010
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
2011
	if (!(p->state & state))
L
Linus Torvalds 已提交
2012 2013
		goto out;

2014 2015
	trace_sched_waking(p);

2016
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
2017 2018
	cpu = task_cpu(p);

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
	 * sched_ttwu_pending()                 try_to_wake_up()
	 *   [S] p->on_rq = 1;                  [L] P->state
	 *       UNLOCK rq->lock  -----.
	 *                              \
	 *				 +---   RMB
	 * schedule()                   /
	 *       LOCK rq->lock    -----'
	 *       UNLOCK rq->lock
	 *
	 * [task p]
	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
	 *
	 * Pairs with the UNLOCK+LOCK on rq->lock from the
	 * last wakeup of our task and the schedule that got our task
	 * current.
	 */
	smp_rmb();
2041 2042
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2043 2044

#ifdef CONFIG_SMP
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2064
	/*
2065 2066
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
2067 2068 2069 2070 2071
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2072
	 */
2073
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2074

2075
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2076
	p->state = TASK_WAKING;
2077

2078
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2079 2080
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2081
		set_task_cpu(p, cpu);
2082
	}
L
Linus Torvalds 已提交
2083 2084
#endif /* CONFIG_SMP */

2085
	ttwu_queue(p, cpu, wake_flags);
2086
stat:
2087 2088
	if (schedstat_enabled())
		ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2089
out:
2090
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2091 2092 2093 2094

	return success;
}

T
Tejun Heo 已提交
2095 2096 2097 2098
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
2099
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2100
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2101
 * the current task.
T
Tejun Heo 已提交
2102
 */
2103
static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
T
Tejun Heo 已提交
2104 2105 2106
{
	struct rq *rq = task_rq(p);

2107 2108 2109 2110
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2111 2112
	lockdep_assert_held(&rq->lock);

2113
	if (!raw_spin_trylock(&p->pi_lock)) {
2114 2115 2116 2117 2118 2119
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2120
		lockdep_unpin_lock(&rq->lock, cookie);
2121 2122 2123
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
2124
		lockdep_repin_lock(&rq->lock, cookie);
2125 2126
	}

T
Tejun Heo 已提交
2127
	if (!(p->state & TASK_NORMAL))
2128
		goto out;
T
Tejun Heo 已提交
2129

2130 2131
	trace_sched_waking(p);

2132
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
2133 2134
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

2135
	ttwu_do_wakeup(rq, p, 0, cookie);
2136 2137
	if (schedstat_enabled())
		ttwu_stat(p, smp_processor_id(), 0);
2138 2139
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2140 2141
}

2142 2143 2144 2145 2146
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2147 2148 2149
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2150 2151 2152 2153
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2154
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2155
{
2156
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2157 2158 2159
}
EXPORT_SYMBOL(wake_up_process);

2160
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2161 2162 2163 2164
{
	return try_to_wake_up(p, state, 0);
}

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2177 2178 2179

	dl_se->dl_throttled = 0;
	dl_se->dl_yielded = 0;
2180 2181
}

L
Linus Torvalds 已提交
2182 2183 2184
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2185 2186 2187
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2188
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2189
{
P
Peter Zijlstra 已提交
2190 2191 2192
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2193 2194
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2195
	p->se.prev_sum_exec_runtime	= 0;
2196
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2197
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2198
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2199

2200 2201 2202 2203
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2204
#ifdef CONFIG_SCHEDSTATS
2205
	/* Even if schedstat is disabled, there should not be garbage */
2206
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2207
#endif
N
Nick Piggin 已提交
2208

2209
	RB_CLEAR_NODE(&p->dl.rb_node);
2210
	init_dl_task_timer(&p->dl);
2211
	__dl_clear_params(p);
2212

P
Peter Zijlstra 已提交
2213
	INIT_LIST_HEAD(&p->rt.run_list);
2214 2215 2216 2217
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2218

2219 2220 2221
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2222 2223 2224

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2225
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2226 2227 2228
		p->mm->numa_scan_seq = 0;
	}

2229 2230 2231 2232 2233
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2234 2235
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2236
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2237
	p->numa_work.next = &p->numa_work;
2238
	p->numa_faults = NULL;
2239 2240
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2241 2242

	p->numa_group = NULL;
2243
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2244 2245
}

2246 2247
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2248
#ifdef CONFIG_NUMA_BALANCING
2249

2250 2251 2252
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2253
		static_branch_enable(&sched_numa_balancing);
2254
	else
2255
		static_branch_disable(&sched_numa_balancing);
2256
}
2257 2258 2259 2260 2261 2262 2263

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2264
	int state = static_branch_likely(&sched_numa_balancing);
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2280

2281 2282
#ifdef CONFIG_SCHEDSTATS

2283
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2284
static bool __initdata __sched_schedstats = false;
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2308 2309 2310 2311 2312
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2313
	if (!strcmp(str, "enable")) {
2314
		__sched_schedstats = true;
2315 2316
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2317
		__sched_schedstats = false;
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2328 2329 2330 2331 2332
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2353 2354 2355 2356
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2357 2358 2359 2360

/*
 * fork()/clone()-time setup:
 */
2361
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2362
{
2363
	unsigned long flags;
I
Ingo Molnar 已提交
2364 2365
	int cpu = get_cpu();

2366
	__sched_fork(clone_flags, p);
2367
	/*
2368
	 * We mark the process as NEW here. This guarantees that
2369 2370 2371
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2372
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2373

2374 2375 2376 2377 2378
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2379 2380 2381 2382
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2383
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2384
			p->policy = SCHED_NORMAL;
2385
			p->static_prio = NICE_TO_PRIO(0);
2386 2387 2388 2389 2390 2391
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2392

2393 2394 2395 2396 2397 2398
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2399

2400 2401 2402 2403 2404 2405
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2406
		p->sched_class = &fair_sched_class;
2407
	}
2408

2409
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2410

2411 2412 2413 2414 2415 2416 2417
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2418
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2419 2420 2421 2422 2423 2424 2425
	/*
	 * We're setting the cpu for the first time, we don't migrate,
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2426
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2427

2428
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2429
	if (likely(sched_info_on()))
2430
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2431
#endif
P
Peter Zijlstra 已提交
2432 2433
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2434
#endif
2435
	init_task_preempt_count(p);
2436
#ifdef CONFIG_SMP
2437
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2438
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2439
#endif
2440

N
Nick Piggin 已提交
2441
	put_cpu();
2442
	return 0;
L
Linus Torvalds 已提交
2443 2444
}

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2464 2465
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2466 2467 2468
	return &cpu_rq(i)->rd->dl_bw;
}

2469
static inline int dl_bw_cpus(int i)
2470
{
2471 2472 2473
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2474 2475
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2476 2477 2478 2479
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2480 2481 2482 2483 2484 2485 2486
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2487
static inline int dl_bw_cpus(int i)
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2500 2501 2502
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2503 2504 2505 2506 2507 2508
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2509
	u64 period = attr->sched_period ?: attr->sched_deadline;
2510 2511
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2512
	int cpus, err = -1;
2513

2514 2515
	/* !deadline task may carry old deadline bandwidth */
	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2516 2517 2518 2519 2520 2521 2522 2523
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2524
	cpus = dl_bw_cpus(task_cpu(p));
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2545 2546 2547 2548 2549 2550 2551
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2552
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2553
{
2554
	struct rq_flags rf;
I
Ingo Molnar 已提交
2555
	struct rq *rq;
2556

2557
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2558
	p->state = TASK_RUNNING;
2559 2560 2561 2562 2563
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
2564 2565 2566
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2567
	 */
2568
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2569
#endif
2570
	rq = __task_rq_lock(p, &rf);
2571
	post_init_entity_util_avg(&p->se);
2572

P
Peter Zijlstra 已提交
2573
	activate_task(rq, p, 0);
2574
	p->on_rq = TASK_ON_RQ_QUEUED;
2575
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2576
	check_preempt_curr(rq, p, WF_FORK);
2577
#ifdef CONFIG_SMP
2578 2579 2580 2581 2582
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2583
		lockdep_unpin_lock(&rq->lock, rf.cookie);
2584
		p->sched_class->task_woken(rq, p);
2585
		lockdep_repin_lock(&rq->lock, rf.cookie);
2586
	}
2587
#endif
2588
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2589 2590
}

2591 2592
#ifdef CONFIG_PREEMPT_NOTIFIERS

2593 2594
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2607
/**
2608
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2609
 * @notifier: notifier struct to register
2610 2611 2612
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2613 2614 2615
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2616 2617 2618 2619 2620 2621
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2622
 * @notifier: notifier struct to unregister
2623
 *
2624
 * This is *not* safe to call from within a preemption notifier.
2625 2626 2627 2628 2629 2630 2631
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2632
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2633 2634 2635
{
	struct preempt_notifier *notifier;

2636
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2637 2638 2639
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2640 2641 2642 2643 2644 2645
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2646
static void
2647 2648
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2649 2650 2651
{
	struct preempt_notifier *notifier;

2652
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2653 2654 2655
		notifier->ops->sched_out(notifier, next);
}

2656 2657 2658 2659 2660 2661 2662 2663
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2664
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2665

2666
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2667 2668 2669
{
}

2670
static inline void
2671 2672 2673 2674 2675
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2676
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2677

2678 2679 2680
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2681
 * @prev: the current task that is being switched out
2682 2683 2684 2685 2686 2687 2688 2689 2690
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2691 2692 2693
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2694
{
2695
	sched_info_switch(rq, prev, next);
2696
	perf_event_task_sched_out(prev, next);
2697
	fire_sched_out_preempt_notifiers(prev, next);
2698 2699 2700 2701
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2702 2703 2704 2705
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2706 2707 2708 2709
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2710 2711
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2712
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2713 2714
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2715 2716 2717 2718 2719
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2720
 */
2721
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2722 2723
	__releases(rq->lock)
{
2724
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2725
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2726
	long prev_state;
L
Linus Torvalds 已提交
2727

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2739 2740 2741 2742
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2743

L
Linus Torvalds 已提交
2744 2745 2746 2747
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2748
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2749 2750
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2751 2752 2753 2754 2755
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2756
	 */
O
Oleg Nesterov 已提交
2757
	prev_state = prev->state;
2758
	vtime_task_switch(prev);
2759
	perf_event_task_sched_in(prev, current);
2760
	finish_lock_switch(rq, prev);
2761
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2762

2763
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2764 2765
	if (mm)
		mmdrop(mm);
2766
	if (unlikely(prev_state == TASK_DEAD)) {
2767 2768 2769
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2770 2771 2772
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2773
		 */
2774
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2775
		put_task_struct(prev);
2776
	}
2777

2778
	tick_nohz_task_switch();
2779
	return rq;
L
Linus Torvalds 已提交
2780 2781
}

2782 2783 2784
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2785
static void __balance_callback(struct rq *rq)
2786
{
2787 2788 2789
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2790

2791 2792 2793 2794 2795 2796 2797 2798
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2799

2800
		func(rq);
2801
	}
2802 2803 2804 2805 2806 2807 2808
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2809 2810 2811
}

#else
2812

2813
static inline void balance_callback(struct rq *rq)
2814
{
L
Linus Torvalds 已提交
2815 2816
}

2817 2818
#endif

L
Linus Torvalds 已提交
2819 2820 2821 2822
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2823
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2824 2825
	__releases(rq->lock)
{
2826
	struct rq *rq;
2827

2828 2829 2830 2831 2832 2833 2834 2835 2836
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2837
	rq = finish_task_switch(prev);
2838
	balance_callback(rq);
2839
	preempt_enable();
2840

L
Linus Torvalds 已提交
2841
	if (current->set_child_tid)
2842
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2843 2844 2845
}

/*
2846
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2847
 */
2848
static __always_inline struct rq *
2849
context_switch(struct rq *rq, struct task_struct *prev,
2850
	       struct task_struct *next, struct pin_cookie cookie)
L
Linus Torvalds 已提交
2851
{
I
Ingo Molnar 已提交
2852
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2853

2854
	prepare_task_switch(rq, prev, next);
2855

I
Ingo Molnar 已提交
2856 2857
	mm = next->mm;
	oldmm = prev->active_mm;
2858 2859 2860 2861 2862
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2863
	arch_start_context_switch(prev);
2864

2865
	if (!mm) {
L
Linus Torvalds 已提交
2866 2867 2868 2869
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
2870
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2871

