verifier.c 135.6 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
A
Alexei Starovoitov 已提交
23

24 25
#include "disasm.h"

26 27 28 29 30 31 32 33 34
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
35 36 37 38 39 40 41 42 43 44 45 46
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
47
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
75
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
76
 * means the register has some value, but it's not a valid pointer.
77
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
78 79
 *
 * When verifier sees load or store instructions the type of base register
80
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

142
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
143
struct bpf_verifier_stack_elem {
144 145 146 147
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
148
	struct bpf_verifier_state st;
149 150
	int insn_idx;
	int prev_insn_idx;
151
	struct bpf_verifier_stack_elem *next;
152 153
};

154
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
155 156
#define BPF_COMPLEXITY_LIMIT_STACK	1024

157 158
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

159 160
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
161
	bool raw_mode;
162
	bool pkt_access;
163 164
	int regno;
	int access_size;
165 166
};

167 168 169 170 171 172
static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
173 174
static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
				   const char *fmt, ...)
175
{
176
	struct bpf_verifer_log *log = &env->log;
177
	unsigned int n;
178 179
	va_list args;

180
	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 182 183
		return;

	va_start(args, fmt);
184
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185
	va_end(args);
186 187 188 189 190 191 192 193 194 195 196

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
197 198
}

199 200 201 202 203 204
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

205 206 207
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
208
	[SCALAR_VALUE]		= "inv",
209 210 211 212 213
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
214
	[PTR_TO_PACKET]		= "pkt",
215
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
216
	[PTR_TO_PACKET_END]	= "pkt_end",
217 218
};

219 220 221 222 223 224 225 226 227 228 229
static void print_liveness(struct bpf_verifier_env *env,
			   enum bpf_reg_liveness live)
{
	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
	    verbose(env, "_");
	if (live & REG_LIVE_READ)
		verbose(env, "r");
	if (live & REG_LIVE_WRITTEN)
		verbose(env, "w");
}

230 231
static void print_verifier_state(struct bpf_verifier_env *env,
				 struct bpf_verifier_state *state)
232
{
233
	struct bpf_reg_state *reg;
234 235 236 237
	enum bpf_reg_type t;
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
238 239
		reg = &state->regs[i];
		t = reg->type;
240 241
		if (t == NOT_INIT)
			continue;
242 243 244
		verbose(env, " R%d", i);
		print_liveness(env, reg->live);
		verbose(env, "=%s", reg_type_str[t]);
245 246 247
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
248
			verbose(env, "%lld", reg->var_off.value + reg->off);
249
		} else {
250
			verbose(env, "(id=%d", reg->id);
251
			if (t != SCALAR_VALUE)
252
				verbose(env, ",off=%d", reg->off);
253
			if (type_is_pkt_pointer(t))
254
				verbose(env, ",r=%d", reg->range);
255 256 257
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
258
				verbose(env, ",ks=%d,vs=%d",
259 260
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
261 262 263 264 265
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
266
				verbose(env, ",imm=%llx", reg->var_off.value);
267 268 269
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
270
					verbose(env, ",smin_value=%lld",
271 272 273
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
274
					verbose(env, ",smax_value=%lld",
275 276
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
277
					verbose(env, ",umin_value=%llu",
278 279
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
280
					verbose(env, ",umax_value=%llu",
281 282 283
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
284

285
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
286
					verbose(env, ",var_off=%s", tn_buf);
287
				}
288
			}
289
			verbose(env, ")");
290
		}
291
	}
292
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
293 294 295 296 297
		if (state->stack[i].slot_type[0] == STACK_SPILL) {
			verbose(env, " fp%d",
				(-i - 1) * BPF_REG_SIZE);
			print_liveness(env, state->stack[i].spilled_ptr.live);
			verbose(env, "=%s",
298
				reg_type_str[state->stack[i].spilled_ptr.type]);
299
		}
300
	}
301
	verbose(env, "\n");
302 303
}

304 305
static int copy_stack_state(struct bpf_verifier_state *dst,
			    const struct bpf_verifier_state *src)
306
{
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
 * the program calls into realloc_verifier_state() to grow the stack size.
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
				  bool copy_old)
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

360 361
static void free_verifier_state(struct bpf_verifier_state *state,
				bool free_self)
362 363
{
	kfree(state->stack);
364 365
	if (free_self)
		kfree(state);
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
static int copy_verifier_state(struct bpf_verifier_state *dst,
			       const struct bpf_verifier_state *src)
{
	int err;

	err = realloc_verifier_state(dst, src->allocated_stack, false);
	if (err)
		return err;
	memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
	return copy_stack_state(dst, src);
}

static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
389 390

	if (env->head == NULL)
391
		return -ENOENT;
392

393 394 395 396 397 398 399
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
400
	if (prev_insn_idx)
401 402
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
403
	free_verifier_state(&head->st, false);
404
	kfree(head);
405 406
	env->head = elem;
	env->stack_size--;
407
	return 0;
408 409
}

410 411
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
412
{
413
	struct bpf_verifier_state *cur = env->cur_state;
414
	struct bpf_verifier_stack_elem *elem;
415
	int err;
416

417
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
418 419 420 421 422 423 424 425
	if (!elem)
		goto err;

	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
426 427 428
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		goto err;
429
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
430
		verbose(env, "BPF program is too complex\n");
431 432 433 434 435
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
436
	while (!pop_stack(env, NULL, NULL));
437 438 439 440 441 442 443 444
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

445 446
static void __mark_reg_not_init(struct bpf_reg_state *reg);

447 448 449 450 451 452 453 454 455 456 457 458 459
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

460 461 462 463
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
464
{
465
	__mark_reg_known(reg, 0);
466
}
467

468 469
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
470 471
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
472
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
473 474 475 476 477 478 479 480
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

572 573 574 575 576 577 578
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
579
	__mark_reg_unbounded(reg);
580 581
}

582 583
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
584 585
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
586
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
587 588
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
589 590 591 592 593 594 595 596 597 598 599 600
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

601 602
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
603 604
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
605
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
606 607
		/* Something bad happened, let's kill all regs except FP */
		for (regno = 0; regno < BPF_REG_FP; regno++)
608 609 610 611
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
612 613
}

614 615
static void init_reg_state(struct bpf_verifier_env *env,
			   struct bpf_reg_state *regs)
616 617 618
{
	int i;

619
	for (i = 0; i < MAX_BPF_REG; i++) {
620
		mark_reg_not_init(env, regs, i);
621 622
		regs[i].live = REG_LIVE_NONE;
	}
623 624

	/* frame pointer */
625
	regs[BPF_REG_FP].type = PTR_TO_STACK;
626
	mark_reg_known_zero(env, regs, BPF_REG_FP);
627 628 629

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
630
	mark_reg_known_zero(env, regs, BPF_REG_1);
631 632
}

633 634 635 636 637 638
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

639 640 641 642
static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
{
	struct bpf_verifier_state *parent = state->parent;

A
Alexei Starovoitov 已提交
643 644 645 646
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
		return;

647 648 649 650 651 652 653 654 655 656 657 658
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
		if (state->regs[regno].live & REG_LIVE_WRITTEN)
			break;
		/* ... then we depend on parent's value */
		parent->regs[regno].live |= REG_LIVE_READ;
		state = parent;
		parent = state->parent;
	}
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
659 660
			 enum reg_arg_type t)
{
661
	struct bpf_reg_state *regs = env->cur_state->regs;
662

663
	if (regno >= MAX_BPF_REG) {
664
		verbose(env, "R%d is invalid\n", regno);
665 666 667 668 669 670
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
671
			verbose(env, "R%d !read_ok\n", regno);
672 673
			return -EACCES;
		}
674
		mark_reg_read(env->cur_state, regno);
675 676 677
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
678
			verbose(env, "frame pointer is read only\n");
679 680
			return -EACCES;
		}
681
		regs[regno].live |= REG_LIVE_WRITTEN;
682
		if (t == DST_OP)
683
			mark_reg_unknown(env, regs, regno);
684 685 686 687
	}
	return 0;
}

688 689 690 691 692 693 694
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
695
	case PTR_TO_PACKET:
696
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
697
	case PTR_TO_PACKET_END:
698 699 700 701 702 703 704
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

705 706 707
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
708 709
static int check_stack_write(struct bpf_verifier_env *env,
			     struct bpf_verifier_state *state, int off,
710
			     int size, int value_regno)
711
{
712 713 714 715 716 717
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;

	err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
				     true);
	if (err)
		return err;
718 719 720
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
721 722 723 724 725 726
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
727 728

	if (value_regno >= 0 &&
729
	    is_spillable_regtype(state->regs[value_regno].type)) {
730 731

		/* register containing pointer is being spilled into stack */
732
		if (size != BPF_REG_SIZE) {
733
			verbose(env, "invalid size of register spill\n");
734 735 736 737
			return -EACCES;
		}

		/* save register state */
738 739
		state->stack[spi].spilled_ptr = state->regs[value_regno];
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
740

741
		for (i = 0; i < BPF_REG_SIZE; i++)
742
			state->stack[spi].slot_type[i] = STACK_SPILL;
743
	} else {
744
		/* regular write of data into stack */
745
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
746 747

		for (i = 0; i < size; i++)
748 749
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
				STACK_MISC;
750 751 752 753
	}
	return 0;
}

