core.c 171.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3
 *
I
Ingo Molnar 已提交
4
 *  Core kernel scheduler code and related syscalls
L
Linus Torvalds 已提交
5 6 7
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 */
8
#include <linux/sched.h>
9
#include <linux/sched/clock.h>
10
#include <uapi/linux/sched/types.h>
11
#include <linux/sched/loadavg.h>
12
#include <linux/sched/hotplug.h>
13
#include <linux/wait_bit.h>
L
Linus Torvalds 已提交
14
#include <linux/cpuset.h>
15
#include <linux/delayacct.h>
16
#include <linux/init_task.h>
17
#include <linux/context_tracking.h>
18
#include <linux/rcupdate_wait.h>
19
#include <linux/compat.h>
20 21 22 23 24 25

#include <linux/blkdev.h>
#include <linux/kprobes.h>
#include <linux/mmu_context.h>
#include <linux/module.h>
#include <linux/nmi.h>
26
#include <linux/prefetch.h>
27 28 29
#include <linux/profile.h>
#include <linux/security.h>
#include <linux/syscalls.h>
30
#include <linux/sched/isolation.h>
L
Linus Torvalds 已提交
31

32
#include <asm/switch_to.h>
33
#include <asm/tlb.h>
34 35 36
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
37

38
#include "sched.h"
39
#include "../workqueue_internal.h"
40
#include "../smpboot.h"
41

42
#define CREATE_TRACE_POINTS
43
#include <trace/events/sched.h>
44

45
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46

47
#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
I
Ingo Molnar 已提交
48 49
/*
 * Debugging: various feature bits
50 51 52 53
 *
 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
 * sysctl_sched_features, defined in sched.h, to allow constants propagation
 * at compile time and compiler optimization based on features default.
I
Ingo Molnar 已提交
54
 */
P
Peter Zijlstra 已提交
55 56
#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |
I
Ingo Molnar 已提交
57
const_debug unsigned int sysctl_sched_features =
58
#include "features.h"
P
Peter Zijlstra 已提交
59 60
	0;
#undef SCHED_FEAT
61
#endif
P
Peter Zijlstra 已提交
62

63 64 65 66 67 68
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

69 70 71 72 73 74 75 76
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
77
/*
I
Ingo Molnar 已提交
78
 * period over which we measure -rt task CPU usage in us.
P
Peter Zijlstra 已提交
79 80
 * default: 1s
 */
P
Peter Zijlstra 已提交
81
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
82

83
__read_mostly int scheduler_running;
84

P
Peter Zijlstra 已提交
85 86 87 88 89
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
90

91 92 93
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
94
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
95 96 97 98 99 100 101 102 103 104
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
105
			rq_pin_lock(rq, rf);
106 107 108 109 110 111 112 113 114 115 116 117
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
118
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
119 120 121 122 123 124
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
125
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
I
Ingo Molnar 已提交
141
		 * If we observe the new CPU in task_rq_lock, the acquire will
142 143 144
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
145
			rq_pin_lock(rq, rf);
146 147 148
			return rq;
		}
		raw_spin_unlock(&rq->lock);
149
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
150 151 152 153 154 155

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
/*
 * RQ-clock updating methods:
 */

static void update_rq_clock_task(struct rq *rq, s64 delta)
{
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_key_false((&paravirt_steal_rq_enabled))) {
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

	rq->clock_task += delta;

#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
}

void update_rq_clock(struct rq *rq)
{
	s64 delta;

	lockdep_assert_held(&rq->lock);

	if (rq->clock_update_flags & RQCF_ACT_SKIP)
		return;

#ifdef CONFIG_SCHED_DEBUG
224 225
	if (sched_feat(WARN_DOUBLE_CLOCK))
		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
226 227
	rq->clock_update_flags |= RQCF_UPDATED;
#endif
228

229 230 231 232 233 234 235 236
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	if (delta < 0)
		return;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
}


P
Peter Zijlstra 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
255
	struct rq_flags rf;
P
Peter Zijlstra 已提交
256 257 258

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

259
	rq_lock(rq, &rf);
260
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
261
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262
	rq_unlock(rq, &rf);
P
Peter Zijlstra 已提交
263 264 265 266

	return HRTIMER_NORESTART;
}

267
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
268

269
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
270 271 272
{
	struct hrtimer *timer = &rq->hrtick_timer;

273
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
274 275
}

276 277 278 279
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
280
{
281
	struct rq *rq = arg;
282
	struct rq_flags rf;
283

284
	rq_lock(rq, &rf);
P
Peter Zijlstra 已提交
285
	__hrtick_restart(rq);
286
	rq->hrtick_csd_pending = 0;
287
	rq_unlock(rq, &rf);
288 289
}

290 291 292 293 294
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
295
void hrtick_start(struct rq *rq, u64 delay)
296
{
297
	struct hrtimer *timer = &rq->hrtick_timer;
298 299 300 301 302 303 304 305 306
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
307

308
	hrtimer_set_expires(timer, time);
309 310

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
311
		__hrtick_restart(rq);
312
	} else if (!rq->hrtick_csd_pending) {
313
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 315
		rq->hrtick_csd_pending = 1;
	}
316 317
}

318 319 320 321 322 323
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
324
void hrtick_start(struct rq *rq, u64 delay)
325
{
W
Wanpeng Li 已提交
326 327 328 329 330
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
331 332
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
333 334
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
335

336
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
337
{
338 339
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
340

341 342 343 344
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
345

346 347
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
348
}
A
Andrew Morton 已提交
349
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
350 351 352 353 354 355 356
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
357
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
358

359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

377
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 379 380 381 382 383 384 385 386 387
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
388 389 390 391 392 393 394 395 396 397

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
398
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399 400 401 402 403 404 405 406 407 408 409 410 411 412

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

413 414 415 416 417 418
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
419 420 421 422 423 424 425

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
426 427
#endif

428 429 430 431 432 433 434 435 436 437
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
438
	 * barrier implied by the wakeup in wake_up_q().
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
I
Ingo Molnar 已提交
461
		/* Task can safely be re-inserted now: */
462 463 464 465 466 467 468 469 470 471 472 473
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
474
/*
475
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
476 477 478 479 480
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
481
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
482
{
483
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
484 485
	int cpu;

486
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
487

488
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
489 490
		return;

491
	cpu = cpu_of(rq);
492

493
	if (cpu == smp_processor_id()) {
494
		set_tsk_need_resched(curr);
495
		set_preempt_need_resched();
I
Ingo Molnar 已提交
496
		return;
497
	}
I
Ingo Molnar 已提交
498

499
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
500
		smp_send_reschedule(cpu);
501 502
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
503 504
}

505
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
506 507 508 509
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

510
	raw_spin_lock_irqsave(&rq->lock, flags);
511 512
	if (cpu_online(cpu) || cpu == smp_processor_id())
		resched_curr(rq);
513
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
514
}
515

516
#ifdef CONFIG_SMP
517
#ifdef CONFIG_NO_HZ_COMMON
518
/*
I
Ingo Molnar 已提交
519 520
 * In the semi idle case, use the nearest busy CPU for migrating timers
 * from an idle CPU.  This is good for power-savings.
521 522
 *
 * We don't do similar optimization for completely idle system, as
I
Ingo Molnar 已提交
523 524
 * selecting an idle CPU will add more delays to the timers than intended
 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
525
 */
526
int get_nohz_timer_target(void)
527
{
528
	int i, cpu = smp_processor_id();
529 530
	struct sched_domain *sd;

531
	if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
532 533
		return cpu;

534
	rcu_read_lock();
535
	for_each_domain(cpu, sd) {
536
		for_each_cpu(i, sched_domain_span(sd)) {
537 538 539
			if (cpu == i)
				continue;

540
			if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
541 542 543 544
				cpu = i;
				goto unlock;
			}
		}
545
	}
546

547 548
	if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
		cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
549 550
unlock:
	rcu_read_unlock();
551 552
	return cpu;
}
I
Ingo Molnar 已提交
553

554 555 556 557 558 559 560 561 562 563
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
564
static void wake_up_idle_cpu(int cpu)
565 566 567 568 569 570
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

571
	if (set_nr_and_not_polling(rq->idle))
572
		smp_send_reschedule(cpu);
573 574
	else
		trace_sched_wake_idle_without_ipi(cpu);
575 576
}

577
static bool wake_up_full_nohz_cpu(int cpu)
578
{
579 580 581 582 583 584
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
585 586
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
587
	if (tick_nohz_full_cpu(cpu)) {
588 589
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
590
			tick_nohz_full_kick_cpu(cpu);
591 592 593 594 595 596
		return true;
	}

	return false;
}

597 598 599 600 601
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
602 603
void wake_up_nohz_cpu(int cpu)
{
604
	if (!wake_up_full_nohz_cpu(cpu))
605 606 607
		wake_up_idle_cpu(cpu);
}

608
static inline bool got_nohz_idle_kick(void)
609
{
610
	int cpu = smp_processor_id();
611 612 613 614 615 616 617 618 619 620 621 622 623

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
624 625
}

626
#else /* CONFIG_NO_HZ_COMMON */
627

628
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
629
{
630
	return false;
P
Peter Zijlstra 已提交
631 632
}

633
#endif /* CONFIG_NO_HZ_COMMON */
634

635
#ifdef CONFIG_NO_HZ_FULL
636
bool sched_can_stop_tick(struct rq *rq)
637
{
638 639 640 641 642 643
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

644
	/*
645 646
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
647
	 */
648 649 650 651 652
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
653 654
	}

655 656 657 658 659 660 661 662 663 664 665 666 667 668
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
669
		return false;
670

671
	return true;
672 673
}
#endif /* CONFIG_NO_HZ_FULL */
674

675
void sched_avg_update(struct rq *rq)
676
{
677 678
	s64 period = sched_avg_period();

679
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
680 681 682 683 684 685
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
686 687 688
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
689 690
}

691
#endif /* CONFIG_SMP */
692

693 694
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
695
/*
696 697 698 699
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
700
 */
701
int walk_tg_tree_from(struct task_group *from,
702
			     tg_visitor down, tg_visitor up, void *data)
703 704
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
705
	int ret;
706

707 708
	parent = from;

709
down:
P
Peter Zijlstra 已提交
710 711
	ret = (*down)(parent, data);
	if (ret)
712
		goto out;
713 714 715 716 717 718 719
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
720
	ret = (*up)(parent, data);
721 722
	if (ret || parent == from)
		goto out;
723 724 725 726 727

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
728
out:
P
Peter Zijlstra 已提交
729
	return ret;
730 731
}

732
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
733
{
734
	return 0;
P
Peter Zijlstra 已提交
735
}
736 737
#endif

738
static void set_load_weight(struct task_struct *p, bool update_load)
739
{
N
Nikhil Rao 已提交
740 741 742
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
743 744 745
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
746
	if (idle_policy(p->policy)) {
747
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
748
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
749 750
		return;
	}
751

752 753 754 755 756 757 758 759 760 761
	/*
	 * SCHED_OTHER tasks have to update their load when changing their
	 * weight
	 */
	if (update_load && p->sched_class == &fair_sched_class) {
		reweight_task(p, prio);
	} else {
		load->weight = scale_load(sched_prio_to_weight[prio]);
		load->inv_weight = sched_prio_to_wmult[prio];
	}
762 763
}

764
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
765
{
766 767 768
	if (!(flags & ENQUEUE_NOCLOCK))
		update_rq_clock(rq);

769 770
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
771

772
	p->sched_class->enqueue_task(rq, p, flags);
773 774
}

775
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
776
{
777 778 779
	if (!(flags & DEQUEUE_NOCLOCK))
		update_rq_clock(rq);

780 781
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
782

783
	p->sched_class->dequeue_task(rq, p, flags);
784 785
}

786
void activate_task(struct rq *rq, struct task_struct *p, int flags)
787 788 789 790
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

791
	enqueue_task(rq, p, flags);
792 793
}

794
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
795 796 797 798
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

799
	dequeue_task(rq, p, flags);
800 801
}

802
/*
I
Ingo Molnar 已提交
803
 * __normal_prio - return the priority that is based on the static prio
804 805 806
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
807
	return p->static_prio;
808 809
}

810 811 812 813 814 815 816
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
817
static inline int normal_prio(struct task_struct *p)
818 819 820
{
	int prio;

821 822 823
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
824 825 826 827 828 829 830 831 832 833 834 835 836
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
837
static int effective_prio(struct task_struct *p)
838 839 840 841 842 843 844 845 846 847 848 849
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
850 851 852
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
853 854
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
855
 */
856
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
857 858 859 860
{
	return cpu_curr(task_cpu(p)) == p;
}

861
/*
862 863 864 865 866
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
867
 */
868 869
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
870
				       int oldprio)
871 872 873
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
874
			prev_class->switched_from(rq, p);
875

P
Peter Zijlstra 已提交
876
		p->sched_class->switched_to(rq, p);
877
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
878
		p->sched_class->prio_changed(rq, p, oldprio);
879 880
}

881
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
882 883 884 885 886 887 888 889 890 891
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
892
				resched_curr(rq);
893 894 895 896 897 898 899 900 901
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
902
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
903
		rq_clock_skip_update(rq, true);
904 905
}

L
Linus Torvalds 已提交
906
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
926 927
static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
				   struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
928 929 930 931
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
932
	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
933
	set_task_cpu(p, new_cpu);
934
	rq_unlock(rq, rf);
P
Peter Zijlstra 已提交
935 936 937

	rq = cpu_rq(new_cpu);

938
	rq_lock(rq, rf);
P
Peter Zijlstra 已提交
939 940
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
941
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
942 943 944 945 946 947 948 949 950 951 952
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
I
Ingo Molnar 已提交
953
 * Move (not current) task off this CPU, onto the destination CPU. We're doing
P
Peter Zijlstra 已提交
954 955 956 957 958 959 960
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
961 962
static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
				 struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
963
{
964 965 966 967 968 969 970
	if (p->flags & PF_KTHREAD) {
		if (unlikely(!cpu_online(dest_cpu)))
			return rq;
	} else {
		if (unlikely(!cpu_active(dest_cpu)))
			return rq;
	}
P
Peter Zijlstra 已提交
971 972

	/* Affinity changed (again). */
973
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
974
		return rq;
P
Peter Zijlstra 已提交
975

976
	update_rq_clock(rq);
977
	rq = move_queued_task(rq, rf, p, dest_cpu);
978 979

	return rq;
P
Peter Zijlstra 已提交
980 981 982 983 984 985 986 987 988 989
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
990 991
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
992
	struct rq_flags rf;
P
Peter Zijlstra 已提交
993 994

	/*
I
Ingo Molnar 已提交
995 996
	 * The original target CPU might have gone down and we might
	 * be on another CPU but it doesn't matter.
P
Peter Zijlstra 已提交
997 998 999 1000 1001 1002 1003 1004
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1005 1006

	raw_spin_lock(&p->pi_lock);
1007
	rq_lock(rq, &rf);
1008 1009 1010 1011 1012
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
1013 1014
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
1015
			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1016 1017 1018
		else
			p->wake_cpu = arg->dest_cpu;
	}
1019
	rq_unlock(rq, &rf);
1020 1021
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1022 1023 1024 1025
	local_irq_enable();
	return 0;
}

1026 1027 1028 1029 1030
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1031 1032 1033 1034 1035
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1036 1037
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1038 1039 1040
	struct rq *rq = task_rq(p);
	bool queued, running;

1041
	lockdep_assert_held(&p->pi_lock);
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1052
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1053 1054 1055 1056
	}
	if (running)
		put_prev_task(rq, p);