2872
	if (!prev->mm) {
L
Linus Torvalds 已提交
2873 2874 2875
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2876 2877 2878 2879 2880 2881
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2882
	lockdep_unpin_lock(&rq->lock, cookie);
2883
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2884 2885 2886

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2887
	barrier();
2888 2889

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2890 2891 2892
}

/*
2893
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2894 2895
 *
 * externally visible scheduler statistics: current number of runnable
2896
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2897 2898 2899 2900 2901 2902 2903 2904 2905
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2906
}
L
Linus Torvalds 已提交
2907

2908 2909
/*
 * Check if only the current task is running on the cpu.
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2920 2921 2922
 */
bool single_task_running(void)
{
2923
	return raw_rq()->nr_running == 1;
2924 2925 2926
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2927
unsigned long long nr_context_switches(void)
2928
{
2929 2930
	int i;
	unsigned long long sum = 0;
2931

2932
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2933
		sum += cpu_rq(i)->nr_switches;
2934

L
Linus Torvalds 已提交
2935 2936
	return sum;
}
2937

L
Linus Torvalds 已提交
2938 2939 2940
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2941

2942
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2943
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2944

L
Linus Torvalds 已提交
2945 2946
	return sum;
}
2947

2948
unsigned long nr_iowait_cpu(int cpu)
2949
{
2950
	struct rq *this = cpu_rq(cpu);
2951 2952
	return atomic_read(&this->nr_iowait);
}
2953

2954 2955
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2956 2957 2958
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2959 2960
}

I
Ingo Molnar 已提交
2961
#ifdef CONFIG_SMP
2962

2963
/*
P
Peter Zijlstra 已提交
2964 2965
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2966
 */
P
Peter Zijlstra 已提交
2967
void sched_exec(void)
2968
{
P
Peter Zijlstra 已提交
2969
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2970
	unsigned long flags;
2971
	int dest_cpu;
2972

2973
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2974
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2975 2976
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2977

2978
	if (likely(cpu_active(dest_cpu))) {
2979
		struct migration_arg arg = { p, dest_cpu };
2980

2981 2982
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2983 2984
		return;
	}
2985
unlock:
2986
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2987
}
I
Ingo Molnar 已提交
2988

L
Linus Torvalds 已提交
2989 2990 2991
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2992
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2993 2994

EXPORT_PER_CPU_SYMBOL(kstat);
2995
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2996

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

3014 3015 3016 3017 3018 3019 3020
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
3021
	struct rq_flags rf;
3022
	struct rq *rq;
3023
	u64 ns;
3024

3025 3026 3027 3028 3029 3030 3031 3032 3033
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
3034 3035
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
3036
	 */
3037
	if (!p->on_cpu || !task_on_rq_queued(p))
3038 3039 3040
		return p->se.sum_exec_runtime;
#endif

3041
	rq = task_rq_lock(p, &rf);
3042 3043 3044 3045 3046 3047
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
3048
		prefetch_curr_exec_start(p);
3049 3050 3051 3052
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3053
	task_rq_unlock(rq, p, &rf);
3054 3055 3056

	return ns;
}
3057

3058 3059 3060 3061 3062 3063 3064 3065
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3066
	struct task_struct *curr = rq->curr;
3067 3068

	sched_clock_tick();
I
Ingo Molnar 已提交
3069

3070
	raw_spin_lock(&rq->lock);
3071
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3072
	curr->sched_class->task_tick(rq, curr, 0);
3073
	cpu_load_update_active(rq);
3074
	calc_global_load_tick(rq);
3075
	raw_spin_unlock(&rq->lock);
3076

3077
	perf_event_task_tick();
3078

3079
#ifdef CONFIG_SMP
3080
	rq->idle_balance = idle_cpu(cpu);
3081
	trigger_load_balance(rq);
3082
#endif
3083
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3084 3085
}

3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3097 3098
 *
 * Return: Maximum deferment in nanoseconds.
3099 3100 3101 3102
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3103
	unsigned long next, now = READ_ONCE(jiffies);
3104 3105 3106 3107 3108 3109

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3110
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3111
}
3112
#endif
L
Linus Torvalds 已提交
3113

3114 3115
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3130

3131
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3132
{
3133
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3134 3135 3136
	/*
	 * Underflow?
	 */
3137 3138
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3139
#endif
3140
	__preempt_count_add(val);
3141
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3142 3143 3144
	/*
	 * Spinlock count overflowing soon?
	 */
3145 3146
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3147
#endif
3148
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3149
}
3150
EXPORT_SYMBOL(preempt_count_add);
3151
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3152

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3163
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3164
{
3165
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3166 3167 3168
	/*
	 * Underflow?
	 */
3169
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3170
		return;
L
Linus Torvalds 已提交
3171 3172 3173
	/*
	 * Is the spinlock portion underflowing?
	 */
3174 3175 3176
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3177
#endif
3178

3179
	preempt_latency_stop(val);
3180
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3181
}
3182
EXPORT_SYMBOL(preempt_count_sub);
3183
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3184

3185 3186 3187
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3188 3189 3190
#endif

/*
I
Ingo Molnar 已提交
3191
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3192
 */
I
Ingo Molnar 已提交
3193
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3194
{
3195 3196 3197
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3198 3199
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3200

I
Ingo Molnar 已提交
3201
	debug_show_held_locks(prev);
3202
	print_modules();
I
Ingo Molnar 已提交
3203 3204
	if (irqs_disabled())
		print_irqtrace_events(prev);
3205 3206 3207 3208 3209 3210 3211
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
3212 3213 3214
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3215
	dump_stack();
3216
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3217
}
L
Linus Torvalds 已提交
3218

I
Ingo Molnar 已提交
3219 3220 3221 3222 3223
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3224
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3225 3226
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3227
#endif
3228

3229
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3230
		__schedule_bug(prev);
3231 3232
		preempt_count_set(PREEMPT_DISABLED);
	}
3233
	rcu_sleep_check();
I
Ingo Molnar 已提交
3234

L
Linus Torvalds 已提交
3235 3236
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3237
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3238 3239 3240 3241 3242 3243
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3244
pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
I
Ingo Molnar 已提交
3245
{
3246
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
3247
	struct task_struct *p;
L
Linus Torvalds 已提交
3248 3249

	/*
I
Ingo Molnar 已提交
3250 3251
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3252
	 */
3253
	if (likely(prev->sched_class == class &&
3254
		   rq->nr_running == rq->cfs.h_nr_running)) {
3255
		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3256 3257 3258 3259 3260
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
3261
			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3262 3263

		return p;
L
Linus Torvalds 已提交
3264 3265
	}

3266
again:
3267
	for_each_class(class) {
3268
		p = class->pick_next_task(rq, prev, cookie);
3269 3270 3271
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3272
			return p;
3273
		}
I
Ingo Molnar 已提交
3274
	}
3275 3276

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3277
}
L
Linus Torvalds 已提交
3278

I
Ingo Molnar 已提交
3279
/*
3280
 * __schedule() is the main scheduler function.
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3315
 *
3316
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3317
 */
3318
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3319 3320
{
	struct task_struct *prev, *next;
3321
	unsigned long *switch_count;
3322
	struct pin_cookie cookie;
I
Ingo Molnar 已提交
3323
	struct rq *rq;
3324
	int cpu;
I
Ingo Molnar 已提交
3325 3326 3327 3328 3329

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	/*
	 * do_exit() calls schedule() with preemption disabled as an exception;
	 * however we must fix that up, otherwise the next task will see an
	 * inconsistent (higher) preempt count.
	 *
	 * It also avoids the below schedule_debug() test from complaining
	 * about this.
	 */
	if (unlikely(prev->state == TASK_DEAD))
		preempt_enable_no_resched_notrace();

I
Ingo Molnar 已提交
3341
	schedule_debug(prev);
L
Linus Torvalds 已提交
3342

3343
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3344
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3345

3346 3347 3348
	local_irq_disable();
	rcu_note_context_switch();

3349 3350 3351 3352 3353 3354
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3355
	raw_spin_lock(&rq->lock);
3356
	cookie = lockdep_pin_lock(&rq->lock);
L
Linus Torvalds 已提交
3357

3358 3359
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

3360
	switch_count = &prev->nivcsw;
3361
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3362
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3363
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3364
		} else {
3365 3366 3367
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3368
			/*
3369 3370 3371
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3372 3373 3374 3375
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3376
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3377
				if (to_wakeup)
3378
					try_to_wake_up_local(to_wakeup, cookie);
T
Tejun Heo 已提交
3379 3380
			}
		}
I
Ingo Molnar 已提交
3381
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3382 3383
	}

3384
	if (task_on_rq_queued(prev))
3385 3386
		update_rq_clock(rq);

3387
	next = pick_next_task(rq, prev, cookie);
3388
	clear_tsk_need_resched(prev);
3389
	clear_preempt_need_resched();
3390
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
3391 3392 3393 3394 3395 3396

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3397
		trace_sched_switch(preempt, prev, next);
3398
		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3399
	} else {
3400
		lockdep_unpin_lock(&rq->lock, cookie);
3401
		raw_spin_unlock_irq(&rq->lock);
3402
	}
L
Linus Torvalds 已提交
3403

3404
	balance_callback(rq);
L
Linus Torvalds 已提交
3405
}
3406

3407 3408
static inline void sched_submit_work(struct task_struct *tsk)
{
3409
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3410 3411 3412 3413 3414 3415 3416 3417 3418
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3419
asmlinkage __visible void __sched schedule(void)
3420
{
3421 3422 3423
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3424
	do {
3425
		preempt_disable();
3426
		__schedule(false);
3427
		sched_preempt_enable_no_resched();
3428
	} while (need_resched());
3429
}
L
Linus Torvalds 已提交
3430 3431
EXPORT_SYMBOL(schedule);

3432
#ifdef CONFIG_CONTEXT_TRACKING
3433
asmlinkage __visible void __sched schedule_user(void)
3434 3435 3436 3437 3438 3439
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3440 3441
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3442
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3443
	 * too frequently to make sense yet.
3444
	 */
3445
	enum ctx_state prev_state = exception_enter();
3446
	schedule();
3447
	exception_exit(prev_state);
3448 3449 3450
}
#endif

3451 3452 3453 3454 3455 3456 3457
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3458
	sched_preempt_enable_no_resched();
3459 3460 3461 3462
	schedule();
	preempt_disable();
}

3463
static void __sched notrace preempt_schedule_common(void)
3464 3465
{
	do {
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3479
		preempt_disable_notrace();
3480
		preempt_latency_start(1);
3481
		__schedule(true);
3482
		preempt_latency_stop(1);
3483
		preempt_enable_no_resched_notrace();
3484 3485 3486 3487 3488 3489 3490 3491

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3492 3493
#ifdef CONFIG_PREEMPT
/*
3494
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3495
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3496 3497
 * occur there and call schedule directly.
 */
3498
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3499 3500 3501
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3502
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3503
	 */
3504
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3505 3506
		return;

3507
	preempt_schedule_common();
L
Linus Torvalds 已提交
3508
}
3509
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3510
EXPORT_SYMBOL(preempt_schedule);
3511 3512

/**
3513
 * preempt_schedule_notrace - preempt_schedule called by tracing
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3526
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3527 3528 3529 3530 3531 3532 3533
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3547
		preempt_disable_notrace();
3548
		preempt_latency_start(1);
3549 3550 3551 3552 3553 3554
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3555
		__schedule(true);
3556 3557
		exception_exit(prev_ctx);

3558
		preempt_latency_stop(1);
3559
		preempt_enable_no_resched_notrace();
3560 3561
	} while (need_resched());
}
3562
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3563

3564
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3565 3566

/*
3567
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3568 3569 3570 3571
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3572
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3573
{
3574
	enum ctx_state prev_state;
3575

3576
	/* Catch callers which need to be fixed */
3577
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3578

3579 3580
	prev_state = exception_enter();

3581
	do {
3582
		preempt_disable();
3583
		local_irq_enable();
3584
		__schedule(true);
3585
		local_irq_disable();
3586
		sched_preempt_enable_no_resched();
3587
	} while (need_resched());
3588 3589

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3590 3591
}

P
Peter Zijlstra 已提交
3592
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3593
			  void *key)
L
Linus Torvalds 已提交
3594
{
P
Peter Zijlstra 已提交
3595
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3596 3597 3598
}
EXPORT_SYMBOL(default_wake_function);

3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3609 3610
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3611
 */
3612
void rt_mutex_setprio(struct task_struct *p, int prio)
3613
{
3614
	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3615
	const struct sched_class *prev_class;
3616 3617
	struct rq_flags rf;
	struct rq *rq;
3618

