verifier.c 134.9 KB
Newer Older
A
Alexei Starovoitov 已提交
1
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
A
Alexei Starovoitov 已提交
2
 * Copyright (c) 2016 Facebook
A
Alexei Starovoitov 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 */
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
17
#include <linux/bpf_verifier.h>
A
Alexei Starovoitov 已提交
18 19 20 21
#include <linux/filter.h>
#include <net/netlink.h>
#include <linux/file.h>
#include <linux/vmalloc.h>
22
#include <linux/stringify.h>
A
Alexei Starovoitov 已提交
23

24 25
#include "disasm.h"

26 27 28 29 30 31 32 33 34
static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
#define BPF_PROG_TYPE(_id, _name) \
	[_id] = & _name ## _verifier_ops,
#define BPF_MAP_TYPE(_id, _ops)
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
};

A
Alexei Starovoitov 已提交
35 36 37 38 39 40 41 42 43 44 45 46
/* bpf_check() is a static code analyzer that walks eBPF program
 * instruction by instruction and updates register/stack state.
 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
 *
 * The first pass is depth-first-search to check that the program is a DAG.
 * It rejects the following programs:
 * - larger than BPF_MAXINSNS insns
 * - if loop is present (detected via back-edge)
 * - unreachable insns exist (shouldn't be a forest. program = one function)
 * - out of bounds or malformed jumps
 * The second pass is all possible path descent from the 1st insn.
 * Since it's analyzing all pathes through the program, the length of the
47
 * analysis is limited to 64k insn, which may be hit even if total number of
A
Alexei Starovoitov 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 * insn is less then 4K, but there are too many branches that change stack/regs.
 * Number of 'branches to be analyzed' is limited to 1k
 *
 * On entry to each instruction, each register has a type, and the instruction
 * changes the types of the registers depending on instruction semantics.
 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
 * copied to R1.
 *
 * All registers are 64-bit.
 * R0 - return register
 * R1-R5 argument passing registers
 * R6-R9 callee saved registers
 * R10 - frame pointer read-only
 *
 * At the start of BPF program the register R1 contains a pointer to bpf_context
 * and has type PTR_TO_CTX.
 *
 * Verifier tracks arithmetic operations on pointers in case:
 *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
 * 1st insn copies R10 (which has FRAME_PTR) type into R1
 * and 2nd arithmetic instruction is pattern matched to recognize
 * that it wants to construct a pointer to some element within stack.
 * So after 2nd insn, the register R1 has type PTR_TO_STACK
 * (and -20 constant is saved for further stack bounds checking).
 * Meaning that this reg is a pointer to stack plus known immediate constant.
 *
75
 * Most of the time the registers have SCALAR_VALUE type, which
A
Alexei Starovoitov 已提交
76
 * means the register has some value, but it's not a valid pointer.
77
 * (like pointer plus pointer becomes SCALAR_VALUE type)
A
Alexei Starovoitov 已提交
78 79
 *
 * When verifier sees load or store instructions the type of base register
80
 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
A
Alexei Starovoitov 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
 * types recognized by check_mem_access() function.
 *
 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
 * and the range of [ptr, ptr + map's value_size) is accessible.
 *
 * registers used to pass values to function calls are checked against
 * function argument constraints.
 *
 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
 * It means that the register type passed to this function must be
 * PTR_TO_STACK and it will be used inside the function as
 * 'pointer to map element key'
 *
 * For example the argument constraints for bpf_map_lookup_elem():
 *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
 *   .arg1_type = ARG_CONST_MAP_PTR,
 *   .arg2_type = ARG_PTR_TO_MAP_KEY,
 *
 * ret_type says that this function returns 'pointer to map elem value or null'
 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
 * 2nd argument should be a pointer to stack, which will be used inside
 * the helper function as a pointer to map element key.
 *
 * On the kernel side the helper function looks like:
 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 * {
 *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
 *    void *key = (void *) (unsigned long) r2;
 *    void *value;
 *
 *    here kernel can access 'key' and 'map' pointers safely, knowing that
 *    [key, key + map->key_size) bytes are valid and were initialized on
 *    the stack of eBPF program.
 * }
 *
 * Corresponding eBPF program may look like:
 *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
 *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
 *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
 *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
 * here verifier looks at prototype of map_lookup_elem() and sees:
 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
 *
 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
 * and were initialized prior to this call.
 * If it's ok, then verifier allows this BPF_CALL insn and looks at
 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
 * returns ether pointer to map value or NULL.
 *
 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
 * insn, the register holding that pointer in the true branch changes state to
 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
 * branch. See check_cond_jmp_op().
 *
 * After the call R0 is set to return type of the function and registers R1-R5
 * are set to NOT_INIT to indicate that they are no longer readable.
 */

142
/* verifier_state + insn_idx are pushed to stack when branch is encountered */
143
struct bpf_verifier_stack_elem {
144 145 146 147
	/* verifer state is 'st'
	 * before processing instruction 'insn_idx'
	 * and after processing instruction 'prev_insn_idx'
	 */
148
	struct bpf_verifier_state st;
149 150
	int insn_idx;
	int prev_insn_idx;
151
	struct bpf_verifier_stack_elem *next;
152 153
};

154
#define BPF_COMPLEXITY_LIMIT_INSNS	131072
155 156
#define BPF_COMPLEXITY_LIMIT_STACK	1024

157 158
#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)

159 160
struct bpf_call_arg_meta {
	struct bpf_map *map_ptr;
161
	bool raw_mode;
162
	bool pkt_access;
163 164
	int regno;
	int access_size;
165 166
};

167 168 169 170 171 172
static DEFINE_MUTEX(bpf_verifier_lock);

/* log_level controls verbosity level of eBPF verifier.
 * verbose() is used to dump the verification trace to the log, so the user
 * can figure out what's wrong with the program
 */
173 174
static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
				   const char *fmt, ...)
175
{
176
	struct bpf_verifer_log *log = &env->log;
177
	unsigned int n;
178 179
	va_list args;

180
	if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 182 183
		return;

	va_start(args, fmt);
184
	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185
	va_end(args);
186 187 188 189 190 191 192 193 194 195 196

	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
		  "verifier log line truncated - local buffer too short\n");

	n = min(log->len_total - log->len_used - 1, n);
	log->kbuf[n] = '\0';

	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
		log->len_used += n;
	else
		log->ubuf = NULL;
197 198
}

199 200 201 202 203 204
static bool type_is_pkt_pointer(enum bpf_reg_type type)
{
	return type == PTR_TO_PACKET ||
	       type == PTR_TO_PACKET_META;
}

205 206 207
/* string representation of 'enum bpf_reg_type' */
static const char * const reg_type_str[] = {
	[NOT_INIT]		= "?",
208
	[SCALAR_VALUE]		= "inv",
209 210 211 212 213
	[PTR_TO_CTX]		= "ctx",
	[CONST_PTR_TO_MAP]	= "map_ptr",
	[PTR_TO_MAP_VALUE]	= "map_value",
	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
	[PTR_TO_STACK]		= "fp",
A
Alexei Starovoitov 已提交
214
	[PTR_TO_PACKET]		= "pkt",
215
	[PTR_TO_PACKET_META]	= "pkt_meta",
A
Alexei Starovoitov 已提交
216
	[PTR_TO_PACKET_END]	= "pkt_end",
217 218
};

219 220
static void print_verifier_state(struct bpf_verifier_env *env,
				 struct bpf_verifier_state *state)
221
{
222
	struct bpf_reg_state *reg;
223 224 225 226
	enum bpf_reg_type t;
	int i;

	for (i = 0; i < MAX_BPF_REG; i++) {
A
Alexei Starovoitov 已提交
227 228
		reg = &state->regs[i];
		t = reg->type;
229 230
		if (t == NOT_INIT)
			continue;
231
		verbose(env, " R%d=%s", i, reg_type_str[t]);
232 233 234
		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
		    tnum_is_const(reg->var_off)) {
			/* reg->off should be 0 for SCALAR_VALUE */
235
			verbose(env, "%lld", reg->var_off.value + reg->off);
236
		} else {
237
			verbose(env, "(id=%d", reg->id);
238
			if (t != SCALAR_VALUE)
239
				verbose(env, ",off=%d", reg->off);
240
			if (type_is_pkt_pointer(t))
241
				verbose(env, ",r=%d", reg->range);
242 243 244
			else if (t == CONST_PTR_TO_MAP ||
				 t == PTR_TO_MAP_VALUE ||
				 t == PTR_TO_MAP_VALUE_OR_NULL)
245
				verbose(env, ",ks=%d,vs=%d",
246 247
					reg->map_ptr->key_size,
					reg->map_ptr->value_size);
248 249 250 251 252
			if (tnum_is_const(reg->var_off)) {
				/* Typically an immediate SCALAR_VALUE, but
				 * could be a pointer whose offset is too big
				 * for reg->off
				 */
253
				verbose(env, ",imm=%llx", reg->var_off.value);
254 255 256
			} else {
				if (reg->smin_value != reg->umin_value &&
				    reg->smin_value != S64_MIN)
257
					verbose(env, ",smin_value=%lld",
258 259 260
						(long long)reg->smin_value);
				if (reg->smax_value != reg->umax_value &&
				    reg->smax_value != S64_MAX)
261
					verbose(env, ",smax_value=%lld",
262 263
						(long long)reg->smax_value);
				if (reg->umin_value != 0)
264
					verbose(env, ",umin_value=%llu",
265 266
						(unsigned long long)reg->umin_value);
				if (reg->umax_value != U64_MAX)
267
					verbose(env, ",umax_value=%llu",
268 269 270
						(unsigned long long)reg->umax_value);
				if (!tnum_is_unknown(reg->var_off)) {
					char tn_buf[48];
271

272
					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273
					verbose(env, ",var_off=%s", tn_buf);
274
				}
275
			}
276
			verbose(env, ")");
277
		}
278
	}
279 280 281 282 283
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] == STACK_SPILL)
			verbose(env, " fp%d=%s",
				-MAX_BPF_STACK + i * BPF_REG_SIZE,
				reg_type_str[state->stack[i].spilled_ptr.type]);
284
	}
285
	verbose(env, "\n");
286 287
}

288 289
static int copy_stack_state(struct bpf_verifier_state *dst,
			    const struct bpf_verifier_state *src)
290
{
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	if (!src->stack)
		return 0;
	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
		/* internal bug, make state invalid to reject the program */
		memset(dst, 0, sizeof(*dst));
		return -EFAULT;
	}
	memcpy(dst->stack, src->stack,
	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
	return 0;
}

/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
 * make it consume minimal amount of memory. check_stack_write() access from
 * the program calls into realloc_verifier_state() to grow the stack size.
 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
 * which this function copies over. It points to previous bpf_verifier_state
 * which is never reallocated
 */
static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
				  bool copy_old)
{
	u32 old_size = state->allocated_stack;
	struct bpf_stack_state *new_stack;
	int slot = size / BPF_REG_SIZE;

	if (size <= old_size || !size) {
		if (copy_old)
			return 0;
		state->allocated_stack = slot * BPF_REG_SIZE;
		if (!size && old_size) {
			kfree(state->stack);
			state->stack = NULL;
		}
		return 0;
	}
	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
				  GFP_KERNEL);
	if (!new_stack)
		return -ENOMEM;
	if (copy_old) {
		if (state->stack)
			memcpy(new_stack, state->stack,
			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
		memset(new_stack + old_size / BPF_REG_SIZE, 0,
		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
	}
	state->allocated_stack = slot * BPF_REG_SIZE;
	kfree(state->stack);
	state->stack = new_stack;
	return 0;
}

344 345
static void free_verifier_state(struct bpf_verifier_state *state,
				bool free_self)
346 347
{
	kfree(state->stack);
348 349
	if (free_self)
		kfree(state);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
}

/* copy verifier state from src to dst growing dst stack space
 * when necessary to accommodate larger src stack
 */
static int copy_verifier_state(struct bpf_verifier_state *dst,
			       const struct bpf_verifier_state *src)
{
	int err;

	err = realloc_verifier_state(dst, src->allocated_stack, false);
	if (err)
		return err;
	memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
	return copy_stack_state(dst, src);
}

static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
		     int *insn_idx)
{
	struct bpf_verifier_state *cur = env->cur_state;
	struct bpf_verifier_stack_elem *elem, *head = env->head;
	int err;
373 374

	if (env->head == NULL)
375
		return -ENOENT;
376

377 378 379 380 381 382 383
	if (cur) {
		err = copy_verifier_state(cur, &head->st);
		if (err)
			return err;
	}
	if (insn_idx)
		*insn_idx = head->insn_idx;
384
	if (prev_insn_idx)
385 386
		*prev_insn_idx = head->prev_insn_idx;
	elem = head->next;
387
	free_verifier_state(&head->st, false);
388
	kfree(head);
389 390
	env->head = elem;
	env->stack_size--;
391
	return 0;
392 393
}

394 395
static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
					     int insn_idx, int prev_insn_idx)
396
{
397
	struct bpf_verifier_state *cur = env->cur_state;
398
	struct bpf_verifier_stack_elem *elem;
399
	int err;
400

401
	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
402 403 404 405 406 407 408 409
	if (!elem)
		goto err;

	elem->insn_idx = insn_idx;
	elem->prev_insn_idx = prev_insn_idx;
	elem->next = env->head;
	env->head = elem;
	env->stack_size++;
410 411 412
	err = copy_verifier_state(&elem->st, cur);
	if (err)
		goto err;
413
	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
414
		verbose(env, "BPF program is too complex\n");
415 416 417 418 419
		goto err;
	}
	return &elem->st;
err:
	/* pop all elements and return */
420
	while (!pop_stack(env, NULL, NULL));
421 422 423 424 425 426 427 428
	return NULL;
}

#define CALLER_SAVED_REGS 6
static const int caller_saved[CALLER_SAVED_REGS] = {
	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
};

429 430
static void __mark_reg_not_init(struct bpf_reg_state *reg);