754 755 756 757 758 759
static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
{
	struct bpf_verifier_state *parent = state->parent;

	while (parent) {
		/* if read wasn't screened by an earlier write ... */
760
		if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
761 762
			break;
		/* ... then we depend on parent's value */
763
		parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
764 765 766 767 768
		state = parent;
		parent = state->parent;
	}
}

769 770
static int check_stack_read(struct bpf_verifier_env *env,
			    struct bpf_verifier_state *state, int off, int size,
771 772
			    int value_regno)
{
773 774
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
775

776 777 778 779 780 781
	if (state->allocated_stack <= slot) {
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
	stype = state->stack[spi].slot_type;
782

783
	if (stype[0] == STACK_SPILL) {
784
		if (size != BPF_REG_SIZE) {
785
			verbose(env, "invalid size of register spill\n");
786 787
			return -EACCES;
		}
788
		for (i = 1; i < BPF_REG_SIZE; i++) {
789
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
790
				verbose(env, "corrupted spill memory\n");
791 792 793 794
				return -EACCES;
			}
		}

795
		if (value_regno >= 0) {
796
			/* restore register state from stack */
797
			state->regs[value_regno] = state->stack[spi].spilled_ptr;
798 799 800 801 802
			/* mark reg as written since spilled pointer state likely
			 * has its liveness marks cleared by is_state_visited()
			 * which resets stack/reg liveness for state transitions
			 */
			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
803 804
			mark_stack_slot_read(state, spi);
		}
805 806 807
		return 0;
	} else {
		for (i = 0; i < size; i++) {
808
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
809
				verbose(env, "invalid read from stack off %d+%d size %d\n",
810 811 812 813 814 815
					off, i, size);
				return -EACCES;
			}
		}
		if (value_regno >= 0)
			/* have read misc data from the stack */
816
			mark_reg_unknown(env, state->regs, value_regno);
817 818 819 820 821
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
822
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
823
			      int size, bool zero_size_allowed)
824
{
825 826
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
827

828 829
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    off + size > map->value_size) {
830
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
831 832 833 834 835 836
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

837 838
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
839
			    int off, int size, bool zero_size_allowed)
840
{
841
	struct bpf_verifier_state *state = env->cur_state;
842 843 844
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

845 846 847
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
848
	 */
849 850
	if (env->log.level)
		print_verifier_state(env, state);
851 852 853 854 855 856
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
857
	if (reg->smin_value < 0) {
858
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
859 860 861
			regno);
		return -EACCES;
	}
862 863
	err = __check_map_access(env, regno, reg->smin_value + off, size,
				 zero_size_allowed);
864
	if (err) {
865 866
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
867 868 869
		return err;
	}

870 871 872
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
873
	 */
874
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
875
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
876 877 878
			regno);
		return -EACCES;
	}
879 880
	err = __check_map_access(env, regno, reg->umax_value + off, size,
				 zero_size_allowed);
881
	if (err)
882 883
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
884
	return err;
885 886
}

A
Alexei Starovoitov 已提交
887 888
#define MAX_PACKET_OFF 0xffff

889
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
890 891
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
892
{
893
	switch (env->prog->type) {
894 895 896 897 898
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
899
		/* fallthrough */
900 901
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
902
	case BPF_PROG_TYPE_XDP:
903
	case BPF_PROG_TYPE_LWT_XMIT:
904
	case BPF_PROG_TYPE_SK_SKB:
905 906 907 908
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
909 910 911 912 913 914
		return true;
	default:
		return false;
	}
}

915
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
916
				 int off, int size, bool zero_size_allowed)
A
Alexei Starovoitov 已提交
917
{
918
	struct bpf_reg_state *regs = cur_regs(env);
919
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
920

921 922
	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
	    (u64)off + size > reg->range) {
923
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
924
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
925 926 927 928 929
		return -EACCES;
	}
	return 0;
}

930
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
931
			       int size, bool zero_size_allowed)
932
{
933
	struct bpf_reg_state *regs = cur_regs(env);
934 935 936 937 938 939 940 941 942 943 944
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
945
	if (reg->smin_value < 0) {
946
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
947 948 949
			regno);
		return -EACCES;
	}
950
	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
951
	if (err) {
952
		verbose(env, "R%d offset is outside of the packet\n", regno);
953 954 955 956 957 958
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
959
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
960
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
961
{
962 963 964
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
965

966 967
	if (env->ops->is_valid_access &&
	    env->ops->is_valid_access(off, size, t, &info)) {
968 969 970 971 972 973
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
974
		 */
975
		*reg_type = info.reg_type;
976

977
		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
978 979 980
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
981
		return 0;
982
	}
983

984
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
985 986 987
	return -EACCES;
}

988 989
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
990
{
991
	if (allow_ptr_leaks)
992 993
		return false;

994
	return reg->type != SCALAR_VALUE;
995 996
}

997 998
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
999
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1000 1001
}

1002 1003
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
1004
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
1005
{
1006
	struct tnum reg_off;
1007
	int ip_align;
1008 1009 1010 1011 1012

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

1013 1014 1015 1016 1017 1018 1019
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
1020
	 */
1021
	ip_align = 2;
1022 1023 1024 1025 1026 1027

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1028 1029
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1030
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1031 1032
		return -EACCES;
	}
1033

A
Alexei Starovoitov 已提交
1034 1035 1036
	return 0;
}

1037 1038
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1039 1040
				       const char *pointer_desc,
				       int off, int size, bool strict)
1041
{
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1053
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1054
			pointer_desc, tn_buf, reg->off, off, size);
1055 1056 1057
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1058 1059 1060
	return 0;
}

1061 1062
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       const struct bpf_reg_state *reg,
1063 1064
			       int off, int size)
{
1065
	bool strict = env->strict_alignment;
1066
	const char *pointer_desc = "";
1067

1068 1069
	switch (reg->type) {
	case PTR_TO_PACKET:
1070 1071 1072 1073
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1074
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1075 1076 1077 1078 1079 1080 1081 1082 1083
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
		break;
1084
	default:
1085
		break;
1086
	}
1087 1088
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1089 1090
}

1091 1092 1093 1094 1095 1096
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1097
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1098 1099 1100
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
1101 1102 1103
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1104 1105 1106 1107 1108 1109
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1110
	/* alignment checks will add in reg->off themselves */
1111
	err = check_ptr_alignment(env, reg, off, size);
A
Alexei Starovoitov 已提交
1112 1113
	if (err)
		return err;
1114

1115 1116 1117 1118
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1119 1120
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1121
			verbose(env, "R%d leaks addr into map\n", value_regno);
1122 1123
			return -EACCES;
		}
1124

1125
		err = check_map_access(env, regno, off, size, false);
1126
		if (!err && t == BPF_READ && value_regno >= 0)
1127
			mark_reg_unknown(env, regs, value_regno);
1128

A
Alexei Starovoitov 已提交
1129
	} else if (reg->type == PTR_TO_CTX) {
1130
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1131

1132 1133
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1134
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1135 1136
			return -EACCES;
		}
1137 1138 1139
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1140
		if (reg->off) {
1141 1142
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1143 1144 1145 1146
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1147 1148 1149
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1150 1151
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1152 1153 1154
				tn_buf, off, size);
			return -EACCES;
		}
1155
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1156
		if (!err && t == BPF_READ && value_regno >= 0) {
1157
			/* ctx access returns either a scalar, or a
1158 1159
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1160 1161
			 */
			if (reg_type == SCALAR_VALUE)
1162
				mark_reg_unknown(env, regs, value_regno);
1163
			else
1164
				mark_reg_known_zero(env, regs,
1165
						    value_regno);
1166 1167 1168 1169
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1170
		}
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1181
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1182 1183 1184 1185
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1186
		if (off >= 0 || off < -MAX_BPF_STACK) {
1187 1188
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1189 1190
			return -EACCES;
		}
1191 1192 1193 1194

		if (env->prog->aux->stack_depth < -off)
			env->prog->aux->stack_depth = -off;

1195
		if (t == BPF_WRITE)
1196 1197
			err = check_stack_write(env, state, off, size,
						value_regno);
1198
		else
1199 1200
			err = check_stack_read(env, state, off, size,
					       value_regno);
1201
	} else if (reg_is_pkt_pointer(reg)) {
1202
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1203
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1204 1205
			return -EACCES;
		}
1206 1207
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1208 1209
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1210 1211
			return -EACCES;
		}
1212
		err = check_packet_access(env, regno, off, size, false);
A
Alexei Starovoitov 已提交
1213
		if (!err && t == BPF_READ && value_regno >= 0)
1214
			mark_reg_unknown(env, regs, value_regno);
1215
	} else {
1216 1217
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1218 1219
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1220

1221
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1222
	    regs[value_regno].type == SCALAR_VALUE) {
1223
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1224 1225 1226
		regs[value_regno].var_off =
			tnum_cast(regs[value_regno].var_off, size);
		__update_reg_bounds(&regs[value_regno]);
A
Alexei Starovoitov 已提交
1227
	}
1228 1229 1230
	return err;
}

1231
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1232 1233 1234 1235 1236
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1237
		verbose(env, "BPF_XADD uses reserved fields\n");
1238 1239 1240 1241
		return -EINVAL;
	}