3619
	BUG_ON(prio > MAX_PRIO);
3620

3621
	rq = __task_rq_lock(p, &rf);
3622

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3641
	trace_sched_pi_setprio(p, prio);
3642
	oldprio = p->prio;
3643 3644 3645 3646

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3647
	prev_class = p->sched_class;
3648
	queued = task_on_rq_queued(p);
3649
	running = task_current(rq, p);
3650
	if (queued)
3651
		dequeue_task(rq, p, queue_flag);
3652
	if (running)
3653
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3654

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3665 3666 3667
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3668
			p->dl.dl_boosted = 1;
3669
			queue_flag |= ENQUEUE_REPLENISH;
3670 3671
		} else
			p->dl.dl_boosted = 0;
3672
		p->sched_class = &dl_sched_class;
3673 3674 3675 3676
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3677
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3678
		p->sched_class = &rt_sched_class;
3679 3680 3681
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3682 3683
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3684
		p->sched_class = &fair_sched_class;
3685
	}
I
Ingo Molnar 已提交
3686

3687 3688
	p->prio = prio;

3689 3690
	if (running)
		p->sched_class->set_curr_task(rq);
3691
	if (queued)
3692
		enqueue_task(rq, p, queue_flag);
3693

P
Peter Zijlstra 已提交
3694
	check_class_changed(rq, p, prev_class, oldprio);
3695
out_unlock:
3696
	preempt_disable(); /* avoid rq from going away on us */
3697
	__task_rq_unlock(rq, &rf);
3698 3699 3700

	balance_callback(rq);
	preempt_enable();
3701 3702
}
#endif
3703

3704
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3705
{
3706
	int old_prio, delta, queued;
3707
	struct rq_flags rf;
3708
	struct rq *rq;
L
Linus Torvalds 已提交
3709

3710
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3711 3712 3713 3714 3715
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3716
	rq = task_rq_lock(p, &rf);
L
Linus Torvalds 已提交
3717 3718 3719 3720
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3721
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3722
	 */
3723
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3724 3725 3726
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3727 3728
	queued = task_on_rq_queued(p);
	if (queued)
3729
		dequeue_task(rq, p, DEQUEUE_SAVE);
L
Linus Torvalds 已提交
3730 3731

	p->static_prio = NICE_TO_PRIO(nice);
3732
	set_load_weight(p);
3733 3734 3735
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3736

3737
	if (queued) {
3738
		enqueue_task(rq, p, ENQUEUE_RESTORE);
L
Linus Torvalds 已提交
3739
		/*
3740 3741
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3742
		 */
3743
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3744
			resched_curr(rq);
L
Linus Torvalds 已提交
3745 3746
	}
out_unlock:
3747
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3748 3749 3750
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3751 3752 3753 3754 3755
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3756
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3757
{
3758
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3759
	int nice_rlim = nice_to_rlimit(nice);
3760

3761
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3762 3763 3764
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3765 3766 3767 3768 3769 3770 3771 3772 3773
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3774
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3775
{
3776
	long nice, retval;
L
Linus Torvalds 已提交
3777 3778 3779 3780 3781 3782

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3783
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3784
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3785

3786
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3787 3788 3789
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3804
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3805 3806 3807
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3808
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3809 3810 3811 3812 3813 3814 3815
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3816 3817
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3818 3819 3820
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3835 3836 3837 3838 3839
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3840 3841
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3842
 */
3843
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3844 3845 3846 3847 3848 3849 3850
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3851 3852
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3853
 */
A
Alexey Dobriyan 已提交
3854
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3855
{
3856
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3857 3858
}

3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3874
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3875
	dl_se->flags = attr->sched_flags;
3876
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3897 3898
}

3899 3900 3901 3902 3903 3904
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3905 3906
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3907
{
3908 3909
	int policy = attr->sched_policy;

3910
	if (policy == SETPARAM_POLICY)
3911 3912
		policy = p->policy;

L
Linus Torvalds 已提交
3913
	p->policy = policy;
3914

3915 3916
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3917
	else if (fair_policy(policy))
3918 3919
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3920 3921 3922 3923 3924 3925
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3926
	p->normal_prio = normal_prio(p);
3927 3928
	set_load_weight(p);
}
3929

3930 3931
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3932
			   const struct sched_attr *attr, bool keep_boost)
3933 3934
{
	__setscheduler_params(p, attr);
3935

3936
	/*
3937 3938
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3939
	 */
3940 3941 3942 3943
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3944

3945 3946 3947
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3948 3949 3950
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3951
}
3952 3953 3954 3955 3956 3957 3958 3959 3960

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3961
	attr->sched_period = dl_se->dl_period;
3962 3963 3964 3965 3966 3967
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3968
 * than the runtime, as well as the period of being zero or
3969
 * greater than deadline. Furthermore, we have to be sure that
3970 3971 3972 3973
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3974 3975 3976 3977
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
4004 4005
}

4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4016 4017
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4018 4019 4020 4021
	rcu_read_unlock();
	return match;
}

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

4036 4037
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4038
				bool user, bool pi)
L
Linus Torvalds 已提交
4039
{
4040 4041
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4042
	int retval, oldprio, oldpolicy = -1, queued, running;
4043
	int new_effective_prio, policy = attr->sched_policy;
4044
	const struct sched_class *prev_class;
4045
	struct rq_flags rf;
4046
	int reset_on_fork;
4047
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4048
	struct rq *rq;
L
Linus Torvalds 已提交
4049

4050 4051
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4052 4053
recheck:
	/* double check policy once rq lock held */
4054 4055
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4056
		policy = oldpolicy = p->policy;
4057
	} else {
4058
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4059

4060
		if (!valid_policy(policy))
4061 4062 4063
			return -EINVAL;
	}

4064 4065 4066
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
4067 4068
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4069 4070
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4071
	 */
4072
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4073
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4074
		return -EINVAL;
4075 4076
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4077 4078
		return -EINVAL;

4079 4080 4081
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4082
	if (user && !capable(CAP_SYS_NICE)) {
4083
		if (fair_policy(policy)) {
4084
			if (attr->sched_nice < task_nice(p) &&
4085
			    !can_nice(p, attr->sched_nice))
4086 4087 4088
				return -EPERM;
		}

4089
		if (rt_policy(policy)) {
4090 4091
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4092 4093 4094 4095 4096 4097

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
4098 4099
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4100 4101
				return -EPERM;
		}
4102

4103 4104 4105 4106 4107 4108 4109 4110 4111
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4112
		/*
4113 4114
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4115
		 */
4116
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4117
			if (!can_nice(p, task_nice(p)))
4118 4119
				return -EPERM;
		}
4120

4121
		/* can't change other user's priorities */
4122
		if (!check_same_owner(p))
4123
			return -EPERM;
4124 4125 4126 4127

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4128
	}
L
Linus Torvalds 已提交
4129

4130
	if (user) {
4131
		retval = security_task_setscheduler(p);
4132 4133 4134 4135
		if (retval)
			return retval;
	}

4136 4137 4138
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4139
	 *
L
Lucas De Marchi 已提交
4140
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4141 4142
	 * runqueue lock must be held.
	 */
4143
	rq = task_rq_lock(p, &rf);
4144

4145 4146 4147 4148
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4149
		task_rq_unlock(rq, p, &rf);
4150 4151 4152
		return -EINVAL;
	}

4153
	/*
4154 4155
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4156
	 */
4157
	if (unlikely(policy == p->policy)) {
4158
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4159 4160 4161
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4162
		if (dl_policy(policy) && dl_param_changed(p, attr))
4163
			goto change;
4164

4165
		p->sched_reset_on_fork = reset_on_fork;
4166
		task_rq_unlock(rq, p, &rf);
4167 4168
		return 0;
	}
4169
change:
4170

4171
	if (user) {
4172
#ifdef CONFIG_RT_GROUP_SCHED
4173 4174 4175 4176 4177
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4178 4179
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4180
			task_rq_unlock(rq, p, &rf);
4181 4182 4183
			return -EPERM;
		}
#endif
4184 4185 4186 4187 4188 4189 4190 4191 4192
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4193 4194
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4195
				task_rq_unlock(rq, p, &rf);
4196 4197 4198 4199 4200
				return -EPERM;
			}
		}
#endif
	}
4201

L
Linus Torvalds 已提交
4202 4203 4204
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4205
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4206 4207
		goto recheck;
	}
4208 4209 4210 4211 4212 4213

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4214
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4215
		task_rq_unlock(rq, p, &rf);
4216 4217 4218
		return -EBUSY;
	}

4219 4220 4221
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4222 4223 4224 4225 4226 4227 4228 4229 4230
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4231 4232
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4233 4234
	}

4235
	queued = task_on_rq_queued(p);
4236
	running = task_current(rq, p);
4237
	if (queued)
4238
		dequeue_task(rq, p, queue_flags);
4239
	if (running)
4240
		put_prev_task(rq, p);
4241

4242
	prev_class = p->sched_class;
4243
	__setscheduler(rq, p, attr, pi);
4244

4245 4246
	if (running)
		p->sched_class->set_curr_task(rq);
4247
	if (queued) {
4248 4249 4250 4251
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4252 4253
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4254

4255
		enqueue_task(rq, p, queue_flags);
4256
	}
4257

P
Peter Zijlstra 已提交
4258
	check_class_changed(rq, p, prev_class, oldprio);
4259
	preempt_disable(); /* avoid rq from going away on us */
4260
	task_rq_unlock(rq, p, &rf);
4261

4262 4263
	if (pi)
		rt_mutex_adjust_pi(p);
4264

4265 4266 4267 4268 4269
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();
4270

L
Linus Torvalds 已提交
4271 4272
	return 0;
}
4273

4274 4275 4276 4277 4278 4279 4280 4281 4282
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4283 4284
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4285 4286 4287 4288 4289
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4290
	return __sched_setscheduler(p, &attr, check, true);
4291
}
4292 4293 4294 4295 4296 4297
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4298 4299
 * Return: 0 on success. An error code otherwise.
 *
4300 4301 4302
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4303
		       const struct sched_param *param)
4304
{
4305
	return _sched_setscheduler(p, policy, param, true);
4306
}
L
Linus Torvalds 已提交
4307 4308
EXPORT_SYMBOL_GPL(sched_setscheduler);

4309 4310
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4311
	return __sched_setscheduler(p, attr, true, true);
4312 4313 4314
}
EXPORT_SYMBOL_GPL(sched_setattr);

4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4325 4326
 *
 * Return: 0 on success. An error code otherwise.
4327 4328
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4329
			       const struct sched_param *param)
4330
{
4331
	return _sched_setscheduler(p, policy, param, false);
4332
}
4333
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4334

I
Ingo Molnar 已提交
4335 4336
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4337 4338 4339
{
	struct sched_param lparam;
	struct task_struct *p;
4340
	int retval;
L
Linus Torvalds 已提交
4341 4342 4343 4344 4345

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4346 4347 4348

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4349
	p = find_process_by_pid(pid);
4350 4351 4352
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4353

L
Linus Torvalds 已提交
4354 4355 4356
	return retval;
}

4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4419
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4420

4421
	return 0;
4422 4423 4424

err_size:
	put_user(sizeof(*attr), &uattr->size);
4425
	return -E2BIG;
4426 4427
}

L
Linus Torvalds 已提交
4428 4429 4430 4431 4432
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4433 4434
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4435
 */
4436 4437
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4438
{
4439 4440 4441 4442
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4443 4444 4445 4446 4447 4448 4449
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4450 4451
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4452
 */
4453
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4454
{
4455
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4456 4457
}

4458 4459 4460
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4461
 * @uattr: structure containing the extended parameters.
4462
 * @flags: for future extension.
4463
 */
4464 4465
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4466 4467 4468 4469 4470
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4471
	if (!uattr || pid < 0 || flags)
4472 4473
		return -EINVAL;

4474 4475 4476
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4477

4478
	if ((int)attr.sched_policy < 0)
4479
		return -EINVAL;
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4491 4492 4493
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4494 4495 4496
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4497
 */
4498
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4499
{
4500
	struct task_struct *p;
4501
	int retval;
L
Linus Torvalds 已提交
4502 4503

	if (pid < 0)
4504
		return -EINVAL;
L
Linus Torvalds 已提交
4505 4506

	retval = -ESRCH;
4507
	rcu_read_lock();
L
Linus Torvalds 已提交
4508 4509 4510 4511
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4512 4513
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4514
	}
4515
	rcu_read_unlock();
L
Linus Torvalds 已提交
4516 4517 4518 4519
	return retval;
}