431 432 433 434 435 436 437 438 439 440 441 442 443
/* Mark the unknown part of a register (variable offset or scalar value) as
 * known to have the value @imm.
 */
static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
{
	reg->id = 0;
	reg->var_off = tnum_const(imm);
	reg->smin_value = (s64)imm;
	reg->smax_value = (s64)imm;
	reg->umin_value = imm;
	reg->umax_value = imm;
}

444 445 446 447
/* Mark the 'variable offset' part of a register as zero.  This should be
 * used only on registers holding a pointer type.
 */
static void __mark_reg_known_zero(struct bpf_reg_state *reg)
448
{
449
	__mark_reg_known(reg, 0);
450
}
451

452 453
static void mark_reg_known_zero(struct bpf_verifier_env *env,
				struct bpf_reg_state *regs, u32 regno)
454 455
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
456
		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
457 458 459 460 461 462 463 464
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_known_zero(regs + regno);
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
{
	return type_is_pkt_pointer(reg->type);
}

static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
{
	return reg_is_pkt_pointer(reg) ||
	       reg->type == PTR_TO_PACKET_END;
}

/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
				    enum bpf_reg_type which)
{
	/* The register can already have a range from prior markings.
	 * This is fine as long as it hasn't been advanced from its
	 * origin.
	 */
	return reg->type == which &&
	       reg->id == 0 &&
	       reg->off == 0 &&
	       tnum_equals_const(reg->var_off, 0);
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
/* Attempts to improve min/max values based on var_off information */
static void __update_reg_bounds(struct bpf_reg_state *reg)
{
	/* min signed is max(sign bit) | min(other bits) */
	reg->smin_value = max_t(s64, reg->smin_value,
				reg->var_off.value | (reg->var_off.mask & S64_MIN));
	/* max signed is min(sign bit) | max(other bits) */
	reg->smax_value = min_t(s64, reg->smax_value,
				reg->var_off.value | (reg->var_off.mask & S64_MAX));
	reg->umin_value = max(reg->umin_value, reg->var_off.value);
	reg->umax_value = min(reg->umax_value,
			      reg->var_off.value | reg->var_off.mask);
}

/* Uses signed min/max values to inform unsigned, and vice-versa */
static void __reg_deduce_bounds(struct bpf_reg_state *reg)
{
	/* Learn sign from signed bounds.
	 * If we cannot cross the sign boundary, then signed and unsigned bounds
	 * are the same, so combine.  This works even in the negative case, e.g.
	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
	 */
	if (reg->smin_value >= 0 || reg->smax_value < 0) {
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
		return;
	}
	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
	 * boundary, so we must be careful.
	 */
	if ((s64)reg->umax_value >= 0) {
		/* Positive.  We can't learn anything from the smin, but smax
		 * is positive, hence safe.
		 */
		reg->smin_value = reg->umin_value;
		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
							  reg->umax_value);
	} else if ((s64)reg->umin_value < 0) {
		/* Negative.  We can't learn anything from the smax, but smin
		 * is negative, hence safe.
		 */
		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
							  reg->umin_value);
		reg->smax_value = reg->umax_value;
	}
}

/* Attempts to improve var_off based on unsigned min/max information */
static void __reg_bound_offset(struct bpf_reg_state *reg)
{
	reg->var_off = tnum_intersect(reg->var_off,
				      tnum_range(reg->umin_value,
						 reg->umax_value));
}

/* Reset the min/max bounds of a register */
static void __mark_reg_unbounded(struct bpf_reg_state *reg)
{
	reg->smin_value = S64_MIN;
	reg->smax_value = S64_MAX;
	reg->umin_value = 0;
	reg->umax_value = U64_MAX;
}

556 557 558 559 560 561 562
/* Mark a register as having a completely unknown (scalar) value. */
static void __mark_reg_unknown(struct bpf_reg_state *reg)
{
	reg->type = SCALAR_VALUE;
	reg->id = 0;
	reg->off = 0;
	reg->var_off = tnum_unknown;
563
	__mark_reg_unbounded(reg);
564 565
}

566 567
static void mark_reg_unknown(struct bpf_verifier_env *env,
			     struct bpf_reg_state *regs, u32 regno)
568 569
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
570
		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
571 572 573 574 575 576 577 578 579 580 581 582 583 584
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_unknown(regs + regno);
}

static void __mark_reg_not_init(struct bpf_reg_state *reg)
{
	__mark_reg_unknown(reg);
	reg->type = NOT_INIT;
}

585 586
static void mark_reg_not_init(struct bpf_verifier_env *env,
			      struct bpf_reg_state *regs, u32 regno)
587 588
{
	if (WARN_ON(regno >= MAX_BPF_REG)) {
589
		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
590 591 592 593 594 595
		/* Something bad happened, let's kill all regs */
		for (regno = 0; regno < MAX_BPF_REG; regno++)
			__mark_reg_not_init(regs + regno);
		return;
	}
	__mark_reg_not_init(regs + regno);
596 597
}

598 599
static void init_reg_state(struct bpf_verifier_env *env,
			   struct bpf_reg_state *regs)
600 601 602
{
	int i;

603
	for (i = 0; i < MAX_BPF_REG; i++) {
604
		mark_reg_not_init(env, regs, i);
605 606
		regs[i].live = REG_LIVE_NONE;
	}
607 608

	/* frame pointer */
609
	regs[BPF_REG_FP].type = PTR_TO_STACK;
610
	mark_reg_known_zero(env, regs, BPF_REG_FP);
611 612 613

	/* 1st arg to a function */
	regs[BPF_REG_1].type = PTR_TO_CTX;
614
	mark_reg_known_zero(env, regs, BPF_REG_1);
615 616
}

617 618 619 620 621 622
enum reg_arg_type {
	SRC_OP,		/* register is used as source operand */
	DST_OP,		/* register is used as destination operand */
	DST_OP_NO_MARK	/* same as above, check only, don't mark */
};

623 624 625 626
static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
{
	struct bpf_verifier_state *parent = state->parent;

A
Alexei Starovoitov 已提交
627 628 629 630
	if (regno == BPF_REG_FP)
		/* We don't need to worry about FP liveness because it's read-only */
		return;

631 632 633 634 635 636 637 638 639 640 641 642
	while (parent) {
		/* if read wasn't screened by an earlier write ... */
		if (state->regs[regno].live & REG_LIVE_WRITTEN)
			break;
		/* ... then we depend on parent's value */
		parent->regs[regno].live |= REG_LIVE_READ;
		state = parent;
		parent = state->parent;
	}
}

static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
643 644
			 enum reg_arg_type t)
{
645
	struct bpf_reg_state *regs = env->cur_state->regs;
646

647
	if (regno >= MAX_BPF_REG) {
648
		verbose(env, "R%d is invalid\n", regno);
649 650 651 652 653 654
		return -EINVAL;
	}

	if (t == SRC_OP) {
		/* check whether register used as source operand can be read */
		if (regs[regno].type == NOT_INIT) {
655
			verbose(env, "R%d !read_ok\n", regno);
656 657
			return -EACCES;
		}
658
		mark_reg_read(env->cur_state, regno);
659 660 661
	} else {
		/* check whether register used as dest operand can be written to */
		if (regno == BPF_REG_FP) {
662
			verbose(env, "frame pointer is read only\n");
663 664
			return -EACCES;
		}
665
		regs[regno].live |= REG_LIVE_WRITTEN;
666
		if (t == DST_OP)
667
			mark_reg_unknown(env, regs, regno);
668 669 670 671
	}
	return 0;
}

672 673 674 675 676 677 678
static bool is_spillable_regtype(enum bpf_reg_type type)
{
	switch (type) {
	case PTR_TO_MAP_VALUE:
	case PTR_TO_MAP_VALUE_OR_NULL:
	case PTR_TO_STACK:
	case PTR_TO_CTX:
A
Alexei Starovoitov 已提交
679
	case PTR_TO_PACKET:
680
	case PTR_TO_PACKET_META:
A
Alexei Starovoitov 已提交
681
	case PTR_TO_PACKET_END:
682 683 684 685 686 687 688
	case CONST_PTR_TO_MAP:
		return true;
	default:
		return false;
	}
}

689 690 691
/* check_stack_read/write functions track spill/fill of registers,
 * stack boundary and alignment are checked in check_mem_access()
 */
692 693
static int check_stack_write(struct bpf_verifier_env *env,
			     struct bpf_verifier_state *state, int off,
694
			     int size, int value_regno)
695
{
696 697 698 699 700 701
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;

	err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
				     true);
	if (err)
		return err;
702 703 704
	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
	 * so it's aligned access and [off, off + size) are within stack limits
	 */
705 706 707 708 709 710
	if (!env->allow_ptr_leaks &&
	    state->stack[spi].slot_type[0] == STACK_SPILL &&
	    size != BPF_REG_SIZE) {
		verbose(env, "attempt to corrupt spilled pointer on stack\n");
		return -EACCES;
	}
711 712

	if (value_regno >= 0 &&
713
	    is_spillable_regtype(state->regs[value_regno].type)) {
714 715

		/* register containing pointer is being spilled into stack */
716
		if (size != BPF_REG_SIZE) {
717
			verbose(env, "invalid size of register spill\n");
718 719 720 721
			return -EACCES;
		}

		/* save register state */
722 723
		state->stack[spi].spilled_ptr = state->regs[value_regno];
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
724

725
		for (i = 0; i < BPF_REG_SIZE; i++)
726
			state->stack[spi].slot_type[i] = STACK_SPILL;
727
	} else {
728
		/* regular write of data into stack */
729
		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
730 731

		for (i = 0; i < size; i++)
732 733
			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
				STACK_MISC;
734 735 736 737
	}
	return 0;
}

738 739 740 741 742 743
static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
{
	struct bpf_verifier_state *parent = state->parent;

	while (parent) {
		/* if read wasn't screened by an earlier write ... */
744
		if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
745 746
			break;
		/* ... then we depend on parent's value */
747
		parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
748 749 750 751 752
		state = parent;
		parent = state->parent;
	}
}

753 754
static int check_stack_read(struct bpf_verifier_env *env,
			    struct bpf_verifier_state *state, int off, int size,
755 756
			    int value_regno)
{
757 758
	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
	u8 *stype;
759

760 761 762 763 764 765
	if (state->allocated_stack <= slot) {
		verbose(env, "invalid read from stack off %d+0 size %d\n",
			off, size);
		return -EACCES;
	}
	stype = state->stack[spi].slot_type;
766

767
	if (stype[0] == STACK_SPILL) {
768
		if (size != BPF_REG_SIZE) {
769
			verbose(env, "invalid size of register spill\n");
770 771
			return -EACCES;
		}
772
		for (i = 1; i < BPF_REG_SIZE; i++) {
773
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
774
				verbose(env, "corrupted spill memory\n");
775 776 777 778
				return -EACCES;
			}
		}

779
		if (value_regno >= 0) {
780
			/* restore register state from stack */
781
			state->regs[value_regno] = state->stack[spi].spilled_ptr;
782 783
			mark_stack_slot_read(state, spi);
		}
784 785 786
		return 0;
	} else {
		for (i = 0; i < size; i++) {
787
			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
788
				verbose(env, "invalid read from stack off %d+%d size %d\n",
789 790 791 792 793 794
					off, i, size);
				return -EACCES;
			}
		}
		if (value_regno >= 0)
			/* have read misc data from the stack */
795
			mark_reg_unknown(env, state->regs, value_regno);
796 797 798 799 800
		return 0;
	}
}

/* check read/write into map element returned by bpf_map_lookup_elem() */
801
static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
802 803
			    int size)
{
804 805
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_map *map = regs[regno].map_ptr;
806

807
	if (off < 0 || size <= 0 || off + size > map->value_size) {
808
		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
809 810 811 812 813 814
			map->value_size, off, size);
		return -EACCES;
	}
	return 0;
}

815 816
/* check read/write into a map element with possible variable offset */
static int check_map_access(struct bpf_verifier_env *env, u32 regno,
817
			    int off, int size)
818
{
819
	struct bpf_verifier_state *state = env->cur_state;
820 821 822
	struct bpf_reg_state *reg = &state->regs[regno];
	int err;

823 824 825
	/* We may have adjusted the register to this map value, so we
	 * need to try adding each of min_value and max_value to off
	 * to make sure our theoretical access will be safe.
826
	 */
827 828
	if (env->log.level)
		print_verifier_state(env, state);
829 830 831 832 833 834
	/* The minimum value is only important with signed
	 * comparisons where we can't assume the floor of a
	 * value is 0.  If we are using signed variables for our
	 * index'es we need to make sure that whatever we use
	 * will have a set floor within our range.
	 */
835
	if (reg->smin_value < 0) {
836
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
837 838 839
			regno);
		return -EACCES;
	}
840
	err = __check_map_access(env, regno, reg->smin_value + off, size);
841
	if (err) {
842 843
		verbose(env, "R%d min value is outside of the array range\n",
			regno);
844 845 846
		return err;
	}

847 848 849
	/* If we haven't set a max value then we need to bail since we can't be
	 * sure we won't do bad things.
	 * If reg->umax_value + off could overflow, treat that as unbounded too.
850
	 */
851
	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
852
		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
853 854 855
			regno);
		return -EACCES;
	}
856
	err = __check_map_access(env, regno, reg->umax_value + off, size);
857
	if (err)
858 859
		verbose(env, "R%d max value is outside of the array range\n",
			regno);
860
	return err;
861 862
}

A
Alexei Starovoitov 已提交
863 864
#define MAX_PACKET_OFF 0xffff

865
static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
866 867
				       const struct bpf_call_arg_meta *meta,
				       enum bpf_access_type t)
868
{
869
	switch (env->prog->type) {
870 871 872 873 874
	case BPF_PROG_TYPE_LWT_IN:
	case BPF_PROG_TYPE_LWT_OUT:
		/* dst_input() and dst_output() can't write for now */
		if (t == BPF_WRITE)
			return false;
875
		/* fallthrough */
876 877
	case BPF_PROG_TYPE_SCHED_CLS:
	case BPF_PROG_TYPE_SCHED_ACT:
878
	case BPF_PROG_TYPE_XDP:
879
	case BPF_PROG_TYPE_LWT_XMIT:
880
	case BPF_PROG_TYPE_SK_SKB:
881 882 883 884
		if (meta)
			return meta->pkt_access;

		env->seen_direct_write = true;
885 886 887 888 889 890
		return true;
	default:
		return false;
	}
}