1057
	p->sched_class->set_cpus_allowed(p, new_mask);
1058 1059

	if (queued)
1060
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1061
	if (running)
1062
		set_curr_task(rq, p);
1063 1064
}

P
Peter Zijlstra 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1074 1075
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1076
{
1077
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1078
	unsigned int dest_cpu;
1079 1080
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1081 1082
	int ret = 0;

1083
	rq = task_rq_lock(p, &rf);
1084
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1085

1086 1087 1088 1089 1090 1091 1092
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1093 1094 1095 1096 1097 1098 1099 1100 1101
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1102 1103 1104
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1105
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1106 1107 1108 1109 1110 1111
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1112 1113 1114
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
I
Ingo Molnar 已提交
1115
		 * !active we want to ensure they are strict per-CPU threads.
1116 1117 1118 1119 1120 1121
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1122 1123 1124 1125
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1126
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1127 1128 1129
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1130
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1131 1132 1133
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1134 1135 1136 1137 1138
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1139
		rq = move_queued_task(rq, &rf, p, dest_cpu);
1140
	}
P
Peter Zijlstra 已提交
1141
out:
1142
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1143 1144 1145

	return ret;
}
1146 1147 1148 1149 1150

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1151 1152
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1153
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1154
{
1155 1156 1157 1158 1159
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1160
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1161
			!p->on_rq);
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1172
#ifdef CONFIG_LOCKDEP
1173 1174 1175 1176 1177
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1178
	 * see task_group().
1179 1180 1181 1182
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1183 1184 1185
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1186 1187 1188 1189
	/*
	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
	 */
	WARN_ON_ONCE(!cpu_online(new_cpu));
1190 1191
#endif

1192
	trace_sched_migrate_task(p, new_cpu);
1193

1194
	if (task_cpu(p) != new_cpu) {
1195
		if (p->sched_class->migrate_task_rq)
1196
			p->sched_class->migrate_task_rq(p);
1197
		p->se.nr_migrations++;
1198
		perf_event_task_migrate(p);
1199
	}
I
Ingo Molnar 已提交
1200 1201

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1202 1203
}

1204 1205
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1206
	if (task_on_rq_queued(p)) {
1207
		struct rq *src_rq, *dst_rq;
1208
		struct rq_flags srf, drf;
1209 1210 1211 1212

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1213 1214 1215
		rq_pin_lock(src_rq, &srf);
		rq_pin_lock(dst_rq, &drf);

1216
		p->on_rq = TASK_ON_RQ_MIGRATING;
1217 1218 1219
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1220
		p->on_rq = TASK_ON_RQ_QUEUED;
1221
		check_preempt_curr(dst_rq, p, 0);
1222 1223 1224 1225

		rq_unpin_lock(dst_rq, &drf);
		rq_unpin_lock(src_rq, &srf);

1226 1227 1228 1229
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
I
Ingo Molnar 已提交
1230
		 * previous CPU our target instead of where it really is.
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1247 1248 1249
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1250 1251 1252
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1253 1254
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1255
	double_rq_lock(src_rq, dst_rq);
1256

1257 1258 1259 1260 1261 1262
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

1263
	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1264 1265
		goto unlock;

1266
	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1267 1268 1269 1270 1271 1272 1273 1274 1275
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1276 1277
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1300 1301 1302 1303
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1304 1305 1306
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

1307
	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1308 1309
		goto out;

1310
	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1311 1312
		goto out;

1313
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1314 1315 1316 1317 1318 1319
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1320 1321 1322
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1323 1324 1325 1326 1327 1328 1329
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1330 1331 1332 1333 1334 1335
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1336
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1337
{
1338
	int running, queued;
1339
	struct rq_flags rf;
R
Roland McGrath 已提交
1340
	unsigned long ncsw;
1341
	struct rq *rq;
L
Linus Torvalds 已提交
1342

1343 1344 1345 1346 1347 1348 1349 1350
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1363 1364 1365
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1366
			cpu_relax();
R
Roland McGrath 已提交
1367
		}
1368

1369 1370 1371 1372 1373
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1374
		rq = task_rq_lock(p, &rf);
1375
		trace_sched_wait_task(p);
1376
		running = task_running(rq, p);
1377
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1378
		ncsw = 0;
1379
		if (!match_state || p->state == match_state)
1380
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1381
		task_rq_unlock(rq, p, &rf);
1382

R
Roland McGrath 已提交
1383 1384 1385 1386 1387 1388
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1399

1400 1401 1402 1403 1404
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1405
		 * So if it was still runnable (but just not actively
1406 1407 1408
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1409
		if (unlikely(queued)) {
T
Thomas Gleixner 已提交
1410
			ktime_t to = NSEC_PER_SEC / HZ;
1411 1412 1413

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1414 1415
			continue;
		}
1416

1417 1418 1419 1420 1421 1422 1423
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1424 1425

	return ncsw;
L
Linus Torvalds 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1435
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1436 1437 1438 1439 1440
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1441
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1451
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1452

1453
/*
1454
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1455 1456 1457 1458 1459 1460 1461
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
I
Ingo Molnar 已提交
1462
 *    CPU isn't yet part of the sched domains, and balancing will not
1463 1464
 *    see it.
 *
I
Ingo Molnar 已提交
1465
 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1466
 *    avoid the load balancer to place new tasks on the to be removed
I
Ingo Molnar 已提交
1467
 *    CPU. Existing tasks will remain running there and will be taken
1468 1469 1470 1471 1472 1473
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1474
 */
1475 1476
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1477 1478
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1479 1480
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1481

1482
	/*
I
Ingo Molnar 已提交
1483 1484 1485
	 * If the node that the CPU is on has been offlined, cpu_to_node()
	 * will return -1. There is no CPU on the node, and we should
	 * select the CPU on the other node.
1486 1487 1488 1489 1490 1491 1492 1493
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
1494
			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1495 1496
				return dest_cpu;
		}
1497
	}
1498

1499 1500
	for (;;) {
		/* Any allowed, online CPU? */
1501
		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1502 1503 1504
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1505 1506 1507
				continue;
			goto out;
		}
1508

1509
		/* No more Mr. Nice Guy. */
1510 1511
		switch (state) {
		case cpuset:
1512 1513 1514 1515 1516
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
I
Ingo Molnar 已提交
1517
			/* Fall-through */
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1537
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1538 1539
					task_pid_nr(p), p->comm, cpu);
		}
1540 1541 1542 1543 1544
	}

	return dest_cpu;
}

1545
/*
1546
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1547
 */
1548
static inline
1549
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1550
{
1551 1552
	lockdep_assert_held(&p->pi_lock);

1553
	if (p->nr_cpus_allowed > 1)
1554
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1555
	else
1556
		cpu = cpumask_any(&p->cpus_allowed);
1557 1558 1559 1560

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
I
Ingo Molnar 已提交
1561
	 * CPU.
1562 1563 1564 1565 1566 1567
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1568
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
1569
		     !cpu_online(cpu)))
1570
		cpu = select_fallback_rq(task_cpu(p), p);
1571 1572

	return cpu;
1573
}
1574 1575 1576 1577 1578 1579

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1580

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

1611 1612 1613 1614 1615 1616 1617 1618
#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1619
#endif /* CONFIG_SMP */
1620

P
Peter Zijlstra 已提交
1621
static void
1622
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1623
{
1624
	struct rq *rq;
1625

1626 1627 1628 1629
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1630

1631 1632
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1633 1634
		schedstat_inc(rq->ttwu_local);
		schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1635 1636 1637
	} else {
		struct sched_domain *sd;

1638
		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1639
		rcu_read_lock();
1640
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1641
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1642
				schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1643 1644 1645
				break;
			}
		}
1646
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1647
	}
1648 1649

	if (wake_flags & WF_MIGRATED)
1650
		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1651 1652
#endif /* CONFIG_SMP */

1653 1654
	schedstat_inc(rq->ttwu_count);
	schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1655 1656

	if (wake_flags & WF_SYNC)
1657
		schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1658 1659
}

1660
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1661
{
T
Tejun Heo 已提交
1662
	activate_task(rq, p, en_flags);
1663
	p->on_rq = TASK_ON_RQ_QUEUED;
1664

I
Ingo Molnar 已提交
1665
	/* If a worker is waking up, notify the workqueue: */
1666 1667
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1668 1669
}

1670 1671 1672
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1673
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1674
			   struct rq_flags *rf)
T
Tejun Heo 已提交
1675 1676 1677
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1678 1679
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1680
#ifdef CONFIG_SMP
1681 1682
	if (p->sched_class->task_woken) {
		/*
1683 1684
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1685
		 */
1686
		rq_unpin_lock(rq, rf);
T
Tejun Heo 已提交
1687
		p->sched_class->task_woken(rq, p);
1688
		rq_repin_lock(rq, rf);
1689
	}
T
Tejun Heo 已提交
1690

1691
	if (rq->idle_stamp) {
1692
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1693
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1694

1695 1696 1697
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1698
			rq->avg_idle = max;
1699

T
Tejun Heo 已提交
1700 1701 1702 1703 1704
		rq->idle_stamp = 0;
	}
#endif
}

1705
static void
1706
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1707
		 struct rq_flags *rf)
1708
{
1709
	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1710

1711 1712
	lockdep_assert_held(&rq->lock);

1713 1714 1715
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1716 1717

	if (wake_flags & WF_MIGRATED)
1718
		en_flags |= ENQUEUE_MIGRATED;
1719 1720
#endif

1721
	ttwu_activate(rq, p, en_flags);
1722
	ttwu_do_wakeup(rq, p, wake_flags, rf);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1733
	struct rq_flags rf;
1734 1735 1736
	struct rq *rq;
	int ret = 0;

1737
	rq = __task_rq_lock(p, &rf);
1738
	if (task_on_rq_queued(p)) {
1739 1740
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1741
		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1742 1743
		ret = 1;
	}
1744
	__task_rq_unlock(rq, &rf);
1745 1746 1747 1748

	return ret;
}

1749
#ifdef CONFIG_SMP
1750
void sched_ttwu_pending(void)
1751 1752
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1753
	struct llist_node *llist = llist_del_all(&rq->wake_list);
1754
	struct task_struct *p, *t;
1755
	struct rq_flags rf;
1756

1757 1758 1759
	if (!llist)
		return;

1760
	rq_lock_irqsave(rq, &rf);
1761
	update_rq_clock(rq);
1762

1763 1764
	llist_for_each_entry_safe(p, t, llist, wake_entry)
		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1765

1766
	rq_unlock_irqrestore(rq, &rf);
1767 1768 1769 1770
}

void scheduler_ipi(void)
{
1771 1772 1773 1774 1775
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1776
	preempt_fold_need_resched();
1777

1778
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1795
	sched_ttwu_pending();
1796 1797 1798 1799

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1800
	if (unlikely(got_nohz_idle_kick())) {
1801
		this_rq()->idle_balance = 1;
1802
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1803
	}
1804
	irq_exit();
1805 1806
}

P
Peter Zijlstra 已提交
1807
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1808
{
1809 1810
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1811 1812
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1813 1814 1815 1816 1817 1818
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1819
}
1820

1821 1822 1823
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1824
	struct rq_flags rf;
1825

1826 1827 1828 1829
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1830 1831 1832 1833

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
1834
		rq_lock_irqsave(rq, &rf);
1835 1836
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
I
Ingo Molnar 已提交
1837
		/* Else CPU is not idle, do nothing here: */
1838
		rq_unlock_irqrestore(rq, &rf);
1839
	}
1840 1841 1842

out:
	rcu_read_unlock();
1843 1844
}

1845
bool cpus_share_cache(int this_cpu, int that_cpu)
1846 1847 1848
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1849
#endif /* CONFIG_SMP */
1850

1851
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1852 1853
{
	struct rq *rq = cpu_rq(cpu);
1854
	struct rq_flags rf;
1855

1856
#if defined(CONFIG_SMP)
1857
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
I
Ingo Molnar 已提交
1858
		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
P
Peter Zijlstra 已提交
1859
		ttwu_queue_remote(p, cpu, wake_flags);
1860 1861 1862 1863
		return;
	}
#endif

1864
	rq_lock(rq, &rf);
1865
	update_rq_clock(rq);
1866
	ttwu_do_activate(rq, p, wake_flags, &rf);
1867
	rq_unlock(rq, &rf);
T
Tejun Heo 已提交
1868 1869
}

1870 1871 1872 1873 1874 1875
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
I
Ingo Molnar 已提交
1876 1877
 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 * execution on its new CPU [c1].
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
I
Ingo Molnar 已提交
1888
 * Note: the CPU doing B need not be c0 or c1
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1920
 *   2) smp_cond_load_acquire(!X->on_cpu)
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1931
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1957
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1958 1959 1960
 *
 */

T
Tejun Heo 已提交
1961
/**
L
Linus Torvalds 已提交
1962
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1963
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1964
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1965
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1966
 *
1967
 * If (@state & @p->state) @p->state = TASK_RUNNING.
L
Linus Torvalds 已提交
1968
 *
1969 1970 1971 1972 1973 1974 1975
 * If the task was not queued/runnable, also place it back on a runqueue.
 *
 * Atomic against schedule() which would dequeue a task, also see
 * set_current_state().
 *
 * Return: %true if @p->state changes (an actual wakeup was done),
 *	   %false otherwise.
L
Linus Torvalds 已提交
1976
 */
1977 1978
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1979 1980
{
	unsigned long flags;
1981
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1982

1983 1984 1985 1986 1987 1988
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
1989
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1990
	smp_mb__after_spinlock();
P
Peter Zijlstra 已提交
1991
	if (!(p->state & state))
L
Linus Torvalds 已提交
1992 1993
		goto out;

1994 1995
	trace_sched_waking(p);

I
Ingo Molnar 已提交
1996 1997
	/* We're going to change ->state: */
	success = 1;
L
Linus Torvalds 已提交
1998 1999
	cpu = task_cpu(p);

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
	 * sched_ttwu_pending()                 try_to_wake_up()
	 *   [S] p->on_rq = 1;                  [L] P->state
	 *       UNLOCK rq->lock  -----.
	 *                              \
	 *				 +---   RMB
	 * schedule()                   /
	 *       LOCK rq->lock    -----'
	 *       UNLOCK rq->lock
	 *
	 * [task p]
	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
	 *
	 * Pairs with the UNLOCK+LOCK on rq->lock from the
	 * last wakeup of our task and the schedule that got our task
	 * current.
	 */
	smp_rmb();
2022 2023
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2024 2025

#ifdef CONFIG_SMP
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2045
	/*
I
Ingo Molnar 已提交
2046
	 * If the owning (remote) CPU is still in the middle of schedule() with
2047
	 * this task as prev, wait until its done referencing the task.
2048
	 *
2049
	 * Pairs with the smp_store_release() in finish_task().
2050 2051 2052
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2053
	 */
2054
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2055

2056
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2057
	p->state = TASK_WAKING;
2058

2059
	if (p->in_iowait) {
2060
		delayacct_blkio_end(p);
2061 2062 2063
		atomic_dec(&task_rq(p)->nr_iowait);
	}

2064
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2065 2066
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2067
		set_task_cpu(p, cpu);
2068
	}
2069 2070 2071 2072

#else /* CONFIG_SMP */

	if (p->in_iowait) {
2073
		delayacct_blkio_end(p);
2074 2075 2076
		atomic_dec(&task_rq(p)->nr_iowait);
	}