	/* check src1 operand */
1242
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1243 1244 1245 1246
	if (err)
		return err;

	/* check src2 operand */
1247
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1248 1249 1250
	if (err)
		return err;

1251
	if (is_pointer_value(env, insn->src_reg)) {
1252
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1253 1254 1255
		return -EACCES;
	}

1256
	/* check whether atomic_add can read the memory */
1257
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1258 1259 1260 1261 1262
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1263
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1264 1265 1266
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

1267
/* Does this register contain a constant zero? */
1268
static bool register_is_null(struct bpf_reg_state *reg)
1269
{
1270
	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1271 1272
}

1273 1274
/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1275 1276 1277
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1278
 */
1279
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1280 1281
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1282
{
1283
	struct bpf_reg_state *reg = cur_regs(env) + regno;
1284 1285
	struct bpf_verifier_state *state = env->cur_state;
	int off, i, slot, spi;
1286

1287
	if (reg->type != PTR_TO_STACK) {
1288
		/* Allow zero-byte read from NULL, regardless of pointer type */
1289
		if (zero_size_allowed && access_size == 0 &&
1290
		    register_is_null(reg))
1291 1292
			return 0;

1293
		verbose(env, "R%d type=%s expected=%s\n", regno,
1294
			reg_type_str[reg->type],
1295
			reg_type_str[PTR_TO_STACK]);
1296
		return -EACCES;
1297
	}
1298

1299
	/* Only allow fixed-offset stack reads */
1300
	if (!tnum_is_const(reg->var_off)) {
1301 1302
		char tn_buf[48];

1303
		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1304
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1305 1306
			regno, tn_buf);
	}
1307
	off = reg->off + reg->var_off.value;
1308
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1309
	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1310
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1311 1312 1313 1314
			regno, off, access_size);
		return -EACCES;
	}

1315 1316 1317
	if (env->prog->aux->stack_depth < -off)
		env->prog->aux->stack_depth = -off;

1318 1319 1320 1321 1322 1323
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1324
	for (i = 0; i < access_size; i++) {
1325 1326 1327 1328 1329
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
		if (state->allocated_stack <= slot ||
		    state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
			STACK_MISC) {
1330
			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1331 1332 1333 1334 1335 1336 1337
				off, i, access_size);
			return -EACCES;
		}
	}
	return 0;
}

1338 1339 1340 1341
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1342
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1343

1344
	switch (reg->type) {
1345
	case PTR_TO_PACKET:
1346
	case PTR_TO_PACKET_META:
1347 1348
		return check_packet_access(env, regno, reg->off, access_size,
					   zero_size_allowed);
1349
	case PTR_TO_MAP_VALUE:
1350 1351
		return check_map_access(env, regno, reg->off, access_size,
					zero_size_allowed);
1352
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1353 1354 1355 1356 1357
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1358
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1359 1360
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1361
{
1362
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1363
	enum bpf_reg_type expected_type, type = reg->type;
1364 1365
	int err = 0;

1366
	if (arg_type == ARG_DONTCARE)
1367 1368
		return 0;

1369 1370 1371
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1372

1373 1374
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1375 1376
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1377 1378
			return -EACCES;
		}
1379
		return 0;
1380
	}
1381

1382
	if (type_is_pkt_pointer(type) &&
1383
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1384
		verbose(env, "helper access to the packet is not allowed\n");
1385 1386 1387
		return -EACCES;
	}

1388
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1389 1390
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1391 1392
		if (!type_is_pkt_pointer(type) &&
		    type != expected_type)
1393
			goto err_type;
1394 1395
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1396 1397
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1398
			goto err_type;
1399 1400
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1401 1402
		if (type != expected_type)
			goto err_type;
1403 1404
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1405 1406
		if (type != expected_type)
			goto err_type;
1407
	} else if (arg_type == ARG_PTR_TO_MEM ||
1408
		   arg_type == ARG_PTR_TO_MEM_OR_NULL ||
1409
		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1410 1411
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1412
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1413 1414
		 * happens during stack boundary checking.
		 */
1415
		if (register_is_null(reg) &&
1416
		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1417
			/* final test in check_stack_boundary() */;
1418 1419
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1420
			 type != expected_type)
1421
			goto err_type;
1422
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1423
	} else {
1424
		verbose(env, "unsupported arg_type %d\n", arg_type);
1425 1426 1427 1428 1429
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1430
		meta->map_ptr = reg->map_ptr;
1431 1432 1433 1434 1435
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1436
		if (!meta->map_ptr) {
1437 1438 1439 1440 1441
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1442
			verbose(env, "invalid map_ptr to access map->key\n");
1443 1444
			return -EACCES;
		}
1445
		if (type_is_pkt_pointer(type))
1446
			err = check_packet_access(env, regno, reg->off,
1447 1448
						  meta->map_ptr->key_size,
						  false);
1449 1450 1451 1452
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1453 1454 1455 1456
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1457
		if (!meta->map_ptr) {
1458
			/* kernel subsystem misconfigured verifier */
1459
			verbose(env, "invalid map_ptr to access map->value\n");
1460 1461
			return -EACCES;
		}
1462
		if (type_is_pkt_pointer(type))
1463
			err = check_packet_access(env, regno, reg->off,
1464 1465
						  meta->map_ptr->value_size,
						  false);
1466 1467 1468 1469
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1470 1471 1472
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1473 1474 1475 1476 1477 1478 1479

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
1480 1481
			verbose(env,
				"ARG_CONST_SIZE cannot be first argument\n");
1482 1483
			return -EACCES;
		}
1484

1485 1486
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1487
		 */
1488 1489

		if (!tnum_is_const(reg->var_off))
1490 1491 1492 1493 1494 1495 1496
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

1497
		if (reg->smin_value < 0) {
1498
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1499 1500 1501
				regno);
			return -EACCES;
		}
1502

1503
		if (reg->umin_value == 0) {
1504 1505 1506
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
1507 1508 1509
			if (err)
				return err;
		}
1510

1511
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1512
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1513 1514 1515 1516
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
1517
					      reg->umax_value,
1518
					      zero_size_allowed, meta);
1519 1520 1521
	}

	return err;
1522
err_type:
1523
	verbose(env, "R%d type=%s expected=%s\n", regno,
1524 1525
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1526 1527
}

1528 1529
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
1530 1531 1532 1533
{
	if (!map)
		return 0;

1534 1535 1536 1537 1538 1539 1540 1541
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
1542 1543
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
1544 1545 1546 1547 1548 1549
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1550
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1551
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1552
		    func_id != BPF_FUNC_current_task_under_cgroup)
1553 1554
			goto error;
		break;
1555 1556 1557 1558 1559
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
1560
		if (func_id != BPF_FUNC_redirect_map)
1561 1562
			goto error;
		break;
1563 1564 1565 1566 1567
	/* Restrict bpf side of cpumap, open when use-cases appear */
	case BPF_MAP_TYPE_CPUMAP:
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
1568
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
1569
	case BPF_MAP_TYPE_HASH_OF_MAPS:
1570 1571
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
1572
		break;
1573 1574 1575 1576 1577 1578
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
		    func_id != BPF_FUNC_map_delete_elem)
			goto error;
		break;
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
1591
	case BPF_FUNC_perf_event_read_value:
1592 1593 1594 1595 1596 1597 1598
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1599
	case BPF_FUNC_current_task_under_cgroup:
1600
	case BPF_FUNC_skb_under_cgroup:
1601 1602 1603
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
1604
	case BPF_FUNC_redirect_map:
1605 1606
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
		    map->map_type != BPF_MAP_TYPE_CPUMAP)
1607 1608
			goto error;
		break;
1609 1610 1611 1612 1613 1614 1615 1616
	case BPF_FUNC_sk_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
1617 1618
	default:
		break;
1619 1620 1621
	}

	return 0;
1622
error:
1623
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
1624
		map->map_type, func_id_name(func_id), func_id);
1625
	return -EINVAL;
1626 1627
}

1628 1629 1630 1631
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

1632
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1633
		count++;
1634
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1635
		count++;
1636
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1637
		count++;
1638
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1639
		count++;
1640
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1641 1642 1643 1644 1645
		count++;

	return count > 1 ? -EINVAL : 0;
}

1646 1647
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
1648
 */
1649
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
A
Alexei Starovoitov 已提交
1650
{
1651
	struct bpf_verifier_state *state = env->cur_state;
1652
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
1653 1654 1655
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
1656
		if (reg_is_pkt_pointer_any(&regs[i]))
1657
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
1658

1659 1660
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
1661
			continue;
1662
		reg = &state->stack[i].spilled_ptr;
1663 1664
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
1665 1666 1667
	}
}

1668
static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1669 1670
{
	const struct bpf_func_proto *fn = NULL;
1671
	struct bpf_reg_state *regs;
1672
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
1673
	bool changes_data;
1674 1675 1676 1677
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1678 1679
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
1680 1681 1682
		return -EINVAL;
	}

1683 1684
	if (env->ops->get_func_proto)
		fn = env->ops->get_func_proto(func_id);
1685 1686

	if (!fn) {
1687 1688
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
1689 1690 1691 1692
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1693
	if (!env->prog->gpl_compatible && fn->gpl_only) {
1694
		verbose(env, "cannot call GPL only function from proprietary program\n");
1695 1696 1697
		return -EINVAL;
	}