891 892
static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
				 int off, int size)
A
Alexei Starovoitov 已提交
893
{
894
	struct bpf_reg_state *regs = cur_regs(env);
895
	struct bpf_reg_state *reg = &regs[regno];
A
Alexei Starovoitov 已提交
896

897
	if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
898
		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
899
			off, size, regno, reg->id, reg->off, reg->range);
A
Alexei Starovoitov 已提交
900 901 902 903 904
		return -EACCES;
	}
	return 0;
}

905 906 907
static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
			       int size)
{
908
	struct bpf_reg_state *regs = cur_regs(env);
909 910 911 912 913 914 915 916 917 918 919
	struct bpf_reg_state *reg = &regs[regno];
	int err;

	/* We may have added a variable offset to the packet pointer; but any
	 * reg->range we have comes after that.  We are only checking the fixed
	 * offset.
	 */

	/* We don't allow negative numbers, because we aren't tracking enough
	 * detail to prove they're safe.
	 */
920
	if (reg->smin_value < 0) {
921
		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
922 923 924 925 926
			regno);
		return -EACCES;
	}
	err = __check_packet_access(env, regno, off, size);
	if (err) {
927
		verbose(env, "R%d offset is outside of the packet\n", regno);
928 929 930 931 932 933
		return err;
	}
	return err;
}

/* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
934
static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
935
			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
936
{
937 938 939
	struct bpf_insn_access_aux info = {
		.reg_type = *reg_type,
	};
940

941 942
	if (env->ops->is_valid_access &&
	    env->ops->is_valid_access(off, size, t, &info)) {
943 944 945 946 947 948
		/* A non zero info.ctx_field_size indicates that this field is a
		 * candidate for later verifier transformation to load the whole
		 * field and then apply a mask when accessed with a narrower
		 * access than actual ctx access size. A zero info.ctx_field_size
		 * will only allow for whole field access and rejects any other
		 * type of narrower access.
949
		 */
950
		*reg_type = info.reg_type;
951

952 953 954 955
		if (env->analyzer_ops)
			return 0;

		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
956 957 958
		/* remember the offset of last byte accessed in ctx */
		if (env->prog->aux->max_ctx_offset < off + size)
			env->prog->aux->max_ctx_offset = off + size;
959
		return 0;
960
	}
961

962
	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
963 964 965
	return -EACCES;
}

966 967
static bool __is_pointer_value(bool allow_ptr_leaks,
			       const struct bpf_reg_state *reg)
968
{
969
	if (allow_ptr_leaks)
970 971
		return false;

972
	return reg->type != SCALAR_VALUE;
973 974
}

975 976
static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{
977
	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
978 979
}

980 981
static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
				   const struct bpf_reg_state *reg,
982
				   int off, int size, bool strict)
A
Alexei Starovoitov 已提交
983
{
984
	struct tnum reg_off;
985
	int ip_align;
986 987 988 989 990

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

991 992 993 994 995 996 997
	/* For platforms that do not have a Kconfig enabling
	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
	 * to this code only in strict mode where we want to emulate
	 * the NET_IP_ALIGN==2 checking.  Therefore use an
	 * unconditional IP align value of '2'.
998
	 */
999
	ip_align = 2;
1000 1001 1002 1003 1004 1005

	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1006 1007
		verbose(env,
			"misaligned packet access off %d+%s+%d+%d size %d\n",
1008
			ip_align, tn_buf, reg->off, off, size);
A
Alexei Starovoitov 已提交
1009 1010
		return -EACCES;
	}
1011

A
Alexei Starovoitov 已提交
1012 1013 1014
	return 0;
}

1015 1016
static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
				       const struct bpf_reg_state *reg,
1017 1018
				       const char *pointer_desc,
				       int off, int size, bool strict)
1019
{
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	struct tnum reg_off;

	/* Byte size accesses are always allowed. */
	if (!strict || size == 1)
		return 0;

	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
	if (!tnum_is_aligned(reg_off, size)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1031
		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1032
			pointer_desc, tn_buf, reg->off, off, size);
1033 1034 1035
		return -EACCES;
	}

A
Alexei Starovoitov 已提交
1036 1037 1038
	return 0;
}

1039 1040
static int check_ptr_alignment(struct bpf_verifier_env *env,
			       const struct bpf_reg_state *reg,
1041 1042
			       int off, int size)
{
1043
	bool strict = env->strict_alignment;
1044
	const char *pointer_desc = "";
1045

1046 1047
	switch (reg->type) {
	case PTR_TO_PACKET:
1048 1049 1050 1051
	case PTR_TO_PACKET_META:
		/* Special case, because of NET_IP_ALIGN. Given metadata sits
		 * right in front, treat it the very same way.
		 */
1052
		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1053 1054 1055 1056 1057 1058 1059 1060 1061
	case PTR_TO_MAP_VALUE:
		pointer_desc = "value ";
		break;
	case PTR_TO_CTX:
		pointer_desc = "context ";
		break;
	case PTR_TO_STACK:
		pointer_desc = "stack ";
		break;
1062
	default:
1063
		break;
1064
	}
1065 1066
	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
					   strict);
1067 1068
}

1069 1070 1071 1072 1073 1074
/* check whether memory at (regno + off) is accessible for t = (read | write)
 * if t==write, value_regno is a register which value is stored into memory
 * if t==read, value_regno is a register which will receive the value from memory
 * if t==write && value_regno==-1, some unknown value is stored into memory
 * if t==read && value_regno==-1, don't care what we read from memory
 */
1075
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1076 1077 1078
			    int bpf_size, enum bpf_access_type t,
			    int value_regno)
{
1079 1080 1081
	struct bpf_verifier_state *state = env->cur_state;
	struct bpf_reg_state *regs = cur_regs(env);
	struct bpf_reg_state *reg = regs + regno;
1082 1083 1084 1085 1086 1087
	int size, err = 0;

	size = bpf_size_to_bytes(bpf_size);
	if (size < 0)
		return size;

1088
	/* alignment checks will add in reg->off themselves */
1089
	err = check_ptr_alignment(env, reg, off, size);
A
Alexei Starovoitov 已提交
1090 1091
	if (err)
		return err;
1092

1093 1094 1095 1096
	/* for access checks, reg->off is just part of off */
	off += reg->off;

	if (reg->type == PTR_TO_MAP_VALUE) {
1097 1098
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1099
			verbose(env, "R%d leaks addr into map\n", value_regno);
1100 1101
			return -EACCES;
		}
1102

1103
		err = check_map_access(env, regno, off, size);
1104
		if (!err && t == BPF_READ && value_regno >= 0)
1105
			mark_reg_unknown(env, regs, value_regno);
1106

A
Alexei Starovoitov 已提交
1107
	} else if (reg->type == PTR_TO_CTX) {
1108
		enum bpf_reg_type reg_type = SCALAR_VALUE;
1109

1110 1111
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1112
			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1113 1114
			return -EACCES;
		}
1115 1116 1117
		/* ctx accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 */
1118
		if (reg->off) {
1119 1120
			verbose(env,
				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1121 1122 1123 1124
				regno, reg->off, off - reg->off);
			return -EACCES;
		}
		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1125 1126 1127
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1128 1129
			verbose(env,
				"variable ctx access var_off=%s off=%d size=%d",
1130 1131 1132
				tn_buf, off, size);
			return -EACCES;
		}
1133
		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
A
Alexei Starovoitov 已提交
1134
		if (!err && t == BPF_READ && value_regno >= 0) {
1135
			/* ctx access returns either a scalar, or a
1136 1137
			 * PTR_TO_PACKET[_META,_END]. In the latter
			 * case, we know the offset is zero.
1138 1139
			 */
			if (reg_type == SCALAR_VALUE)
1140
				mark_reg_unknown(env, regs, value_regno);
1141
			else
1142
				mark_reg_known_zero(env, regs,
1143
						    value_regno);
1144 1145 1146 1147
			regs[value_regno].id = 0;
			regs[value_regno].off = 0;
			regs[value_regno].range = 0;
			regs[value_regno].type = reg_type;
A
Alexei Starovoitov 已提交
1148
		}
1149

1150 1151 1152 1153 1154 1155 1156 1157 1158
	} else if (reg->type == PTR_TO_STACK) {
		/* stack accesses must be at a fixed offset, so that we can
		 * determine what type of data were returned.
		 * See check_stack_read().
		 */
		if (!tnum_is_const(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1159
			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1160 1161 1162 1163
				tn_buf, off, size);
			return -EACCES;
		}
		off += reg->var_off.value;
1164
		if (off >= 0 || off < -MAX_BPF_STACK) {
1165 1166
			verbose(env, "invalid stack off=%d size=%d\n", off,
				size);
1167 1168
			return -EACCES;
		}
1169 1170 1171 1172

		if (env->prog->aux->stack_depth < -off)
			env->prog->aux->stack_depth = -off;

1173
		if (t == BPF_WRITE)
1174 1175
			err = check_stack_write(env, state, off, size,
						value_regno);
1176
		else
1177 1178
			err = check_stack_read(env, state, off, size,
					       value_regno);
1179
	} else if (reg_is_pkt_pointer(reg)) {
1180
		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1181
			verbose(env, "cannot write into packet\n");
A
Alexei Starovoitov 已提交
1182 1183
			return -EACCES;
		}
1184 1185
		if (t == BPF_WRITE && value_regno >= 0 &&
		    is_pointer_value(env, value_regno)) {
1186 1187
			verbose(env, "R%d leaks addr into packet\n",
				value_regno);
1188 1189
			return -EACCES;
		}
A
Alexei Starovoitov 已提交
1190 1191
		err = check_packet_access(env, regno, off, size);
		if (!err && t == BPF_READ && value_regno >= 0)
1192
			mark_reg_unknown(env, regs, value_regno);
1193
	} else {
1194 1195
		verbose(env, "R%d invalid mem access '%s'\n", regno,
			reg_type_str[reg->type]);
1196 1197
		return -EACCES;
	}
A
Alexei Starovoitov 已提交
1198

1199
	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1200
	    regs[value_regno].type == SCALAR_VALUE) {
1201
		/* b/h/w load zero-extends, mark upper bits as known 0 */
1202 1203 1204
		regs[value_regno].var_off =
			tnum_cast(regs[value_regno].var_off, size);
		__update_reg_bounds(&regs[value_regno]);
A
Alexei Starovoitov 已提交
1205
	}
1206 1207 1208
	return err;
}

1209
static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1210 1211 1212 1213 1214
{
	int err;

	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
	    insn->imm != 0) {
1215
		verbose(env, "BPF_XADD uses reserved fields\n");
1216 1217 1218 1219
		return -EINVAL;
	}

	/* check src1 operand */
1220
	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1221 1222 1223 1224
	if (err)
		return err;

	/* check src2 operand */
1225
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1226 1227 1228
	if (err)
		return err;

1229
	if (is_pointer_value(env, insn->src_reg)) {
1230
		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1231 1232 1233
		return -EACCES;
	}

1234
	/* check whether atomic_add can read the memory */
1235
	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1236 1237 1238 1239 1240
			       BPF_SIZE(insn->code), BPF_READ, -1);
	if (err)
		return err;

	/* check whether atomic_add can write into the same memory */
1241
	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1242 1243 1244
				BPF_SIZE(insn->code), BPF_WRITE, -1);
}

1245 1246 1247 1248 1249 1250
/* Does this register contain a constant zero? */
static bool register_is_null(struct bpf_reg_state reg)
{
	return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
}

1251 1252
/* when register 'regno' is passed into function that will read 'access_size'
 * bytes from that pointer, make sure that it's within stack boundary
1253 1254 1255
 * and all elements of stack are initialized.
 * Unlike most pointer bounds-checking functions, this one doesn't take an
 * 'off' argument, so it has to add in reg->off itself.
1256
 */
1257
static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1258 1259
				int access_size, bool zero_size_allowed,
				struct bpf_call_arg_meta *meta)
1260
{
1261
	struct bpf_verifier_state *state = env->cur_state;
1262
	struct bpf_reg_state *regs = state->regs;
1263
	int off, i, slot, spi;
1264

1265
	if (regs[regno].type != PTR_TO_STACK) {
1266
		/* Allow zero-byte read from NULL, regardless of pointer type */
1267
		if (zero_size_allowed && access_size == 0 &&
1268
		    register_is_null(regs[regno]))
1269 1270
			return 0;

1271
		verbose(env, "R%d type=%s expected=%s\n", regno,
1272 1273
			reg_type_str[regs[regno].type],
			reg_type_str[PTR_TO_STACK]);
1274
		return -EACCES;
1275
	}
1276

1277 1278 1279 1280 1281
	/* Only allow fixed-offset stack reads */
	if (!tnum_is_const(regs[regno].var_off)) {
		char tn_buf[48];

		tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1282
		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1283 1284 1285
			regno, tn_buf);
	}
	off = regs[regno].off + regs[regno].var_off.value;
1286 1287
	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
	    access_size <= 0) {
1288
		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1289 1290 1291 1292
			regno, off, access_size);
		return -EACCES;
	}

1293 1294 1295
	if (env->prog->aux->stack_depth < -off)
		env->prog->aux->stack_depth = -off;

1296 1297 1298 1299 1300 1301
	if (meta && meta->raw_mode) {
		meta->access_size = access_size;
		meta->regno = regno;
		return 0;
	}

1302
	for (i = 0; i < access_size; i++) {
1303 1304 1305 1306 1307
		slot = -(off + i) - 1;
		spi = slot / BPF_REG_SIZE;
		if (state->allocated_stack <= slot ||
		    state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
			STACK_MISC) {
1308
			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1309 1310 1311 1312 1313 1314 1315
				off, i, access_size);
			return -EACCES;
		}
	}
	return 0;
}

1316 1317 1318 1319
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
				   int access_size, bool zero_size_allowed,
				   struct bpf_call_arg_meta *meta)
{
1320
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1321