L
Linus Torvalds 已提交
2077 2078
#endif /* CONFIG_SMP */

2079
	ttwu_queue(p, cpu, wake_flags);
2080
stat:
2081
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2082
out:
2083
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2084 2085 2086 2087

	return success;
}

T
Tejun Heo 已提交
2088 2089 2090
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2091
 * @rf: request-queue flags for pinning
T
Tejun Heo 已提交
2092
 *
2093
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2094
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2095
 * the current task.
T
Tejun Heo 已提交
2096
 */
2097
static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
T
Tejun Heo 已提交
2098 2099 2100
{
	struct rq *rq = task_rq(p);

2101 2102 2103 2104
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2105 2106
	lockdep_assert_held(&rq->lock);

2107
	if (!raw_spin_trylock(&p->pi_lock)) {
2108 2109 2110 2111 2112 2113
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2114
		rq_unlock(rq, rf);
2115
		raw_spin_lock(&p->pi_lock);
2116
		rq_relock(rq, rf);
2117 2118
	}

T
Tejun Heo 已提交
2119
	if (!(p->state & TASK_NORMAL))
2120
		goto out;
T
Tejun Heo 已提交
2121

2122 2123
	trace_sched_waking(p);

2124 2125
	if (!task_on_rq_queued(p)) {
		if (p->in_iowait) {
2126
			delayacct_blkio_end(p);
2127 2128
			atomic_dec(&rq->nr_iowait);
		}
2129
		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2130
	}
P
Peter Zijlstra 已提交
2131

2132
	ttwu_do_wakeup(rq, p, 0, rf);
2133
	ttwu_stat(p, smp_processor_id(), 0);
2134 2135
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2136 2137
}

2138 2139 2140 2141 2142
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2143 2144 2145
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2146 2147 2148 2149
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2150
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2151
{
2152
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2153 2154 2155
}
EXPORT_SYMBOL(wake_up_process);

2156
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2157 2158 2159 2160 2161 2162 2163
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2164 2165 2166
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2167
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2168
{
P
Peter Zijlstra 已提交
2169 2170 2171
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2172 2173
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2174
	p->se.prev_sum_exec_runtime	= 0;
2175
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2176
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2177
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2178

2179 2180 2181 2182
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2183
#ifdef CONFIG_SCHEDSTATS
2184
	/* Even if schedstat is disabled, there should not be garbage */
2185
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2186
#endif
N
Nick Piggin 已提交
2187

2188
	RB_CLEAR_NODE(&p->dl.rb_node);
2189
	init_dl_task_timer(&p->dl);
2190
	init_dl_inactive_task_timer(&p->dl);
2191
	__dl_clear_params(p);
2192

P
Peter Zijlstra 已提交
2193
	INIT_LIST_HEAD(&p->rt.run_list);
2194 2195 2196 2197
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2198

2199 2200 2201
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2202 2203 2204

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2205
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2206 2207 2208
		p->mm->numa_scan_seq = 0;
	}

2209 2210 2211 2212 2213
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2214 2215
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2216
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2217
	p->numa_work.next = &p->numa_work;
2218
	p->numa_faults = NULL;
2219 2220
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2221 2222

	p->numa_group = NULL;
2223
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2224 2225
}

2226 2227
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2228
#ifdef CONFIG_NUMA_BALANCING
2229

2230 2231 2232
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2233
		static_branch_enable(&sched_numa_balancing);
2234
	else
2235
		static_branch_disable(&sched_numa_balancing);
2236
}
2237 2238 2239 2240 2241 2242 2243

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2244
	int state = static_branch_likely(&sched_numa_balancing);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2260

2261 2262
#ifdef CONFIG_SCHEDSTATS

2263
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2264
static bool __initdata __sched_schedstats = false;
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2288 2289 2290 2291 2292
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2293
	if (!strcmp(str, "enable")) {
2294
		__sched_schedstats = true;
2295 2296
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2297
		__sched_schedstats = false;
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2308 2309 2310 2311 2312
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2333 2334 2335 2336
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2337 2338 2339 2340

/*
 * fork()/clone()-time setup:
 */
2341
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2342
{
2343
	unsigned long flags;
I
Ingo Molnar 已提交
2344 2345
	int cpu = get_cpu();

2346
	__sched_fork(clone_flags, p);
2347
	/*
2348
	 * We mark the process as NEW here. This guarantees that
2349 2350 2351
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2352
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2353

2354 2355 2356 2357 2358
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2359 2360 2361 2362
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2363
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2364
			p->policy = SCHED_NORMAL;
2365
			p->static_prio = NICE_TO_PRIO(0);
2366 2367 2368 2369 2370
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
2371
		set_load_weight(p, false);
2372

2373 2374 2375 2376 2377 2378
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2379

2380 2381 2382 2383 2384 2385
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2386
		p->sched_class = &fair_sched_class;
2387
	}
2388

2389
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2390

2391 2392 2393 2394 2395 2396 2397
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2398
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2399
	/*
I
Ingo Molnar 已提交
2400
	 * We're setting the CPU for the first time, we don't migrate,
2401 2402 2403 2404 2405
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2406
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2407

2408
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2409
	if (likely(sched_info_on()))
2410
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2411
#endif
P
Peter Zijlstra 已提交
2412 2413
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2414
#endif
2415
	init_task_preempt_count(p);
2416
#ifdef CONFIG_SMP
2417
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2418
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2419
#endif
2420

N
Nick Piggin 已提交
2421
	put_cpu();
2422
	return 0;
L
Linus Torvalds 已提交
2423 2424
}

2425 2426 2427
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
2428
		return BW_UNIT;
2429 2430 2431 2432 2433 2434 2435 2436 2437

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

2438
	return div64_u64(runtime << BW_SHIFT, period);
2439 2440
}

L
Linus Torvalds 已提交
2441 2442 2443 2444 2445 2446 2447
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2448
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2449
{
2450
	struct rq_flags rf;
I
Ingo Molnar 已提交
2451
	struct rq *rq;
2452

2453
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2454
	p->state = TASK_RUNNING;
2455 2456 2457 2458
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
I
Ingo Molnar 已提交
2459
	 *  - any previously selected CPU might disappear through hotplug
2460 2461 2462
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2463
	 */
2464
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2465
#endif
2466
	rq = __task_rq_lock(p, &rf);
2467
	update_rq_clock(rq);
2468
	post_init_entity_util_avg(&p->se);
2469

2470
	activate_task(rq, p, ENQUEUE_NOCLOCK);
2471
	p->on_rq = TASK_ON_RQ_QUEUED;
2472
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2473
	check_preempt_curr(rq, p, WF_FORK);
2474
#ifdef CONFIG_SMP
2475 2476 2477 2478 2479
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2480
		rq_unpin_lock(rq, &rf);
2481
		p->sched_class->task_woken(rq, p);
2482
		rq_repin_lock(rq, &rf);
2483
	}
2484
#endif
2485
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2486 2487
}

2488 2489
#ifdef CONFIG_PREEMPT_NOTIFIERS

2490 2491
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2504
/**
2505
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2506
 * @notifier: notifier struct to register
2507 2508 2509
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2510 2511 2512
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2513 2514 2515 2516 2517 2518
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2519
 * @notifier: notifier struct to unregister
2520
 *
2521
 * This is *not* safe to call from within a preemption notifier.
2522 2523 2524 2525 2526 2527 2528
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2529
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2530 2531 2532
{
	struct preempt_notifier *notifier;

2533
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2534 2535 2536
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2537 2538 2539 2540 2541 2542
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2543
static void
2544 2545
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2546 2547 2548
{
	struct preempt_notifier *notifier;

2549
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2550 2551 2552
		notifier->ops->sched_out(notifier, next);
}

2553 2554 2555 2556 2557 2558 2559 2560
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2561
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2562

2563
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2564 2565 2566
{
}

2567
static inline void
2568 2569 2570 2571 2572
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2573
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2574

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
static inline void prepare_task(struct task_struct *next)
{
#ifdef CONFIG_SMP
	/*
	 * Claim the task as running, we do this before switching to it
	 * such that any running task will have this set.
	 */
	next->on_cpu = 1;
#endif
}

static inline void finish_task(struct task_struct *prev)
{
#ifdef CONFIG_SMP
	/*
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 *
	 * In particular, the load of prev->state in finish_task_switch() must
	 * happen before this.
	 *
	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
	 */
	smp_store_release(&prev->on_cpu, 0);
#endif
}

static inline void finish_lock_switch(struct rq *rq)
{
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

	raw_spin_unlock_irq(&rq->lock);
}

2619 2620 2621
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2622
 * @prev: the current task that is being switched out
2623 2624 2625 2626 2627 2628 2629 2630 2631
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2632 2633 2634
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2635
{
2636
	sched_info_switch(rq, prev, next);
2637
	perf_event_task_sched_out(prev, next);
2638
	fire_sched_out_preempt_notifiers(prev, next);
2639
	prepare_task(next);
2640 2641 2642
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2643 2644 2645 2646
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2647 2648 2649 2650
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2651 2652
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2653
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2654 2655
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2656 2657 2658 2659 2660
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2661
 */
2662
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2663 2664
	__releases(rq->lock)
{
2665
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2666
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2667
	long prev_state;
L
Linus Torvalds 已提交
2668

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2680 2681 2682 2683
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2684

L
Linus Torvalds 已提交
2685 2686 2687 2688
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2689
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2690 2691
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2692 2693
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
2694
	 * finish_task), otherwise a concurrent wakeup can get prev
2695 2696
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2697
	 */
O
Oleg Nesterov 已提交
2698
	prev_state = prev->state;
2699
	vtime_task_switch(prev);
2700
	perf_event_task_sched_in(prev, current);
2701 2702
	finish_task(prev);
	finish_lock_switch(rq);
2703
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2704

2705
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2706 2707
	if (mm)
		mmdrop(mm);
2708
	if (unlikely(prev_state == TASK_DEAD)) {
2709 2710 2711
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2712 2713 2714
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2715
		 */
2716
		kprobe_flush_task(prev);
2717 2718 2719 2720

		/* Task is done with its stack. */
		put_task_stack(prev);

L
Linus Torvalds 已提交
2721
		put_task_struct(prev);
2722
	}
2723

2724
	tick_nohz_task_switch();
2725
	return rq;
L
Linus Torvalds 已提交
2726 2727
}

2728 2729 2730
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2731
static void __balance_callback(struct rq *rq)
2732
{
2733 2734 2735
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2736

2737 2738 2739 2740 2741 2742 2743 2744
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2745

2746
		func(rq);
2747
	}
2748 2749 2750 2751 2752 2753 2754
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2755 2756 2757
}

#else
2758

2759
static inline void balance_callback(struct rq *rq)
2760
{
L
Linus Torvalds 已提交
2761 2762
}

2763 2764
#endif

L
Linus Torvalds 已提交
2765 2766 2767 2768
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2769
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2770 2771
	__releases(rq->lock)
{
2772
	struct rq *rq;
2773

2774 2775 2776 2777 2778 2779 2780 2781 2782
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2783
	rq = finish_task_switch(prev);
2784
	balance_callback(rq);
2785
	preempt_enable();
2786

L
Linus Torvalds 已提交
2787
	if (current->set_child_tid)
2788
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2789 2790 2791
}

/*
2792
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2793
 */
2794
static __always_inline struct rq *
2795
context_switch(struct rq *rq, struct task_struct *prev,
2796
	       struct task_struct *next, struct rq_flags *rf)
L
Linus Torvalds 已提交
2797
{
I
Ingo Molnar 已提交
2798
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2799

2800
	prepare_task_switch(rq, prev, next);
2801

I
Ingo Molnar 已提交
2802 2803
	mm = next->mm;
	oldmm = prev->active_mm;
2804 2805 2806 2807 2808
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2809
	arch_start_context_switch(prev);
2810

2811
	if (!mm) {
L
Linus Torvalds 已提交
2812
		next->active_mm = oldmm;
V
Vegard Nossum 已提交
2813
		mmgrab(oldmm);
L
Linus Torvalds 已提交
2814 2815
		enter_lazy_tlb(oldmm, next);
	} else
2816
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2817

2818
	if (!prev->mm) {
L
Linus Torvalds 已提交
2819 2820 2821
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2822

2823
	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2824

2825 2826 2827 2828 2829 2830
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2831
	rq_unpin_lock(rq, rf);
2832
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2833 2834 2835

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2836
	barrier();
2837 2838

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2839 2840 2841
}

/*
2842
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2843 2844
 *
 * externally visible scheduler statistics: current number of runnable
2845
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2846 2847 2848 2849 2850 2851 2852 2853 2854
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2855
}
L
Linus Torvalds 已提交
2856

2857
/*
I
Ingo Molnar 已提交
2858
 * Check if only the current task is running on the CPU.
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2869 2870 2871
 */
bool single_task_running(void)
{
2872
	return raw_rq()->nr_running == 1;
2873 2874 2875
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2876
unsigned long long nr_context_switches(void)
2877
{
2878 2879
	int i;
	unsigned long long sum = 0;
2880

2881
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2882
		sum += cpu_rq(i)->nr_switches;
2883

L
Linus Torvalds 已提交
2884 2885
	return sum;
}
2886

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
/*
 * IO-wait accounting, and how its mostly bollocks (on SMP).
 *
 * The idea behind IO-wait account is to account the idle time that we could
 * have spend running if it were not for IO. That is, if we were to improve the
 * storage performance, we'd have a proportional reduction in IO-wait time.
 *
 * This all works nicely on UP, where, when a task blocks on IO, we account
 * idle time as IO-wait, because if the storage were faster, it could've been
 * running and we'd not be idle.
 *
 * This has been extended to SMP, by doing the same for each CPU. This however
 * is broken.
 *
 * Imagine for instance the case where two tasks block on one CPU, only the one
 * CPU will have IO-wait accounted, while the other has regular idle. Even
 * though, if the storage were faster, both could've ran at the same time,
 * utilising both CPUs.
 *
 * This means, that when looking globally, the current IO-wait accounting on
 * SMP is a lower bound, by reason of under accounting.
 *
 * Worse, since the numbers are provided per CPU, they are sometimes
 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 * associated with any one particular CPU, it can wake to another CPU than it
 * blocked on. This means the per CPU IO-wait number is meaningless.
 *
 * Task CPU affinities can make all that even more 'interesting'.
 */

L
Linus Torvalds 已提交
2917 2918 2919
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2920

2921
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2922
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2923

L
Linus Torvalds 已提交
2924 2925
	return sum;
}
2926

2927 2928 2929 2930 2931 2932 2933
/*
 * Consumers of these two interfaces, like for example the cpufreq menu
 * governor are using nonsensical data. Boosting frequency for a CPU that has
 * IO-wait which might not even end up running the task when it does become
 * runnable.
 */

2934
unsigned long nr_iowait_cpu(int cpu)
2935
{
2936
	struct rq *this = cpu_rq(cpu);
2937 2938
	return atomic_read(&this->nr_iowait);
}
2939

2940 2941
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2942 2943 2944
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2945 2946
}

I
Ingo Molnar 已提交
2947
#ifdef CONFIG_SMP
2948

2949
/*
P
Peter Zijlstra 已提交
2950 2951
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2952
 */
P
Peter Zijlstra 已提交
2953
void sched_exec(void)
2954
{
P
Peter Zijlstra 已提交
2955
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2956
	unsigned long flags;
2957
	int dest_cpu;
2958

2959
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2960
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2961 2962
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2963

2964
	if (likely(cpu_active(dest_cpu))) {
2965
		struct migration_arg arg = { p, dest_cpu };
2966