1698
	changes_data = bpf_helper_changes_pkt_data(fn->func);
A
Alexei Starovoitov 已提交
1699

1700
	memset(&meta, 0, sizeof(meta));
1701
	meta.pkt_access = fn->pkt_access;
1702

1703 1704 1705 1706 1707
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
1708
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1709
			func_id_name(func_id), func_id);
1710 1711 1712
		return err;
	}

1713
	/* check args */
1714
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1715 1716
	if (err)
		return err;
1717
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1718 1719
	if (err)
		return err;
1720
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1721 1722
	if (err)
		return err;
1723
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1724 1725
	if (err)
		return err;
1726
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1727 1728 1729
	if (err)
		return err;

1730 1731 1732 1733
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
1734
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1735 1736 1737 1738
		if (err)
			return err;
	}

1739
	regs = cur_regs(env);
1740
	/* reset caller saved regs */
1741
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1742
		mark_reg_not_init(env, regs, caller_saved[i]);
1743 1744
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
1745

1746
	/* update return register (already marked as written above) */
1747
	if (fn->ret_type == RET_INTEGER) {
1748
		/* sets type to SCALAR_VALUE */
1749
		mark_reg_unknown(env, regs, BPF_REG_0);
1750 1751 1752
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1753 1754
		struct bpf_insn_aux_data *insn_aux;

1755
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1756
		/* There is no offset yet applied, variable or fixed */
1757
		mark_reg_known_zero(env, regs, BPF_REG_0);
1758
		regs[BPF_REG_0].off = 0;
1759 1760 1761 1762
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
1763
		if (meta.map_ptr == NULL) {
1764 1765
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
1766 1767
			return -EINVAL;
		}
1768
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1769
		regs[BPF_REG_0].id = ++env->id_gen;
1770 1771 1772 1773 1774
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1775
	} else {
1776
		verbose(env, "unknown return type %d of func %s#%d\n",
1777
			fn->ret_type, func_id_name(func_id), func_id);
1778 1779
		return -EINVAL;
	}
1780

1781
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1782 1783
	if (err)
		return err;
1784

A
Alexei Starovoitov 已提交
1785 1786 1787 1788 1789
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

1790 1791 1792 1793
static void coerce_reg_to_32(struct bpf_reg_state *reg)
{
	/* clear high 32 bits */
	reg->var_off = tnum_cast(reg->var_off, 4);
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	/* Update bounds */
	__update_reg_bounds(reg);
}

static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
1816 1817
}

1818 1819 1820 1821 1822 1823 1824 1825 1826
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
1827
{
1828
	struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
1829
	bool known = tnum_is_const(off_reg->var_off);
1830 1831 1832 1833
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
1834
	u8 opcode = BPF_OP(insn->code);
1835
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
1836

1837
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
1838

1839
	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1840
		print_verifier_state(env, env->cur_state);
1841 1842
		verbose(env,
			"verifier internal error: known but bad sbounds\n");
1843 1844 1845
		return -EINVAL;
	}
	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1846
		print_verifier_state(env, env->cur_state);
1847 1848
		verbose(env,
			"verifier internal error: known but bad ubounds\n");
1849 1850 1851 1852 1853 1854
		return -EINVAL;
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
		if (!env->allow_ptr_leaks)
1855 1856
			verbose(env,
				"R%d 32-bit pointer arithmetic prohibited\n",
1857 1858
				dst);
		return -EACCES;
A
Alexei Starovoitov 已提交
1859 1860
	}

1861 1862
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
		if (!env->allow_ptr_leaks)
1863
			verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1864 1865 1866 1867 1868
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
		if (!env->allow_ptr_leaks)
1869
			verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1870 1871 1872 1873 1874
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
		if (!env->allow_ptr_leaks)
1875
			verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1876 1877 1878 1879 1880 1881
				dst);
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
1882
	 */
1883 1884
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
1885

1886 1887 1888 1889
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
1890
		 */
1891 1892
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
1893
			/* pointer += K.  Accumulate it into fixed offset */
1894 1895 1896 1897
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1898
			dst_reg->var_off = ptr_reg->var_off;
1899
			dst_reg->off = ptr_reg->off + smin_val;
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
1911
		 */
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
1928 1929
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
1930
		if (reg_is_pkt_pointer(ptr_reg)) {
1931 1932 1933 1934 1935 1936 1937 1938 1939
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
			if (!env->allow_ptr_leaks)
1940
				verbose(env, "R%d tried to subtract pointer from scalar\n",
1941 1942 1943 1944 1945 1946
					dst);
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
1947
		 */
1948 1949
		if (ptr_reg->type == PTR_TO_STACK) {
			if (!env->allow_ptr_leaks)
1950
				verbose(env, "R%d subtraction from stack pointer prohibited\n",
1951 1952 1953
					dst);
			return -EACCES;
		}
1954 1955
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
1956
			/* pointer -= K.  Subtract it from fixed offset */
1957 1958 1959 1960
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1961 1962
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
1963
			dst_reg->off = ptr_reg->off - smin_val;
1964 1965 1966 1967 1968
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
1969
		 */
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
1988 1989
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
1990
		if (reg_is_pkt_pointer(ptr_reg)) {
1991 1992
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
1993
			if (smin_val < 0)
1994
				dst_reg->range = 0;
1995
		}
1996 1997 1998 1999 2000 2001 2002 2003 2004
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
		/* bitwise ops on pointers are troublesome, prohibit for now.
		 * (However, in principle we could allow some cases, e.g.
		 * ptr &= ~3 which would reduce min_value by 3.)
		 */
		if (!env->allow_ptr_leaks)
2005
			verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2006 2007 2008 2009 2010
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
		if (!env->allow_ptr_leaks)
2011
			verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2012 2013
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
2014 2015
	}

2016 2017 2018
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2019 2020 2021
	return 0;
}

2022 2023 2024 2025
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
2026
{
2027
	struct bpf_reg_state *regs = cur_regs(env);
2028
	u8 opcode = BPF_OP(insn->code);
2029
	bool src_known, dst_known;
2030 2031
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
2032

2033 2034 2035 2036
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->64 */
		coerce_reg_to_32(dst_reg);
		coerce_reg_to_32(&src_reg);
2037
	}
2038 2039 2040 2041
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2042 2043
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2044

2045 2046
	switch (opcode) {
	case BPF_ADD:
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2063
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2064 2065
		break;
	case BPF_SUB:
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2084
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2085 2086
		break;
	case BPF_MUL:
2087 2088
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2089
			/* Ain't nobody got time to multiply that sign */
2090 2091
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2092 2093
			break;
		}
2094 2095
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2096
		 */
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2114 2115
		break;
	case BPF_AND:
2116
		if (src_known && dst_known) {
2117 2118
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2119 2120
			break;
		}
2121 2122
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2123
		 */
2124
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2142 2143 2144
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2145 2146
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2147 2148
			break;
		}
2149 2150
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2151 2152
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2153 2154 2155 2156 2157 2158 2159 2160 2161
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2162
		} else {
2163 2164 2165 2166 2167
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2168
		}
2169 2170
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2171 2172
		break;
	case BPF_LSH:
2173 2174 2175 2176
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2177
			mark_reg_unknown(env, regs, insn->dst_reg);
2178 2179
			break;
		}
2180 2181
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2182
		 */
2183 2184 2185 2186 2187 2188
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2189
		} else {
2190 2191
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2192
		}
2193 2194 2195 2196 2197 2198
		if (src_known)
			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
		else
			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2199 2200
		break;
	case BPF_RSH:
2201 2202 2203 2204
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2205
			mark_reg_unknown(env, regs, insn->dst_reg);
2206 2207 2208
			break;
		}
		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2209 2210
		if (dst_reg->smin_value < 0) {
			if (umin_val) {
2211
				/* Sign bit will be cleared */
2212 2213 2214 2215 2216 2217
				dst_reg->smin_value = 0;
			} else {
				/* Lost sign bit information */
				dst_reg->smin_value = S64_MIN;
				dst_reg->smax_value = S64_MAX;
			}
2218
		} else {
2219 2220
			dst_reg->smin_value =
				(u64)(dst_reg->smin_value) >> umax_val;
2221
		}
2222
		if (src_known)
2223 2224
			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
						       umin_val);
2225
		else
2226 2227 2228 2229 2230
			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2231 2232
		break;
	default:
2233
		mark_reg_unknown(env, regs, insn->dst_reg);
2234 2235 2236
		break;
	}

2237 2238
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2239 2240 2241 2242 2243 2244 2245 2246 2247
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
2248
	struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);
	int rc;