1322
	switch (reg->type) {
1323
	case PTR_TO_PACKET:
1324
	case PTR_TO_PACKET_META:
1325
		return check_packet_access(env, regno, reg->off, access_size);
1326
	case PTR_TO_MAP_VALUE:
1327 1328
		return check_map_access(env, regno, reg->off, access_size);
	default: /* scalar_value|ptr_to_stack or invalid ptr */
1329 1330 1331 1332 1333
		return check_stack_boundary(env, regno, access_size,
					    zero_size_allowed, meta);
	}
}

1334
static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1335 1336
			  enum bpf_arg_type arg_type,
			  struct bpf_call_arg_meta *meta)
1337
{
1338
	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1339
	enum bpf_reg_type expected_type, type = reg->type;
1340 1341
	int err = 0;

1342
	if (arg_type == ARG_DONTCARE)
1343 1344
		return 0;

1345 1346 1347
	err = check_reg_arg(env, regno, SRC_OP);
	if (err)
		return err;
1348

1349 1350
	if (arg_type == ARG_ANYTHING) {
		if (is_pointer_value(env, regno)) {
1351 1352
			verbose(env, "R%d leaks addr into helper function\n",
				regno);
1353 1354
			return -EACCES;
		}
1355
		return 0;
1356
	}
1357

1358
	if (type_is_pkt_pointer(type) &&
1359
	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1360
		verbose(env, "helper access to the packet is not allowed\n");
1361 1362 1363
		return -EACCES;
	}

1364
	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1365 1366
	    arg_type == ARG_PTR_TO_MAP_VALUE) {
		expected_type = PTR_TO_STACK;
1367 1368
		if (!type_is_pkt_pointer(type) &&
		    type != expected_type)
1369
			goto err_type;
1370 1371
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1372 1373
		expected_type = SCALAR_VALUE;
		if (type != expected_type)
1374
			goto err_type;
1375 1376
	} else if (arg_type == ARG_CONST_MAP_PTR) {
		expected_type = CONST_PTR_TO_MAP;
1377 1378
		if (type != expected_type)
			goto err_type;
1379 1380
	} else if (arg_type == ARG_PTR_TO_CTX) {
		expected_type = PTR_TO_CTX;
1381 1382
		if (type != expected_type)
			goto err_type;
1383 1384
	} else if (arg_type == ARG_PTR_TO_MEM ||
		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1385 1386
		expected_type = PTR_TO_STACK;
		/* One exception here. In case function allows for NULL to be
1387
		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1388 1389
		 * happens during stack boundary checking.
		 */
1390
		if (register_is_null(*reg))
1391
			/* final test in check_stack_boundary() */;
1392 1393
		else if (!type_is_pkt_pointer(type) &&
			 type != PTR_TO_MAP_VALUE &&
1394
			 type != expected_type)
1395
			goto err_type;
1396
		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1397
	} else {
1398
		verbose(env, "unsupported arg_type %d\n", arg_type);
1399 1400 1401 1402 1403
		return -EFAULT;
	}

	if (arg_type == ARG_CONST_MAP_PTR) {
		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1404
		meta->map_ptr = reg->map_ptr;
1405 1406 1407 1408 1409
	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
		/* bpf_map_xxx(..., map_ptr, ..., key) call:
		 * check that [key, key + map->key_size) are within
		 * stack limits and initialized
		 */
1410
		if (!meta->map_ptr) {
1411 1412 1413 1414 1415
			/* in function declaration map_ptr must come before
			 * map_key, so that it's verified and known before
			 * we have to check map_key here. Otherwise it means
			 * that kernel subsystem misconfigured verifier
			 */
1416
			verbose(env, "invalid map_ptr to access map->key\n");
1417 1418
			return -EACCES;
		}
1419
		if (type_is_pkt_pointer(type))
1420
			err = check_packet_access(env, regno, reg->off,
1421 1422 1423 1424 1425
						  meta->map_ptr->key_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->key_size,
						   false, NULL);
1426 1427 1428 1429
	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
		/* bpf_map_xxx(..., map_ptr, ..., value) call:
		 * check [value, value + map->value_size) validity
		 */
1430
		if (!meta->map_ptr) {
1431
			/* kernel subsystem misconfigured verifier */
1432
			verbose(env, "invalid map_ptr to access map->value\n");
1433 1434
			return -EACCES;
		}
1435
		if (type_is_pkt_pointer(type))
1436
			err = check_packet_access(env, regno, reg->off,
1437 1438 1439 1440 1441
						  meta->map_ptr->value_size);
		else
			err = check_stack_boundary(env, regno,
						   meta->map_ptr->value_size,
						   false, NULL);
1442 1443 1444
	} else if (arg_type == ARG_CONST_SIZE ||
		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1445 1446 1447 1448 1449 1450 1451

		/* bpf_xxx(..., buf, len) call will access 'len' bytes
		 * from stack pointer 'buf'. Check it
		 * note: regno == len, regno - 1 == buf
		 */
		if (regno == 0) {
			/* kernel subsystem misconfigured verifier */
1452 1453
			verbose(env,
				"ARG_CONST_SIZE cannot be first argument\n");
1454 1455
			return -EACCES;
		}
1456

1457 1458
		/* The register is SCALAR_VALUE; the access check
		 * happens using its boundaries.
1459
		 */
1460 1461

		if (!tnum_is_const(reg->var_off))
1462 1463 1464 1465 1466 1467 1468
			/* For unprivileged variable accesses, disable raw
			 * mode so that the program is required to
			 * initialize all the memory that the helper could
			 * just partially fill up.
			 */
			meta = NULL;

1469
		if (reg->smin_value < 0) {
1470
			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1471 1472 1473
				regno);
			return -EACCES;
		}
1474

1475
		if (reg->umin_value == 0) {
1476 1477 1478
			err = check_helper_mem_access(env, regno - 1, 0,
						      zero_size_allowed,
						      meta);
1479 1480 1481
			if (err)
				return err;
		}
1482

1483
		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1484
			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1485 1486 1487 1488
				regno);
			return -EACCES;
		}
		err = check_helper_mem_access(env, regno - 1,
1489
					      reg->umax_value,
1490
					      zero_size_allowed, meta);
1491 1492 1493
	}

	return err;
1494
err_type:
1495
	verbose(env, "R%d type=%s expected=%s\n", regno,
1496 1497
		reg_type_str[type], reg_type_str[expected_type]);
	return -EACCES;
1498 1499
}

1500 1501
static int check_map_func_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map, int func_id)
1502 1503 1504 1505
{
	if (!map)
		return 0;

1506 1507 1508 1509 1510 1511 1512 1513
	/* We need a two way check, first is from map perspective ... */
	switch (map->map_type) {
	case BPF_MAP_TYPE_PROG_ARRAY:
		if (func_id != BPF_FUNC_tail_call)
			goto error;
		break;
	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
		if (func_id != BPF_FUNC_perf_event_read &&
1514 1515
		    func_id != BPF_FUNC_perf_event_output &&
		    func_id != BPF_FUNC_perf_event_read_value)
1516 1517 1518 1519 1520 1521
			goto error;
		break;
	case BPF_MAP_TYPE_STACK_TRACE:
		if (func_id != BPF_FUNC_get_stackid)
			goto error;
		break;
1522
	case BPF_MAP_TYPE_CGROUP_ARRAY:
1523
		if (func_id != BPF_FUNC_skb_under_cgroup &&
1524
		    func_id != BPF_FUNC_current_task_under_cgroup)
1525 1526
			goto error;
		break;
1527 1528 1529 1530 1531
	/* devmap returns a pointer to a live net_device ifindex that we cannot
	 * allow to be modified from bpf side. So do not allow lookup elements
	 * for now.
	 */
	case BPF_MAP_TYPE_DEVMAP:
1532
		if (func_id != BPF_FUNC_redirect_map)
1533 1534
			goto error;
		break;
1535 1536 1537 1538 1539
	/* Restrict bpf side of cpumap, open when use-cases appear */
	case BPF_MAP_TYPE_CPUMAP:
		if (func_id != BPF_FUNC_redirect_map)
			goto error;
		break;
1540
	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
M
Martin KaFai Lau 已提交
1541
	case BPF_MAP_TYPE_HASH_OF_MAPS:
1542 1543
		if (func_id != BPF_FUNC_map_lookup_elem)
			goto error;
1544
		break;
1545 1546 1547 1548 1549 1550
	case BPF_MAP_TYPE_SOCKMAP:
		if (func_id != BPF_FUNC_sk_redirect_map &&
		    func_id != BPF_FUNC_sock_map_update &&
		    func_id != BPF_FUNC_map_delete_elem)
			goto error;
		break;
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	default:
		break;
	}

	/* ... and second from the function itself. */
	switch (func_id) {
	case BPF_FUNC_tail_call:
		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
			goto error;
		break;
	case BPF_FUNC_perf_event_read:
	case BPF_FUNC_perf_event_output:
1563
	case BPF_FUNC_perf_event_read_value:
1564 1565 1566 1567 1568 1569 1570
		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
			goto error;
		break;
	case BPF_FUNC_get_stackid:
		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
			goto error;
		break;
1571
	case BPF_FUNC_current_task_under_cgroup:
1572
	case BPF_FUNC_skb_under_cgroup:
1573 1574 1575
		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
			goto error;
		break;
1576
	case BPF_FUNC_redirect_map:
1577 1578
		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
		    map->map_type != BPF_MAP_TYPE_CPUMAP)
1579 1580
			goto error;
		break;
1581 1582 1583 1584 1585 1586 1587 1588
	case BPF_FUNC_sk_redirect_map:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
	case BPF_FUNC_sock_map_update:
		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
			goto error;
		break;
1589 1590
	default:
		break;
1591 1592 1593
	}

	return 0;
1594
error:
1595
	verbose(env, "cannot pass map_type %d into func %s#%d\n",
1596
		map->map_type, func_id_name(func_id), func_id);
1597
	return -EINVAL;
1598 1599
}

1600 1601 1602 1603
static int check_raw_mode(const struct bpf_func_proto *fn)
{
	int count = 0;

1604
	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1605
		count++;
1606
	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1607
		count++;
1608
	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1609
		count++;
1610
	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1611
		count++;
1612
	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1613 1614 1615 1616 1617
		count++;

	return count > 1 ? -EINVAL : 0;
}

1618 1619
/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
 * are now invalid, so turn them into unknown SCALAR_VALUE.
1620
 */
1621
static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
A
Alexei Starovoitov 已提交
1622
{
1623
	struct bpf_verifier_state *state = env->cur_state;
1624
	struct bpf_reg_state *regs = state->regs, *reg;
A
Alexei Starovoitov 已提交
1625 1626 1627
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
1628
		if (reg_is_pkt_pointer_any(&regs[i]))
1629
			mark_reg_unknown(env, regs, i);
A
Alexei Starovoitov 已提交
1630

1631 1632
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
1633
			continue;
1634
		reg = &state->stack[i].spilled_ptr;
1635 1636
		if (reg_is_pkt_pointer_any(reg))
			__mark_reg_unknown(reg);
A
Alexei Starovoitov 已提交
1637 1638 1639
	}
}

1640
static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1641 1642
{
	const struct bpf_func_proto *fn = NULL;
1643
	struct bpf_reg_state *regs;
1644
	struct bpf_call_arg_meta meta;
A
Alexei Starovoitov 已提交
1645
	bool changes_data;
1646 1647 1648 1649
	int i, err;

	/* find function prototype */
	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1650 1651
		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
			func_id);
1652 1653 1654
		return -EINVAL;
	}

1655 1656
	if (env->ops->get_func_proto)
		fn = env->ops->get_func_proto(func_id);
1657 1658

	if (!fn) {
1659 1660
		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
			func_id);
1661 1662 1663 1664
		return -EINVAL;
	}

	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1665
	if (!env->prog->gpl_compatible && fn->gpl_only) {
1666
		verbose(env, "cannot call GPL only function from proprietary program\n");
1667 1668 1669
		return -EINVAL;
	}

1670
	changes_data = bpf_helper_changes_pkt_data(fn->func);
A
Alexei Starovoitov 已提交
1671

1672
	memset(&meta, 0, sizeof(meta));
1673
	meta.pkt_access = fn->pkt_access;
1674

1675 1676 1677 1678 1679
	/* We only support one arg being in raw mode at the moment, which
	 * is sufficient for the helper functions we have right now.
	 */
	err = check_raw_mode(fn);
	if (err) {
1680
		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1681
			func_id_name(func_id), func_id);
1682 1683 1684
		return err;
	}

1685
	/* check args */
1686
	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1687 1688
	if (err)
		return err;
1689
	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1690 1691
	if (err)
		return err;
1692
	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1693 1694
	if (err)
		return err;
1695
	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1696 1697
	if (err)
		return err;
1698
	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1699 1700 1701
	if (err)
		return err;

1702 1703 1704 1705
	/* Mark slots with STACK_MISC in case of raw mode, stack offset
	 * is inferred from register state.
	 */
	for (i = 0; i < meta.access_size; i++) {
1706
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1707 1708 1709 1710
		if (err)
			return err;
	}

1711
	regs = cur_regs(env);
1712
	/* reset caller saved regs */
1713
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1714
		mark_reg_not_init(env, regs, caller_saved[i]);
1715 1716
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
1717

1718
	/* update return register (already marked as written above) */
1719
	if (fn->ret_type == RET_INTEGER) {
1720
		/* sets type to SCALAR_VALUE */
1721
		mark_reg_unknown(env, regs, BPF_REG_0);
1722 1723 1724
	} else if (fn->ret_type == RET_VOID) {
		regs[BPF_REG_0].type = NOT_INIT;
	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1725 1726
		struct bpf_insn_aux_data *insn_aux;