/**
4520
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4521 4522
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4523 4524 4525
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4526
 */
4527
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4528
{
4529
	struct sched_param lp = { .sched_priority = 0 };
4530
	struct task_struct *p;
4531
	int retval;
L
Linus Torvalds 已提交
4532 4533

	if (!param || pid < 0)
4534
		return -EINVAL;
L
Linus Torvalds 已提交
4535

4536
	rcu_read_lock();
L
Linus Torvalds 已提交
4537 4538 4539 4540 4541 4542 4543 4544 4545
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4546 4547
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4548
	rcu_read_unlock();
L
Linus Torvalds 已提交
4549 4550 4551 4552 4553 4554 4555 4556 4557

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4558
	rcu_read_unlock();
L
Linus Torvalds 已提交
4559 4560 4561
	return retval;
}

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4585
				return -EFBIG;
4586 4587 4588 4589 4590
		}

		attr->size = usize;
	}

4591
	ret = copy_to_user(uattr, attr, attr->size);
4592 4593 4594
	if (ret)
		return -EFAULT;

4595
	return 0;
4596 4597 4598
}

/**
4599
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4600
 * @pid: the pid in question.
J
Juri Lelli 已提交
4601
 * @uattr: structure containing the extended parameters.
4602
 * @size: sizeof(attr) for fwd/bwd comp.
4603
 * @flags: for future extension.
4604
 */
4605 4606
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4607 4608 4609 4610 4611 4612 4613 4614
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4615
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4629 4630
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4631 4632 4633
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4634 4635
		attr.sched_priority = p->rt_priority;
	else
4636
		attr.sched_nice = task_nice(p);
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4648
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4649
{
4650
	cpumask_var_t cpus_allowed, new_mask;
4651 4652
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4653

4654
	rcu_read_lock();
L
Linus Torvalds 已提交
4655 4656 4657

	p = find_process_by_pid(pid);
	if (!p) {
4658
		rcu_read_unlock();
L
Linus Torvalds 已提交
4659 4660 4661
		return -ESRCH;
	}

4662
	/* Prevent p going away */
L
Linus Torvalds 已提交
4663
	get_task_struct(p);
4664
	rcu_read_unlock();
L
Linus Torvalds 已提交
4665

4666 4667 4668 4669
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4670 4671 4672 4673 4674 4675 4676 4677
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4678
	retval = -EPERM;
E
Eric W. Biederman 已提交
4679 4680 4681 4682
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4683
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4684 4685 4686
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4687

4688
	retval = security_task_setscheduler(p);
4689
	if (retval)
4690
		goto out_free_new_mask;
4691

4692 4693 4694 4695

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4696 4697 4698 4699 4700 4701 4702
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4703 4704 4705
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4706
			retval = -EBUSY;
4707
			rcu_read_unlock();
4708
			goto out_free_new_mask;
4709
		}
4710
		rcu_read_unlock();
4711 4712
	}
#endif
P
Peter Zijlstra 已提交
4713
again:
4714
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4715

P
Paul Menage 已提交
4716
	if (!retval) {
4717 4718
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4719 4720 4721 4722 4723
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4724
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4725 4726 4727
			goto again;
		}
	}
4728
out_free_new_mask:
4729 4730 4731 4732
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4733 4734 4735 4736 4737
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4738
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4739
{
4740 4741 4742 4743 4744
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4745 4746 4747 4748 4749 4750 4751 4752
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4753 4754
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4755
 */
4756 4757
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4758
{
4759
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4760 4761
	int retval;

4762 4763
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4764

4765 4766 4767 4768 4769
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4770 4771
}

4772
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4773
{
4774
	struct task_struct *p;
4775
	unsigned long flags;
L
Linus Torvalds 已提交
4776 4777
	int retval;

4778
	rcu_read_lock();
L
Linus Torvalds 已提交
4779 4780 4781 4782 4783 4784

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4785 4786 4787 4788
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4789
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4790
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4791
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4792 4793

out_unlock:
4794
	rcu_read_unlock();
L
Linus Torvalds 已提交
4795

4796
	return retval;
L
Linus Torvalds 已提交
4797 4798 4799 4800 4801 4802 4803
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4804
 *
4805 4806
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4807
 */
4808 4809
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4810 4811
{
	int ret;
4812
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4813

A
Anton Blanchard 已提交
4814
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4815 4816
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4817 4818
		return -EINVAL;

4819 4820
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4821

4822 4823
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4824
		size_t retlen = min_t(size_t, len, cpumask_size());
4825 4826

		if (copy_to_user(user_mask_ptr, mask, retlen))
4827 4828
			ret = -EFAULT;
		else
4829
			ret = retlen;
4830 4831
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4832

4833
	return ret;
L
Linus Torvalds 已提交
4834 4835 4836 4837 4838
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4839 4840
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4841 4842
 *
 * Return: 0.
L
Linus Torvalds 已提交
4843
 */
4844
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4845
{
4846
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4847

4848
	schedstat_inc(rq, yld_count);
4849
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4850 4851 4852 4853 4854 4855

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4856
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4857
	do_raw_spin_unlock(&rq->lock);
4858
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4859 4860 4861 4862 4863 4864

	schedule();

	return 0;
}

4865
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4866
{
4867
	if (should_resched(0)) {
4868
		preempt_schedule_common();
L
Linus Torvalds 已提交
4869 4870 4871 4872
		return 1;
	}
	return 0;
}
4873
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4874 4875

/*
4876
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4877 4878
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4879
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4880 4881 4882
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4883
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4884
{
4885
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4886 4887
	int ret = 0;

4888 4889
	lockdep_assert_held(lock);

4890
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4891
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4892
		if (resched)
4893
			preempt_schedule_common();
N
Nick Piggin 已提交
4894 4895
		else
			cpu_relax();
J
Jan Kara 已提交
4896
		ret = 1;
L
Linus Torvalds 已提交
4897 4898
		spin_lock(lock);
	}
J
Jan Kara 已提交
4899
	return ret;
L
Linus Torvalds 已提交
4900
}
4901
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4902

4903
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4904 4905 4906
{
	BUG_ON(!in_softirq());

4907
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4908
		local_bh_enable();
4909
		preempt_schedule_common();
L
Linus Torvalds 已提交
4910 4911 4912 4913 4914
		local_bh_disable();
		return 1;
	}
	return 0;
}
4915
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4916 4917 4918 4919

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4938 4939 4940 4941 4942 4943 4944 4945
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4946 4947 4948 4949
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4950 4951
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4952 4953 4954 4955
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4956
 * Return:
4957 4958 4959
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4960
 */
4961
int __sched yield_to(struct task_struct *p, bool preempt)
4962 4963 4964 4965
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4966
	int yielded = 0;
4967 4968 4969 4970 4971 4972

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4973 4974 4975 4976 4977 4978 4979 4980 4981
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4982
	double_rq_lock(rq, p_rq);
4983
	if (task_rq(p) != p_rq) {
4984 4985 4986 4987 4988
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4989
		goto out_unlock;
4990 4991

	if (curr->sched_class != p->sched_class)
4992
		goto out_unlock;
4993 4994

	if (task_running(p_rq, p) || p->state)
4995
		goto out_unlock;
4996 4997

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4998
	if (yielded) {
4999
		schedstat_inc(rq, yld_count);
5000 5001 5002 5003 5004
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
5005
			resched_curr(p_rq);
5006
	}
5007

5008
out_unlock:
5009
	double_rq_unlock(rq, p_rq);
5010
out_irq:
5011 5012
	local_irq_restore(flags);

5013
	if (yielded > 0)
5014 5015 5016 5017 5018 5019
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
5020
/*
I
Ingo Molnar 已提交
5021
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5022 5023 5024 5025
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5026 5027
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
5028 5029
	long ret;

5030
	current->in_iowait = 1;
5031
	blk_schedule_flush_plug(current);
5032

5033
	delayacct_blkio_start();
5034
	rq = raw_rq();
L
Linus Torvalds 已提交
5035 5036
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
5037
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
5038
	atomic_dec(&rq->nr_iowait);
5039
	delayacct_blkio_end();
5040

L
Linus Torvalds 已提交
5041 5042
	return ret;
}
5043
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5044 5045 5046 5047 5048

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5049 5050 5051
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5052
 */
5053
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5054 5055 5056 5057 5058 5059 5060 5061
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5062
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5063
	case SCHED_NORMAL:
5064
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5065
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5076 5077 5078
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5079
 */
5080
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5081 5082 5083 5084 5085 5086 5087 5088
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5089
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5090
	case SCHED_NORMAL:
5091
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5092
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
5105 5106 5107
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
5108
 */
5109
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5110
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5111
{
5112
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5113
	unsigned int time_slice;
5114 5115
	struct rq_flags rf;
	struct timespec t;
5116
	struct rq *rq;
5117
	int retval;
L
Linus Torvalds 已提交
5118 5119

	if (pid < 0)
5120
		return -EINVAL;
L
Linus Torvalds 已提交
5121 5122

	retval = -ESRCH;
5123
	rcu_read_lock();
L
Linus Torvalds 已提交
5124 5125 5126 5127 5128 5129 5130 5131
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5132
	rq = task_rq_lock(p, &rf);
5133 5134 5135
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5136
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5137

5138
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5139
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5140 5141
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5142

L
Linus Torvalds 已提交
5143
out_unlock:
5144
	rcu_read_unlock();
L
Linus Torvalds 已提交
5145 5146 5147
	return retval;
}

5148
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5149

5150
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5151 5152
{
	unsigned long free = 0;
5153
	int ppid;
5154
	unsigned long state = p->state;
L
Linus Torvalds 已提交
5155

5156 5157
	if (state)
		state = __ffs(state) + 1;
5158
	printk(KERN_INFO "%-15.15s %c", p->comm,
5159
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5160
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5161
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5162
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5163
	else
P
Peter Zijlstra 已提交
5164
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5165 5166
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5167
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5168
	else
P
Peter Zijlstra 已提交
5169
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5170 5171
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5172
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5173
#endif
5174
	ppid = 0;
5175
	rcu_read_lock();
5176 5177
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5178
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5179
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5180
		task_pid_nr(p), ppid,
5181
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5182

5183
	print_worker_info(KERN_INFO, p);
5184
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5185 5186
}

I
Ingo Molnar 已提交
5187
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5188
{
5189
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5190

5191
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5192 5193
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5194
#else
P
Peter Zijlstra 已提交
5195 5196
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5197
#endif
5198
	rcu_read_lock();
5199
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5200 5201
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5202
		 * console might take a lot of time:
5203 5204 5205
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5206 5207
		 */
		touch_nmi_watchdog();
5208
		touch_all_softlockup_watchdogs();
I
Ingo Molnar 已提交
5209
		if (!state_filter || (p->state & state_filter))
5210
			sched_show_task(p);
5211
	}
L
Linus Torvalds 已提交
5212

I
Ingo Molnar 已提交
5213
#ifdef CONFIG_SCHED_DEBUG
5214 5215
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5216
#endif
5217
	rcu_read_unlock();
I
Ingo Molnar 已提交
5218 5219 5220
	/*
	 * Only show locks if all tasks are dumped:
	 */
5221
	if (!state_filter)
I
Ingo Molnar 已提交
5222
		debug_show_all_locks();
L
Linus Torvalds 已提交
5223 5224
}

5225
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
5226
{
I
Ingo Molnar 已提交
5227
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5228 5229
}

5230 5231 5232 5233 5234 5235 5236 5237
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5238
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5239
{
5240
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5241 5242
	unsigned long flags;

5243 5244
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5245

5246
	__sched_fork(0, idle);
5247
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5248 5249
	idle->se.exec_start = sched_clock();

5250 5251
	kasan_unpoison_task_stack(idle);

5252 5253 5254 5255 5256 5257 5258 5259 5260
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5272
	__set_task_cpu(idle, cpu);
5273
	rcu_read_unlock();
L
Linus Torvalds 已提交
5274 5275

	rq->curr = rq->idle = idle;
5276
	idle->on_rq = TASK_ON_RQ_QUEUED;
5277
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5278
	idle->on_cpu = 1;
5279
#endif
5280 5281
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5282 5283

	/* Set the preempt count _outside_ the spinlocks! */
5284
	init_idle_preempt_count(idle, cpu);
5285