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
				 * an arbitrary scalar.
				 */
				if (!env->allow_ptr_leaks) {
2265
					verbose(env, "R%d pointer %s pointer prohibited\n",
2266 2267 2268 2269
						insn->dst_reg,
						bpf_alu_string[opcode >> 4]);
					return -EACCES;
				}
2270
				mark_reg_unknown(env, regs, insn->dst_reg);
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
				return 0;
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
				rc = adjust_ptr_min_max_vals(env, insn,
							     src_reg, dst_reg);
				if (rc == -EACCES && env->allow_ptr_leaks) {
					/* scalar += unknown scalar */
					__mark_reg_unknown(&off_reg);
					return adjust_scalar_min_max_vals(
							env, insn,
							dst_reg, off_reg);
				}
				return rc;
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
			rc = adjust_ptr_min_max_vals(env, insn,
						     dst_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += scalar */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, *src_reg);
			}
			return rc;
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
2305
		__mark_reg_known(&off_reg, insn->imm);
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
		src_reg = &off_reg;
		if (ptr_reg) { /* pointer += K */
			rc = adjust_ptr_min_max_vals(env, insn,
						     ptr_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += K */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, off_reg);
			}
			return rc;
		}
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
2322
		print_verifier_state(env, env->cur_state);
2323
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
2324 2325 2326
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
2327
		print_verifier_state(env, env->cur_state);
2328
		verbose(env, "verifier internal error: no src_reg\n");
2329 2330 2331
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2332 2333
}

2334
/* check validity of 32-bit and 64-bit arithmetic operations */
2335
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2336
{
2337
	struct bpf_reg_state *regs = cur_regs(env);
2338 2339 2340 2341 2342 2343 2344 2345
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
2346
				verbose(env, "BPF_NEG uses reserved fields\n");
2347 2348 2349 2350
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2351 2352
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
2353
				verbose(env, "BPF_END uses reserved fields\n");
2354 2355 2356 2357 2358
				return -EINVAL;
			}
		}

		/* check src operand */
2359
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2360 2361 2362
		if (err)
			return err;

2363
		if (is_pointer_value(env, insn->dst_reg)) {
2364
			verbose(env, "R%d pointer arithmetic prohibited\n",
2365 2366 2367 2368
				insn->dst_reg);
			return -EACCES;
		}

2369
		/* check dest operand */
2370
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2371 2372 2373 2374 2375 2376 2377
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2378
				verbose(env, "BPF_MOV uses reserved fields\n");
2379 2380 2381 2382
				return -EINVAL;
			}

			/* check src operand */
2383
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2384 2385 2386 2387
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2388
				verbose(env, "BPF_MOV uses reserved fields\n");
2389 2390 2391 2392 2393
				return -EINVAL;
			}
		}

		/* check dest operand */
2394
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2395 2396 2397 2398 2399 2400 2401 2402 2403
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
2404
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2405
			} else {
2406
				/* R1 = (u32) R2 */
2407
				if (is_pointer_value(env, insn->src_reg)) {
2408 2409
					verbose(env,
						"R%d partial copy of pointer\n",
2410 2411 2412
						insn->src_reg);
					return -EACCES;
				}
2413
				mark_reg_unknown(env, regs, insn->dst_reg);
2414
				/* high 32 bits are known zero. */
2415 2416
				regs[insn->dst_reg].var_off = tnum_cast(
						regs[insn->dst_reg].var_off, 4);
2417
				__update_reg_bounds(&regs[insn->dst_reg]);
2418 2419 2420 2421 2422
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
2423
			regs[insn->dst_reg].type = SCALAR_VALUE;
2424
			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2425 2426 2427
		}

	} else if (opcode > BPF_END) {
2428
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2429 2430 2431 2432 2433 2434
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2435
				verbose(env, "BPF_ALU uses reserved fields\n");
2436 2437 2438
				return -EINVAL;
			}
			/* check src1 operand */
2439
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2440 2441 2442 2443
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2444
				verbose(env, "BPF_ALU uses reserved fields\n");
2445 2446 2447 2448 2449
				return -EINVAL;
			}
		}

		/* check src2 operand */
2450
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2451 2452 2453 2454 2455
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2456
			verbose(env, "div by zero\n");
2457 2458 2459
			return -EINVAL;
		}

R
Rabin Vincent 已提交
2460 2461 2462 2463 2464
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
2465
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
2466 2467 2468 2469
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
2470
		/* check dest operand */
2471
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
2472 2473 2474
		if (err)
			return err;

2475
		return adjust_reg_min_max_vals(env, insn);
2476 2477 2478 2479 2480
	}

	return 0;
}

2481
static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2482
				   struct bpf_reg_state *dst_reg,
2483
				   enum bpf_reg_type type,
2484
				   bool range_right_open)
A
Alexei Starovoitov 已提交
2485
{
2486
	struct bpf_reg_state *regs = state->regs, *reg;
2487
	u16 new_range;
A
Alexei Starovoitov 已提交
2488
	int i;
2489

2490 2491
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
2492 2493 2494
		/* This doesn't give us any range */
		return;

2495 2496
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2497 2498 2499 2500 2501
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

2502 2503 2504 2505 2506
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
2507
	 *
2508
	 * pkt_data in dst register:
2509 2510 2511 2512 2513 2514
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
2515 2516 2517 2518 2519
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
2520 2521 2522 2523 2524
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
2525
	 * pkt_data in src register:
2526 2527 2528 2529 2530 2531
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
2532 2533 2534 2535 2536
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
2537 2538 2539 2540 2541 2542
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2543 2544 2545
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
2546
	 */
2547

2548 2549 2550 2551 2552
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
2553
	for (i = 0; i < MAX_BPF_REG; i++)
2554
		if (regs[i].type == type && regs[i].id == dst_reg->id)
2555
			/* keep the maximum range already checked */
2556
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
2557

2558 2559
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2560
			continue;
2561
		reg = &state->stack[i].spilled_ptr;
2562
		if (reg->type == type && reg->id == dst_reg->id)
D
Daniel Borkmann 已提交
2563
			reg->range = max(reg->range, new_range);
A
Alexei Starovoitov 已提交
2564 2565 2566
	}
}

2567 2568 2569
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
2570
 * In JEQ/JNE cases we also adjust the var_off values.
2571 2572 2573 2574 2575
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
2576 2577 2578 2579 2580 2581 2582 2583
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
2584

2585 2586 2587 2588 2589
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2590
		__mark_reg_known(true_reg, val);
2591 2592 2593 2594 2595
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2596
		__mark_reg_known(false_reg, val);
2597 2598
		break;
	case BPF_JGT:
2599 2600 2601
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
2602
	case BPF_JSGT:
2603 2604
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2605
		break;
2606 2607 2608 2609 2610 2611 2612 2613
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
2614
	case BPF_JGE:
2615 2616 2617
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
2618
	case BPF_JSGE:
2619 2620
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2621
		break;
2622 2623 2624 2625 2626 2627 2628 2629
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
2630 2631 2632 2633
	default:
		break;
	}

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2645 2646
}

2647 2648
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
2649 2650 2651 2652 2653
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
2654 2655
	if (__is_pointer_value(false, false_reg))
		return;
2656

2657 2658 2659 2660 2661
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2662
		__mark_reg_known(true_reg, val);
2663 2664 2665 2666 2667
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2668
		__mark_reg_known(false_reg, val);
2669 2670
		break;
	case BPF_JGT:
2671 2672 2673
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
2674
	case BPF_JSGT:
2675 2676
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2677
		break;
2678 2679 2680 2681 2682 2683 2684 2685
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
2686
	case BPF_JGE:
2687 2688 2689
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
2690
	case BPF_JSGE:
2691 2692
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2693
		break;
2694 2695 2696 2697 2698 2699 2700 2701
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
2702 2703 2704 2705
	default:
		break;
	}

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2717 2718 2719 2720 2721 2722
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
2723 2724 2725 2726 2727 2728 2729 2730
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
2731 2732
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
2762
		break;
2763
	}
2764 2765
}

2766
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2767
			 bool is_null)
2768 2769 2770 2771
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2772 2773 2774 2775
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
2776 2777
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
2778
				 reg->off)) {
2779 2780
			__mark_reg_known_zero(reg);
			reg->off = 0;
2781 2782 2783
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
2784 2785 2786 2787
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
2788
			reg->type = PTR_TO_MAP_VALUE;
2789
		}
2790 2791 2792 2793 2794
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
2795 2796 2797 2798 2799 2800 2801
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2802
			  bool is_null)
2803 2804
{
	struct bpf_reg_state *regs = state->regs;
2805
	u32 id = regs[regno].id;
2806 2807 2808
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2809
		mark_map_reg(regs, i, id, is_null);
2810

2811 2812
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
2813
			continue;
2814
		mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
2815 2816 2817
	}
}

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
static bool try_match_pkt_pointers(const struct bpf_insn *insn,
				   struct bpf_reg_state *dst_reg,
				   struct bpf_reg_state *src_reg,
				   struct bpf_verifier_state *this_branch,
				   struct bpf_verifier_state *other_branch)
{
	if (BPF_SRC(insn->code) != BPF_X)
		return false;

	switch (BPF_OP(insn->code)) {
	case BPF_JGT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	case BPF_JLT:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JGE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
			find_good_pkt_pointers(this_branch, dst_reg,
					       dst_reg->type, true);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
			find_good_pkt_pointers(other_branch, src_reg,
					       src_reg->type, false);
		} else {
			return false;
		}
		break;
	case BPF_JLE:
		if ((dst_reg->type == PTR_TO_PACKET &&
		     src_reg->type == PTR_TO_PACKET_END) ||
		    (dst_reg->type == PTR_TO_PACKET_META &&
		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
			find_good_pkt_pointers(other_branch, dst_reg,
					       dst_reg->type, false);
		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
			    src_reg->type == PTR_TO_PACKET) ||
			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
			    src_reg->type == PTR_TO_PACKET_META)) {
			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
			find_good_pkt_pointers(this_branch, src_reg,
					       src_reg->type, true);
		} else {
			return false;
		}
		break;
	default:
		return false;
	}

	return true;
}

2911
static int check_cond_jmp_op(struct bpf_verifier_env *env,
2912 2913
			     struct bpf_insn *insn, int *insn_idx)
{
2914
	struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
2915
	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2916 2917 2918
	u8 opcode = BPF_OP(insn->code);
	int err;