1727
		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1728
		/* There is no offset yet applied, variable or fixed */
1729
		mark_reg_known_zero(env, regs, BPF_REG_0);
1730
		regs[BPF_REG_0].off = 0;
1731 1732 1733 1734
		/* remember map_ptr, so that check_map_access()
		 * can check 'value_size' boundary of memory access
		 * to map element returned from bpf_map_lookup_elem()
		 */
1735
		if (meta.map_ptr == NULL) {
1736 1737
			verbose(env,
				"kernel subsystem misconfigured verifier\n");
1738 1739
			return -EINVAL;
		}
1740
		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1741
		regs[BPF_REG_0].id = ++env->id_gen;
1742 1743 1744 1745 1746
		insn_aux = &env->insn_aux_data[insn_idx];
		if (!insn_aux->map_ptr)
			insn_aux->map_ptr = meta.map_ptr;
		else if (insn_aux->map_ptr != meta.map_ptr)
			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1747
	} else {
1748
		verbose(env, "unknown return type %d of func %s#%d\n",
1749
			fn->ret_type, func_id_name(func_id), func_id);
1750 1751
		return -EINVAL;
	}
1752

1753
	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1754 1755
	if (err)
		return err;
1756

A
Alexei Starovoitov 已提交
1757 1758 1759 1760 1761
	if (changes_data)
		clear_all_pkt_pointers(env);
	return 0;
}

1762 1763 1764 1765
static void coerce_reg_to_32(struct bpf_reg_state *reg)
{
	/* clear high 32 bits */
	reg->var_off = tnum_cast(reg->var_off, 4);
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	/* Update bounds */
	__update_reg_bounds(reg);
}

static bool signed_add_overflows(s64 a, s64 b)
{
	/* Do the add in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a + (u64)b);

	if (b < 0)
		return res > a;
	return res < a;
}

static bool signed_sub_overflows(s64 a, s64 b)
{
	/* Do the sub in u64, where overflow is well-defined */
	s64 res = (s64)((u64)a - (u64)b);

	if (b < 0)
		return res < a;
	return res > a;
A
Alexei Starovoitov 已提交
1788 1789
}

1790 1791 1792 1793 1794 1795 1796 1797 1798
/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
 * Caller should also handle BPF_MOV case separately.
 * If we return -EACCES, caller may want to try again treating pointer as a
 * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
 */
static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn,
				   const struct bpf_reg_state *ptr_reg,
				   const struct bpf_reg_state *off_reg)
A
Alexei Starovoitov 已提交
1799
{
1800
	struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
1801
	bool known = tnum_is_const(off_reg->var_off);
1802 1803 1804 1805
	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
A
Alexei Starovoitov 已提交
1806
	u8 opcode = BPF_OP(insn->code);
1807
	u32 dst = insn->dst_reg;
A
Alexei Starovoitov 已提交
1808

1809
	dst_reg = &regs[dst];
A
Alexei Starovoitov 已提交
1810

1811
	if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1812
		print_verifier_state(env, env->cur_state);
1813 1814
		verbose(env,
			"verifier internal error: known but bad sbounds\n");
1815 1816 1817
		return -EINVAL;
	}
	if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1818
		print_verifier_state(env, env->cur_state);
1819 1820
		verbose(env,
			"verifier internal error: known but bad ubounds\n");
1821 1822 1823 1824 1825 1826
		return -EINVAL;
	}

	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
		if (!env->allow_ptr_leaks)
1827 1828
			verbose(env,
				"R%d 32-bit pointer arithmetic prohibited\n",
1829 1830
				dst);
		return -EACCES;
A
Alexei Starovoitov 已提交
1831 1832
	}

1833 1834
	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
		if (!env->allow_ptr_leaks)
1835
			verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1836 1837 1838 1839 1840
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == CONST_PTR_TO_MAP) {
		if (!env->allow_ptr_leaks)
1841
			verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1842 1843 1844 1845 1846
				dst);
		return -EACCES;
	}
	if (ptr_reg->type == PTR_TO_PACKET_END) {
		if (!env->allow_ptr_leaks)
1847
			verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1848 1849 1850 1851 1852 1853
				dst);
		return -EACCES;
	}

	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
	 * The id may be overwritten later if we create a new variable offset.
A
Alexei Starovoitov 已提交
1854
	 */
1855 1856
	dst_reg->type = ptr_reg->type;
	dst_reg->id = ptr_reg->id;
A
Alexei Starovoitov 已提交
1857

1858 1859 1860 1861
	switch (opcode) {
	case BPF_ADD:
		/* We can take a fixed offset as long as it doesn't overflow
		 * the s32 'off' field
A
Alexei Starovoitov 已提交
1862
		 */
1863 1864
		if (known && (ptr_reg->off + smin_val ==
			      (s64)(s32)(ptr_reg->off + smin_val))) {
1865
			/* pointer += K.  Accumulate it into fixed offset */
1866 1867 1868 1869
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1870
			dst_reg->var_off = ptr_reg->var_off;
1871
			dst_reg->off = ptr_reg->off + smin_val;
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  Note that off_reg->off
		 * == 0, since it's a scalar.
		 * dst_reg gets the pointer type and since some positive
		 * integer value was added to the pointer, give it a new 'id'
		 * if it's a PTR_TO_PACKET.
		 * this creates a new 'base' pointer, off_reg (variable) gets
		 * added into the variable offset, and we copy the fixed offset
		 * from ptr_reg.
A
Alexei Starovoitov 已提交
1883
		 */
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
		if (signed_add_overflows(smin_ptr, smin_val) ||
		    signed_add_overflows(smax_ptr, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr + smin_val;
			dst_reg->smax_value = smax_ptr + smax_val;
		}
		if (umin_ptr + umin_val < umin_ptr ||
		    umax_ptr + umax_val < umax_ptr) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value = umin_ptr + umin_val;
			dst_reg->umax_value = umax_ptr + umax_val;
		}
1900 1901
		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
1902
		if (reg_is_pkt_pointer(ptr_reg)) {
1903 1904 1905 1906 1907 1908 1909 1910 1911
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
			dst_reg->range = 0;
		}
		break;
	case BPF_SUB:
		if (dst_reg == off_reg) {
			/* scalar -= pointer.  Creates an unknown scalar */
			if (!env->allow_ptr_leaks)
1912
				verbose(env, "R%d tried to subtract pointer from scalar\n",
1913 1914 1915 1916 1917 1918
					dst);
			return -EACCES;
		}
		/* We don't allow subtraction from FP, because (according to
		 * test_verifier.c test "invalid fp arithmetic", JITs might not
		 * be able to deal with it.
A
Alexei Starovoitov 已提交
1919
		 */
1920 1921
		if (ptr_reg->type == PTR_TO_STACK) {
			if (!env->allow_ptr_leaks)
1922
				verbose(env, "R%d subtraction from stack pointer prohibited\n",
1923 1924 1925
					dst);
			return -EACCES;
		}
1926 1927
		if (known && (ptr_reg->off - smin_val ==
			      (s64)(s32)(ptr_reg->off - smin_val))) {
1928
			/* pointer -= K.  Subtract it from fixed offset */
1929 1930 1931 1932
			dst_reg->smin_value = smin_ptr;
			dst_reg->smax_value = smax_ptr;
			dst_reg->umin_value = umin_ptr;
			dst_reg->umax_value = umax_ptr;
1933 1934
			dst_reg->var_off = ptr_reg->var_off;
			dst_reg->id = ptr_reg->id;
1935
			dst_reg->off = ptr_reg->off - smin_val;
1936 1937 1938 1939 1940
			dst_reg->range = ptr_reg->range;
			break;
		}
		/* A new variable offset is created.  If the subtrahend is known
		 * nonnegative, then any reg->range we had before is still good.
A
Alexei Starovoitov 已提交
1941
		 */
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
		if (signed_sub_overflows(smin_ptr, smax_val) ||
		    signed_sub_overflows(smax_ptr, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = smin_ptr - smax_val;
			dst_reg->smax_value = smax_ptr - smin_val;
		}
		if (umin_ptr < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value = umin_ptr - umax_val;
			dst_reg->umax_value = umax_ptr - umin_val;
		}
1960 1961
		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
		dst_reg->off = ptr_reg->off;
1962
		if (reg_is_pkt_pointer(ptr_reg)) {
1963 1964
			dst_reg->id = ++env->id_gen;
			/* something was added to pkt_ptr, set range to zero */
1965
			if (smin_val < 0)
1966
				dst_reg->range = 0;
1967
		}
1968 1969 1970 1971 1972 1973 1974 1975 1976
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
		/* bitwise ops on pointers are troublesome, prohibit for now.
		 * (However, in principle we could allow some cases, e.g.
		 * ptr &= ~3 which would reduce min_value by 3.)
		 */
		if (!env->allow_ptr_leaks)
1977
			verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
1978 1979 1980 1981 1982
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
	default:
		/* other operators (e.g. MUL,LSH) produce non-pointer results */
		if (!env->allow_ptr_leaks)
1983
			verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
1984 1985
				dst, bpf_alu_string[opcode >> 4]);
		return -EACCES;
1986 1987
	}

1988 1989 1990
	__update_reg_bounds(dst_reg);
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
1991 1992 1993
	return 0;
}

1994 1995 1996 1997
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
				      struct bpf_insn *insn,
				      struct bpf_reg_state *dst_reg,
				      struct bpf_reg_state src_reg)
A
Alexei Starovoitov 已提交
1998
{
1999
	struct bpf_reg_state *regs = cur_regs(env);
2000
	u8 opcode = BPF_OP(insn->code);
2001
	bool src_known, dst_known;
2002 2003
	s64 smin_val, smax_val;
	u64 umin_val, umax_val;
2004

2005 2006 2007 2008
	if (BPF_CLASS(insn->code) != BPF_ALU64) {
		/* 32-bit ALU ops are (32,32)->64 */
		coerce_reg_to_32(dst_reg);
		coerce_reg_to_32(&src_reg);
2009
	}
2010 2011 2012 2013
	smin_val = src_reg.smin_value;
	smax_val = src_reg.smax_value;
	umin_val = src_reg.umin_value;
	umax_val = src_reg.umax_value;
2014 2015
	src_known = tnum_is_const(src_reg.var_off);
	dst_known = tnum_is_const(dst_reg->var_off);
2016

2017 2018
	switch (opcode) {
	case BPF_ADD:
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value += smin_val;
			dst_reg->smax_value += smax_val;
		}
		if (dst_reg->umin_value + umin_val < umin_val ||
		    dst_reg->umax_value + umax_val < umax_val) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			dst_reg->umin_value += umin_val;
			dst_reg->umax_value += umax_val;
		}
2035
		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2036 2037
		break;
	case BPF_SUB:
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value -= smax_val;
			dst_reg->smax_value -= smin_val;
		}
		if (dst_reg->umin_value < umax_val) {
			/* Overflow possible, we know nothing */
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
		} else {
			/* Cannot overflow (as long as bounds are consistent) */
			dst_reg->umin_value -= umax_val;
			dst_reg->umax_value -= umin_val;
		}
2056
		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2057 2058
		break;
	case BPF_MUL:
2059 2060
		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
		if (smin_val < 0 || dst_reg->smin_value < 0) {
2061
			/* Ain't nobody got time to multiply that sign */
2062 2063
			__mark_reg_unbounded(dst_reg);
			__update_reg_bounds(dst_reg);
2064 2065
			break;
		}
2066 2067
		/* Both values are positive, so we can work with unsigned and
		 * copy the result to signed (unless it exceeds S64_MAX).
2068
		 */
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
			/* Potential overflow, we know nothing */
			__mark_reg_unbounded(dst_reg);
			/* (except what we can learn from the var_off) */
			__update_reg_bounds(dst_reg);
			break;
		}
		dst_reg->umin_value *= umin_val;
		dst_reg->umax_value *= umax_val;
		if (dst_reg->umax_value > S64_MAX) {
			/* Overflow possible, we know nothing */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
2086 2087
		break;
	case BPF_AND:
2088
		if (src_known && dst_known) {
2089 2090
			__mark_reg_known(dst_reg, dst_reg->var_off.value &
						  src_reg.var_off.value);
2091 2092
			break;
		}
2093 2094
		/* We get our minimum from the var_off, since that's inherently
		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2095
		 */
2096
		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
		dst_reg->umin_value = dst_reg->var_off.value;
		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ANDing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
		} else {
			/* ANDing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
		}
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2114 2115 2116
		break;
	case BPF_OR:
		if (src_known && dst_known) {
2117 2118
			__mark_reg_known(dst_reg, dst_reg->var_off.value |
						  src_reg.var_off.value);
2119 2120
			break;
		}
2121 2122
		/* We get our maximum from the var_off, and our minimum is the
		 * maximum of the operands' minima
2123 2124
		 */
		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2125 2126 2127 2128 2129 2130 2131 2132 2133
		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
		dst_reg->umax_value = dst_reg->var_off.value |
				      dst_reg->var_off.mask;
		if (dst_reg->smin_value < 0 || smin_val < 0) {
			/* Lose signed bounds when ORing negative numbers,
			 * ain't nobody got time for that.
			 */
			dst_reg->smin_value = S64_MIN;
			dst_reg->smax_value = S64_MAX;
2134
		} else {
2135 2136 2137 2138 2139
			/* ORing two positives gives a positive, so safe to
			 * cast result into s64.
			 */
			dst_reg->smin_value = dst_reg->umin_value;
			dst_reg->smax_value = dst_reg->umax_value;
2140
		}
2141 2142
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2143 2144
		break;
	case BPF_LSH:
2145 2146 2147 2148
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2149
			mark_reg_unknown(env, regs, insn->dst_reg);
2150 2151
			break;
		}
2152 2153
		/* We lose all sign bit information (except what we can pick
		 * up from var_off)
2154
		 */
2155 2156 2157 2158 2159 2160
		dst_reg->smin_value = S64_MIN;
		dst_reg->smax_value = S64_MAX;
		/* If we might shift our top bit out, then we know nothing */
		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
			dst_reg->umin_value = 0;
			dst_reg->umax_value = U64_MAX;
2161
		} else {
2162 2163
			dst_reg->umin_value <<= umin_val;
			dst_reg->umax_value <<= umax_val;
2164
		}
2165 2166 2167 2168 2169 2170
		if (src_known)
			dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
		else
			dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2171 2172
		break;
	case BPF_RSH:
2173 2174 2175 2176
		if (umax_val > 63) {
			/* Shifts greater than 63 are undefined.  This includes
			 * shifts by a negative number.
			 */
2177
			mark_reg_unknown(env, regs, insn->dst_reg);
2178 2179 2180
			break;
		}
		/* BPF_RSH is an unsigned shift, so make the appropriate casts */
2181 2182
		if (dst_reg->smin_value < 0) {
			if (umin_val) {
2183
				/* Sign bit will be cleared */
2184 2185 2186 2187 2188 2189
				dst_reg->smin_value = 0;
			} else {
				/* Lost sign bit information */
				dst_reg->smin_value = S64_MIN;
				dst_reg->smax_value = S64_MAX;
			}
2190
		} else {
2191 2192
			dst_reg->smin_value =
				(u64)(dst_reg->smin_value) >> umax_val;
2193
		}
2194
		if (src_known)
2195 2196
			dst_reg->var_off = tnum_rshift(dst_reg->var_off,
						       umin_val);
2197
		else
2198 2199 2200 2201 2202
			dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
		dst_reg->umin_value >>= umax_val;
		dst_reg->umax_value >>= umin_val;
		/* We may learn something more from the var_off */
		__update_reg_bounds(dst_reg);
2203 2204
		break;
	default:
2205
		mark_reg_unknown(env, regs, insn->dst_reg);
2206 2207 2208
		break;
	}