2967 2968
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2969 2970
		return;
	}
2971
unlock:
2972
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2973
}
I
Ingo Molnar 已提交
2974

L
Linus Torvalds 已提交
2975 2976 2977
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2978
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2979 2980

EXPORT_PER_CPU_SYMBOL(kstat);
2981
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2982

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

3000 3001 3002 3003 3004 3005 3006
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
3007
	struct rq_flags rf;
3008
	struct rq *rq;
3009
	u64 ns;
3010

3011 3012 3013 3014 3015 3016
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
I
Ingo Molnar 已提交
3017 3018
	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
	 * If we race with it entering CPU, unaccounted time is 0. This is
3019
	 * indistinguishable from the read occurring a few cycles earlier.
3020 3021
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
3022
	 */
3023
	if (!p->on_cpu || !task_on_rq_queued(p))
3024 3025 3026
		return p->se.sum_exec_runtime;
#endif

3027
	rq = task_rq_lock(p, &rf);
3028 3029 3030 3031 3032 3033
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
3034
		prefetch_curr_exec_start(p);
3035 3036 3037 3038
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3039
	task_rq_unlock(rq, p, &rf);
3040 3041 3042

	return ns;
}
3043

3044 3045 3046 3047 3048 3049 3050 3051
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3052
	struct task_struct *curr = rq->curr;
3053
	struct rq_flags rf;
3054 3055

	sched_clock_tick();
I
Ingo Molnar 已提交
3056

3057 3058
	rq_lock(rq, &rf);

3059
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3060
	curr->sched_class->task_tick(rq, curr, 0);
3061
	cpu_load_update_active(rq);
3062
	calc_global_load_tick(rq);
3063 3064

	rq_unlock(rq, &rf);
3065

3066
	perf_event_task_tick();
3067

3068
#ifdef CONFIG_SMP
3069
	rq->idle_balance = idle_cpu(cpu);
3070
	trigger_load_balance(rq);
3071
#endif
3072
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3073 3074
}

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3086 3087
 *
 * Return: Maximum deferment in nanoseconds.
3088 3089 3090 3091
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3092
	unsigned long next, now = READ_ONCE(jiffies);
3093 3094 3095 3096 3097 3098

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3099
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3100
}
3101
#endif
L
Linus Torvalds 已提交
3102

3103 3104
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3119

3120
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3121
{
3122
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3123 3124 3125
	/*
	 * Underflow?
	 */
3126 3127
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3128
#endif
3129
	__preempt_count_add(val);
3130
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3131 3132 3133
	/*
	 * Spinlock count overflowing soon?
	 */
3134 3135
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3136
#endif
3137
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3138
}
3139
EXPORT_SYMBOL(preempt_count_add);
3140
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3141

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3152
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3153
{
3154
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3155 3156 3157
	/*
	 * Underflow?
	 */
3158
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3159
		return;
L
Linus Torvalds 已提交
3160 3161 3162
	/*
	 * Is the spinlock portion underflowing?
	 */
3163 3164 3165
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3166
#endif
3167

3168
	preempt_latency_stop(val);
3169
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3170
}
3171
EXPORT_SYMBOL(preempt_count_sub);
3172
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3173

3174 3175 3176
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3177 3178
#endif

3179 3180 3181 3182 3183 3184 3185 3186 3187
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
	return p->preempt_disable_ip;
#else
	return 0;
#endif
}

L
Linus Torvalds 已提交
3188
/*
I
Ingo Molnar 已提交
3189
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3190
 */
I
Ingo Molnar 已提交
3191
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3192
{
3193 3194 3195
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3196 3197 3198
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3199 3200
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3201

I
Ingo Molnar 已提交
3202
	debug_show_held_locks(prev);
3203
	print_modules();
I
Ingo Molnar 已提交
3204 3205
	if (irqs_disabled())
		print_irqtrace_events(prev);
3206 3207
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3208
		pr_err("Preemption disabled at:");
3209
		print_ip_sym(preempt_disable_ip);
3210 3211
		pr_cont("\n");
	}
3212 3213 3214
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3215
	dump_stack();
3216
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3217
}
L
Linus Torvalds 已提交
3218

I
Ingo Molnar 已提交
3219 3220 3221 3222 3223
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3224
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3225 3226
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3227
#endif
3228

3229
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3230
		__schedule_bug(prev);
3231 3232
		preempt_count_set(PREEMPT_DISABLED);
	}
3233
	rcu_sleep_check();
I
Ingo Molnar 已提交
3234

L
Linus Torvalds 已提交
3235 3236
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3237
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3238 3239 3240 3241 3242 3243
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3244
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
I
Ingo Molnar 已提交
3245
{
3246
	const struct sched_class *class;
I
Ingo Molnar 已提交
3247
	struct task_struct *p;
L
Linus Torvalds 已提交
3248 3249

	/*
3250 3251 3252 3253
	 * Optimization: we know that if all tasks are in the fair class we can
	 * call that function directly, but only if the @prev task wasn't of a
	 * higher scheduling class, because otherwise those loose the
	 * opportunity to pull in more work from other CPUs.
L
Linus Torvalds 已提交
3254
	 */
3255 3256 3257 3258
	if (likely((prev->sched_class == &idle_sched_class ||
		    prev->sched_class == &fair_sched_class) &&
		   rq->nr_running == rq->cfs.h_nr_running)) {

3259
		p = fair_sched_class.pick_next_task(rq, prev, rf);
3260 3261 3262
		if (unlikely(p == RETRY_TASK))
			goto again;

I
Ingo Molnar 已提交
3263
		/* Assumes fair_sched_class->next == idle_sched_class */
3264
		if (unlikely(!p))
3265
			p = idle_sched_class.pick_next_task(rq, prev, rf);
3266 3267

		return p;
L
Linus Torvalds 已提交
3268 3269
	}

3270
again:
3271
	for_each_class(class) {
3272
		p = class->pick_next_task(rq, prev, rf);
3273 3274 3275
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3276
			return p;
3277
		}
I
Ingo Molnar 已提交
3278
	}
3279

I
Ingo Molnar 已提交
3280 3281
	/* The idle class should always have a runnable task: */
	BUG();
I
Ingo Molnar 已提交
3282
}
L
Linus Torvalds 已提交
3283

I
Ingo Molnar 已提交
3284
/*
3285
 * __schedule() is the main scheduler function.
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3320
 *
3321
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3322
 */
3323
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3324 3325
{
	struct task_struct *prev, *next;
3326
	unsigned long *switch_count;
3327
	struct rq_flags rf;
I
Ingo Molnar 已提交
3328
	struct rq *rq;
3329
	int cpu;
I
Ingo Molnar 已提交
3330 3331 3332 3333 3334 3335

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3336

3337
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3338
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3339

3340
	local_irq_disable();
3341
	rcu_note_context_switch(preempt);
3342

3343 3344 3345 3346 3347
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
3348
	rq_lock(rq, &rf);
3349
	smp_mb__after_spinlock();
L
Linus Torvalds 已提交
3350

I
Ingo Molnar 已提交
3351 3352
	/* Promote REQ to ACT */
	rq->clock_update_flags <<= 1;
3353
	update_rq_clock(rq);
3354

3355
	switch_count = &prev->nivcsw;
3356
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3357
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3358
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3359
		} else {
3360
			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3361 3362
			prev->on_rq = 0;

3363 3364 3365 3366 3367
			if (prev->in_iowait) {
				atomic_inc(&rq->nr_iowait);
				delayacct_blkio_start();
			}

T
Tejun Heo 已提交
3368
			/*
3369 3370 3371
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3372 3373 3374 3375
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3376
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3377
				if (to_wakeup)
3378
					try_to_wake_up_local(to_wakeup, &rf);
T
Tejun Heo 已提交
3379 3380
			}
		}
I
Ingo Molnar 已提交
3381
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3382 3383
	}

3384
	next = pick_next_task(rq, prev, &rf);
3385
	clear_tsk_need_resched(prev);
3386
	clear_preempt_need_resched();
L
Linus Torvalds 已提交
3387 3388 3389 3390

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
		/*
		 * The membarrier system call requires each architecture
		 * to have a full memory barrier after updating
		 * rq->curr, before returning to user-space. For TSO
		 * (e.g. x86), the architecture must provide its own
		 * barrier in switch_mm(). For weakly ordered machines
		 * for which spin_unlock() acts as a full memory
		 * barrier, finish_lock_switch() in common code takes
		 * care of this barrier. For weakly ordered machines for
		 * which spin_unlock() acts as a RELEASE barrier (only
		 * arm64 and PowerPC), arm64 has a full barrier in
		 * switch_to(), and PowerPC has
		 * smp_mb__after_unlock_lock() before
		 * finish_lock_switch().
		 */
L
Linus Torvalds 已提交
3406 3407
		++*switch_count;

3408
		trace_sched_switch(preempt, prev, next);
I
Ingo Molnar 已提交
3409 3410 3411

		/* Also unlocks the rq: */
		rq = context_switch(rq, prev, next, &rf);
3412
	} else {
3413
		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3414
		rq_unlock_irq(rq, &rf);
3415
	}
L
Linus Torvalds 已提交
3416

3417
	balance_callback(rq);
L
Linus Torvalds 已提交
3418
}
3419

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
void __noreturn do_task_dead(void)
{
	/*
	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
	 * when the following two conditions become true.
	 *   - There is race condition of mmap_sem (It is acquired by
	 *     exit_mm()), and
	 *   - SMI occurs before setting TASK_RUNINNG.
	 *     (or hypervisor of virtual machine switches to other guest)
	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
	 *
	 * To avoid it, we have to wait for releasing tsk->pi_lock which
	 * is held by try_to_wake_up()
	 */
3434 3435
	raw_spin_lock_irq(&current->pi_lock);
	raw_spin_unlock_irq(&current->pi_lock);
3436

I
Ingo Molnar 已提交
3437
	/* Causes final put_task_struct in finish_task_switch(): */
3438
	__set_current_state(TASK_DEAD);
I
Ingo Molnar 已提交
3439 3440 3441 3442

	/* Tell freezer to ignore us: */
	current->flags |= PF_NOFREEZE;

3443 3444
	__schedule(false);
	BUG();
I
Ingo Molnar 已提交
3445 3446

	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3447
	for (;;)
I
Ingo Molnar 已提交
3448
		cpu_relax();
3449 3450
}

3451 3452
static inline void sched_submit_work(struct task_struct *tsk)
{
3453
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3454 3455 3456 3457 3458 3459 3460 3461 3462
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3463
asmlinkage __visible void __sched schedule(void)
3464
{
3465 3466 3467
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3468
	do {
3469
		preempt_disable();
3470
		__schedule(false);
3471
		sched_preempt_enable_no_resched();
3472
	} while (need_resched());
3473
}
L
Linus Torvalds 已提交
3474 3475
EXPORT_SYMBOL(schedule);

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
/*
 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 * state (have scheduled out non-voluntarily) by making sure that all
 * tasks have either left the run queue or have gone into user space.
 * As idle tasks do not do either, they must not ever be preempted
 * (schedule out non-voluntarily).
 *
 * schedule_idle() is similar to schedule_preempt_disable() except that it
 * never enables preemption because it does not call sched_submit_work().
 */
void __sched schedule_idle(void)
{
	/*
	 * As this skips calling sched_submit_work(), which the idle task does
	 * regardless because that function is a nop when the task is in a
	 * TASK_RUNNING state, make sure this isn't used someplace that the
	 * current task can be in any other state. Note, idle is always in the
	 * TASK_RUNNING state.
	 */
	WARN_ON_ONCE(current->state);
	do {
		__schedule(false);
	} while (need_resched());
}

3501
#ifdef CONFIG_CONTEXT_TRACKING
3502
asmlinkage __visible void __sched schedule_user(void)
3503 3504 3505 3506 3507 3508
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3509 3510
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3511
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3512
	 * too frequently to make sense yet.
3513
	 */
3514
	enum ctx_state prev_state = exception_enter();
3515
	schedule();
3516
	exception_exit(prev_state);
3517 3518 3519
}
#endif

3520 3521 3522 3523 3524 3525 3526
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3527
	sched_preempt_enable_no_resched();
3528 3529 3530 3531
	schedule();
	preempt_disable();
}

3532
static void __sched notrace preempt_schedule_common(void)
3533 3534
{
	do {
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3548
		preempt_disable_notrace();
3549
		preempt_latency_start(1);
3550
		__schedule(true);
3551
		preempt_latency_stop(1);
3552
		preempt_enable_no_resched_notrace();
3553 3554 3555 3556 3557 3558 3559 3560

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3561 3562
#ifdef CONFIG_PREEMPT
/*
3563
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3564
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3565 3566
 * occur there and call schedule directly.
 */
3567
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3568 3569 3570
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3571
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3572
	 */
3573
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3574 3575
		return;

3576
	preempt_schedule_common();
L
Linus Torvalds 已提交
3577
}
3578
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3579
EXPORT_SYMBOL(preempt_schedule);
3580 3581

/**
3582
 * preempt_schedule_notrace - preempt_schedule called by tracing
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3595
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3596 3597 3598 3599 3600 3601 3602
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3616
		preempt_disable_notrace();
3617
		preempt_latency_start(1);
3618 3619 3620 3621 3622 3623
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3624
		__schedule(true);
3625 3626
		exception_exit(prev_ctx);

3627
		preempt_latency_stop(1);
3628
		preempt_enable_no_resched_notrace();
3629 3630
	} while (need_resched());
}
3631
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3632

3633
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3634 3635

/*
3636
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3637 3638 3639 3640
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3641
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3642
{
3643
	enum ctx_state prev_state;
3644

3645
	/* Catch callers which need to be fixed */
3646
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3647

3648 3649
	prev_state = exception_enter();

3650
	do {
3651
		preempt_disable();
3652
		local_irq_enable();
3653
		__schedule(true);
3654
		local_irq_disable();
3655
		sched_preempt_enable_no_resched();
3656
	} while (need_resched());
3657 3658

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3659 3660
}

3661
int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3662
			  void *key)
L
Linus Torvalds 已提交
3663
{
P
Peter Zijlstra 已提交
3664
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3665 3666 3667
}
EXPORT_SYMBOL(default_wake_function);

3668 3669
#ifdef CONFIG_RT_MUTEXES

3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
{
	if (pi_task)
		prio = min(prio, pi_task->prio);

	return prio;
}

static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	struct task_struct *pi_task = rt_mutex_get_top_task(p);

	return __rt_effective_prio(pi_task, prio);
}

3685 3686
/*
 * rt_mutex_setprio - set the current priority of a task
3687 3688
 * @p: task to boost
 * @pi_task: donor task
3689 3690 3691 3692
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3693 3694
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3695
 */
3696
void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3697
{
3698
	int prio, oldprio, queued, running, queue_flag =
3699
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3700
	const struct sched_class *prev_class;
3701 3702
	struct rq_flags rf;
	struct rq *rq;
3703

3704 3705 3706 3707 3708 3709 3710 3711
	/* XXX used to be waiter->prio, not waiter->task->prio */
	prio = __rt_effective_prio(pi_task, p->normal_prio);

	/*
	 * If nothing changed; bail early.
	 */
	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
		return;
3712

3713
	rq = __task_rq_lock(p, &rf);
3714
	update_rq_clock(rq);
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	/*
	 * Set under pi_lock && rq->lock, such that the value can be used under
	 * either lock.
	 *
	 * Note that there is loads of tricky to make this pointer cache work
	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
	 * ensure a task is de-boosted (pi_task is set to NULL) before the
	 * task is allowed to run again (and can exit). This ensures the pointer
	 * points to a blocked task -- which guaratees the task is present.
	 */
	p->pi_top_task = pi_task;