2919
	if (opcode > BPF_JSLE) {
2920
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2921 2922 2923 2924 2925
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
2926
			verbose(env, "BPF_JMP uses reserved fields\n");
2927 2928 2929 2930
			return -EINVAL;
		}

		/* check src1 operand */
2931
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2932 2933
		if (err)
			return err;
2934 2935

		if (is_pointer_value(env, insn->src_reg)) {
2936
			verbose(env, "R%d pointer comparison prohibited\n",
2937 2938 2939
				insn->src_reg);
			return -EACCES;
		}
2940 2941
	} else {
		if (insn->src_reg != BPF_REG_0) {
2942
			verbose(env, "BPF_JMP uses reserved fields\n");
2943 2944 2945 2946 2947
			return -EINVAL;
		}
	}

	/* check src2 operand */
2948
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2949 2950 2951
	if (err)
		return err;

A
Alexei Starovoitov 已提交
2952 2953
	dst_reg = &regs[insn->dst_reg];

2954 2955 2956
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2957
	    dst_reg->type == SCALAR_VALUE &&
2958 2959 2960
	    tnum_is_const(dst_reg->var_off)) {
		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;

2979 2980
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
2981 2982 2983 2984
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
2985 2986
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
				reg_set_min_max(&other_branch->regs[insn->dst_reg],
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
				reg_combine_min_max(&other_branch->regs[insn->src_reg],
						    &other_branch->regs[insn->dst_reg],
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
3005 3006 3007 3008
		reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, insn->imm, opcode);
	}

3009
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3010
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
3011 3012
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3013 3014 3015
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
3016 3017
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3018 3019 3020
	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
					   this_branch, other_branch) &&
		   is_pointer_value(env, insn->dst_reg)) {
3021 3022
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
3023
		return -EACCES;
3024
	}
3025 3026
	if (env->log.level)
		print_verifier_state(env, this_branch);
3027 3028 3029
	return 0;
}

3030 3031 3032 3033 3034 3035 3036 3037
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

3038
/* verify BPF_LD_IMM64 instruction */
3039
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3040
{
3041
	struct bpf_reg_state *regs = cur_regs(env);
3042 3043 3044
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
3045
		verbose(env, "invalid BPF_LD_IMM insn\n");
3046 3047 3048
		return -EINVAL;
	}
	if (insn->off != 0) {
3049
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3050 3051 3052
		return -EINVAL;
	}

3053
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3054 3055 3056
	if (err)
		return err;

3057 3058 3059
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3060
		regs[insn->dst_reg].type = SCALAR_VALUE;
3061
		__mark_reg_known(&regs[insn->dst_reg], imm);
3062
		return 0;
3063
	}
3064 3065 3066 3067 3068 3069 3070 3071 3072

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3073 3074 3075 3076 3077
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3078
	case BPF_PROG_TYPE_SCHED_ACT:
3079 3080 3081 3082 3083 3084
		return true;
	default:
		return false;
	}
}

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3100
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3101
{
3102
	struct bpf_reg_state *regs = cur_regs(env);
3103 3104 3105
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3106
	if (!may_access_skb(env->prog->type)) {
3107
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3108 3109 3110 3111
		return -EINVAL;
	}

	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3112
	    BPF_SIZE(insn->code) == BPF_DW ||
3113
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3114
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3115 3116 3117 3118
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
3119
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3120 3121 3122 3123
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3124 3125
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3126 3127 3128 3129 3130
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
3131
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3132 3133 3134 3135 3136
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
3137
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3138
		mark_reg_not_init(env, regs, caller_saved[i]);
3139 3140
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
3141 3142

	/* mark destination R0 register as readable, since it contains
3143 3144
	 * the value fetched from the packet.
	 * Already marked as written above.
3145
	 */
3146
	mark_reg_unknown(env, regs, BPF_REG_0);
3147 3148 3149
	return 0;
}

3150 3151 3152 3153 3154 3155 3156 3157 3158
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
	case BPF_PROG_TYPE_SOCK_OPS:
3159
	case BPF_PROG_TYPE_CGROUP_DEVICE:
3160 3161 3162 3163 3164
		break;
	default:
		return 0;
	}

3165
	reg = cur_regs(env) + BPF_REG_0;
3166
	if (reg->type != SCALAR_VALUE) {
3167
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3168 3169 3170 3171 3172
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
3173
		verbose(env, "At program exit the register R0 ");
3174 3175 3176 3177
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3178
			verbose(env, "has value %s", tn_buf);
3179
		} else {
3180
			verbose(env, "has unknown scalar value");
3181
		}
3182
		verbose(env, " should have been 0 or 1\n");
3183 3184 3185 3186 3187
		return -EINVAL;
	}
	return 0;
}

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3228
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3229

3230 3231 3232 3233 3234 3235 3236 3237 3238
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
3239
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3240 3241 3242 3243 3244 3245 3246 3247
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
3248
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3249 3250 3251
		return -EINVAL;
	}

3252 3253 3254 3255
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

3256 3257 3258 3259 3260 3261 3262 3263 3264
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3265
		verbose(env, "back-edge from insn %d to %d\n", t, w);
3266 3267 3268 3269 3270
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
3271
		verbose(env, "insn state internal bug\n");
3272 3273 3274 3275 3276 3277 3278 3279
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
3280
static int check_cfg(struct bpf_verifier_env *env)
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3317 3318
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3331 3332 3333
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
3334 3335
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3336 3337
		} else {
			/* conditional jump with two edges */
3338
			env->explored_states[t] = STATE_LIST_MARK;
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
3365
		verbose(env, "pop stack internal bug\n");
3366 3367 3368 3369 3370 3371 3372 3373
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
3374
			verbose(env, "unreachable insn %d\n", i);
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

3387 3388 3389 3390
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
3391 3392 3393 3394
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
3413
 */
3414
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
3415
{
3416
	unsigned int i;
A
Alexei Starovoitov 已提交
3417

3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
3434 3435
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
3436
{
3437 3438 3439 3440 3441
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
A
Alexei Starovoitov 已提交
3442 3443
		return true;

3444 3445
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
3446
		return true;
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
			/* if we knew anything about the old value, we're not
			 * equal, because we can't know anything about the
			 * scalar value of the pointer in the new value.
			 */
3460 3461 3462 3463
			return rold->umin_value == 0 &&
			       rold->umax_value == U64_MAX &&
			       rold->smin_value == S64_MIN &&
			       rold->smax_value == S64_MAX &&
3464 3465 3466
			       tnum_is_unknown(rold->var_off);
		}
	case PTR_TO_MAP_VALUE:
3467 3468 3469 3470 3471 3472 3473 3474
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
3489
	case PTR_TO_PACKET_META:
3490
	case PTR_TO_PACKET:
3491
		if (rcur->type != rold->type)
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_STACK:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
3523

3524 3525
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
3526 3527 3528
	return false;
}

3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
static bool stacksafe(struct bpf_verifier_state *old,
		      struct bpf_verifier_state *cur,
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
3606 3607
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
3608
			 struct bpf_verifier_state *cur)
3609
{
3610 3611
	struct idpair *idmap;
	bool ret = false;
3612 3613
	int i;

3614 3615 3616
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
3617
		return false;
3618 3619

	for (i = 0; i < MAX_BPF_REG; i++) {
3620
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3621
			goto out_free;
3622 3623
	}

3624 3625
	if (!stacksafe(old, cur, idmap))
		goto out_free;
3626 3627 3628 3629
	ret = true;
out_free:
	kfree(idmap);
	return ret;
3630 3631
}

3632 3633 3634 3635 3636 3637
/* A write screens off any subsequent reads; but write marks come from the
 * straight-line code between a state and its parent.  When we arrive at a
 * jump target (in the first iteration of the propagate_liveness() loop),
 * we didn't arrive by the straight-line code, so read marks in state must
 * propagate to parent regardless of state's write marks.
 */
3638 3639 3640
static bool do_propagate_liveness(const struct bpf_verifier_state *state,
				  struct bpf_verifier_state *parent)
{
3641
	bool writes = parent == state->parent; /* Observe write marks */
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
	bool touched = false; /* any changes made? */
	int i;

	if (!parent)
		return touched;
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
		if (parent->regs[i].live & REG_LIVE_READ)
			continue;
3653 3654 3655
		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
			continue;
		if (state->regs[i].live & REG_LIVE_READ) {
3656 3657 3658 3659 3660
			parent->regs[i].live |= REG_LIVE_READ;
			touched = true;
		}
	}
	/* ... and stack slots */
3661 3662 3663
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
		    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
		if (parent->stack[i].slot_type[0] != STACK_SPILL)
3664
			continue;
3665
		if (state->stack[i].slot_type[0] != STACK_SPILL)
3666
			continue;
3667
		if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3668
			continue;
3669 3670
		if (writes &&
		    (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3671
			continue;
3672 3673
		if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
			parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
3674 3675 3676 3677 3678 3679
			touched = true;
		}
	}
	return touched;
}