2209 2210
	__reg_deduce_bounds(dst_reg);
	__reg_bound_offset(dst_reg);
2211 2212 2213 2214 2215 2216 2217 2218 2219
	return 0;
}

/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
 * and var_off.
 */
static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
				   struct bpf_insn *insn)
{
2220
	struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
	u8 opcode = BPF_OP(insn->code);
	int rc;

	dst_reg = &regs[insn->dst_reg];
	src_reg = NULL;
	if (dst_reg->type != SCALAR_VALUE)
		ptr_reg = dst_reg;
	if (BPF_SRC(insn->code) == BPF_X) {
		src_reg = &regs[insn->src_reg];
		if (src_reg->type != SCALAR_VALUE) {
			if (dst_reg->type != SCALAR_VALUE) {
				/* Combining two pointers by any ALU op yields
				 * an arbitrary scalar.
				 */
				if (!env->allow_ptr_leaks) {
2237
					verbose(env, "R%d pointer %s pointer prohibited\n",
2238 2239 2240 2241
						insn->dst_reg,
						bpf_alu_string[opcode >> 4]);
					return -EACCES;
				}
2242
				mark_reg_unknown(env, regs, insn->dst_reg);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
				return 0;
			} else {
				/* scalar += pointer
				 * This is legal, but we have to reverse our
				 * src/dest handling in computing the range
				 */
				rc = adjust_ptr_min_max_vals(env, insn,
							     src_reg, dst_reg);
				if (rc == -EACCES && env->allow_ptr_leaks) {
					/* scalar += unknown scalar */
					__mark_reg_unknown(&off_reg);
					return adjust_scalar_min_max_vals(
							env, insn,
							dst_reg, off_reg);
				}
				return rc;
			}
		} else if (ptr_reg) {
			/* pointer += scalar */
			rc = adjust_ptr_min_max_vals(env, insn,
						     dst_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += scalar */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, *src_reg);
			}
			return rc;
		}
	} else {
		/* Pretend the src is a reg with a known value, since we only
		 * need to be able to read from this state.
		 */
		off_reg.type = SCALAR_VALUE;
2277
		__mark_reg_known(&off_reg, insn->imm);
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
		src_reg = &off_reg;
		if (ptr_reg) { /* pointer += K */
			rc = adjust_ptr_min_max_vals(env, insn,
						     ptr_reg, src_reg);
			if (rc == -EACCES && env->allow_ptr_leaks) {
				/* unknown scalar += K */
				__mark_reg_unknown(dst_reg);
				return adjust_scalar_min_max_vals(
						env, insn, dst_reg, off_reg);
			}
			return rc;
		}
	}

	/* Got here implies adding two SCALAR_VALUEs */
	if (WARN_ON_ONCE(ptr_reg)) {
2294
		print_verifier_state(env, env->cur_state);
2295
		verbose(env, "verifier internal error: unexpected ptr_reg\n");
2296 2297 2298
		return -EINVAL;
	}
	if (WARN_ON(!src_reg)) {
2299
		print_verifier_state(env, env->cur_state);
2300
		verbose(env, "verifier internal error: no src_reg\n");
2301 2302 2303
		return -EINVAL;
	}
	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2304 2305
}

2306
/* check validity of 32-bit and 64-bit arithmetic operations */
2307
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2308
{
2309
	struct bpf_reg_state *regs = cur_regs(env);
2310 2311 2312 2313 2314 2315 2316 2317
	u8 opcode = BPF_OP(insn->code);
	int err;

	if (opcode == BPF_END || opcode == BPF_NEG) {
		if (opcode == BPF_NEG) {
			if (BPF_SRC(insn->code) != 0 ||
			    insn->src_reg != BPF_REG_0 ||
			    insn->off != 0 || insn->imm != 0) {
2318
				verbose(env, "BPF_NEG uses reserved fields\n");
2319 2320 2321 2322
				return -EINVAL;
			}
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2323 2324
			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
			    BPF_CLASS(insn->code) == BPF_ALU64) {
2325
				verbose(env, "BPF_END uses reserved fields\n");
2326 2327 2328 2329 2330
				return -EINVAL;
			}
		}

		/* check src operand */
2331
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2332 2333 2334
		if (err)
			return err;

2335
		if (is_pointer_value(env, insn->dst_reg)) {
2336
			verbose(env, "R%d pointer arithmetic prohibited\n",
2337 2338 2339 2340
				insn->dst_reg);
			return -EACCES;
		}

2341
		/* check dest operand */
2342
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2343 2344 2345 2346 2347 2348 2349
		if (err)
			return err;

	} else if (opcode == BPF_MOV) {

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2350
				verbose(env, "BPF_MOV uses reserved fields\n");
2351 2352 2353 2354
				return -EINVAL;
			}

			/* check src operand */
2355
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2356 2357 2358 2359
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2360
				verbose(env, "BPF_MOV uses reserved fields\n");
2361 2362 2363 2364 2365
				return -EINVAL;
			}
		}

		/* check dest operand */
2366
		err = check_reg_arg(env, insn->dst_reg, DST_OP);
2367 2368 2369 2370 2371 2372 2373 2374 2375
		if (err)
			return err;

		if (BPF_SRC(insn->code) == BPF_X) {
			if (BPF_CLASS(insn->code) == BPF_ALU64) {
				/* case: R1 = R2
				 * copy register state to dest reg
				 */
				regs[insn->dst_reg] = regs[insn->src_reg];
A
Alexei Starovoitov 已提交
2376
				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2377
			} else {
2378
				/* R1 = (u32) R2 */
2379
				if (is_pointer_value(env, insn->src_reg)) {
2380 2381
					verbose(env,
						"R%d partial copy of pointer\n",
2382 2383 2384
						insn->src_reg);
					return -EACCES;
				}
2385
				mark_reg_unknown(env, regs, insn->dst_reg);
2386
				/* high 32 bits are known zero. */
2387 2388
				regs[insn->dst_reg].var_off = tnum_cast(
						regs[insn->dst_reg].var_off, 4);
2389
				__update_reg_bounds(&regs[insn->dst_reg]);
2390 2391 2392 2393 2394
			}
		} else {
			/* case: R = imm
			 * remember the value we stored into this reg
			 */
2395
			regs[insn->dst_reg].type = SCALAR_VALUE;
2396
			__mark_reg_known(regs + insn->dst_reg, insn->imm);
2397 2398 2399
		}

	} else if (opcode > BPF_END) {
2400
		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2401 2402 2403 2404 2405 2406
		return -EINVAL;

	} else {	/* all other ALU ops: and, sub, xor, add, ... */

		if (BPF_SRC(insn->code) == BPF_X) {
			if (insn->imm != 0 || insn->off != 0) {
2407
				verbose(env, "BPF_ALU uses reserved fields\n");
2408 2409 2410
				return -EINVAL;
			}
			/* check src1 operand */
2411
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
2412 2413 2414 2415
			if (err)
				return err;
		} else {
			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2416
				verbose(env, "BPF_ALU uses reserved fields\n");
2417 2418 2419 2420 2421
				return -EINVAL;
			}
		}

		/* check src2 operand */
2422
		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2423 2424 2425 2426 2427
		if (err)
			return err;

		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2428
			verbose(env, "div by zero\n");
2429 2430 2431
			return -EINVAL;
		}

R
Rabin Vincent 已提交
2432 2433 2434 2435 2436
		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;

			if (insn->imm < 0 || insn->imm >= size) {
2437
				verbose(env, "invalid shift %d\n", insn->imm);
R
Rabin Vincent 已提交
2438 2439 2440 2441
				return -EINVAL;
			}
		}

A
Alexei Starovoitov 已提交
2442
		/* check dest operand */
2443
		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
A
Alexei Starovoitov 已提交
2444 2445 2446
		if (err)
			return err;

2447
		return adjust_reg_min_max_vals(env, insn);
2448 2449 2450 2451 2452
	}

	return 0;
}

2453
static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2454
				   struct bpf_reg_state *dst_reg,
2455
				   enum bpf_reg_type type,
2456
				   bool range_right_open)
A
Alexei Starovoitov 已提交
2457
{
2458
	struct bpf_reg_state *regs = state->regs, *reg;
2459
	u16 new_range;
A
Alexei Starovoitov 已提交
2460
	int i;
2461

2462 2463
	if (dst_reg->off < 0 ||
	    (dst_reg->off == 0 && range_right_open))
2464 2465 2466
		/* This doesn't give us any range */
		return;

2467 2468
	if (dst_reg->umax_value > MAX_PACKET_OFF ||
	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2469 2470 2471 2472 2473
		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
		 * than pkt_end, but that's because it's also less than pkt.
		 */
		return;

2474 2475 2476 2477 2478
	new_range = dst_reg->off;
	if (range_right_open)
		new_range--;

	/* Examples for register markings:
2479
	 *
2480
	 * pkt_data in dst register:
2481 2482 2483 2484 2485 2486
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 > pkt_end) goto <handle exception>
	 *   <access okay>
	 *
2487 2488 2489 2490 2491
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (r2 < pkt_end) goto <access okay>
	 *   <handle exception>
	 *
2492 2493 2494 2495 2496
	 *   Where:
	 *     r2 == dst_reg, pkt_end == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
2497
	 * pkt_data in src register:
2498 2499 2500 2501 2502 2503
	 *
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end >= r2) goto <access okay>
	 *   <handle exception>
	 *
2504 2505 2506 2507 2508
	 *   r2 = r3;
	 *   r2 += 8;
	 *   if (pkt_end <= r2) goto <handle exception>
	 *   <access okay>
	 *
2509 2510 2511 2512 2513 2514
	 *   Where:
	 *     pkt_end == dst_reg, r2 == src_reg
	 *     r2=pkt(id=n,off=8,r=0)
	 *     r3=pkt(id=n,off=0,r=0)
	 *
	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2515 2516 2517
	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
	 * and [r3, r3 + 8-1) respectively is safe to access depending on
	 * the check.
A
Alexei Starovoitov 已提交
2518
	 */
2519

2520 2521 2522 2523 2524
	/* If our ids match, then we must have the same max_value.  And we
	 * don't care about the other reg's fixed offset, since if it's too big
	 * the range won't allow anything.
	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
	 */
A
Alexei Starovoitov 已提交
2525
	for (i = 0; i < MAX_BPF_REG; i++)
2526
		if (regs[i].type == type && regs[i].id == dst_reg->id)
2527
			/* keep the maximum range already checked */
2528
			regs[i].range = max(regs[i].range, new_range);
A
Alexei Starovoitov 已提交
2529

2530 2531
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
A
Alexei Starovoitov 已提交
2532
			continue;
2533
		reg = &state->stack[i].spilled_ptr;
2534
		if (reg->type == type && reg->id == dst_reg->id)
2535
			reg->range = max_t(u16, reg->range, new_range);
A
Alexei Starovoitov 已提交
2536 2537 2538
	}
}

2539 2540 2541
/* Adjusts the register min/max values in the case that the dst_reg is the
 * variable register that we are working on, and src_reg is a constant or we're
 * simply doing a BPF_K check.
2542
 * In JEQ/JNE cases we also adjust the var_off values.
2543 2544 2545 2546 2547
 */
static void reg_set_min_max(struct bpf_reg_state *true_reg,
			    struct bpf_reg_state *false_reg, u64 val,
			    u8 opcode)
{
2548 2549 2550 2551 2552 2553 2554 2555
	/* If the dst_reg is a pointer, we can't learn anything about its
	 * variable offset from the compare (unless src_reg were a pointer into
	 * the same object, but we don't bother with that.
	 * Since false_reg and true_reg have the same type by construction, we
	 * only need to check one of them for pointerness.
	 */
	if (__is_pointer_value(false, false_reg))
		return;
2556

2557 2558 2559 2560 2561
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2562
		__mark_reg_known(true_reg, val);
2563 2564 2565 2566 2567
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2568
		__mark_reg_known(false_reg, val);
2569 2570
		break;
	case BPF_JGT:
2571 2572 2573
		false_reg->umax_value = min(false_reg->umax_value, val);
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		break;
2574
	case BPF_JSGT:
2575 2576
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2577
		break;
2578 2579 2580 2581 2582 2583 2584 2585
	case BPF_JLT:
		false_reg->umin_value = max(false_reg->umin_value, val);
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		break;
	case BPF_JSLT:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		break;
2586
	case BPF_JGE:
2587 2588 2589
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		true_reg->umin_value = max(true_reg->umin_value, val);
		break;
2590
	case BPF_JSGE:
2591 2592
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2593
		break;
2594 2595 2596 2597 2598 2599 2600 2601
	case BPF_JLE:
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		true_reg->umax_value = min(true_reg->umax_value, val);
		break;
	case BPF_JSLE:
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		break;
2602 2603 2604 2605
	default:
		break;
	}