	/*
	 * For FIFO/RR we only need to set prio, if that matches we're done.
	 */
	if (prio == p->prio && !dl_prio(prio))
		goto out_unlock;
3732

3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3751
	trace_sched_pi_setprio(p, pi_task);
3752
	oldprio = p->prio;
3753 3754 3755 3756

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3757
	prev_class = p->sched_class;
3758
	queued = task_on_rq_queued(p);
3759
	running = task_current(rq, p);
3760
	if (queued)
3761
		dequeue_task(rq, p, queue_flag);
3762
	if (running)
3763
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3764

3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3775 3776
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3777
			p->dl.dl_boosted = 1;
3778
			queue_flag |= ENQUEUE_REPLENISH;
3779 3780
		} else
			p->dl.dl_boosted = 0;
3781
		p->sched_class = &dl_sched_class;
3782 3783 3784 3785
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3786
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3787
		p->sched_class = &rt_sched_class;
3788 3789 3790
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3791 3792
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3793
		p->sched_class = &fair_sched_class;
3794
	}
I
Ingo Molnar 已提交
3795

3796 3797
	p->prio = prio;

3798
	if (queued)
3799
		enqueue_task(rq, p, queue_flag);
3800
	if (running)
3801
		set_curr_task(rq, p);
3802

P
Peter Zijlstra 已提交
3803
	check_class_changed(rq, p, prev_class, oldprio);
3804
out_unlock:
I
Ingo Molnar 已提交
3805 3806
	/* Avoid rq from going away on us: */
	preempt_disable();
3807
	__task_rq_unlock(rq, &rf);
3808 3809 3810

	balance_callback(rq);
	preempt_enable();
3811
}
3812 3813 3814 3815 3816
#else
static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	return prio;
}
3817
#endif
3818

3819
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3820
{
P
Peter Zijlstra 已提交
3821 3822
	bool queued, running;
	int old_prio, delta;
3823
	struct rq_flags rf;
3824
	struct rq *rq;
L
Linus Torvalds 已提交
3825

3826
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3827 3828 3829 3830 3831
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3832
	rq = task_rq_lock(p, &rf);
3833 3834
	update_rq_clock(rq);

L
Linus Torvalds 已提交
3835 3836 3837 3838
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3839
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3840
	 */
3841
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3842 3843 3844
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3845
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3846
	running = task_current(rq, p);
3847
	if (queued)
3848
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
3849 3850
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3851 3852

	p->static_prio = NICE_TO_PRIO(nice);
3853
	set_load_weight(p, true);
3854 3855 3856
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3857

3858
	if (queued) {
3859
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
L
Linus Torvalds 已提交
3860
		/*
3861 3862
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3863
		 */
3864
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3865
			resched_curr(rq);
L
Linus Torvalds 已提交
3866
	}
P
Peter Zijlstra 已提交
3867 3868
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3869
out_unlock:
3870
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3871 3872 3873
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3874 3875 3876 3877 3878
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3879
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3880
{
I
Ingo Molnar 已提交
3881
	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3882
	int nice_rlim = nice_to_rlimit(nice);
3883

3884
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3885 3886 3887
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3888 3889 3890 3891 3892 3893 3894 3895 3896
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3897
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3898
{
3899
	long nice, retval;
L
Linus Torvalds 已提交
3900 3901 3902 3903 3904 3905

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3906
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3907
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3908

3909
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3910 3911 3912
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3927
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3928 3929 3930
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3931
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3932 3933 3934 3935 3936
{
	return p->prio - MAX_RT_PRIO;
}

/**
I
Ingo Molnar 已提交
3937
 * idle_cpu - is a given CPU idle currently?
L
Linus Torvalds 已提交
3938
 * @cpu: the processor in question.
3939 3940
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3941 3942 3943
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3958 3959 3960
}

/**
I
Ingo Molnar 已提交
3961
 * idle_task - return the idle task for a given CPU.
L
Linus Torvalds 已提交
3962
 * @cpu: the processor in question.
3963
 *
I
Ingo Molnar 已提交
3964
 * Return: The idle task for the CPU @cpu.
L
Linus Torvalds 已提交
3965
 */
3966
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3967 3968 3969 3970 3971 3972 3973
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3974 3975
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3976
 */
A
Alexey Dobriyan 已提交
3977
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3978
{
3979
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3980 3981
}

3982 3983 3984 3985 3986 3987
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3988 3989
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3990
{
3991 3992
	int policy = attr->sched_policy;

3993
	if (policy == SETPARAM_POLICY)
3994 3995
		policy = p->policy;

L
Linus Torvalds 已提交
3996
	p->policy = policy;
3997

3998 3999
	if (dl_policy(policy))
		__setparam_dl(p, attr);
4000
	else if (fair_policy(policy))
4001 4002
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

4003 4004 4005 4006 4007 4008
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
4009
	p->normal_prio = normal_prio(p);
4010
	set_load_weight(p, true);
4011
}
4012

4013 4014
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
4015
			   const struct sched_attr *attr, bool keep_boost)
4016 4017
{
	__setscheduler_params(p, attr);
4018

4019
	/*
4020 4021
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
4022
	 */
4023
	p->prio = normal_prio(p);
4024
	if (keep_boost)
4025
		p->prio = rt_effective_prio(p, p->prio);
4026

4027 4028 4029
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
4030 4031 4032
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
4033
}
4034

4035
/*
I
Ingo Molnar 已提交
4036
 * Check the target process has a UID that matches the current process's:
4037 4038 4039 4040 4041 4042 4043 4044
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4045 4046
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4047 4048 4049 4050
	rcu_read_unlock();
	return match;
}

4051 4052
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4053
				bool user, bool pi)
L
Linus Torvalds 已提交
4054
{
4055 4056
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4057
	int retval, oldprio, oldpolicy = -1, queued, running;
4058
	int new_effective_prio, policy = attr->sched_policy;
4059
	const struct sched_class *prev_class;
4060
	struct rq_flags rf;
4061
	int reset_on_fork;
4062
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4063
	struct rq *rq;
L
Linus Torvalds 已提交
4064

4065 4066
	/* The pi code expects interrupts enabled */
	BUG_ON(pi && in_interrupt());
L
Linus Torvalds 已提交
4067
recheck:
I
Ingo Molnar 已提交
4068
	/* Double check policy once rq lock held: */
4069 4070
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4071
		policy = oldpolicy = p->policy;
4072
	} else {
4073
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4074

4075
		if (!valid_policy(policy))
4076 4077 4078
			return -EINVAL;
	}

4079
	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4080 4081
		return -EINVAL;

L
Linus Torvalds 已提交
4082 4083
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4084 4085
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4086
	 */
4087
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4088
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4089
		return -EINVAL;
4090 4091
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4092 4093
		return -EINVAL;

4094 4095 4096
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4097
	if (user && !capable(CAP_SYS_NICE)) {
4098
		if (fair_policy(policy)) {
4099
			if (attr->sched_nice < task_nice(p) &&
4100
			    !can_nice(p, attr->sched_nice))
4101 4102 4103
				return -EPERM;
		}

4104
		if (rt_policy(policy)) {
4105 4106
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4107

I
Ingo Molnar 已提交
4108
			/* Can't set/change the rt policy: */
4109 4110 4111
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

I
Ingo Molnar 已提交
4112
			/* Can't increase priority: */
4113 4114
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4115 4116
				return -EPERM;
		}
4117

4118 4119 4120 4121 4122 4123 4124 4125 4126
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4127
		/*
4128 4129
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4130
		 */
4131
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4132
			if (!can_nice(p, task_nice(p)))
4133 4134
				return -EPERM;
		}
4135

I
Ingo Molnar 已提交
4136
		/* Can't change other user's priorities: */
4137
		if (!check_same_owner(p))
4138
			return -EPERM;
4139

I
Ingo Molnar 已提交
4140
		/* Normal users shall not reset the sched_reset_on_fork flag: */
4141 4142
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4143
	}
L
Linus Torvalds 已提交
4144

4145
	if (user) {
4146 4147 4148
		if (attr->sched_flags & SCHED_FLAG_SUGOV)
			return -EINVAL;

4149
		retval = security_task_setscheduler(p);
4150 4151 4152 4153
		if (retval)
			return retval;
	}

4154
	/*
I
Ingo Molnar 已提交
4155
	 * Make sure no PI-waiters arrive (or leave) while we are
4156
	 * changing the priority of the task:
4157
	 *
L
Lucas De Marchi 已提交
4158
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4159 4160
	 * runqueue lock must be held.
	 */
4161
	rq = task_rq_lock(p, &rf);
4162
	update_rq_clock(rq);
4163

4164
	/*
I
Ingo Molnar 已提交
4165
	 * Changing the policy of the stop threads its a very bad idea:
4166 4167
	 */
	if (p == rq->stop) {
4168
		task_rq_unlock(rq, p, &rf);
4169 4170 4171
		return -EINVAL;
	}

4172
	/*
4173 4174
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4175
	 */
4176
	if (unlikely(policy == p->policy)) {
4177
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4178 4179 4180
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4181
		if (dl_policy(policy) && dl_param_changed(p, attr))
4182
			goto change;
4183

4184
		p->sched_reset_on_fork = reset_on_fork;
4185
		task_rq_unlock(rq, p, &rf);
4186 4187
		return 0;
	}
4188
change:
4189

4190
	if (user) {
4191
#ifdef CONFIG_RT_GROUP_SCHED
4192 4193 4194 4195 4196
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4197 4198
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4199
			task_rq_unlock(rq, p, &rf);
4200 4201 4202
			return -EPERM;
		}
#endif
4203
#ifdef CONFIG_SMP
4204 4205
		if (dl_bandwidth_enabled() && dl_policy(policy) &&
				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4206 4207 4208 4209 4210 4211 4212
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4213 4214
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4215
				task_rq_unlock(rq, p, &rf);
4216 4217 4218 4219 4220
				return -EPERM;
			}
		}
#endif
	}
4221

I
Ingo Molnar 已提交
4222
	/* Re-check policy now with rq lock held: */
L
Linus Torvalds 已提交
4223 4224
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4225
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4226 4227
		goto recheck;
	}
4228 4229 4230 4231 4232 4233

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4234
	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4235
		task_rq_unlock(rq, p, &rf);
4236 4237 4238
		return -EBUSY;
	}

4239 4240 4241
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4242 4243 4244 4245 4246 4247 4248 4249
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
4250
		new_effective_prio = rt_effective_prio(p, newprio);
4251 4252
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4253 4254
	}

4255
	queued = task_on_rq_queued(p);
4256
	running = task_current(rq, p);
4257
	if (queued)
4258
		dequeue_task(rq, p, queue_flags);
4259
	if (running)
4260
		put_prev_task(rq, p);
4261

4262
	prev_class = p->sched_class;
4263
	__setscheduler(rq, p, attr, pi);
4264

4265
	if (queued) {
4266 4267 4268 4269
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4270 4271
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4272

4273
		enqueue_task(rq, p, queue_flags);
4274
	}
4275
	if (running)
4276
		set_curr_task(rq, p);
4277

P
Peter Zijlstra 已提交
4278
	check_class_changed(rq, p, prev_class, oldprio);
I
Ingo Molnar 已提交
4279 4280 4281

	/* Avoid rq from going away on us: */
	preempt_disable();
4282
	task_rq_unlock(rq, p, &rf);
4283

4284 4285
	if (pi)
		rt_mutex_adjust_pi(p);
4286

I
Ingo Molnar 已提交
4287
	/* Run balance callbacks after we've adjusted the PI chain: */
4288 4289
	balance_callback(rq);
	preempt_enable();
4290

L
Linus Torvalds 已提交
4291 4292
	return 0;
}
4293

4294 4295 4296 4297 4298 4299 4300 4301 4302
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4303 4304
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4305 4306 4307 4308 4309
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4310
	return __sched_setscheduler(p, &attr, check, true);
4311
}
4312 4313 4314 4315 4316 4317
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4318 4319
 * Return: 0 on success. An error code otherwise.
 *
4320 4321 4322
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4323
		       const struct sched_param *param)
4324
{
4325
	return _sched_setscheduler(p, policy, param, true);
4326
}
L
Linus Torvalds 已提交
4327 4328
EXPORT_SYMBOL_GPL(sched_setscheduler);

4329 4330
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4331
	return __sched_setscheduler(p, attr, true, true);
4332 4333 4334
}
EXPORT_SYMBOL_GPL(sched_setattr);

4335 4336 4337 4338 4339
int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, false, true);
}

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4350 4351
 *
 * Return: 0 on success. An error code otherwise.
4352 4353
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4354
			       const struct sched_param *param)
4355
{
4356
	return _sched_setscheduler(p, policy, param, false);
4357
}
4358
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4359

I
Ingo Molnar 已提交
4360 4361
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4362 4363 4364
{
	struct sched_param lparam;
	struct task_struct *p;
4365
	int retval;
L
Linus Torvalds 已提交
4366 4367 4368 4369 4370

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4371 4372 4373

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4374
	p = find_process_by_pid(pid);
4375 4376 4377
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4378

L
Linus Torvalds 已提交
4379 4380 4381
	return retval;
}

4382 4383 4384
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
I
Ingo Molnar 已提交
4385
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4386 4387 4388 4389 4390 4391 4392
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

I
Ingo Molnar 已提交
4393
	/* Zero the full structure, so that a short copy will be nice: */
4394 4395 4396 4397 4398 4399
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

I
Ingo Molnar 已提交
4400 4401
	/* Bail out on silly large: */
	if (size > PAGE_SIZE)
4402 4403
		goto err_size;

I
Ingo Molnar 已提交
4404 4405
	/* ABI compatibility quirk: */
	if (!size)
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
I
Ingo Molnar 已提交
4440
	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4441 4442
	 * to be strict and return an error on out-of-bounds values?
	 */
4443
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4444

4445
	return 0;
4446 4447 4448

err_size:
	put_user(sizeof(*attr), &uattr->size);
4449
	return -E2BIG;
4450 4451
}

L
Linus Torvalds 已提交
4452 4453 4454 4455 4456
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4457 4458
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4459
 */
I
Ingo Molnar 已提交
4460
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4461
{
4462 4463 4464
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4465 4466 4467 4468 4469 4470 4471
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4472 4473
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4474
 */
4475
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4476
{
4477
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4478 4479
}

4480 4481 4482
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4483
 * @uattr: structure containing the extended parameters.
4484
 * @flags: for future extension.
4485
 */
4486 4487
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4488 4489 4490 4491 4492
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4493
	if (!uattr || pid < 0 || flags)
4494 4495
		return -EINVAL;

4496 4497 4498
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4499

4500
	if ((int)attr.sched_policy < 0)
4501
		return -EINVAL;
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4513 4514 4515
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4516 4517 4518
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4519
 */
4520
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4521
{
4522
	struct task_struct *p;
4523
	int retval;
L
Linus Torvalds 已提交
4524 4525

	if (pid < 0)
4526
		return -EINVAL;
L
Linus Torvalds 已提交
4527 4528

	retval = -ESRCH;
4529
	rcu_read_lock();
L
Linus Torvalds 已提交
4530 4531 4532 4533
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4534 4535
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4536
	}
4537
	rcu_read_unlock();
L
Linus Torvalds 已提交
4538 4539 4540 4541
	return retval;
}