3680 3681 3682 3683 3684 3685 3686 3687 3688
/* "parent" is "a state from which we reach the current state", but initially
 * it is not the state->parent (i.e. "the state whose straight-line code leads
 * to the current state"), instead it is the state that happened to arrive at
 * a (prunable) equivalent of the current state.  See comment above
 * do_propagate_liveness() for consequences of this.
 * This function is just a more efficient way of calling mark_reg_read() or
 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
 * though it requires that parent != state->parent in the call arguments.
 */
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
static void propagate_liveness(const struct bpf_verifier_state *state,
			       struct bpf_verifier_state *parent)
{
	while (do_propagate_liveness(state, parent)) {
		/* Something changed, so we need to feed those changes onward */
		state = parent;
		parent = state->parent;
	}
}

3699
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3700
{
3701 3702
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
3703
	struct bpf_verifier_state *cur = env->cur_state;
3704
	int i, err;
3705 3706 3707 3708 3709 3710 3711 3712 3713

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
3714
		if (states_equal(env, &sl->state, cur)) {
3715
			/* reached equivalent register/stack state,
3716 3717
			 * prune the search.
			 * Registers read by the continuation are read by us.
3718 3719 3720 3721 3722 3723
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
3724
			 */
3725
			propagate_liveness(&sl->state, cur);
3726
			return 1;
3727
		}
3728 3729 3730 3731 3732 3733 3734 3735 3736
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
	 * but it will either reach bpf_exit (which means it's safe) or
	 * it will be rejected. Since there are no loops, we won't be
	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
	 */
3737
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
3738 3739 3740 3741
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
3742 3743 3744 3745 3746 3747
	err = copy_verifier_state(&new_sl->state, cur);
	if (err) {
		free_verifier_state(&new_sl->state, false);
		kfree(new_sl);
		return err;
	}
3748 3749
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
3750
	/* connect new state to parentage chain */
3751
	cur->parent = &new_sl->state;
3752 3753 3754 3755 3756 3757
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
3758
	for (i = 0; i < BPF_REG_FP; i++)
3759 3760 3761 3762
		cur->regs[i].live = REG_LIVE_NONE;
	for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
		if (cur->stack[i].slot_type[0] == STACK_SPILL)
			cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
3763 3764 3765
	return 0;
}

3766 3767 3768
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
				  int insn_idx, int prev_insn_idx)
{
3769 3770
	if (env->dev_ops && env->dev_ops->insn_hook)
		return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
3771

3772
	return 0;
3773 3774
}

3775
static int do_check(struct bpf_verifier_env *env)
3776
{
3777
	struct bpf_verifier_state *state;
3778
	struct bpf_insn *insns = env->prog->insnsi;
3779
	struct bpf_reg_state *regs;
3780 3781 3782 3783 3784
	int insn_cnt = env->prog->len;
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

3785 3786 3787 3788 3789
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
	env->cur_state = state;
	init_reg_state(env, state->regs);
3790
	state->parent = NULL;
3791 3792 3793 3794 3795 3796 3797
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
3798
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
3799 3800 3801 3802 3803 3804 3805
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

3806
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3807 3808
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
3809 3810 3811 3812
				insn_processed);
			return -E2BIG;
		}

3813 3814 3815 3816 3817
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
3818
			if (env->log.level) {
3819
				if (do_print_state)
3820
					verbose(env, "\nfrom %d to %d: safe\n",
3821 3822
						prev_insn_idx, insn_idx);
				else
3823
					verbose(env, "%d: safe\n", insn_idx);
3824 3825 3826 3827
			}
			goto process_bpf_exit;
		}

3828 3829 3830
		if (need_resched())
			cond_resched();

3831 3832 3833
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
3834
			else
3835
				verbose(env, "\nfrom %d to %d:",
3836
					prev_insn_idx, insn_idx);
3837
			print_verifier_state(env, state);
3838 3839 3840
			do_print_state = false;
		}

3841 3842
		if (env->log.level) {
			verbose(env, "%d: ", insn_idx);
3843 3844
			print_bpf_insn(verbose, env, insn,
				       env->allow_ptr_leaks);
3845 3846
		}

3847 3848 3849 3850
		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
		if (err)
			return err;

3851
		regs = cur_regs(env);
A
Alexei Starovoitov 已提交
3852
		env->insn_aux_data[insn_idx].seen = true;
3853
		if (class == BPF_ALU || class == BPF_ALU64) {
3854
			err = check_alu_op(env, insn);
3855 3856 3857 3858
			if (err)
				return err;

		} else if (class == BPF_LDX) {
3859
			enum bpf_reg_type *prev_src_type, src_reg_type;
3860 3861 3862

			/* check for reserved fields is already done */

3863
			/* check src operand */
3864
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3865 3866 3867
			if (err)
				return err;

3868
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3869 3870 3871
			if (err)
				return err;

3872 3873
			src_reg_type = regs[insn->src_reg].type;

3874 3875 3876
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
3877
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3878 3879 3880 3881 3882
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

3883 3884 3885
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
3886 3887
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
3888
				 * save type to validate intersecting paths
3889
				 */
3890
				*prev_src_type = src_reg_type;
3891

3892
			} else if (src_reg_type != *prev_src_type &&
3893
				   (src_reg_type == PTR_TO_CTX ||
3894
				    *prev_src_type == PTR_TO_CTX)) {
3895 3896 3897 3898 3899 3900 3901
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
3902
				verbose(env, "same insn cannot be used with different pointers\n");
3903 3904 3905
				return -EINVAL;
			}

3906
		} else if (class == BPF_STX) {
3907
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3908

3909
			if (BPF_MODE(insn->code) == BPF_XADD) {
3910
				err = check_xadd(env, insn_idx, insn);
3911 3912 3913 3914 3915 3916 3917
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
3918
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3919 3920 3921
			if (err)
				return err;
			/* check src2 operand */
3922
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3923 3924 3925
			if (err)
				return err;

3926 3927
			dst_reg_type = regs[insn->dst_reg].type;

3928
			/* check that memory (dst_reg + off) is writeable */
3929
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3930 3931 3932 3933 3934
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

3935 3936 3937 3938 3939
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
3940
				   (dst_reg_type == PTR_TO_CTX ||
3941
				    *prev_dst_type == PTR_TO_CTX)) {
3942
				verbose(env, "same insn cannot be used with different pointers\n");
3943 3944 3945
				return -EINVAL;
			}

3946 3947 3948
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
3949
				verbose(env, "BPF_ST uses reserved fields\n");
3950 3951 3952
				return -EINVAL;
			}
			/* check src operand */
3953
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3954 3955 3956 3957
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
3958
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3972
					verbose(env, "BPF_CALL uses reserved fields\n");
3973 3974 3975
					return -EINVAL;
				}

3976
				err = check_call(env, insn->imm, insn_idx);
3977 3978 3979 3980 3981 3982 3983 3984
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3985
					verbose(env, "BPF_JA uses reserved fields\n");
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3997
					verbose(env, "BPF_EXIT uses reserved fields\n");
3998 3999 4000 4001 4002 4003 4004 4005 4006
					return -EINVAL;
				}

				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
4007
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4008 4009 4010
				if (err)
					return err;

4011
				if (is_pointer_value(env, BPF_REG_0)) {
4012
					verbose(env, "R0 leaks addr as return value\n");
4013 4014 4015
					return -EACCES;
				}

4016 4017 4018
				err = check_return_code(env);
				if (err)
					return err;
4019
process_bpf_exit:
4020 4021 4022 4023
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
4038 4039 4040 4041
				err = check_ld_abs(env, insn);
				if (err)
					return err;

4042 4043 4044 4045 4046 4047
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
A
Alexei Starovoitov 已提交
4048
				env->insn_aux_data[insn_idx].seen = true;
4049
			} else {
4050
				verbose(env, "invalid BPF_LD mode\n");
4051 4052 4053
				return -EINVAL;
			}
		} else {
4054
			verbose(env, "unknown insn class %d\n", class);
4055 4056 4057 4058 4059 4060
			return -EINVAL;
		}

		insn_idx++;
	}

4061 4062
	verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
		env->prog->aux->stack_depth);
4063 4064 4065
	return 0;
}

4066 4067 4068
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
4069 4070
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4071 4072 4073
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

4074 4075
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
4076 4077 4078
					struct bpf_prog *prog)

{
4079 4080 4081 4082 4083 4084 4085
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
4086
			verbose(env, "perf_event programs can only use preallocated hash map\n");
4087 4088 4089 4090
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
4091
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4092 4093
			return -EINVAL;
		}
4094 4095 4096 4097
	}
	return 0;
}

4098 4099 4100
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
4101
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4102 4103 4104
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
4105
	int i, j, err;
4106

4107
	err = bpf_prog_calc_tag(env->prog);
4108 4109 4110
	if (err)
		return err;

4111
	for (i = 0; i < insn_cnt; i++, insn++) {
4112
		if (BPF_CLASS(insn->code) == BPF_LDX &&
4113
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4114
			verbose(env, "BPF_LDX uses reserved fields\n");
4115 4116 4117
			return -EINVAL;
		}