I
Ingo Molnar 已提交
5286 5287 5288 5289
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5290
	ftrace_graph_init_idle_task(idle, cpu);
5291
	vtime_init_idle(idle, cpu);
5292
#ifdef CONFIG_SMP
5293 5294
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5295 5296
}

5297 5298 5299 5300 5301 5302 5303
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

5304 5305 5306
	if (!cpumask_weight(cur))
		return ret;

5307
	rcu_read_lock_sched();
5308 5309 5310 5311 5312 5313 5314 5315
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5316
	rcu_read_unlock_sched();
5317 5318 5319 5320

	return ret;
}

5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5345
		struct dl_bw *dl_b;
5346 5347 5348 5349
		bool overflow;
		int cpus;
		unsigned long flags;

5350 5351
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5367
		rcu_read_unlock_sched();
5368 5369 5370 5371 5372 5373 5374

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5375 5376
#ifdef CONFIG_SMP

5377 5378
static bool sched_smp_initialized __read_mostly;

5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5394
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5395 5396
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5397 5398 5399 5400 5401 5402 5403

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5404
	bool queued, running;
5405 5406
	struct rq_flags rf;
	struct rq *rq;
5407

5408
	rq = task_rq_lock(p, &rf);
5409
	queued = task_on_rq_queued(p);
5410 5411
	running = task_current(rq, p);

5412
	if (queued)
5413
		dequeue_task(rq, p, DEQUEUE_SAVE);
5414
	if (running)
5415
		put_prev_task(rq, p);
5416 5417 5418 5419 5420

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
5421
	if (queued)
5422
		enqueue_task(rq, p, ENQUEUE_RESTORE);
5423
	task_rq_unlock(rq, p, &rf);
5424
}
P
Peter Zijlstra 已提交
5425
#endif /* CONFIG_NUMA_BALANCING */
5426

L
Linus Torvalds 已提交
5427
#ifdef CONFIG_HOTPLUG_CPU
5428
/*
5429 5430
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5431
 */
5432
void idle_task_exit(void)
L
Linus Torvalds 已提交
5433
{
5434
	struct mm_struct *mm = current->active_mm;
5435

5436
	BUG_ON(cpu_online(smp_processor_id()));
5437

5438
	if (mm != &init_mm) {
5439
		switch_mm_irqs_off(mm, &init_mm, current);
5440 5441
		finish_arch_post_lock_switch();
	}
5442
	mmdrop(mm);
L
Linus Torvalds 已提交
5443 5444 5445
}

/*
5446 5447
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5448 5449 5450
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5451 5452
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5453
 */
5454
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5455
{
5456
	long delta = calc_load_fold_active(rq, 1);
5457 5458
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5459 5460
}

5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5477
/*
5478 5479 5480 5481 5482 5483
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5484
 */
5485
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5486
{
5487
	struct rq *rq = dead_rq;
5488
	struct task_struct *next, *stop = rq->stop;
5489
	struct pin_cookie cookie;
5490
	int dest_cpu;
L
Linus Torvalds 已提交
5491 5492

	/*
5493 5494 5495 5496 5497 5498 5499
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5500
	 */
5501
	rq->stop = NULL;
5502

5503 5504 5505 5506 5507 5508 5509
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5510
	for (;;) {
5511 5512 5513 5514 5515
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5516
			break;
5517

5518
		/*
W
Wanpeng Li 已提交
5519
		 * pick_next_task assumes pinned rq->lock.
5520
		 */
5521 5522
		cookie = lockdep_pin_lock(&rq->lock);
		next = pick_next_task(rq, &fake_task, cookie);
5523
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5524
		next->sched_class->put_prev_task(rq, next);
5525

W
Wanpeng Li 已提交
5526 5527 5528 5529 5530 5531 5532 5533 5534
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5535
		lockdep_unpin_lock(&rq->lock, cookie);
W
Wanpeng Li 已提交
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&next->pi_lock);
		raw_spin_lock(&rq->lock);

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5550
		/* Find suitable destination for @next, with force if needed. */
5551
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5552

5553 5554 5555 5556 5557 5558
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
W
Wanpeng Li 已提交
5559
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5560
	}
5561

5562
	rq->stop = stop;
5563
}
L
Linus Torvalds 已提交
5564 5565
#endif /* CONFIG_HOTPLUG_CPU */

5566 5567 5568 5569 5570
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5571
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5591
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5592 5593 5594 5595
		rq->online = 0;
	}
}

5596
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5597
{
5598
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5599

5600 5601 5602
	rq->age_stamp = sched_clock_cpu(cpu);
}

5603 5604
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5605
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5606

5607
static __read_mostly int sched_debug_enabled;
5608

5609
static int __init sched_debug_setup(char *str)
5610
{
5611
	sched_debug_enabled = 1;
5612 5613 5614

	return 0;
}
5615 5616 5617 5618 5619 5620
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5621

5622
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5623
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5624
{
I
Ingo Molnar 已提交
5625
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5626

5627
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5628 5629 5630 5631

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5632
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5633
		if (sd->parent)
P
Peter Zijlstra 已提交
5634 5635
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5636
		return -1;
N
Nick Piggin 已提交
5637 5638
	}

5639 5640
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5641

5642
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5643 5644
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5645
	}
5646
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5647 5648
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5649
	}
L
Linus Torvalds 已提交
5650

I
Ingo Molnar 已提交
5651
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5652
	do {
I
Ingo Molnar 已提交
5653
		if (!group) {
P
Peter Zijlstra 已提交
5654 5655
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5656 5657 5658
			break;
		}

5659
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5660 5661
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5662 5663
			break;
		}
L
Linus Torvalds 已提交
5664

5665 5666
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5667 5668
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5669 5670
			break;
		}
L
Linus Torvalds 已提交
5671

5672
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5673

5674 5675
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5676
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5677 5678
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5679
		}
L
Linus Torvalds 已提交
5680

I
Ingo Molnar 已提交
5681 5682
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5683
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5684

5685
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5686
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5687

5688 5689
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5690 5691
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5692 5693
	return 0;
}
L
Linus Torvalds 已提交
5694

I
Ingo Molnar 已提交
5695 5696 5697
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5698

5699
	if (!sched_debug_enabled)
5700 5701
		return;

I
Ingo Molnar 已提交
5702 5703 5704 5705
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5706

I
Ingo Molnar 已提交
5707 5708 5709
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5710
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5711
			break;
L
Linus Torvalds 已提交
5712 5713
		level++;
		sd = sd->parent;
5714
		if (!sd)
I
Ingo Molnar 已提交
5715 5716
			break;
	}
L
Linus Torvalds 已提交
5717
}
5718
#else /* !CONFIG_SCHED_DEBUG */
5719
# define sched_domain_debug(sd, cpu) do { } while (0)
5720 5721 5722 5723
static inline bool sched_debug(void)
{
	return false;
}
5724
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5725

5726
static int sd_degenerate(struct sched_domain *sd)
5727
{
5728
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5729 5730 5731 5732 5733 5734
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5735
			 SD_BALANCE_EXEC |
5736
			 SD_SHARE_CPUCAPACITY |
5737 5738
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5739 5740 5741 5742 5743
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5744
	if (sd->flags & (SD_WAKE_AFFINE))
5745 5746 5747 5748 5749
		return 0;

	return 1;
}

5750 5751
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5752 5753 5754 5755 5756 5757
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5758
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5759 5760 5761 5762 5763 5764 5765
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5766
				SD_BALANCE_EXEC |
5767
				SD_SHARE_CPUCAPACITY |
5768
				SD_SHARE_PKG_RESOURCES |
5769 5770
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5771 5772
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5773 5774 5775 5776 5777 5778 5779
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5780
static void free_rootdomain(struct rcu_head *rcu)
5781
{
5782
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5783

5784
	cpupri_cleanup(&rd->cpupri);
5785
	cpudl_cleanup(&rd->cpudl);
5786
	free_cpumask_var(rd->dlo_mask);
5787 5788 5789 5790 5791 5792
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5793 5794
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5795
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5796 5797
	unsigned long flags;

5798
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5799 5800

	if (rq->rd) {
I
Ingo Molnar 已提交
5801
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5802

5803
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5804
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5805

5806
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5807

I
Ingo Molnar 已提交
5808
		/*
5809
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5810 5811 5812 5813 5814
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5815 5816 5817 5818 5819
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5820
	cpumask_set_cpu(rq->cpu, rd->span);
5821
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5822
		set_rq_online(rq);
G
Gregory Haskins 已提交
5823

5824
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5825 5826

	if (old_rd)
5827
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5828 5829
}

5830
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5831 5832 5833
{
	memset(rd, 0, sizeof(*rd));

5834
	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5835
		goto out;
5836
	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5837
		goto free_span;
5838
	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5839
		goto free_online;
5840
	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5841
		goto free_dlo_mask;
5842

5843
	init_dl_bw(&rd->dl_bw);
5844 5845
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5846

5847
	if (cpupri_init(&rd->cpupri) != 0)
5848
		goto free_rto_mask;
5849
	return 0;
5850

5851 5852
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5853 5854
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5855 5856 5857 5858
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5859
out:
5860
	return -ENOMEM;
G
Gregory Haskins 已提交
5861 5862
}

5863 5864 5865 5866 5867 5868
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5869 5870
static void init_defrootdomain(void)
{
5871
	init_rootdomain(&def_root_domain);
5872

G
Gregory Haskins 已提交
5873 5874 5875
	atomic_set(&def_root_domain.refcount, 1);
}

5876
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5877 5878 5879 5880 5881 5882 5883
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5884
	if (init_rootdomain(rd) != 0) {
5885 5886 5887
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5888 5889 5890 5891

	return rd;
}

5892
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5903 5904
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5905 5906 5907 5908 5909 5910

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5911 5912 5913
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5914 5915 5916 5917 5918 5919 5920 5921

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5922
		kfree(sd->groups->sgc);
5923
		kfree(sd->groups);
5924
	}
5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5939 5940 5941 5942 5943 5944 5945
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5946
 * two cpus are in the same cache domain, see cpus_share_cache().
5947 5948
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5949
DEFINE_PER_CPU(int, sd_llc_size);
5950
DEFINE_PER_CPU(int, sd_llc_id);
5951
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5952 5953
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5954 5955 5956 5957

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5958
	struct sched_domain *busy_sd = NULL;
5959
	int id = cpu;
5960
	int size = 1;
5961 5962

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5963
	if (sd) {
5964
		id = cpumask_first(sched_domain_span(sd));
5965
		size = cpumask_weight(sched_domain_span(sd));
5966
		busy_sd = sd->parent; /* sd_busy */
5967
	}
5968
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5969 5970

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5971
	per_cpu(sd_llc_size, cpu) = size;
5972
	per_cpu(sd_llc_id, cpu) = id;
5973 5974 5975

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5976 5977 5978

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5979 5980
}

L
Linus Torvalds 已提交
5981
/*
I
Ingo Molnar 已提交
5982
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5983 5984
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5985 5986
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5987
{
5988
	struct rq *rq = cpu_rq(cpu);
5989 5990 5991
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5992
	for (tmp = sd; tmp; ) {
5993 5994 5995
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5996

5997
		if (sd_parent_degenerate(tmp, parent)) {
5998
			tmp->parent = parent->parent;
5999 6000
			if (parent->parent)
				parent->parent->child = tmp;
6001 6002 6003 6004 6005 6006 6007
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
6008
			destroy_sched_domain(parent, cpu);
6009 6010
		} else
			tmp = tmp->parent;
6011 6012
	}

6013
	if (sd && sd_degenerate(sd)) {
6014
		tmp = sd;
6015
		sd = sd->parent;
6016
		destroy_sched_domain(tmp, cpu);
6017 6018 6019
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6020

6021
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
6022

G
Gregory Haskins 已提交
6023
	rq_attach_root(rq, rd);
6024
	tmp = rq->sd;
N
Nick Piggin 已提交
6025
	rcu_assign_pointer(rq->sd, sd);
6026
	destroy_sched_domains(tmp, cpu);
6027 6028

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
6029 6030 6031 6032 6033
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6034 6035
	int ret;

R
Rusty Russell 已提交
6036
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6037 6038 6039 6040 6041
	ret = cpulist_parse(str, cpu_isolated_map);
	if (ret) {
		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
		return 0;
	}
L
Linus Torvalds 已提交
6042 6043
	return 1;
}
I
Ingo Molnar 已提交
6044
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6045

6046
struct s_data {
6047
	struct sched_domain ** __percpu sd;
6048 6049 6050
	struct root_domain	*rd;
};