/**
4542
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4543 4544
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4545 4546 4547
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4548
 */
4549
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4550
{
4551
	struct sched_param lp = { .sched_priority = 0 };
4552
	struct task_struct *p;
4553
	int retval;
L
Linus Torvalds 已提交
4554 4555

	if (!param || pid < 0)
4556
		return -EINVAL;
L
Linus Torvalds 已提交
4557

4558
	rcu_read_lock();
L
Linus Torvalds 已提交
4559 4560 4561 4562 4563 4564 4565 4566 4567
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4568 4569
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4570
	rcu_read_unlock();
L
Linus Torvalds 已提交
4571 4572 4573 4574 4575 4576 4577 4578 4579

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4580
	rcu_read_unlock();
L
Linus Torvalds 已提交
4581 4582 4583
	return retval;
}

4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4607
				return -EFBIG;
4608 4609 4610 4611 4612
		}

		attr->size = usize;
	}

4613
	ret = copy_to_user(uattr, attr, attr->size);
4614 4615 4616
	if (ret)
		return -EFAULT;

4617
	return 0;
4618 4619 4620
}

/**
4621
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4622
 * @pid: the pid in question.
J
Juri Lelli 已提交
4623
 * @uattr: structure containing the extended parameters.
4624
 * @size: sizeof(attr) for fwd/bwd comp.
4625
 * @flags: for future extension.
4626
 */
4627 4628
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4629 4630 4631 4632 4633 4634 4635 4636
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4637
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4651 4652
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4653 4654 4655
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4656 4657
		attr.sched_priority = p->rt_priority;
	else
4658
		attr.sched_nice = task_nice(p);
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4670
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4671
{
4672
	cpumask_var_t cpus_allowed, new_mask;
4673 4674
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4675

4676
	rcu_read_lock();
L
Linus Torvalds 已提交
4677 4678 4679

	p = find_process_by_pid(pid);
	if (!p) {
4680
		rcu_read_unlock();
L
Linus Torvalds 已提交
4681 4682 4683
		return -ESRCH;
	}

4684
	/* Prevent p going away */
L
Linus Torvalds 已提交
4685
	get_task_struct(p);
4686
	rcu_read_unlock();
L
Linus Torvalds 已提交
4687

4688 4689 4690 4691
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4692 4693 4694 4695 4696 4697 4698 4699
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4700
	retval = -EPERM;
E
Eric W. Biederman 已提交
4701 4702 4703 4704
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4705
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4706 4707 4708
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4709

4710
	retval = security_task_setscheduler(p);
4711
	if (retval)
4712
		goto out_free_new_mask;
4713

4714 4715 4716 4717

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4718 4719 4720 4721 4722 4723 4724
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4725 4726 4727
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4728
			retval = -EBUSY;
4729
			rcu_read_unlock();
4730
			goto out_free_new_mask;
4731
		}
4732
		rcu_read_unlock();
4733 4734
	}
#endif
P
Peter Zijlstra 已提交
4735
again:
4736
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4737

P
Paul Menage 已提交
4738
	if (!retval) {
4739 4740
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4741 4742 4743 4744 4745
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4746
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4747 4748 4749
			goto again;
		}
	}
4750
out_free_new_mask:
4751 4752 4753 4754
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4755 4756 4757 4758 4759
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4760
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4761
{
4762 4763 4764 4765 4766
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4767 4768 4769 4770
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
I
Ingo Molnar 已提交
4771
 * sys_sched_setaffinity - set the CPU affinity of a process
L
Linus Torvalds 已提交
4772 4773
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4774
 * @user_mask_ptr: user-space pointer to the new CPU mask
4775 4776
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4777
 */
4778 4779
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4780
{
4781
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4782 4783
	int retval;

4784 4785
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4786

4787 4788 4789 4790 4791
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4792 4793
}

4794
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4795
{
4796
	struct task_struct *p;
4797
	unsigned long flags;
L
Linus Torvalds 已提交
4798 4799
	int retval;

4800
	rcu_read_lock();
L
Linus Torvalds 已提交
4801 4802 4803 4804 4805 4806

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4807 4808 4809 4810
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4811
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4812
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4813
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4814 4815

out_unlock:
4816
	rcu_read_unlock();
L
Linus Torvalds 已提交
4817

4818
	return retval;
L
Linus Torvalds 已提交
4819 4820 4821
}

/**
I
Ingo Molnar 已提交
4822
 * sys_sched_getaffinity - get the CPU affinity of a process
L
Linus Torvalds 已提交
4823 4824
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4825
 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4826
 *
4827 4828
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4829
 */
4830 4831
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4832 4833
{
	int ret;
4834
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4835

A
Anton Blanchard 已提交
4836
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4837 4838
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4839 4840
		return -EINVAL;

4841 4842
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4843

4844 4845
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4846
		size_t retlen = min_t(size_t, len, cpumask_size());
4847 4848

		if (copy_to_user(user_mask_ptr, mask, retlen))
4849 4850
			ret = -EFAULT;
		else
4851
			ret = retlen;
4852 4853
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4854

4855
	return ret;
L
Linus Torvalds 已提交
4856 4857 4858 4859 4860
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4861 4862
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4863 4864
 *
 * Return: 0.
L
Linus Torvalds 已提交
4865
 */
4866
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4867
{
4868 4869 4870 4871 4872 4873
	struct rq_flags rf;
	struct rq *rq;

	local_irq_disable();
	rq = this_rq();
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
4874

4875
	schedstat_inc(rq->yld_count);
4876
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4877 4878 4879 4880 4881

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
4882 4883
	preempt_disable();
	rq_unlock(rq, &rf);
4884
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4885 4886 4887 4888 4889 4890

	schedule();

	return 0;
}

4891
#ifndef CONFIG_PREEMPT
4892
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4893
{
4894
	if (should_resched(0)) {
4895
		preempt_schedule_common();
L
Linus Torvalds 已提交
4896 4897
		return 1;
	}
4898
	rcu_all_qs();
L
Linus Torvalds 已提交
4899 4900
	return 0;
}
4901
EXPORT_SYMBOL(_cond_resched);
4902
#endif
L
Linus Torvalds 已提交
4903 4904

/*
4905
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4906 4907
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4908
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4909 4910 4911
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4912
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4913
{
4914
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
4915 4916
	int ret = 0;

4917 4918
	lockdep_assert_held(lock);

4919
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4920
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4921
		if (resched)
4922
			preempt_schedule_common();
N
Nick Piggin 已提交
4923 4924
		else
			cpu_relax();
J
Jan Kara 已提交
4925
		ret = 1;
L
Linus Torvalds 已提交
4926 4927
		spin_lock(lock);
	}
J
Jan Kara 已提交
4928
	return ret;
L
Linus Torvalds 已提交
4929
}
4930
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4931

4932
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4933 4934 4935
{
	BUG_ON(!in_softirq());

4936
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4937
		local_bh_enable();
4938
		preempt_schedule_common();
L
Linus Torvalds 已提交
4939 4940 4941 4942 4943
		local_bh_disable();
		return 1;
	}
	return 0;
}
4944
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4945 4946 4947 4948

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4949 4950 4951 4952 4953 4954 4955 4956 4957
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
I
Ingo Molnar 已提交
4958
 *	yield();
P
Peter Zijlstra 已提交
4959 4960 4961 4962 4963 4964 4965 4966
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4967 4968 4969 4970 4971 4972 4973 4974
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4975 4976 4977 4978
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4979 4980
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4981 4982 4983 4984
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4985
 * Return:
4986 4987 4988
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4989
 */
4990
int __sched yield_to(struct task_struct *p, bool preempt)
4991 4992 4993 4994
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4995
	int yielded = 0;
4996 4997 4998 4999 5000 5001

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
5002 5003 5004 5005 5006 5007 5008 5009 5010
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

5011
	double_rq_lock(rq, p_rq);
5012
	if (task_rq(p) != p_rq) {
5013 5014 5015 5016 5017
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
5018
		goto out_unlock;
5019 5020

	if (curr->sched_class != p->sched_class)
5021
		goto out_unlock;
5022 5023

	if (task_running(p_rq, p) || p->state)
5024
		goto out_unlock;
5025 5026

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5027
	if (yielded) {
5028
		schedstat_inc(rq->yld_count);
5029 5030 5031 5032 5033
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
5034
			resched_curr(p_rq);
5035
	}
5036

5037
out_unlock:
5038
	double_rq_unlock(rq, p_rq);
5039
out_irq:
5040 5041
	local_irq_restore(flags);

5042
	if (yielded > 0)
5043 5044 5045 5046 5047 5048
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
int io_schedule_prepare(void)
{
	int old_iowait = current->in_iowait;

	current->in_iowait = 1;
	blk_schedule_flush_plug(current);

	return old_iowait;
}

void io_schedule_finish(int token)
{
	current->in_iowait = token;
}

L
Linus Torvalds 已提交
5064
/*
I
Ingo Molnar 已提交
5065
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5066 5067 5068 5069
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5070
	int token;
L
Linus Torvalds 已提交
5071 5072
	long ret;

5073
	token = io_schedule_prepare();
L
Linus Torvalds 已提交
5074
	ret = schedule_timeout(timeout);
5075
	io_schedule_finish(token);
5076

L
Linus Torvalds 已提交
5077 5078
	return ret;
}
5079
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5080

5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
void io_schedule(void)
{
	int token;

	token = io_schedule_prepare();
	schedule();
	io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);

L
Linus Torvalds 已提交
5091 5092 5093 5094
/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5095 5096 5097
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5098
 */
5099
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5100 5101 5102 5103 5104 5105 5106 5107
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5108
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5109
	case SCHED_NORMAL:
5110
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5111
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5122 5123 5124
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5125
 */
5126
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5127 5128 5129 5130 5131 5132 5133 5134
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5135
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5136
	case SCHED_NORMAL:
5137
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5138
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5139 5140 5141 5142 5143
		ret = 0;
	}
	return ret;
}

5144
static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
L
Linus Torvalds 已提交
5145
{
5146
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5147
	unsigned int time_slice;
5148
	struct rq_flags rf;
5149
	struct rq *rq;
5150
	int retval;
L
Linus Torvalds 已提交
5151 5152

	if (pid < 0)
5153
		return -EINVAL;
L
Linus Torvalds 已提交
5154 5155

	retval = -ESRCH;
5156
	rcu_read_lock();
L
Linus Torvalds 已提交
5157 5158 5159 5160 5161 5162 5163 5164
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5165
	rq = task_rq_lock(p, &rf);
5166 5167 5168
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5169
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5170

5171
	rcu_read_unlock();
5172 5173
	jiffies_to_timespec64(time_slice, t);
	return 0;
5174

L
Linus Torvalds 已提交
5175
out_unlock:
5176
	rcu_read_unlock();
L
Linus Torvalds 已提交
5177 5178 5179
	return retval;
}

5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
 */
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
		struct timespec __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = put_timespec64(&t, interval);

	return retval;
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
		       compat_pid_t, pid,
		       struct compat_timespec __user *, interval)
{
	struct timespec64 t;
	int retval = sched_rr_get_interval(pid, &t);

	if (retval == 0)
		retval = compat_put_timespec64(&t, interval);
	return retval;
}
#endif

5217
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5218 5219
{
	unsigned long free = 0;
5220
	int ppid;
5221

5222 5223
	if (!try_get_task_stack(p))
		return;
5224 5225 5226 5227

	printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));

	if (p->state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5228
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5229
#ifdef CONFIG_DEBUG_STACK_USAGE
5230
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5231
#endif
5232
	ppid = 0;
5233
	rcu_read_lock();
5234 5235
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5236
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5237
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5238
		task_pid_nr(p), ppid,
5239
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5240

5241
	print_worker_info(KERN_INFO, p);
5242
	show_stack(p, NULL);
5243
	put_task_stack(p);
L
Linus Torvalds 已提交
5244
}
5245
EXPORT_SYMBOL_GPL(sched_show_task);
L
Linus Torvalds 已提交
5246

5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
static inline bool
state_filter_match(unsigned long state_filter, struct task_struct *p)
{
	/* no filter, everything matches */
	if (!state_filter)
		return true;

	/* filter, but doesn't match */
	if (!(p->state & state_filter))
		return false;

	/*
	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
	 * TASK_KILLABLE).
	 */
	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
		return false;

	return true;
}


I
Ingo Molnar 已提交
5269
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5270
{
5271
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5272

5273
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5274 5275
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5276
#else
P
Peter Zijlstra 已提交
5277 5278
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5279
#endif
5280
	rcu_read_lock();
5281
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5282 5283
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5284
		 * console might take a lot of time:
5285 5286 5287
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5288 5289
		 */
		touch_nmi_watchdog();
5290
		touch_all_softlockup_watchdogs();
5291
		if (state_filter_match(state_filter, p))
5292
			sched_show_task(p);
5293
	}
L
Linus Torvalds 已提交
5294

I
Ingo Molnar 已提交
5295
#ifdef CONFIG_SCHED_DEBUG
5296 5297
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5298
#endif
5299
	rcu_read_unlock();
I
Ingo Molnar 已提交
5300 5301 5302
	/*
	 * Only show locks if all tasks are dumped:
	 */
5303
	if (!state_filter)
I
Ingo Molnar 已提交
5304
		debug_show_all_locks();
L
Linus Torvalds 已提交
5305 5306
}

5307 5308 5309
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
I
Ingo Molnar 已提交
5310
 * @cpu: CPU the idle task belongs to
5311 5312 5313 5314
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5315
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5316
{
5317
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5318 5319
	unsigned long flags;

5320 5321
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5322

5323
	__sched_fork(0, idle);
5324
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5325
	idle->se.exec_start = sched_clock();
5326
	idle->flags |= PF_IDLE;
I
Ingo Molnar 已提交
5327

5328 5329
	kasan_unpoison_task_stack(idle);

5330 5331 5332 5333 5334 5335 5336 5337 5338
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5339 5340
	/*
	 * We're having a chicken and egg problem, even though we are
I
Ingo Molnar 已提交
5341
	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5342 5343 5344 5345 5346 5347 5348 5349
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5350
	__set_task_cpu(idle, cpu);
5351
	rcu_read_unlock();
L
Linus Torvalds 已提交
5352 5353

	rq->curr = rq->idle = idle;
5354
	idle->on_rq = TASK_ON_RQ_QUEUED;
5355
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5356
	idle->on_cpu = 1;
5357
#endif
5358 5359
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5360 5361

	/* Set the preempt count _outside_ the spinlocks! */
5362
	init_idle_preempt_count(idle, cpu);
5363

I
Ingo Molnar 已提交
5364 5365 5366 5367
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5368
	ftrace_graph_init_idle_task(idle, cpu);
5369
	vtime_init_idle(idle, cpu);
5370
#ifdef CONFIG_SMP
5371 5372
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5373 5374
}

5375 5376
#ifdef CONFIG_SMP

5377 5378 5379
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
5380
	int ret = 1;
5381

5382 5383 5384
	if (!cpumask_weight(cur))
		return ret;

5385
	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5386 5387 5388 5389

	return ret;
}

5390 5391 5392 5393 5394 5395 5396
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
I
Ingo Molnar 已提交
5397
	 * to a new cpuset; we don't want to change their CPU
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5410 5411
					      cs_cpus_allowed))
		ret = dl_task_can_attach(p, cs_cpus_allowed);
5412 5413 5414 5415 5416

out:
	return ret;
}

5417
bool sched_smp_initialized __read_mostly;
5418

5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

5429
	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5430 5431 5432 5433
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5434
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5435 5436
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5437 5438 5439 5440 5441 5442 5443