4118 4119 4120
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4121
			verbose(env, "BPF_STX uses reserved fields\n");
4122 4123 4124
			return -EINVAL;
		}

4125 4126 4127 4128 4129 4130 4131
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
4132
				verbose(env, "invalid bpf_ld_imm64 insn\n");
4133 4134 4135 4136 4137 4138 4139 4140
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4141 4142
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
4143 4144 4145 4146
				return -EINVAL;
			}

			f = fdget(insn->imm);
4147
			map = __bpf_map_get(f);
4148
			if (IS_ERR(map)) {
4149
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4150 4151 4152 4153
					insn->imm);
				return PTR_ERR(map);
			}

4154
			err = check_map_prog_compatibility(env, map, env->prog);
4155 4156 4157 4158 4159
			if (err) {
				fdput(f);
				return err;
			}

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
4181 4182 4183 4184 4185 4186 4187
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
4203
static void release_maps(struct bpf_verifier_env *env)
4204 4205 4206 4207 4208 4209 4210 4211
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4212
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

4223 4224 4225 4226 4227 4228 4229 4230
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
A
Alexei Starovoitov 已提交
4231
	int i;
4232 4233 4234 4235 4236 4237 4238 4239 4240

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
A
Alexei Starovoitov 已提交
4241 4242
	for (i = off; i < off + cnt - 1; i++)
		new_data[i].seen = true;
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
	return new_prog;
}

A
Alexei Starovoitov 已提交
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
/* The verifier does more data flow analysis than llvm and will not explore
 * branches that are dead at run time. Malicious programs can have dead code
 * too. Therefore replace all dead at-run-time code with nops.
 */
static void sanitize_dead_code(struct bpf_verifier_env *env)
{
	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
	struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
	struct bpf_insn *insn = env->prog->insnsi;
	const int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++) {
		if (aux_data[i].seen)
			continue;
		memcpy(insn + i, &nop, sizeof(nop));
	}
}

4280 4281 4282
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
4283
static int convert_ctx_accesses(struct bpf_verifier_env *env)
4284
{
4285
	const struct bpf_verifier_ops *ops = env->ops;
4286
	int i, cnt, size, ctx_field_size, delta = 0;
4287
	const int insn_cnt = env->prog->len;
4288
	struct bpf_insn insn_buf[16], *insn;
4289
	struct bpf_prog *new_prog;
4290
	enum bpf_access_type type;
4291 4292
	bool is_narrower_load;
	u32 target_size;
4293

4294 4295 4296 4297
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
4298
			verbose(env, "bpf verifier is misconfigured\n");
4299 4300
			return -EINVAL;
		} else if (cnt) {
4301
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4302 4303
			if (!new_prog)
				return -ENOMEM;
4304

4305
			env->prog = new_prog;
4306
			delta += cnt - 1;
4307 4308 4309 4310
		}
	}

	if (!ops->convert_ctx_access)
4311 4312
		return 0;

4313
	insn = env->prog->insnsi + delta;
4314

4315
	for (i = 0; i < insn_cnt; i++, insn++) {
4316 4317 4318
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4319
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4320
			type = BPF_READ;
4321 4322 4323
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4324
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4325 4326
			type = BPF_WRITE;
		else
4327 4328
			continue;

4329
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4330 4331
			continue;

4332
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4333
		size = BPF_LDST_BYTES(insn);
4334 4335 4336 4337 4338 4339

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
4340
		is_narrower_load = size < ctx_field_size;
4341
		if (is_narrower_load) {
4342 4343 4344 4345
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
4346
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4347 4348
				return -EINVAL;
			}
4349

4350
			size_code = BPF_H;
4351 4352 4353 4354
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
4355

4356 4357 4358
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
4359 4360 4361 4362 4363 4364

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
4365
			verbose(env, "bpf verifier is misconfigured\n");
4366 4367
			return -EINVAL;
		}
4368 4369

		if (is_narrower_load && size < target_size) {
4370 4371
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4372
								(1 << size * 8) - 1);
4373 4374
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4375
								(1 << size * 8) - 1);
4376
		}
4377

4378
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4379 4380 4381
		if (!new_prog)
			return -ENOMEM;

4382
		delta += cnt - 1;
4383 4384 4385

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
4386
		insn      = new_prog->insnsi + i + delta;
4387 4388 4389 4390 4391
	}

	return 0;
}

4392
/* fixup insn->imm field of bpf_call instructions
4393
 * and inline eligible helpers as explicit sequence of BPF instructions
4394 4395 4396
 *
 * this function is called after eBPF program passed verification
 */
4397
static int fixup_bpf_calls(struct bpf_verifier_env *env)
4398
{
4399 4400
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
4401
	const struct bpf_func_proto *fn;
4402
	const int insn_cnt = prog->len;
4403 4404 4405 4406
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
4407

4408 4409 4410
	for (i = 0; i < insn_cnt; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
4411

4412 4413 4414 4415
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
4416 4417
		if (insn->imm == BPF_FUNC_override_return)
			prog->kprobe_override = 1;
4418
		if (insn->imm == BPF_FUNC_tail_call) {
4419 4420 4421 4422 4423 4424
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
4425
			env->prog->aux->stack_depth = MAX_BPF_STACK;
4426

4427 4428 4429 4430
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
4431
			 */
4432
			insn->imm = 0;
4433
			insn->code = BPF_JMP | BPF_TAIL_CALL;
4434 4435
			continue;
		}
4436

4437 4438 4439 4440 4441
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
		    insn->imm == BPF_FUNC_map_lookup_elem) {
4442
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4443 4444
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
4445 4446 4447 4448
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4449
				verbose(env, "bpf verifier is misconfigured\n");
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

4466
		if (insn->imm == BPF_FUNC_redirect_map) {
4467 4468 4469 4470 4471 4472
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
4487
patch_call_imm:
4488
		fn = env->ops->get_func_proto(insn->imm);
4489 4490 4491 4492
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
4493 4494
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
4495 4496
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
4497
		}
4498
		insn->imm = fn->func - __bpf_call_base;
4499 4500
	}

4501 4502
	return 0;
}
4503

4504
static void free_states(struct bpf_verifier_env *env)
4505
{
4506
	struct bpf_verifier_state_list *sl, *sln;
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
4518
				free_verifier_state(&sl->state, false);
4519 4520 4521 4522 4523 4524 4525 4526
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

4527
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
4528
{
4529
	struct bpf_verifier_env *env;
4530
	struct bpf_verifer_log *log;
A
Alexei Starovoitov 已提交
4531 4532
	int ret = -EINVAL;

4533 4534 4535 4536
	/* no program is valid */
	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
		return -EINVAL;

4537
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4538 4539
	 * allocate/free it every time bpf_check() is called
	 */
4540
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4541 4542
	if (!env)
		return -ENOMEM;
4543
	log = &env->log;
4544

4545 4546 4547 4548 4549
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
4550
	env->prog = *prog;
4551
	env->ops = bpf_verifier_ops[env->prog->type];
4552

4553 4554 4555 4556 4557 4558 4559
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
4560 4561 4562
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
4563 4564

		ret = -EINVAL;
4565 4566 4567
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
4568
			goto err_unlock;
4569
	}
4570 4571 4572

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4573
		env->strict_alignment = true;
4574

4575 4576 4577 4578 4579 4580
	if (env->prog->aux->offload) {
		ret = bpf_prog_offload_verifier_prep(env);
		if (ret)
			goto err_unlock;
	}

4581 4582 4583 4584
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

4585
	env->explored_states = kcalloc(env->prog->len,
4586
				       sizeof(struct bpf_verifier_state_list *),
4587 4588 4589 4590 4591
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

4592 4593 4594 4595
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

4596 4597
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

4598
	ret = do_check(env);
4599 4600 4601 4602
	if (env->cur_state) {
		free_verifier_state(env->cur_state, true);
		env->cur_state = NULL;
	}
4603

4604
skip_full_check:
4605
	while (!pop_stack(env, NULL, NULL));
4606
	free_states(env);
4607

A
Alexei Starovoitov 已提交
4608 4609 4610
	if (ret == 0)
		sanitize_dead_code(env);

4611 4612 4613 4614
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

4615
	if (ret == 0)
4616
		ret = fixup_bpf_calls(env);
4617

4618
	if (log->level && bpf_verifier_log_full(log))
4619
		ret = -ENOSPC;
4620
	if (log->level && !log->ubuf) {
4621
		ret = -EFAULT;
4622
		goto err_release_maps;
4623 4624
	}

4625 4626
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
4627 4628 4629
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
4630

4631
		if (!env->prog->aux->used_maps) {
4632
			ret = -ENOMEM;
4633
			goto err_release_maps;
4634 4635
		}

4636
		memcpy(env->prog->aux->used_maps, env->used_maps,
4637
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4638
		env->prog->aux->used_map_cnt = env->used_map_cnt;
4639 4640 4641 4642 4643 4644

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
4645

4646
err_release_maps:
4647
	if (!env->prog->aux->used_maps)
4648 4649 4650 4651
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
4652
	*prog = env->prog;
4653
err_unlock:
4654
	mutex_unlock(&bpf_verifier_lock);
4655 4656 4657
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
4658 4659
	return ret;
}