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2617 2618
}

2619 2620
/* Same as above, but for the case that dst_reg holds a constant and src_reg is
 * the variable reg.
2621 2622 2623 2624 2625
 */
static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
				struct bpf_reg_state *false_reg, u64 val,
				u8 opcode)
{
2626 2627
	if (__is_pointer_value(false, false_reg))
		return;
2628

2629 2630 2631 2632 2633
	switch (opcode) {
	case BPF_JEQ:
		/* If this is false then we know nothing Jon Snow, but if it is
		 * true then we know for sure.
		 */
2634
		__mark_reg_known(true_reg, val);
2635 2636 2637 2638 2639
		break;
	case BPF_JNE:
		/* If this is true we know nothing Jon Snow, but if it is false
		 * we know the value for sure;
		 */
2640
		__mark_reg_known(false_reg, val);
2641 2642
		break;
	case BPF_JGT:
2643 2644 2645
		true_reg->umax_value = min(true_reg->umax_value, val - 1);
		false_reg->umin_value = max(false_reg->umin_value, val);
		break;
2646
	case BPF_JSGT:
2647 2648
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2649
		break;
2650 2651 2652 2653 2654 2655 2656 2657
	case BPF_JLT:
		true_reg->umin_value = max(true_reg->umin_value, val + 1);
		false_reg->umax_value = min(false_reg->umax_value, val);
		break;
	case BPF_JSLT:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
		break;
2658
	case BPF_JGE:
2659 2660 2661
		true_reg->umax_value = min(true_reg->umax_value, val);
		false_reg->umin_value = max(false_reg->umin_value, val + 1);
		break;
2662
	case BPF_JSGE:
2663 2664
		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2665
		break;
2666 2667 2668 2669 2670 2671 2672 2673
	case BPF_JLE:
		true_reg->umin_value = max(true_reg->umin_value, val);
		false_reg->umax_value = min(false_reg->umax_value, val - 1);
		break;
	case BPF_JSLE:
		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
		break;
2674 2675 2676 2677
	default:
		break;
	}

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
	__reg_deduce_bounds(false_reg);
	__reg_deduce_bounds(true_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(false_reg);
	__reg_bound_offset(true_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(false_reg);
	__update_reg_bounds(true_reg);
2689 2690 2691 2692 2693 2694
}

/* Regs are known to be equal, so intersect their min/max/var_off */
static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
				  struct bpf_reg_state *dst_reg)
{
2695 2696 2697 2698 2699 2700 2701 2702
	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
							dst_reg->umin_value);
	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
							dst_reg->umax_value);
	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
							dst_reg->smin_value);
	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
							dst_reg->smax_value);
2703 2704
	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
							     dst_reg->var_off);
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
	/* We might have learned new bounds from the var_off. */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
	/* We might have learned something about the sign bit. */
	__reg_deduce_bounds(src_reg);
	__reg_deduce_bounds(dst_reg);
	/* We might have learned some bits from the bounds. */
	__reg_bound_offset(src_reg);
	__reg_bound_offset(dst_reg);
	/* Intersecting with the old var_off might have improved our bounds
	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
	 * then new var_off is (0; 0x7f...fc) which improves our umax.
	 */
	__update_reg_bounds(src_reg);
	__update_reg_bounds(dst_reg);
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
}

static void reg_combine_min_max(struct bpf_reg_state *true_src,
				struct bpf_reg_state *true_dst,
				struct bpf_reg_state *false_src,
				struct bpf_reg_state *false_dst,
				u8 opcode)
{
	switch (opcode) {
	case BPF_JEQ:
		__reg_combine_min_max(true_src, true_dst);
		break;
	case BPF_JNE:
		__reg_combine_min_max(false_src, false_dst);
2734
		break;
2735
	}
2736 2737
}

2738
static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2739
			 bool is_null)
2740 2741 2742 2743
{
	struct bpf_reg_state *reg = &regs[regno];

	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2744 2745 2746 2747
		/* Old offset (both fixed and variable parts) should
		 * have been known-zero, because we don't allow pointer
		 * arithmetic on pointers that might be NULL.
		 */
2748 2749
		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
				 !tnum_equals_const(reg->var_off, 0) ||
2750
				 reg->off)) {
2751 2752
			__mark_reg_known_zero(reg);
			reg->off = 0;
2753 2754 2755
		}
		if (is_null) {
			reg->type = SCALAR_VALUE;
2756 2757 2758 2759
		} else if (reg->map_ptr->inner_map_meta) {
			reg->type = CONST_PTR_TO_MAP;
			reg->map_ptr = reg->map_ptr->inner_map_meta;
		} else {
2760
			reg->type = PTR_TO_MAP_VALUE;
2761
		}
2762 2763 2764 2765 2766
		/* We don't need id from this point onwards anymore, thus we
		 * should better reset it, so that state pruning has chances
		 * to take effect.
		 */
		reg->id = 0;
2767 2768 2769 2770 2771 2772 2773
	}
}

/* The logic is similar to find_good_pkt_pointers(), both could eventually
 * be folded together at some point.
 */
static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2774
			  bool is_null)
2775 2776
{
	struct bpf_reg_state *regs = state->regs;
2777
	u32 id = regs[regno].id;
2778 2779 2780
	int i;

	for (i = 0; i < MAX_BPF_REG; i++)
2781
		mark_map_reg(regs, i, id, is_null);
2782

2783 2784
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		if (state->stack[i].slot_type[0] != STACK_SPILL)
2785
			continue;
2786
		mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
2787 2788 2789
	}
}

2790
static int check_cond_jmp_op(struct bpf_verifier_env *env,
2791 2792
			     struct bpf_insn *insn, int *insn_idx)
{
2793
	struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
2794
	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2795 2796 2797
	u8 opcode = BPF_OP(insn->code);
	int err;

2798
	if (opcode > BPF_JSLE) {
2799
		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2800 2801 2802 2803 2804
		return -EINVAL;
	}

	if (BPF_SRC(insn->code) == BPF_X) {
		if (insn->imm != 0) {
2805
			verbose(env, "BPF_JMP uses reserved fields\n");
2806 2807 2808 2809
			return -EINVAL;
		}

		/* check src1 operand */
2810
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
2811 2812
		if (err)
			return err;
2813 2814

		if (is_pointer_value(env, insn->src_reg)) {
2815
			verbose(env, "R%d pointer comparison prohibited\n",
2816 2817 2818
				insn->src_reg);
			return -EACCES;
		}
2819 2820
	} else {
		if (insn->src_reg != BPF_REG_0) {
2821
			verbose(env, "BPF_JMP uses reserved fields\n");
2822 2823 2824 2825 2826
			return -EINVAL;
		}
	}

	/* check src2 operand */
2827
	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2828 2829 2830
	if (err)
		return err;

A
Alexei Starovoitov 已提交
2831 2832
	dst_reg = &regs[insn->dst_reg];

2833 2834 2835
	/* detect if R == 0 where R was initialized to zero earlier */
	if (BPF_SRC(insn->code) == BPF_K &&
	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2836 2837
	    dst_reg->type == SCALAR_VALUE &&
	    tnum_equals_const(dst_reg->var_off, insn->imm)) {
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
		if (opcode == BPF_JEQ) {
			/* if (imm == imm) goto pc+off;
			 * only follow the goto, ignore fall-through
			 */
			*insn_idx += insn->off;
			return 0;
		} else {
			/* if (imm != imm) goto pc+off;
			 * only follow fall-through branch, since
			 * that's where the program will go
			 */
			return 0;
		}
	}

	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
	if (!other_branch)
		return -EFAULT;

2857 2858
	/* detect if we are comparing against a constant value so we can adjust
	 * our min/max values for our dst register.
2859 2860 2861 2862
	 * this is only legit if both are scalars (or pointers to the same
	 * object, I suppose, but we don't support that right now), because
	 * otherwise the different base pointers mean the offsets aren't
	 * comparable.
2863 2864
	 */
	if (BPF_SRC(insn->code) == BPF_X) {
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
		if (dst_reg->type == SCALAR_VALUE &&
		    regs[insn->src_reg].type == SCALAR_VALUE) {
			if (tnum_is_const(regs[insn->src_reg].var_off))
				reg_set_min_max(&other_branch->regs[insn->dst_reg],
						dst_reg, regs[insn->src_reg].var_off.value,
						opcode);
			else if (tnum_is_const(dst_reg->var_off))
				reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
						    &regs[insn->src_reg],
						    dst_reg->var_off.value, opcode);
			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
				/* Comparing for equality, we can combine knowledge */
				reg_combine_min_max(&other_branch->regs[insn->src_reg],
						    &other_branch->regs[insn->dst_reg],
						    &regs[insn->src_reg],
						    &regs[insn->dst_reg], opcode);
		}
	} else if (dst_reg->type == SCALAR_VALUE) {
2883 2884 2885 2886
		reg_set_min_max(&other_branch->regs[insn->dst_reg],
					dst_reg, insn->imm, opcode);
	}

2887
	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2888
	if (BPF_SRC(insn->code) == BPF_K &&
A
Alexei Starovoitov 已提交
2889 2890
	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2891 2892 2893
		/* Mark all identical map registers in each branch as either
		 * safe or unknown depending R == 0 or R != 0 conditional.
		 */
2894 2895
		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
A
Alexei Starovoitov 已提交
2896 2897 2898
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2899
		/* pkt_data' > pkt_end */
2900 2901
		find_good_pkt_pointers(this_branch, dst_reg,
				       PTR_TO_PACKET, false);
2902 2903 2904 2905
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		/* pkt_end > pkt_data' */
2906 2907
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
				       PTR_TO_PACKET, true);
2908 2909 2910
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2911
		/* pkt_data' < pkt_end */
2912 2913
		find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET,
				       true);
2914
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2915 2916 2917
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
		/* pkt_end < pkt_data' */
2918 2919
		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
				       PTR_TO_PACKET, false);
2920
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2921 2922
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2923
		/* pkt_data' >= pkt_end */
2924 2925
		find_good_pkt_pointers(this_branch, dst_reg,
				       PTR_TO_PACKET, true);
2926 2927 2928
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2929
		/* pkt_end >= pkt_data' */
2930
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2931
				       PTR_TO_PACKET, false);
2932 2933 2934 2935
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
		   dst_reg->type == PTR_TO_PACKET &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
		/* pkt_data' <= pkt_end */
2936 2937
		find_good_pkt_pointers(other_branch, dst_reg,
				       PTR_TO_PACKET, false);
2938 2939 2940
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
		   dst_reg->type == PTR_TO_PACKET_END &&
		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2941
		/* pkt_end <= pkt_data' */
2942
		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2943
				       PTR_TO_PACKET, true);
2944 2945 2946
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
		   dst_reg->type == PTR_TO_PACKET_META &&
		   reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2947 2948
		find_good_pkt_pointers(this_branch, dst_reg,
				       PTR_TO_PACKET_META, false);
2949 2950 2951
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
		   dst_reg->type == PTR_TO_PACKET_META &&
		   reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2952 2953
		find_good_pkt_pointers(other_branch, dst_reg,
				       PTR_TO_PACKET_META, false);
2954 2955 2956 2957
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
		   reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_META) {
		find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2958
				       PTR_TO_PACKET_META, false);
2959 2960 2961 2962
	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
		   reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
		   regs[insn->src_reg].type == PTR_TO_PACKET_META) {
		find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2963
				       PTR_TO_PACKET_META, false);
2964
	} else if (is_pointer_value(env, insn->dst_reg)) {
2965 2966
		verbose(env, "R%d pointer comparison prohibited\n",
			insn->dst_reg);
2967
		return -EACCES;
2968
	}
2969 2970
	if (env->log.level)
		print_verifier_state(env, this_branch);
2971 2972 2973
	return 0;
}

2974 2975 2976 2977 2978 2979 2980 2981
/* return the map pointer stored inside BPF_LD_IMM64 instruction */
static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
{
	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;

	return (struct bpf_map *) (unsigned long) imm64;
}

2982
/* verify BPF_LD_IMM64 instruction */
2983
static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2984
{
2985
	struct bpf_reg_state *regs = cur_regs(env);
2986 2987 2988
	int err;

	if (BPF_SIZE(insn->code) != BPF_DW) {
2989
		verbose(env, "invalid BPF_LD_IMM insn\n");
2990 2991 2992
		return -EINVAL;
	}
	if (insn->off != 0) {
2993
		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
2994 2995 2996
		return -EINVAL;
	}

2997
	err = check_reg_arg(env, insn->dst_reg, DST_OP);
2998 2999 3000
	if (err)
		return err;

3001 3002 3003
	if (insn->src_reg == 0) {
		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;

3004
		regs[insn->dst_reg].type = SCALAR_VALUE;
3005
		__mark_reg_known(&regs[insn->dst_reg], imm);
3006
		return 0;
3007
	}
3008 3009 3010 3011 3012 3013 3014 3015 3016

	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);

	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
	return 0;
}

3017 3018 3019 3020 3021
static bool may_access_skb(enum bpf_prog_type type)
{
	switch (type) {
	case BPF_PROG_TYPE_SOCKET_FILTER:
	case BPF_PROG_TYPE_SCHED_CLS:
3022
	case BPF_PROG_TYPE_SCHED_ACT:
3023 3024 3025 3026 3027 3028
		return true;
	default:
		return false;
	}
}

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
/* verify safety of LD_ABS|LD_IND instructions:
 * - they can only appear in the programs where ctx == skb
 * - since they are wrappers of function calls, they scratch R1-R5 registers,
 *   preserve R6-R9, and store return value into R0
 *
 * Implicit input:
 *   ctx == skb == R6 == CTX
 *
 * Explicit input:
 *   SRC == any register
 *   IMM == 32-bit immediate
 *
 * Output:
 *   R0 - 8/16/32-bit skb data converted to cpu endianness
 */
3044
static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3045
{
3046
	struct bpf_reg_state *regs = cur_regs(env);
3047 3048 3049
	u8 mode = BPF_MODE(insn->code);
	int i, err;

3050
	if (!may_access_skb(env->prog->type)) {
3051
		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3052 3053 3054 3055
		return -EINVAL;
	}