6051 6052
enum s_alloc {
	sa_rootdomain,
6053
	sa_sd,
6054
	sa_sd_storage,
6055 6056 6057
	sa_none,
};

P
Peter Zijlstra 已提交
6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

6096 6097 6098 6099 6100 6101 6102
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
6103
	struct sched_domain *sibling;
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

6114
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
6115 6116

		/* See the comment near build_group_mask(). */
6117
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
6118 6119
			continue;

6120
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6121
				GFP_KERNEL, cpu_to_node(cpu));
6122 6123 6124 6125 6126

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
6127 6128 6129
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
6130 6131 6132 6133
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

6134 6135
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
6136 6137
			build_group_mask(sd, sg);

6138
		/*
6139
		 * Initialize sgc->capacity such that even if we mess up the
6140 6141 6142
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
6143
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6144

P
Peter Zijlstra 已提交
6145 6146 6147 6148 6149
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6150
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6151
		    group_balance_cpu(sg) == cpu)
6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6171
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6172
{
6173 6174
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6175

6176 6177
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6178

6179
	if (sg) {
6180
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6181 6182
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6183
	}
6184 6185

	return cpu;
6186 6187
}

6188
/*
6189 6190
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6191
 * and ->cpu_capacity to 0.
6192 6193
 *
 * Assumes the sched_domain tree is fully constructed
6194
 */
6195 6196
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6197
{
6198 6199 6200
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6201
	struct cpumask *covered;
6202
	int i;
6203

6204 6205 6206
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6207
	if (cpu != cpumask_first(span))
6208 6209
		return 0;

6210 6211 6212
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6213
	cpumask_clear(covered);
6214

6215 6216
	for_each_cpu(i, span) {
		struct sched_group *sg;
6217
		int group, j;
6218

6219 6220
		if (cpumask_test_cpu(i, covered))
			continue;
6221

6222
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6223
		cpumask_setall(sched_group_mask(sg));
6224

6225 6226 6227
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6228

6229 6230 6231
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6232

6233 6234 6235 6236 6237 6238 6239
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6240 6241

	return 0;
6242
}
6243

6244
/*
6245
 * Initialize sched groups cpu_capacity.
6246
 *
6247
 * cpu_capacity indicates the capacity of sched group, which is used while
6248
 * distributing the load between different sched groups in a sched domain.
6249 6250 6251 6252
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6253
 */
6254
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6255
{
6256
	struct sched_group *sg = sd->groups;
6257

6258
	WARN_ON(!sg);
6259 6260 6261 6262 6263

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6264

P
Peter Zijlstra 已提交
6265
	if (cpu != group_balance_cpu(sg))
6266
		return;
6267

6268 6269
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6270 6271
}

6272 6273 6274 6275 6276
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6277
static int default_relax_domain_level = -1;
6278
int sched_domain_level_max;
6279 6280 6281

static int __init setup_relax_domain_level(char *str)
{
6282 6283
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6284

6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6303
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6304 6305
	} else {
		/* turn on idle balance on this domain */
6306
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6307 6308 6309
	}
}

6310 6311 6312
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6313 6314 6315 6316 6317
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6318 6319
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6320 6321
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6322
	case sa_sd_storage:
6323
		__sdt_free(cpu_map); /* fall through */
6324 6325 6326 6327
	case sa_none:
		break;
	}
}
6328

6329 6330 6331
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6332 6333
	memset(d, 0, sizeof(*d));

6334 6335
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6336 6337 6338
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6339
	d->rd = alloc_rootdomain();
6340
	if (!d->rd)
6341
		return sa_sd;
6342 6343
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6344

6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6357
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6358
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6359

6360 6361
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6362 6363
}

6364 6365
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6366
enum numa_topology_type sched_numa_topology_type;
6367
static int *sched_domains_numa_distance;
6368
int sched_max_numa_distance;
6369 6370
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6371
#endif
6372

6373 6374 6375
/*
 * SD_flags allowed in topology descriptions.
 *
6376
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6377 6378
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6379
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6380 6381 6382 6383 6384
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6385
	(SD_SHARE_CPUCAPACITY |		\
6386 6387
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6388 6389
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6390 6391

static struct sched_domain *
6392
sd_init(struct sched_domain_topology_level *tl, int cpu)
6393 6394
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6411 6412 6413 6414 6415

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6416
		.imbalance_pct		= 125,
6417 6418 6419 6420

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6421 6422 6423 6424 6425 6426
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6427 6428
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6429
					| 0*SD_BALANCE_WAKE
6430
					| 1*SD_WAKE_AFFINE
6431
					| 0*SD_SHARE_CPUCAPACITY
6432
					| 0*SD_SHARE_PKG_RESOURCES
6433
					| 0*SD_SERIALIZE
6434
					| 0*SD_PREFER_SIBLING
6435 6436
					| 0*SD_NUMA
					| sd_flags
6437
					,
6438

6439 6440
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6441
		.smt_gain		= 0,
6442 6443
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6444 6445 6446
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6447 6448 6449
	};

	/*
6450
	 * Convert topological properties into behaviour.
6451
	 */
6452

6453
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6454
		sd->flags |= SD_PREFER_SIBLING;
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6485 6486 6487 6488

	return sd;
}

6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

6503 6504
static struct sched_domain_topology_level *sched_domain_topology =
	default_topology;
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6516 6517 6518 6519 6520
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6542
bool find_numa_distance(int distance)
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

6582
	if (sched_domains_numa_levels <= 1) {
6583
		sched_numa_topology_type = NUMA_DIRECT;
6584 6585
		return;
	}
6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6654
		}
6655 6656 6657 6658 6659 6660

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6661
	}
6662 6663 6664 6665

	if (!level)
		return;

6666 6667 6668 6669
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6670
	 * The sched_domains_numa_distance[] array includes the actual distance
6671 6672 6673
	 * numbers.
	 */

6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6700
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6701 6702 6703 6704 6705
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

6706
			for_each_node(k) {
6707
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6708 6709 6710 6711 6712 6713 6714
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6715 6716 6717
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6718
	tl = kzalloc((i + level + 1) *
6719 6720 6721 6722 6723 6724 6725
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6726 6727
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6728 6729 6730 6731 6732 6733 6734

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6735
			.sd_flags = cpu_numa_flags,
6736 6737
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6738
			SD_INIT_NAME(NUMA)
6739 6740 6741 6742
		};
	}

	sched_domain_topology = tl;
6743 6744

	sched_domains_numa_levels = level;
6745
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6746 6747

	init_numa_topology_type();
6748
}
6749

6750
static void sched_domains_numa_masks_set(unsigned int cpu)
6751 6752
{
	int node = cpu_to_node(cpu);
6753
	int i, j;
6754 6755 6756 6757 6758 6759 6760 6761 6762

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

6763
static void sched_domains_numa_masks_clear(unsigned int cpu)
6764 6765
{
	int i, j;
6766

6767 6768 6769 6770 6771 6772
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

6773
#else
6774 6775 6776
static inline void sched_init_numa(void) { }
static void sched_domains_numa_masks_set(unsigned int cpu) { }
static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6777 6778
#endif /* CONFIG_NUMA */

6779 6780 6781 6782 6783
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6784
	for_each_sd_topology(tl) {
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6795 6796
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6797 6798
			return -ENOMEM;

6799 6800 6801
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6802
			struct sched_group_capacity *sgc;
6803

P
Peter Zijlstra 已提交
6804
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6816 6817
			sg->next = sg;

6818
			*per_cpu_ptr(sdd->sg, j) = sg;
6819

6820
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6821
					GFP_KERNEL, cpu_to_node(j));
6822
			if (!sgc)
6823 6824
				return -ENOMEM;

6825
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6837
	for_each_sd_topology(tl) {
6838 6839 6840
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6852 6853
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6854 6855
		}
		free_percpu(sdd->sd);
6856
		sdd->sd = NULL;
6857
		free_percpu(sdd->sg);
6858
		sdd->sg = NULL;
6859 6860
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6861 6862 6863
	}
}

6864
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6865 6866
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6867
{
6868
	struct sched_domain *sd = sd_init(tl, cpu);
6869
	if (!sd)
6870
		return child;
6871 6872

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6873 6874 6875
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6876
		child->parent = sd;
6877
		sd->child = child;
P
Peter Zijlstra 已提交
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6892
	}
6893
	set_domain_attribute(sd, attr);
6894 6895 6896 6897

	return sd;
}

6898 6899 6900 6901
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6902 6903
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6904
{
6905
	enum s_alloc alloc_state;
6906
	struct sched_domain *sd;
6907
	struct s_data d;
6908
	int i, ret = -ENOMEM;
6909

6910 6911 6912
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6913

6914
	/* Set up domains for cpus specified by the cpu_map. */
6915
	for_each_cpu(i, cpu_map) {
6916 6917
		struct sched_domain_topology_level *tl;

6918
		sd = NULL;
6919
		for_each_sd_topology(tl) {
6920
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6921 6922
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6923 6924
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6925 6926
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6927
		}
6928 6929 6930 6931 6932 6933
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6934 6935 6936 6937 6938 6939 6940
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6941
		}
6942
	}
6943

6944
	/* Calculate CPU capacity for physical packages and nodes */
6945 6946 6947
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6948

6949 6950
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6951
			init_sched_groups_capacity(i, sd);
6952
		}
6953
	}
6954

L
Linus Torvalds 已提交
6955
	/* Attach the domains */
6956
	rcu_read_lock();
6957
	for_each_cpu(i, cpu_map) {
6958
		sd = *per_cpu_ptr(d.sd, i);
6959
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6960
	}
6961
	rcu_read_unlock();
6962

6963
	ret = 0;
6964
error:
6965
	__free_domain_allocs(&d, alloc_state, cpu_map);
6966
	return ret;
L
Linus Torvalds 已提交
6967
}
P
Paul Jackson 已提交
6968

6969
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6970
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6971 6972
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6973 6974 6975

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6976 6977
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6978
 */
6979
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6980

6981 6982 6983 6984 6985
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6986
int __weak arch_update_cpu_topology(void)
6987
{
6988
	return 0;
6989 6990
}

6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7016
/*
I
Ingo Molnar 已提交
7017
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7018 7019
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7020
 */
7021
static int init_sched_domains(const struct cpumask *cpu_map)
7022
{
7023 7024
	int err;

7025
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7026
	ndoms_cur = 1;
7027
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7028
	if (!doms_cur)
7029 7030
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7031
	err = build_sched_domains(doms_cur[0], NULL);
7032
	register_sched_domain_sysctl();
7033 7034

	return err;
7035 7036 7037 7038 7039 7040
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7041
static void detach_destroy_domains(const struct cpumask *cpu_map)
7042 7043 7044
{
	int i;

7045
	rcu_read_lock();
7046
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7047
		cpu_attach_domain(NULL, &def_root_domain, i);
7048
	rcu_read_unlock();
7049 7050
}

7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7067 7068
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7069
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7070 7071 7072
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7073
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7074 7075 7076
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7077 7078 7079
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7080 7081 7082 7083 7084 7085
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7086
 *
7087
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7088 7089
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7090
 *
P
Paul Jackson 已提交
7091 7092
 * Call with hotplug lock held
 */
7093
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7094
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7095
{
7096
	int i, j, n;
7097
	int new_topology;
P
Paul Jackson 已提交
7098

7099
	mutex_lock(&sched_domains_mutex);
7100

7101 7102 7103
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7104 7105 7106
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7107
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7108 7109 7110

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7111
		for (j = 0; j < n && !new_topology; j++) {
7112
			if (cpumask_equal(doms_cur[i], doms_new[j])
7113
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7114 7115 7116
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7117
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7118 7119 7120 7121
match1:
		;
	}

7122
	n = ndoms_cur;
7123
	if (doms_new == NULL) {
7124
		n = 0;
7125
		doms_new = &fallback_doms;
7126
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7127
		WARN_ON_ONCE(dattr_new);
7128 7129
	}

P
Paul Jackson 已提交
7130 7131
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7132
		for (j = 0; j < n && !new_topology; j++) {
7133
			if (cpumask_equal(doms_new[i], doms_cur[j])
7134
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7135 7136 7137
				goto match2;
		}
		/* no match - add a new doms_new */
7138
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7139 7140 7141 7142 7143
match2:
		;
	}