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5444
	bool queued, running;
5445 5446
	struct rq_flags rf;
	struct rq *rq;
5447

5448
	rq = task_rq_lock(p, &rf);
5449
	queued = task_on_rq_queued(p);
5450 5451
	running = task_current(rq, p);

5452
	if (queued)
5453
		dequeue_task(rq, p, DEQUEUE_SAVE);
5454
	if (running)
5455
		put_prev_task(rq, p);
5456 5457 5458

	p->numa_preferred_nid = nid;

5459
	if (queued)
5460
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5461
	if (running)
5462
		set_curr_task(rq, p);
5463
	task_rq_unlock(rq, p, &rf);
5464
}
P
Peter Zijlstra 已提交
5465
#endif /* CONFIG_NUMA_BALANCING */
5466

L
Linus Torvalds 已提交
5467
#ifdef CONFIG_HOTPLUG_CPU
5468
/*
I
Ingo Molnar 已提交
5469
 * Ensure that the idle task is using init_mm right before its CPU goes
5470
 * offline.
5471
 */
5472
void idle_task_exit(void)
L
Linus Torvalds 已提交
5473
{
5474
	struct mm_struct *mm = current->active_mm;
5475

5476
	BUG_ON(cpu_online(smp_processor_id()));
5477

5478
	if (mm != &init_mm) {
5479
		switch_mm(mm, &init_mm, current);
5480 5481
		finish_arch_post_lock_switch();
	}
5482
	mmdrop(mm);
L
Linus Torvalds 已提交
5483 5484 5485
}

/*
5486 5487
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5488 5489 5490
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5491 5492
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5493
 */
5494
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5495
{
5496
	long delta = calc_load_fold_active(rq, 1);
5497 5498
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5499 5500
}

5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5517
/*
5518 5519 5520 5521 5522 5523
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5524
 */
5525
static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
L
Linus Torvalds 已提交
5526
{
5527
	struct rq *rq = dead_rq;
5528
	struct task_struct *next, *stop = rq->stop;
5529
	struct rq_flags orf = *rf;
5530
	int dest_cpu;
L
Linus Torvalds 已提交
5531 5532

	/*
5533 5534 5535 5536 5537 5538 5539
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5540
	 */
5541
	rq->stop = NULL;
5542

5543 5544 5545 5546 5547 5548 5549
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5550
	for (;;) {
5551 5552
		/*
		 * There's this thread running, bail when that's the only
I
Ingo Molnar 已提交
5553
		 * remaining thread:
5554 5555
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5556
			break;
5557

5558
		/*
I
Ingo Molnar 已提交
5559
		 * pick_next_task() assumes pinned rq->lock:
5560
		 */
5561
		next = pick_next_task(rq, &fake_task, rf);
5562
		BUG_ON(!next);
V
Viresh Kumar 已提交
5563
		put_prev_task(rq, next);
5564

W
Wanpeng Li 已提交
5565 5566 5567 5568 5569 5570 5571 5572 5573
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5574
		rq_unlock(rq, rf);
W
Wanpeng Li 已提交
5575
		raw_spin_lock(&next->pi_lock);
5576
		rq_relock(rq, rf);
W
Wanpeng Li 已提交
5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5588
		/* Find suitable destination for @next, with force if needed. */
5589
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5590
		rq = __migrate_task(rq, rf, next, dest_cpu);
5591
		if (rq != dead_rq) {
5592
			rq_unlock(rq, rf);
5593
			rq = dead_rq;
5594 5595
			*rf = orf;
			rq_relock(rq, rf);
5596
		}
W
Wanpeng Li 已提交
5597
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5598
	}
5599

5600
	rq->stop = stop;
5601
}
L
Linus Torvalds 已提交
5602 5603
#endif /* CONFIG_HOTPLUG_CPU */

5604
void set_rq_online(struct rq *rq)
5605 5606 5607 5608
{
	if (!rq->online) {
		const struct sched_class *class;

5609
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5610 5611 5612 5613 5614 5615 5616 5617 5618
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

5619
void set_rq_offline(struct rq *rq)
5620 5621 5622 5623 5624 5625 5626 5627 5628
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5629
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5630 5631 5632 5633
		rq->online = 0;
	}
}

5634
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5635
{
5636
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5637

5638 5639 5640
	rq->age_stamp = sched_clock_cpu(cpu);
}

I
Ingo Molnar 已提交
5641 5642 5643 5644
/*
 * used to mark begin/end of suspend/resume:
 */
static int num_cpus_frozen;
5645

L
Linus Torvalds 已提交
5646
/*
5647 5648 5649
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
5650 5651 5652
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
5653
 */
5654
static void cpuset_cpu_active(void)
5655
{
5656
	if (cpuhp_tasks_frozen) {
5657 5658 5659 5660 5661 5662
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
5663 5664
		partition_sched_domains(1, NULL, NULL);
		if (--num_cpus_frozen)
5665
			return;
5666 5667 5668 5669 5670
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
5671
		cpuset_force_rebuild();
5672
	}
5673
	cpuset_update_active_cpus();
5674
}
5675

5676
static int cpuset_cpu_inactive(unsigned int cpu)
5677
{
5678
	if (!cpuhp_tasks_frozen) {
5679
		if (dl_cpu_busy(cpu))
5680
			return -EBUSY;
5681
		cpuset_update_active_cpus();
5682
	} else {
5683 5684
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
5685
	}
5686
	return 0;
5687 5688
}

5689
int sched_cpu_activate(unsigned int cpu)
5690
{
5691
	struct rq *rq = cpu_rq(cpu);
5692
	struct rq_flags rf;
5693

5694
	set_cpu_active(cpu, true);
5695

5696
	if (sched_smp_initialized) {
5697
		sched_domains_numa_masks_set(cpu);
5698
		cpuset_cpu_active();
5699
	}
5700 5701 5702 5703 5704

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
I
Ingo Molnar 已提交
5705
	 *    after all CPUs have been brought up.
5706 5707 5708 5709
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
5710
	rq_lock_irqsave(rq, &rf);
5711 5712 5713 5714
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
5715
	rq_unlock_irqrestore(rq, &rf);
5716 5717 5718

	update_max_interval();

5719
	return 0;
5720 5721
}

5722
int sched_cpu_deactivate(unsigned int cpu)
5723 5724 5725
{
	int ret;

5726
	set_cpu_active(cpu, false);
5727 5728 5729 5730 5731 5732 5733
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
5734
	synchronize_rcu_mult(call_rcu, call_rcu_sched);
5735 5736 5737 5738 5739 5740 5741 5742

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
5743
	}
5744 5745
	sched_domains_numa_masks_clear(cpu);
	return 0;
5746 5747
}

5748 5749 5750 5751 5752 5753 5754 5755
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

5756 5757 5758
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
5759
	sched_rq_cpu_starting(cpu);
5760
	return 0;
5761 5762
}

5763 5764 5765 5766
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5767
	struct rq_flags rf;
5768 5769 5770

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
5771 5772

	rq_lock_irqsave(rq, &rf);
5773 5774 5775 5776
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
5777
	migrate_tasks(rq, &rf);
5778
	BUG_ON(rq->nr_running != 1);
5779 5780
	rq_unlock_irqrestore(rq, &rf);

5781 5782
	calc_load_migrate(rq);
	update_max_interval();
5783
	nohz_balance_exit_idle(cpu);
5784
	hrtick_clear(rq);
5785 5786 5787 5788
	return 0;
}
#endif

P
Peter Zijlstra 已提交
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);

static void sched_init_smt(void)
{
	/*
	 * We've enumerated all CPUs and will assume that if any CPU
	 * has SMT siblings, CPU0 will too.
	 */
	if (cpumask_weight(cpu_smt_mask(0)) > 1)
		static_branch_enable(&sched_smt_present);
}
#else
static inline void sched_init_smt(void) { }
#endif

L
Linus Torvalds 已提交
5805 5806
void __init sched_init_smp(void)
{
5807 5808
	sched_init_numa();

5809 5810
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
I
Ingo Molnar 已提交
5811
	 * CPU masks are stable and all blatant races in the below code cannot
5812 5813
	 * happen.
	 */
5814
	mutex_lock(&sched_domains_mutex);
P
Peter Zijlstra 已提交
5815
	sched_init_domains(cpu_active_mask);
5816
	mutex_unlock(&sched_domains_mutex);
5817

5818
	/* Move init over to a non-isolated CPU */
5819
	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5820
		BUG();
I
Ingo Molnar 已提交
5821
	sched_init_granularity();
5822

5823
	init_sched_rt_class();
5824
	init_sched_dl_class();
P
Peter Zijlstra 已提交
5825 5826 5827

	sched_init_smt();

5828
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
5829
}
5830 5831 5832

static int __init migration_init(void)
{
5833
	sched_rq_cpu_starting(smp_processor_id());
5834
	return 0;
L
Linus Torvalds 已提交
5835
}
5836 5837
early_initcall(migration_init);

L
Linus Torvalds 已提交
5838 5839 5840
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
5841
	sched_init_granularity();
L
Linus Torvalds 已提交
5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

5852
#ifdef CONFIG_CGROUP_SCHED
5853 5854 5855 5856
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
5857
struct task_group root_task_group;
5858
LIST_HEAD(task_groups);
5859 5860 5861

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
5862
#endif
P
Peter Zijlstra 已提交
5863

5864
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5865
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
5866

L
Linus Torvalds 已提交
5867 5868
void __init sched_init(void)
{
I
Ingo Molnar 已提交
5869
	int i, j;
5870 5871
	unsigned long alloc_size = 0, ptr;

5872
	sched_clock_init();
5873
	wait_bit_init();
5874

5875 5876 5877 5878 5879 5880 5881
#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
5882
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5883 5884

#ifdef CONFIG_FAIR_GROUP_SCHED
5885
		root_task_group.se = (struct sched_entity **)ptr;
5886 5887
		ptr += nr_cpu_ids * sizeof(void **);

5888
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5889
		ptr += nr_cpu_ids * sizeof(void **);
5890

5891
#endif /* CONFIG_FAIR_GROUP_SCHED */
5892
#ifdef CONFIG_RT_GROUP_SCHED
5893
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5894 5895
		ptr += nr_cpu_ids * sizeof(void **);

5896
		root_task_group.rt_rq = (struct rt_rq **)ptr;
5897 5898
		ptr += nr_cpu_ids * sizeof(void **);

5899
#endif /* CONFIG_RT_GROUP_SCHED */
5900
	}
5901
#ifdef CONFIG_CPUMASK_OFFSTACK
5902 5903 5904
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5905 5906
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5907
	}
5908
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
5909

I
Ingo Molnar 已提交
5910 5911
	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5912

G
Gregory Haskins 已提交
5913 5914 5915 5916
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

5917
#ifdef CONFIG_RT_GROUP_SCHED
5918
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
5919
			global_rt_period(), global_rt_runtime());
5920
#endif /* CONFIG_RT_GROUP_SCHED */
5921

D
Dhaval Giani 已提交
5922
#ifdef CONFIG_CGROUP_SCHED
5923 5924
	task_group_cache = KMEM_CACHE(task_group, 0);

5925 5926
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
5927
	INIT_LIST_HEAD(&root_task_group.siblings);
5928
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
5929
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
5930

5931
	for_each_possible_cpu(i) {
5932
		struct rq *rq;
L
Linus Torvalds 已提交
5933 5934

		rq = cpu_rq(i);
5935
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
5936
		rq->nr_running = 0;
5937 5938
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
5939
		init_cfs_rq(&rq->cfs);
5940 5941
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
5942
#ifdef CONFIG_FAIR_GROUP_SCHED
5943
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
5944
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5945
		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
D
Dhaval Giani 已提交
5946
		/*
I
Ingo Molnar 已提交
5947
		 * How much CPU bandwidth does root_task_group get?
D
Dhaval Giani 已提交
5948 5949
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
I
Ingo Molnar 已提交
5950 5951
		 * gets 100% of the CPU resources in the system. This overall
		 * system CPU resource is divided among the tasks of
5952
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
5953 5954 5955
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
5956
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
5957
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
I
Ingo Molnar 已提交
5958
		 * then A0's share of the CPU resource is:
D
Dhaval Giani 已提交
5959
		 *
5960
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
5961
		 *
5962 5963
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
5964
		 */
5965
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5966
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
5967 5968 5969
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5970
#ifdef CONFIG_RT_GROUP_SCHED
5971
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
5972
#endif
L
Linus Torvalds 已提交
5973

I
Ingo Molnar 已提交
5974 5975
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
5976

L
Linus Torvalds 已提交
5977
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
5978
		rq->sd = NULL;
G
Gregory Haskins 已提交
5979
		rq->rd = NULL;
5980
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
5981
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
5982
		rq->active_balance = 0;
I
Ingo Molnar 已提交
5983
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
5984
		rq->push_cpu = 0;
5985
		rq->cpu = i;
5986
		rq->online = 0;
5987 5988
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
5989
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
5990 5991 5992

		INIT_LIST_HEAD(&rq->cfs_tasks);

5993
		rq_attach_root(rq, &def_root_domain);
5994
#ifdef CONFIG_NO_HZ_COMMON
5995
		rq->last_load_update_tick = jiffies;
5996
		rq->nohz_flags = 0;
5997
#endif
5998 5999 6000
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
6001
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
6002
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6003 6004 6005
		atomic_set(&rq->nr_iowait, 0);
	}

6006
	set_load_weight(&init_task, false);
6007

L
Linus Torvalds 已提交
6008 6009 6010
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
V
Vegard Nossum 已提交
6011
	mmgrab(&init_mm);
L
Linus Torvalds 已提交
6012 6013 6014 6015 6016 6017 6018 6019 6020
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6021 6022 6023

	calc_load_update = jiffies + LOAD_FREQ;

6024
#ifdef CONFIG_SMP
6025
	idle_thread_set_boot_cpu();
6026
	set_cpu_rq_start_time(smp_processor_id());
6027 6028
#endif
	init_sched_fair_class();
6029

6030 6031
	init_schedstats();

6032
	scheduler_running = 1;
L
Linus Torvalds 已提交
6033 6034
}

6035
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6036 6037
static inline int preempt_count_equals(int preempt_offset)
{
6038
	int nested = preempt_count() + rcu_preempt_depth();
6039

A
Arnd Bergmann 已提交
6040
	return (nested == preempt_offset);
6041 6042
}

6043
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6044
{
P
Peter Zijlstra 已提交
6045 6046 6047 6048 6049
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
6050
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
6051 6052 6053 6054
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
6055
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
6056

6057 6058 6059 6060 6061
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6062
{
I
Ingo Molnar 已提交
6063 6064 6065
	/* Ratelimiting timestamp: */
	static unsigned long prev_jiffy;

6066
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
6067

I
Ingo Molnar 已提交
6068 6069 6070
	/* WARN_ON_ONCE() by default, no rate limit required: */
	rcu_sleep_check();

6071 6072
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
6073 6074
	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
	    oops_in_progress)
I
Ingo Molnar 已提交
6075
		return;
6076

I
Ingo Molnar 已提交
6077 6078 6079 6080
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

I
Ingo Molnar 已提交
6081
	/* Save this before calling printk(), since that will clobber it: */
6082 6083
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
6084 6085 6086 6087 6088 6089 6090
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6091

6092 6093 6094
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
6095 6096 6097
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6098 6099
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
6100
		pr_err("Preemption disabled at:");
6101
		print_ip_sym(preempt_disable_ip);
6102 6103
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
6104
	dump_stack();
6105
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
6106
}
6107
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
6108 6109 6110
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6111
void normalize_rt_tasks(void)
6112
{
6113
	struct task_struct *g, *p;
6114 6115 6116
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
6117