	/* Remember the new sched domains */
7144 7145
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7146
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7147
	doms_cur = doms_new;
7148
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7149
	ndoms_cur = ndoms_new;
7150 7151

	register_sched_domain_sysctl();
7152

7153
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7154 7155
}

7156 7157
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7158
/*
7159 7160 7161
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7162 7163 7164
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7165
 */
7166
static void cpuset_cpu_active(void)
7167
{
7168
	if (cpuhp_tasks_frozen) {
7169 7170 7171 7172 7173 7174 7175 7176 7177
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
7178
			return;
7179 7180 7181 7182 7183 7184
		}
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
7185
	}
7186
	cpuset_update_active_cpus(true);
7187
}
7188

7189
static int cpuset_cpu_inactive(unsigned int cpu)
7190
{
7191 7192
	unsigned long flags;
	struct dl_bw *dl_b;
7193 7194
	bool overflow;
	int cpus;
7195

7196
	if (!cpuhp_tasks_frozen) {
7197 7198
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7199

7200 7201 7202 7203
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7204

7205
		rcu_read_unlock_sched();
7206

7207
		if (overflow)
7208
			return -EBUSY;
7209
		cpuset_update_active_cpus(false);
7210
	} else {
7211 7212
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
7213
	}
7214
	return 0;
7215 7216
}

7217
int sched_cpu_activate(unsigned int cpu)
7218
{
7219 7220 7221
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

7222
	set_cpu_active(cpu, true);
7223

7224
	if (sched_smp_initialized) {
7225
		sched_domains_numa_masks_set(cpu);
7226
		cpuset_cpu_active();
7227
	}
7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
	 *    after all cpus have been brought up.
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
	raw_spin_unlock_irqrestore(&rq->lock, flags);

	update_max_interval();

7247
	return 0;
7248 7249
}

7250
int sched_cpu_deactivate(unsigned int cpu)
7251 7252 7253
{
	int ret;

7254
	set_cpu_active(cpu, false);
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
	 * not imply sync_sched(), so wait for both.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
	if (IS_ENABLED(CONFIG_PREEMPT))
		synchronize_rcu_mult(call_rcu, call_rcu_sched);
	else
		synchronize_rcu();
7269 7270 7271 7272 7273 7274 7275 7276

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
7277
	}
7278 7279
	sched_domains_numa_masks_clear(cpu);
	return 0;
7280 7281
}

7282 7283 7284 7285 7286 7287 7288 7289
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

7290 7291 7292
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
7293
	sched_rq_cpu_starting(cpu);
7294
	return 0;
7295 7296
}

7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
	raw_spin_lock_irqsave(&rq->lock, flags);
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
	migrate_tasks(rq);
	BUG_ON(rq->nr_running != 1);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
	calc_load_migrate(rq);
	update_max_interval();
7315
	nohz_balance_exit_idle(cpu);
7316
	hrtick_clear(rq);
7317 7318 7319 7320
	return 0;
}
#endif

L
Linus Torvalds 已提交
7321 7322
void __init sched_init_smp(void)
{
7323 7324 7325
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7326
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7327

7328 7329
	sched_init_numa();

7330 7331 7332 7333 7334
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7335
	mutex_lock(&sched_domains_mutex);
7336
	init_sched_domains(cpu_active_mask);
7337 7338 7339
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7340
	mutex_unlock(&sched_domains_mutex);
7341

7342
	/* Move init over to a non-isolated CPU */
7343
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7344
		BUG();
I
Ingo Molnar 已提交
7345
	sched_init_granularity();
7346
	free_cpumask_var(non_isolated_cpus);
7347

7348
	init_sched_rt_class();
7349
	init_sched_dl_class();
7350
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
7351
}
7352 7353 7354

static int __init migration_init(void)
{
7355
	sched_rq_cpu_starting(smp_processor_id());
7356
	return 0;
L
Linus Torvalds 已提交
7357
}
7358 7359
early_initcall(migration_init);

L
Linus Torvalds 已提交
7360 7361 7362
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7363
	sched_init_granularity();
L
Linus Torvalds 已提交
7364 7365 7366 7367 7368 7369 7370 7371 7372 7373
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7374
#ifdef CONFIG_CGROUP_SCHED
7375 7376 7377 7378
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7379
struct task_group root_task_group;
7380
LIST_HEAD(task_groups);
7381 7382 7383

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
7384
#endif
P
Peter Zijlstra 已提交
7385

7386
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7387

L
Linus Torvalds 已提交
7388 7389
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7390
	int i, j;
7391 7392 7393 7394 7395 7396 7397 7398 7399
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7400
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7401 7402

#ifdef CONFIG_FAIR_GROUP_SCHED
7403
		root_task_group.se = (struct sched_entity **)ptr;
7404 7405
		ptr += nr_cpu_ids * sizeof(void **);

7406
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7407
		ptr += nr_cpu_ids * sizeof(void **);
7408

7409
#endif /* CONFIG_FAIR_GROUP_SCHED */
7410
#ifdef CONFIG_RT_GROUP_SCHED
7411
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7412 7413
		ptr += nr_cpu_ids * sizeof(void **);

7414
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7415 7416
		ptr += nr_cpu_ids * sizeof(void **);

7417
#endif /* CONFIG_RT_GROUP_SCHED */
7418
	}
7419
#ifdef CONFIG_CPUMASK_OFFSTACK
7420 7421 7422
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7423
	}
7424
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7425

7426 7427 7428
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7429
			global_rt_period(), global_rt_runtime());
7430

G
Gregory Haskins 已提交
7431 7432 7433 7434
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7435
#ifdef CONFIG_RT_GROUP_SCHED
7436
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7437
			global_rt_period(), global_rt_runtime());
7438
#endif /* CONFIG_RT_GROUP_SCHED */
7439

D
Dhaval Giani 已提交
7440
#ifdef CONFIG_CGROUP_SCHED
7441 7442
	task_group_cache = KMEM_CACHE(task_group, 0);

7443 7444
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7445
	INIT_LIST_HEAD(&root_task_group.siblings);
7446
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
7447
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7448

7449
	for_each_possible_cpu(i) {
7450
		struct rq *rq;
L
Linus Torvalds 已提交
7451 7452

		rq = cpu_rq(i);
7453
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7454
		rq->nr_running = 0;
7455 7456
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7457
		init_cfs_rq(&rq->cfs);
7458 7459
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7460
#ifdef CONFIG_FAIR_GROUP_SCHED
7461
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7462
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7463
		/*
7464
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7465 7466 7467 7468
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7469
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7470 7471 7472
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7473
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7474 7475 7476
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7477
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7478
		 *
7479 7480
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7481
		 */
7482
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7483
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7484 7485 7486
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7487
#ifdef CONFIG_RT_GROUP_SCHED
7488
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7489
#endif
L
Linus Torvalds 已提交
7490

I
Ingo Molnar 已提交
7491 7492
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7493

L
Linus Torvalds 已提交
7494
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7495
		rq->sd = NULL;
G
Gregory Haskins 已提交
7496
		rq->rd = NULL;
7497
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7498
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7499
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7500
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7501
		rq->push_cpu = 0;
7502
		rq->cpu = i;
7503
		rq->online = 0;
7504 7505
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7506
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7507 7508 7509

		INIT_LIST_HEAD(&rq->cfs_tasks);

7510
		rq_attach_root(rq, &def_root_domain);
7511
#ifdef CONFIG_NO_HZ_COMMON
7512
		rq->last_load_update_tick = jiffies;
7513
		rq->nohz_flags = 0;
7514
#endif
7515 7516 7517
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
7518
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
7519
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7520 7521 7522
		atomic_set(&rq->nr_iowait, 0);
	}

7523
	set_load_weight(&init_task);
7524

7525 7526 7527 7528
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7529 7530 7531 7532 7533 7534
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7535 7536 7537 7538 7539
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7540 7541 7542 7543 7544 7545 7546
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7547 7548 7549

	calc_load_update = jiffies + LOAD_FREQ;

7550
#ifdef CONFIG_SMP
7551
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7552 7553 7554
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7555
	idle_thread_set_boot_cpu();
7556
	set_cpu_rq_start_time(smp_processor_id());
7557 7558
#endif
	init_sched_fair_class();
7559

7560 7561
	init_schedstats();

7562
	scheduler_running = 1;
L
Linus Torvalds 已提交
7563 7564
}

7565
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7566 7567
static inline int preempt_count_equals(int preempt_offset)
{
7568
	int nested = preempt_count() + rcu_preempt_depth();
7569

A
Arnd Bergmann 已提交
7570
	return (nested == preempt_offset);
7571 7572
}

7573
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7574
{
P
Peter Zijlstra 已提交
7575 7576 7577 7578 7579
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7580
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7581 7582 7583 7584
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7585
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7586

7587 7588 7589 7590 7591
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7592 7593 7594
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7595
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7596 7597
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7598
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7599 7600 7601 7602 7603
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7604 7605 7606 7607 7608 7609 7610
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7611

7612 7613 7614
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7615 7616 7617
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7618 7619 7620 7621 7622 7623 7624
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7625
	dump_stack();
L
Linus Torvalds 已提交
7626
}
7627
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7628 7629 7630
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7631
void normalize_rt_tasks(void)
7632
{
7633
	struct task_struct *g, *p;
7634 7635 7636
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7637

7638
	read_lock(&tasklist_lock);
7639
	for_each_process_thread(g, p) {
7640 7641 7642
		/*
		 * Only normalize user tasks:
		 */
7643
		if (p->flags & PF_KTHREAD)
7644 7645
			continue;

I
Ingo Molnar 已提交
7646 7647
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7648 7649 7650
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7651
#endif
I
Ingo Molnar 已提交
7652

7653
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7654 7655 7656 7657
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7658
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7659
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7660
			continue;
I
Ingo Molnar 已提交
7661
		}
L
Linus Torvalds 已提交
7662

7663
		__sched_setscheduler(p, &attr, false, false);
7664
	}
7665
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7666 7667 7668
}

#endif /* CONFIG_MAGIC_SYSRQ */
7669

7670
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7671
/*
7672
 * These functions are only useful for the IA64 MCA handling, or kdb.
7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7686 7687
 *
 * Return: The current task for @cpu.
7688
 */
7689
struct task_struct *curr_task(int cpu)
7690 7691 7692 7693
{
	return cpu_curr(cpu);
}

7694 7695 7696
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7697 7698 7699 7700 7701 7702
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7703 7704
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7705 7706 7707 7708 7709 7710 7711
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7712
void set_curr_task(int cpu, struct task_struct *p)
7713 7714 7715 7716 7717
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7718

D
Dhaval Giani 已提交
7719
#ifdef CONFIG_CGROUP_SCHED
7720 7721 7722
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7723
static void sched_free_group(struct task_group *tg)
7724 7725 7726
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7727
	autogroup_free(tg);
7728
	kmem_cache_free(task_group_cache, tg);
7729 7730 7731
}

/* allocate runqueue etc for a new task group */
7732
struct task_group *sched_create_group(struct task_group *parent)
7733 7734 7735
{
	struct task_group *tg;

7736
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7737 7738 7739
	if (!tg)
		return ERR_PTR(-ENOMEM);

7740
	if (!alloc_fair_sched_group(tg, parent))
7741 7742
		goto err;

7743
	if (!alloc_rt_sched_group(tg, parent))
7744 7745
		goto err;

7746 7747 7748
	return tg;

err:
7749
	sched_free_group(tg);
7750 7751 7752 7753 7754 7755 7756
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7757
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7758
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7759 7760 7761 7762 7763

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7764
	list_add_rcu(&tg->siblings, &parent->children);
7765
	spin_unlock_irqrestore(&task_group_lock, flags);
7766 7767

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7768 7769
}

7770
/* rcu callback to free various structures associated with a task group */
7771
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7772 7773
{
	/* now it should be safe to free those cfs_rqs */
7774
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7775 7776
}

7777
void sched_destroy_group(struct task_group *tg)
7778 7779
{
	/* wait for possible concurrent references to cfs_rqs complete */
7780
	call_rcu(&tg->rcu, sched_free_group_rcu);
7781 7782 7783
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7784
{
7785
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
7786

7787
	/* end participation in shares distribution */
7788
	unregister_fair_sched_group(tg);
7789 7790

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7791
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7792
	list_del_rcu(&tg->siblings);
7793
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7794 7795
}

7796
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
7797
{
P
Peter Zijlstra 已提交
7798
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7799

7800 7801 7802 7803 7804 7805
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7806 7807 7808 7809
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7810
#ifdef CONFIG_FAIR_GROUP_SCHED
7811 7812
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
7813
	else
P
Peter Zijlstra 已提交
7814
#endif
7815
		set_task_rq(tsk, task_cpu(tsk));
7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
	int queued, running;
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
	if (unlikely(running))
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
7842

7843 7844
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7845
	if (queued)
7846
		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
S
Srivatsa Vaddagiri 已提交
7847

7848
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
7849
}
D
Dhaval Giani 已提交
7850
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7851

7852 7853 7854 7855 7856
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7857

P
Peter Zijlstra 已提交
7858 7859
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7860
{
P
Peter Zijlstra 已提交
7861
	struct task_struct *g, *p;
7862

7863 7864 7865 7866 7867 7868
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7869
	for_each_process_thread(g, p) {
7870
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7871
			return 1;
7872
	}
7873

P
Peter Zijlstra 已提交
7874 7875
	return 0;
}
7876

P
Peter Zijlstra 已提交
7877 7878 7879 7880 7881
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7882

7883
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7884 7885 7886 7887 7888
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7889

P
Peter Zijlstra 已提交
7890 7891
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7892

P
Peter Zijlstra 已提交
7893 7894 7895
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7896 7897
	}

7898 7899 7900 7901 7902
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7903

7904 7905 7906
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7907 7908
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7909

P
Peter Zijlstra 已提交
7910
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7911

7912 7913 7914 7915 7916
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7917

7918 7919 7920
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7921 7922 7923
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7924

P
Peter Zijlstra 已提交
7925 7926 7927 7928
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7929

P
Peter Zijlstra 已提交
7930
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7931
	}
P
Peter Zijlstra 已提交
7932

P
Peter Zijlstra 已提交
7933 7934 7935 7936
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7937 7938
}

P
Peter Zijlstra 已提交
7939
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7940
{
7941 7942
	int ret;

P
Peter Zijlstra 已提交
7943 7944 7945 7946 7947 7948
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7949 7950 7951 7952 7953
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7954 7955
}

7956
static int tg_set_rt_bandwidth(struct task_group *tg,
7957
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7958
{
P
Peter Zijlstra 已提交
7959
	int i, err = 0;
P
Peter Zijlstra 已提交
7960

7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
7972
	mutex_lock(&rt_constraints_mutex);
7973
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7974 7975
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7976
		goto unlock;
P
Peter Zijlstra 已提交
7977

7978
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7979 7980
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7981 7982 7983 7984

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7985
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7986
		rt_rq->rt_runtime = rt_runtime;
7987
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7988
	}
7989
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7990
unlock:
7991
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7992 7993 7994
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7995 7996
}

7997
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7998 7999 8000 8001 8002 8003 8004 8005
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

8006
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8007 8008
}

8009
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
8010 8011 8012
{
	u64 rt_runtime_us;

8013
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8014 8015
		return -1;

8016
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8017 8018 8019
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8020

8021
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8022 8023 8024
{
	u64 rt_runtime, rt_period;

8025
	rt_period = rt_period_us * NSEC_PER_USEC;
8026 8027
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8028
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8029 8030
}

8031
static long sched_group_rt_period(struct task_group *tg)
8032 8033 8034 8035 8036 8037 8038
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
8039
#endif /* CONFIG_RT_GROUP_SCHED */
8040

8041
#ifdef CONFIG_RT_GROUP_SCHED
8042 8043 8044 8045 8046
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8047
	read_lock(&tasklist_lock);
8048
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8049
	read_unlock(&tasklist_lock);
8050 8051 8052 8053
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8054

8055
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8056 8057 8058 8059 8060 8061 8062 8063
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8064
#else /* !CONFIG_RT_GROUP_SCHED */
8065 8066
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8067
	unsigned long flags;
8068
	int i;
8069

8070
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8071 8072 8073
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8074
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8075
		rt_rq->rt_runtime = global_rt_runtime();
8076
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8077
	}
8078
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8079

8080
	return 0;
8081
}
8082
#endif /* CONFIG_RT_GROUP_SCHED */
8083

8084
static int sched_dl_global_validate(void)
8085
{
8086 8087
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
8088
	u64 new_bw = to_ratio(period, runtime);
8089
	struct dl_bw *dl_b;
8090
	int cpu, ret = 0;
8091
	unsigned long flags;
8092 8093 8094 8095 8096 8097 8098 8099 8100 8101

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
8102
	for_each_possible_cpu(cpu) {
8103 8104
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8105

8106
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8107 8108
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
8109
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8110

8111 8112
		rcu_read_unlock_sched();

8113 8114
		if (ret)
			break;
8115 8116
	}

8117
	return ret;
8118 8119
}

8120
static void sched_dl_do_global(void)
8121
{
8122
	u64 new_bw = -1;
8123
	struct dl_bw *dl_b;
8124
	int cpu;
8125
	unsigned long flags;
8126

8127 8128 8129 8130 8131 8132 8133 8134 8135 8136
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
8137 8138
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
8139

8140
		raw_spin_lock_irqsave(&dl_b->lock, flags);
8141
		dl_b->bw = new_bw;
8142
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8143 8144

		rcu_read_unlock_sched();
8145
	}
8146 8147 8148 8149 8150 8151 8152
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8153 8154
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8155 8156 8157 8158 8159 8160 8161 8162 8163
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8164 8165
}

8166
int sched_rt_handler(struct ctl_table *table, int write,
8167
		void __user *buffer, size_t *lenp,
8168 8169 8170 8171
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
8172
	int ret;
8173 8174 8175 8176 8177

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8178
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8179 8180

	if (!ret && write) {
8181 8182 8183 8184
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

8185
		ret = sched_dl_global_validate();
8186 8187 8188
		if (ret)
			goto undo;

8189
		ret = sched_rt_global_constraints();
8190 8191 8192 8193 8194 8195 8196 8197 8198 8199
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
8200 8201 8202 8203 8204
	}
	mutex_unlock(&mutex);

	return ret;
}
8205

8206
int sched_rr_handler(struct ctl_table *table, int write,
8207 8208 8209 8210 8211 8212 8213 8214
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8215 8216
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
8217
	if (!ret && write) {
8218 8219
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8220 8221 8222 8223 8224
	}
	mutex_unlock(&mutex);
	return ret;
}

8225
#ifdef CONFIG_CGROUP_SCHED
8226

8227
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8228
{
8229
	return css ? container_of(css, struct task_group, css) : NULL;
8230 8231
}

8232 8233
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8234
{
8235 8236
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
8237

8238
	if (!parent) {
8239
		/* This is early initialization for the top cgroup */
8240
		return &root_task_group.css;
8241 8242
	}

8243
	tg = sched_create_group(parent);
8244 8245 8246
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

8247 8248
	sched_online_group(tg, parent);

8249 8250 8251
	return &tg->css;
}

8252
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8253
{
8254
	struct task_group *tg = css_tg(css);
8255

8256
	sched_offline_group(tg);
8257 8258
}

8259
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8260
{
8261
	struct task_group *tg = css_tg(css);
8262

8263 8264 8265 8266
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
8267 8268
}

8269 8270 8271 8272
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
8273
static void cpu_cgroup_fork(struct task_struct *task)
8274
{
8275 8276 8277 8278 8279 8280 8281 8282
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
8283 8284
}

8285
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8286
{
8287
	struct task_struct *task;
8288
	struct cgroup_subsys_state *css;
8289
	int ret = 0;
8290

8291
	cgroup_taskset_for_each(task, css, tset) {
8292
#ifdef CONFIG_RT_GROUP_SCHED
8293
		if (!sched_rt_can_attach(css_tg(css), task))
8294
			return -EINVAL;
8295
#else
8296 8297 8298
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8299
#endif
8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
8316
	}
8317
	return ret;
8318
}
8319

8320
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8321
{
8322
	struct task_struct *task;
8323
	struct cgroup_subsys_state *css;
8324

8325
	cgroup_taskset_for_each(task, css, tset)
8326
		sched_move_task(task);
8327 8328
}

8329
#ifdef CONFIG_FAIR_GROUP_SCHED
8330 8331
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8332
{
8333
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8334 8335
}

8336 8337
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8338
{
8339
	struct task_group *tg = css_tg(css);
8340

8341
	return (u64) scale_load_down(tg->shares);
8342
}
8343 8344

#ifdef CONFIG_CFS_BANDWIDTH
8345 8346
static DEFINE_MUTEX(cfs_constraints_mutex);

8347 8348 8349
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8350 8351
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8352 8353
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8354
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8355
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8376 8377 8378 8379 8380
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8381 8382 8383 8384 8385
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8386
	runtime_enabled = quota != RUNTIME_INF;
8387
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8388 8389 8390 8391 8392 8393
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8394 8395 8396
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8397

P
Paul Turner 已提交
8398
	__refill_cfs_bandwidth_runtime(cfs_b);
8399
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8400 8401
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8402 8403
	raw_spin_unlock_irq(&cfs_b->lock);

8404
	for_each_online_cpu(i) {
8405
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8406
		struct rq *rq = cfs_rq->rq;
8407 8408

		raw_spin_lock_irq(&rq->lock);
8409
		cfs_rq->runtime_enabled = runtime_enabled;
8410
		cfs_rq->runtime_remaining = 0;
8411

8412
		if (cfs_rq->throttled)
8413
			unthrottle_cfs_rq(cfs_rq);
8414 8415
		raw_spin_unlock_irq(&rq->lock);
	}
8416 8417
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8418 8419
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8420
	put_online_cpus();
8421

8422
	return ret;
8423 8424 8425 8426 8427 8428
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8429
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8442
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8443 8444
		return -1;

8445
	quota_us = tg->cfs_bandwidth.quota;
8446 8447 8448 8449 8450 8451 8452 8453 8454 8455
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8456
	quota = tg->cfs_bandwidth.quota;
8457 8458 8459 8460 8461 8462 8463 8464

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8465
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8466 8467 8468 8469 8470
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8471 8472
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8473
{
8474
	return tg_get_cfs_quota(css_tg(css));
8475 8476
}

8477 8478
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8479
{
8480
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8481 8482
}

8483 8484
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8485
{
8486
	return tg_get_cfs_period(css_tg(css));
8487 8488
}

8489 8490
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8491
{
8492
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8493 8494
}

8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8527
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8528 8529 8530 8531 8532
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8533
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8534 8535

		quota = normalize_cfs_quota(tg, d);
8536
		parent_quota = parent_b->hierarchical_quota;
8537 8538 8539 8540 8541 8542 8543 8544 8545 8546

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8547
	cfs_b->hierarchical_quota = quota;
8548 8549 8550 8551 8552 8553

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8554
	int ret;
8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8566 8567 8568 8569 8570
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8571
}
8572

8573
static int cpu_stats_show(struct seq_file *sf, void *v)
8574
{
8575
	struct task_group *tg = css_tg(seq_css(sf));
8576
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8577

8578 8579 8580
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8581 8582 8583

	return 0;
}
8584
#endif /* CONFIG_CFS_BANDWIDTH */
8585
#endif /* CONFIG_FAIR_GROUP_SCHED */
8586

8587
#ifdef CONFIG_RT_GROUP_SCHED
8588 8589
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8590
{
8591
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8592 8593
}

8594 8595
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8596
{
8597
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8598
}
8599

8600 8601
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8602
{
8603
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8604 8605
}

8606 8607
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8608
{
8609
	return sched_group_rt_period(css_tg(css));
8610
}
8611
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8612

8613
static struct cftype cpu_files[] = {
8614
#ifdef CONFIG_FAIR_GROUP_SCHED
8615 8616
	{
		.name = "shares",
8617 8618
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8619
	},
8620
#endif
8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8632 8633
	{
		.name = "stat",
8634
		.seq_show = cpu_stats_show,
8635
	},
8636
#endif
8637
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8638
	{
P
Peter Zijlstra 已提交
8639
		.name = "rt_runtime_us",
8640 8641
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8642
	},
8643 8644
	{
		.name = "rt_period_us",
8645 8646
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8647
	},
8648
#endif
8649
	{ }	/* terminate */
8650 8651
};

8652
struct cgroup_subsys cpu_cgrp_subsys = {
8653
	.css_alloc	= cpu_cgroup_css_alloc,
8654
	.css_released	= cpu_cgroup_css_released,
8655
	.css_free	= cpu_cgroup_css_free,
8656
	.fork		= cpu_cgroup_fork,
8657 8658
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8659
	.legacy_cftypes	= cpu_files,
8660
	.early_init	= true,
8661 8662
};

8663
#endif	/* CONFIG_CGROUP_SCHED */
8664

8665 8666 8667 8668 8669
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};