6118
	read_lock(&tasklist_lock);
6119
	for_each_process_thread(g, p) {
6120 6121 6122
		/*
		 * Only normalize user tasks:
		 */
6123
		if (p->flags & PF_KTHREAD)
6124 6125
			continue;

6126 6127 6128 6129
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
6130

6131
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
6132 6133 6134 6135
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
6136
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
6137
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6138
			continue;
I
Ingo Molnar 已提交
6139
		}
L
Linus Torvalds 已提交
6140

6141
		__sched_setscheduler(p, &attr, false, false);
6142
	}
6143
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6144 6145 6146
}

#endif /* CONFIG_MAGIC_SYSRQ */
6147

6148
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6149
/*
6150
 * These functions are only useful for the IA64 MCA handling, or kdb.
6151 6152 6153 6154 6155 6156 6157 6158 6159
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
I
Ingo Molnar 已提交
6160
 * curr_task - return the current task for a given CPU.
6161 6162 6163
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6164 6165
 *
 * Return: The current task for @cpu.
6166
 */
6167
struct task_struct *curr_task(int cpu)
6168 6169 6170 6171
{
	return cpu_curr(cpu);
}

6172 6173 6174
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6175
/**
I
Ingo Molnar 已提交
6176
 * set_curr_task - set the current task for a given CPU.
6177 6178 6179 6180
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6181
 * are serviced on a separate stack. It allows the architecture to switch the
I
Ingo Molnar 已提交
6182
 * notion of the current task on a CPU in a non-blocking manner. This function
6183 6184 6185 6186 6187 6188 6189
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6190
void ia64_set_curr_task(int cpu, struct task_struct *p)
6191 6192 6193 6194 6195
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6196

D
Dhaval Giani 已提交
6197
#ifdef CONFIG_CGROUP_SCHED
6198 6199 6200
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6201
static void sched_free_group(struct task_group *tg)
6202 6203 6204
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6205
	autogroup_free(tg);
6206
	kmem_cache_free(task_group_cache, tg);
6207 6208 6209
}

/* allocate runqueue etc for a new task group */
6210
struct task_group *sched_create_group(struct task_group *parent)
6211 6212 6213
{
	struct task_group *tg;

6214
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6215 6216 6217
	if (!tg)
		return ERR_PTR(-ENOMEM);

6218
	if (!alloc_fair_sched_group(tg, parent))
6219 6220
		goto err;

6221
	if (!alloc_rt_sched_group(tg, parent))
6222 6223
		goto err;

6224 6225 6226
	return tg;

err:
6227
	sched_free_group(tg);
6228 6229 6230 6231 6232 6233 6234
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6235
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6236
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6237

I
Ingo Molnar 已提交
6238 6239
	/* Root should already exist: */
	WARN_ON(!parent);
P
Peter Zijlstra 已提交
6240 6241 6242

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6243
	list_add_rcu(&tg->siblings, &parent->children);
6244
	spin_unlock_irqrestore(&task_group_lock, flags);
6245 6246

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
6247 6248
}

6249
/* rcu callback to free various structures associated with a task group */
6250
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6251
{
I
Ingo Molnar 已提交
6252
	/* Now it should be safe to free those cfs_rqs: */
6253
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6254 6255
}

6256
void sched_destroy_group(struct task_group *tg)
6257
{
I
Ingo Molnar 已提交
6258
	/* Wait for possible concurrent references to cfs_rqs complete: */
6259
	call_rcu(&tg->rcu, sched_free_group_rcu);
6260 6261 6262
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6263
{
6264
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
6265

I
Ingo Molnar 已提交
6266
	/* End participation in shares distribution: */
6267
	unregister_fair_sched_group(tg);
6268 6269

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6270
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6271
	list_del_rcu(&tg->siblings);
6272
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6273 6274
}

6275
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
6276
{
P
Peter Zijlstra 已提交
6277
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6278

6279 6280 6281 6282 6283 6284
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
6285 6286 6287 6288
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6289
#ifdef CONFIG_FAIR_GROUP_SCHED
6290 6291
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
6292
	else
P
Peter Zijlstra 已提交
6293
#endif
6294
		set_task_rq(tsk, task_cpu(tsk));
6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
6306 6307
	int queued, running, queue_flags =
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6308 6309 6310 6311
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);
6312
	update_rq_clock(rq);
6313 6314 6315 6316 6317

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
6318
		dequeue_task(rq, tsk, queue_flags);
6319
	if (running)
6320 6321 6322
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
6323

6324
	if (queued)
6325
		enqueue_task(rq, tsk, queue_flags);
6326
	if (running)
6327
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6328

6329
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
6330
}
6331

6332
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6333
{
6334
	return css ? container_of(css, struct task_group, css) : NULL;
6335 6336
}

6337 6338
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6339
{
6340 6341
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
6342

6343
	if (!parent) {
6344
		/* This is early initialization for the top cgroup */
6345
		return &root_task_group.css;
6346 6347
	}

6348
	tg = sched_create_group(parent);
6349 6350 6351 6352 6353 6354
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
/* Expose task group only after completing cgroup initialization */
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css->parent);

	if (parent)
		sched_online_group(tg, parent);
	return 0;
}

6366
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6367
{
6368
	struct task_group *tg = css_tg(css);
6369

6370
	sched_offline_group(tg);
6371 6372
}

6373
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6374
{
6375
	struct task_group *tg = css_tg(css);
6376

6377 6378 6379 6380
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
6381 6382
}

6383 6384 6385 6386
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
6387
static void cpu_cgroup_fork(struct task_struct *task)
6388
{
6389 6390 6391 6392 6393
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

6394
	update_rq_clock(rq);
6395 6396 6397
	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
6398 6399
}

6400
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6401
{
6402
	struct task_struct *task;
6403
	struct cgroup_subsys_state *css;
6404
	int ret = 0;
6405

6406
	cgroup_taskset_for_each(task, css, tset) {
6407
#ifdef CONFIG_RT_GROUP_SCHED
6408
		if (!sched_rt_can_attach(css_tg(css), task))
6409
			return -EINVAL;
6410
#else
6411 6412 6413
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
6414
#endif
6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
6431
	}
6432
	return ret;
6433
}
6434

6435
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6436
{
6437
	struct task_struct *task;
6438
	struct cgroup_subsys_state *css;
6439

6440
	cgroup_taskset_for_each(task, css, tset)
6441
		sched_move_task(task);
6442 6443
}

6444
#ifdef CONFIG_FAIR_GROUP_SCHED
6445 6446
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
6447
{
6448
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
6449 6450
}

6451 6452
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
6453
{
6454
	struct task_group *tg = css_tg(css);
6455

6456
	return (u64) scale_load_down(tg->shares);
6457
}
6458 6459

#ifdef CONFIG_CFS_BANDWIDTH
6460 6461
static DEFINE_MUTEX(cfs_constraints_mutex);

6462 6463 6464
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

6465 6466
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

6467 6468
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
6469
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
6470
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

6491 6492 6493 6494 6495
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
6496 6497 6498 6499 6500
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

6501
	runtime_enabled = quota != RUNTIME_INF;
6502
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6503 6504 6505 6506 6507 6508
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
6509 6510 6511
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
6512

P
Paul Turner 已提交
6513
	__refill_cfs_bandwidth_runtime(cfs_b);
I
Ingo Molnar 已提交
6514 6515

	/* Restart the period timer (if active) to handle new period expiry: */
P
Peter Zijlstra 已提交
6516 6517
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
I
Ingo Molnar 已提交
6518

6519 6520
	raw_spin_unlock_irq(&cfs_b->lock);

6521
	for_each_online_cpu(i) {
6522
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6523
		struct rq *rq = cfs_rq->rq;
6524
		struct rq_flags rf;
6525

6526
		rq_lock_irq(rq, &rf);
6527
		cfs_rq->runtime_enabled = runtime_enabled;
6528
		cfs_rq->runtime_remaining = 0;
6529

6530
		if (cfs_rq->throttled)
6531
			unthrottle_cfs_rq(cfs_rq);
6532
		rq_unlock_irq(rq, &rf);
6533
	}
6534 6535
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
6536 6537
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
6538
	put_online_cpus();
6539

6540
	return ret;
6541 6542 6543 6544 6545 6546
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

6547
	period = ktime_to_ns(tg->cfs_bandwidth.period);
6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

6560
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6561 6562
		return -1;

6563
	quota_us = tg->cfs_bandwidth.quota;
6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
6574
	quota = tg->cfs_bandwidth.quota;
6575 6576 6577 6578 6579 6580 6581 6582

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

6583
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6584 6585 6586 6587 6588
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

6589 6590
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
6591
{
6592
	return tg_get_cfs_quota(css_tg(css));
6593 6594
}

6595 6596
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
6597
{
6598
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6599 6600
}

6601 6602
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6603
{
6604
	return tg_get_cfs_period(css_tg(css));
6605 6606
}

6607 6608
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
6609
{
6610
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
6611 6612
}

6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
6645
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6646 6647 6648 6649 6650
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
6651
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6652 6653

		quota = normalize_cfs_quota(tg, d);
6654
		parent_quota = parent_b->hierarchical_quota;
6655 6656

		/*
I
Ingo Molnar 已提交
6657 6658
		 * Ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set:
6659 6660 6661 6662 6663 6664
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
6665
	cfs_b->hierarchical_quota = quota;
6666 6667 6668 6669 6670 6671

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
6672
	int ret;
6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

6684 6685 6686 6687 6688
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6689
}
6690

6691
static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6692
{
6693
	struct task_group *tg = css_tg(seq_css(sf));
6694
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6695

6696 6697 6698
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6699 6700 6701

	return 0;
}
6702
#endif /* CONFIG_CFS_BANDWIDTH */
6703
#endif /* CONFIG_FAIR_GROUP_SCHED */
6704

6705
#ifdef CONFIG_RT_GROUP_SCHED
6706 6707
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
6708
{
6709
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
6710 6711
}

6712 6713
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
6714
{
6715
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
6716
}
6717

6718 6719
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
6720
{
6721
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
6722 6723
}

6724 6725
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
6726
{
6727
	return sched_group_rt_period(css_tg(css));
6728
}
6729
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
6730

6731
static struct cftype cpu_legacy_files[] = {
6732
#ifdef CONFIG_FAIR_GROUP_SCHED
6733 6734
	{
		.name = "shares",
6735 6736
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
6737
	},
6738
#endif
6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
6750 6751
	{
		.name = "stat",
6752
		.seq_show = cpu_cfs_stat_show,
6753
	},
6754
#endif
6755
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6756
	{
P
Peter Zijlstra 已提交
6757
		.name = "rt_runtime_us",
6758 6759
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
6760
	},
6761 6762
	{
		.name = "rt_period_us",
6763 6764
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
6765
	},
6766
#endif
I
Ingo Molnar 已提交
6767
	{ }	/* Terminate */
6768 6769
};

6770 6771
static int cpu_extra_stat_show(struct seq_file *sf,
			       struct cgroup_subsys_state *css)
6772 6773 6774
{
#ifdef CONFIG_CFS_BANDWIDTH
	{
6775
		struct task_group *tg = css_tg(css);
6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		u64 throttled_usec;

		throttled_usec = cfs_b->throttled_time;
		do_div(throttled_usec, NSEC_PER_USEC);

		seq_printf(sf, "nr_periods %d\n"
			   "nr_throttled %d\n"
			   "throttled_usec %llu\n",
			   cfs_b->nr_periods, cfs_b->nr_throttled,
			   throttled_usec);
	}
#endif
	return 0;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	struct task_group *tg = css_tg(css);
	u64 weight = scale_load_down(tg->shares);

	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
}

static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cft, u64 weight)
{
	/*
	 * cgroup weight knobs should use the common MIN, DFL and MAX
	 * values which are 1, 100 and 10000 respectively.  While it loses
	 * a bit of range on both ends, it maps pretty well onto the shares
	 * value used by scheduler and the round-trip conversions preserve
	 * the original value over the entire range.
	 */
	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
		return -ERANGE;

	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);

	return sched_group_set_shares(css_tg(css), scale_load(weight));
}

static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
				    struct cftype *cft)
{
	unsigned long weight = scale_load_down(css_tg(css)->shares);
	int last_delta = INT_MAX;
	int prio, delta;

	/* find the closest nice value to the current weight */
	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
		delta = abs(sched_prio_to_weight[prio] - weight);
		if (delta >= last_delta)
			break;
		last_delta = delta;
	}

	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
}

static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
				     struct cftype *cft, s64 nice)
{
	unsigned long weight;

	if (nice < MIN_NICE || nice > MAX_NICE)
		return -ERANGE;

	weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO];
	return sched_group_set_shares(css_tg(css), scale_load(weight));
}
#endif

static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
						  long period, long quota)
{
	if (quota < 0)
		seq_puts(sf, "max");
	else
		seq_printf(sf, "%ld", quota);

	seq_printf(sf, " %ld\n", period);
}

/* caller should put the current value in *@periodp before calling */
static int __maybe_unused cpu_period_quota_parse(char *buf,
						 u64 *periodp, u64 *quotap)
{
	char tok[21];	/* U64_MAX */

	if (!sscanf(buf, "%s %llu", tok, periodp))
		return -EINVAL;

	*periodp *= NSEC_PER_USEC;

	if (sscanf(tok, "%llu", quotap))
		*quotap *= NSEC_PER_USEC;
	else if (!strcmp(tok, "max"))
		*quotap = RUNTIME_INF;
	else
		return -EINVAL;

	return 0;
}

#ifdef CONFIG_CFS_BANDWIDTH
static int cpu_max_show(struct seq_file *sf, void *v)
{
	struct task_group *tg = css_tg(seq_css(sf));

	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
	return 0;
}

static ssize_t cpu_max_write(struct kernfs_open_file *of,
			     char *buf, size_t nbytes, loff_t off)
{
	struct task_group *tg = css_tg(of_css(of));
	u64 period = tg_get_cfs_period(tg);
	u64 quota;
	int ret;

	ret = cpu_period_quota_parse(buf, &period, &quota);
	if (!ret)
		ret = tg_set_cfs_bandwidth(tg, period, quota);
	return ret ?: nbytes;
}
#endif

static struct cftype cpu_files[] = {
#ifdef CONFIG_FAIR_GROUP_SCHED
	{
		.name = "weight",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = cpu_weight_read_u64,
		.write_u64 = cpu_weight_write_u64,
	},
	{
		.name = "weight.nice",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_s64 = cpu_weight_nice_read_s64,
		.write_s64 = cpu_weight_nice_write_s64,
	},
#endif
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = cpu_max_show,
		.write = cpu_max_write,
	},
#endif
	{ }	/* terminate */
};

6933
struct cgroup_subsys cpu_cgrp_subsys = {
6934
	.css_alloc	= cpu_cgroup_css_alloc,
6935
	.css_online	= cpu_cgroup_css_online,
6936
	.css_released	= cpu_cgroup_css_released,
6937
	.css_free	= cpu_cgroup_css_free,
6938
	.css_extra_stat_show = cpu_extra_stat_show,
6939
	.fork		= cpu_cgroup_fork,
6940 6941
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
6942
	.legacy_cftypes	= cpu_legacy_files,
6943
	.dfl_cftypes	= cpu_files,
6944
	.early_init	= true,
6945
	.threaded	= true,
6946 6947
};

6948
#endif	/* CONFIG_CGROUP_SCHED */
6949

6950 6951 6952 6953 6954
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};