	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3056
	    BPF_SIZE(insn->code) == BPF_DW ||
3057
	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3058
		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3059 3060 3061 3062
		return -EINVAL;
	}

	/* check whether implicit source operand (register R6) is readable */
3063
	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3064 3065 3066 3067
	if (err)
		return err;

	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3068 3069
		verbose(env,
			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3070 3071 3072 3073 3074
		return -EINVAL;
	}

	if (mode == BPF_IND) {
		/* check explicit source operand */
3075
		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3076 3077 3078 3079 3080
		if (err)
			return err;
	}

	/* reset caller saved regs to unreadable */
3081
	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3082
		mark_reg_not_init(env, regs, caller_saved[i]);
3083 3084
		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
	}
3085 3086

	/* mark destination R0 register as readable, since it contains
3087 3088
	 * the value fetched from the packet.
	 * Already marked as written above.
3089
	 */
3090
	mark_reg_unknown(env, regs, BPF_REG_0);
3091 3092 3093
	return 0;
}

3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
static int check_return_code(struct bpf_verifier_env *env)
{
	struct bpf_reg_state *reg;
	struct tnum range = tnum_range(0, 1);

	switch (env->prog->type) {
	case BPF_PROG_TYPE_CGROUP_SKB:
	case BPF_PROG_TYPE_CGROUP_SOCK:
	case BPF_PROG_TYPE_SOCK_OPS:
		break;
	default:
		return 0;
	}

3108
	reg = cur_regs(env) + BPF_REG_0;
3109
	if (reg->type != SCALAR_VALUE) {
3110
		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3111 3112 3113 3114 3115
			reg_type_str[reg->type]);
		return -EINVAL;
	}

	if (!tnum_in(range, reg->var_off)) {
3116
		verbose(env, "At program exit the register R0 ");
3117 3118 3119 3120
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3121
			verbose(env, "has value %s", tn_buf);
3122
		} else {
3123
			verbose(env, "has unknown scalar value");
3124
		}
3125
		verbose(env, " should have been 0 or 1\n");
3126 3127 3128 3129 3130
		return -EINVAL;
	}
	return 0;
}

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
/* non-recursive DFS pseudo code
 * 1  procedure DFS-iterative(G,v):
 * 2      label v as discovered
 * 3      let S be a stack
 * 4      S.push(v)
 * 5      while S is not empty
 * 6            t <- S.pop()
 * 7            if t is what we're looking for:
 * 8                return t
 * 9            for all edges e in G.adjacentEdges(t) do
 * 10               if edge e is already labelled
 * 11                   continue with the next edge
 * 12               w <- G.adjacentVertex(t,e)
 * 13               if vertex w is not discovered and not explored
 * 14                   label e as tree-edge
 * 15                   label w as discovered
 * 16                   S.push(w)
 * 17                   continue at 5
 * 18               else if vertex w is discovered
 * 19                   label e as back-edge
 * 20               else
 * 21                   // vertex w is explored
 * 22                   label e as forward- or cross-edge
 * 23           label t as explored
 * 24           S.pop()
 *
 * convention:
 * 0x10 - discovered
 * 0x11 - discovered and fall-through edge labelled
 * 0x12 - discovered and fall-through and branch edges labelled
 * 0x20 - explored
 */

enum {
	DISCOVERED = 0x10,
	EXPLORED = 0x20,
	FALLTHROUGH = 1,
	BRANCH = 2,
};

3171
#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3172

3173 3174 3175 3176 3177 3178 3179 3180 3181
static int *insn_stack;	/* stack of insns to process */
static int cur_stack;	/* current stack index */
static int *insn_state;

/* t, w, e - match pseudo-code above:
 * t - index of current instruction
 * w - next instruction
 * e - edge
 */
3182
static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3183 3184 3185 3186 3187 3188 3189 3190
{
	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
		return 0;

	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
		return 0;

	if (w < 0 || w >= env->prog->len) {
3191
		verbose(env, "jump out of range from insn %d to %d\n", t, w);
3192 3193 3194
		return -EINVAL;
	}

3195 3196 3197 3198
	if (e == BRANCH)
		/* mark branch target for state pruning */
		env->explored_states[w] = STATE_LIST_MARK;

3199 3200 3201 3202 3203 3204 3205 3206 3207
	if (insn_state[w] == 0) {
		/* tree-edge */
		insn_state[t] = DISCOVERED | e;
		insn_state[w] = DISCOVERED;
		if (cur_stack >= env->prog->len)
			return -E2BIG;
		insn_stack[cur_stack++] = w;
		return 1;
	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3208
		verbose(env, "back-edge from insn %d to %d\n", t, w);
3209 3210 3211 3212 3213
		return -EINVAL;
	} else if (insn_state[w] == EXPLORED) {
		/* forward- or cross-edge */
		insn_state[t] = DISCOVERED | e;
	} else {
3214
		verbose(env, "insn state internal bug\n");
3215 3216 3217 3218 3219 3220 3221 3222
		return -EFAULT;
	}
	return 0;
}

/* non-recursive depth-first-search to detect loops in BPF program
 * loop == back-edge in directed graph
 */
3223
static int check_cfg(struct bpf_verifier_env *env)
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
{
	struct bpf_insn *insns = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int ret = 0;
	int i, t;

	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_state)
		return -ENOMEM;

	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
	if (!insn_stack) {
		kfree(insn_state);
		return -ENOMEM;
	}

	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
	insn_stack[0] = 0; /* 0 is the first instruction */
	cur_stack = 1;

peek_stack:
	if (cur_stack == 0)
		goto check_state;
	t = insn_stack[cur_stack - 1];

	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
		u8 opcode = BPF_OP(insns[t].code);

		if (opcode == BPF_EXIT) {
			goto mark_explored;
		} else if (opcode == BPF_CALL) {
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3260 3261
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
		} else if (opcode == BPF_JA) {
			if (BPF_SRC(insns[t].code) != BPF_K) {
				ret = -EINVAL;
				goto err_free;
			}
			/* unconditional jump with single edge */
			ret = push_insn(t, t + insns[t].off + 1,
					FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
3274 3275 3276
			/* tell verifier to check for equivalent states
			 * after every call and jump
			 */
3277 3278
			if (t + 1 < insn_cnt)
				env->explored_states[t + 1] = STATE_LIST_MARK;
3279 3280
		} else {
			/* conditional jump with two edges */
3281
			env->explored_states[t] = STATE_LIST_MARK;
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
			ret = push_insn(t, t + 1, FALLTHROUGH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;

			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
			if (ret == 1)
				goto peek_stack;
			else if (ret < 0)
				goto err_free;
		}
	} else {
		/* all other non-branch instructions with single
		 * fall-through edge
		 */
		ret = push_insn(t, t + 1, FALLTHROUGH, env);
		if (ret == 1)
			goto peek_stack;
		else if (ret < 0)
			goto err_free;
	}

mark_explored:
	insn_state[t] = EXPLORED;
	if (cur_stack-- <= 0) {
3308
		verbose(env, "pop stack internal bug\n");
3309 3310 3311 3312 3313 3314 3315 3316
		ret = -EFAULT;
		goto err_free;
	}
	goto peek_stack;

check_state:
	for (i = 0; i < insn_cnt; i++) {
		if (insn_state[i] != EXPLORED) {
3317
			verbose(env, "unreachable insn %d\n", i);
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
			ret = -EINVAL;
			goto err_free;
		}
	}
	ret = 0; /* cfg looks good */

err_free:
	kfree(insn_state);
	kfree(insn_stack);
	return ret;
}

3330 3331 3332 3333
/* check %cur's range satisfies %old's */
static bool range_within(struct bpf_reg_state *old,
			 struct bpf_reg_state *cur)
{
3334 3335 3336 3337
	return old->umin_value <= cur->umin_value &&
	       old->umax_value >= cur->umax_value &&
	       old->smin_value <= cur->smin_value &&
	       old->smax_value >= cur->smax_value;
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
}

/* Maximum number of register states that can exist at once */
#define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
struct idpair {
	u32 old;
	u32 cur;
};

/* If in the old state two registers had the same id, then they need to have
 * the same id in the new state as well.  But that id could be different from
 * the old state, so we need to track the mapping from old to new ids.
 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
 * regs with old id 5 must also have new id 9 for the new state to be safe.  But
 * regs with a different old id could still have new id 9, we don't care about
 * that.
 * So we look through our idmap to see if this old id has been seen before.  If
 * so, we require the new id to match; otherwise, we add the id pair to the map.
A
Alexei Starovoitov 已提交
3356
 */
3357
static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
A
Alexei Starovoitov 已提交
3358
{
3359
	unsigned int i;
A
Alexei Starovoitov 已提交
3360

3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
	for (i = 0; i < ID_MAP_SIZE; i++) {
		if (!idmap[i].old) {
			/* Reached an empty slot; haven't seen this id before */
			idmap[i].old = old_id;
			idmap[i].cur = cur_id;
			return true;
		}
		if (idmap[i].old == old_id)
			return idmap[i].cur == cur_id;
	}
	/* We ran out of idmap slots, which should be impossible */
	WARN_ON_ONCE(1);
	return false;
}

/* Returns true if (rold safe implies rcur safe) */
3377 3378
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
		    struct idpair *idmap)
3379
{
3380 3381 3382 3383 3384
	if (!(rold->live & REG_LIVE_READ))
		/* explored state didn't use this */
		return true;

	if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
A
Alexei Starovoitov 已提交
3385 3386
		return true;

3387 3388
	if (rold->type == NOT_INIT)
		/* explored state can't have used this */
A
Alexei Starovoitov 已提交
3389
		return true;
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
	if (rcur->type == NOT_INIT)
		return false;
	switch (rold->type) {
	case SCALAR_VALUE:
		if (rcur->type == SCALAR_VALUE) {
			/* new val must satisfy old val knowledge */
			return range_within(rold, rcur) &&
			       tnum_in(rold->var_off, rcur->var_off);
		} else {
			/* if we knew anything about the old value, we're not
			 * equal, because we can't know anything about the
			 * scalar value of the pointer in the new value.
			 */
3403 3404 3405 3406
			return rold->umin_value == 0 &&
			       rold->umax_value == U64_MAX &&
			       rold->smin_value == S64_MIN &&
			       rold->smax_value == S64_MAX &&
3407 3408 3409
			       tnum_is_unknown(rold->var_off);
		}
	case PTR_TO_MAP_VALUE:
3410 3411 3412 3413 3414 3415 3416 3417
		/* If the new min/max/var_off satisfy the old ones and
		 * everything else matches, we are OK.
		 * We don't care about the 'id' value, because nothing
		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
		 */
		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
		       range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	case PTR_TO_MAP_VALUE_OR_NULL:
		/* a PTR_TO_MAP_VALUE could be safe to use as a
		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
		 * checked, doing so could have affected others with the same
		 * id, and we can't check for that because we lost the id when
		 * we converted to a PTR_TO_MAP_VALUE.
		 */
		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
			return false;
		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
			return false;
		/* Check our ids match any regs they're supposed to */
		return check_ids(rold->id, rcur->id, idmap);
3432
	case PTR_TO_PACKET_META:
3433
	case PTR_TO_PACKET:
3434
		if (rcur->type != rold->type)
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
			return false;
		/* We must have at least as much range as the old ptr
		 * did, so that any accesses which were safe before are
		 * still safe.  This is true even if old range < old off,
		 * since someone could have accessed through (ptr - k), or
		 * even done ptr -= k in a register, to get a safe access.
		 */
		if (rold->range > rcur->range)
			return false;
		/* If the offsets don't match, we can't trust our alignment;
		 * nor can we be sure that we won't fall out of range.
		 */
		if (rold->off != rcur->off)
			return false;
		/* id relations must be preserved */
		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
			return false;
		/* new val must satisfy old val knowledge */
		return range_within(rold, rcur) &&
		       tnum_in(rold->var_off, rcur->var_off);
	case PTR_TO_CTX:
	case CONST_PTR_TO_MAP:
	case PTR_TO_STACK:
	case PTR_TO_PACKET_END:
		/* Only valid matches are exact, which memcmp() above
		 * would have accepted
		 */
	default:
		/* Don't know what's going on, just say it's not safe */
		return false;
	}
A
Alexei Starovoitov 已提交
3466

3467 3468
	/* Shouldn't get here; if we do, say it's not safe */
	WARN_ON_ONCE(1);
A
Alexei Starovoitov 已提交
3469 3470 3471
	return false;
}

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
static bool stacksafe(struct bpf_verifier_state *old,
		      struct bpf_verifier_state *cur,
		      struct idpair *idmap)
{
	int i, spi;

	/* if explored stack has more populated slots than current stack
	 * such stacks are not equivalent
	 */
	if (old->allocated_stack > cur->allocated_stack)
		return false;

	/* walk slots of the explored stack and ignore any additional
	 * slots in the current stack, since explored(safe) state
	 * didn't use them
	 */
	for (i = 0; i < old->allocated_stack; i++) {
		spi = i / BPF_REG_SIZE;

		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
			continue;
		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
			/* Ex: old explored (safe) state has STACK_SPILL in
			 * this stack slot, but current has has STACK_MISC ->
			 * this verifier states are not equivalent,
			 * return false to continue verification of this path
			 */
			return false;
		if (i % BPF_REG_SIZE)
			continue;
		if (old->stack[spi].slot_type[0] != STACK_SPILL)
			continue;
		if (!regsafe(&old->stack[spi].spilled_ptr,
			     &cur->stack[spi].spilled_ptr,
			     idmap))
			/* when explored and current stack slot are both storing
			 * spilled registers, check that stored pointers types
			 * are the same as well.
			 * Ex: explored safe path could have stored
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
			 * but current path has stored:
			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
			 * such verifier states are not equivalent.
			 * return false to continue verification of this path
			 */
			return false;
	}
	return true;
}

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
/* compare two verifier states
 *
 * all states stored in state_list are known to be valid, since
 * verifier reached 'bpf_exit' instruction through them
 *
 * this function is called when verifier exploring different branches of
 * execution popped from the state stack. If it sees an old state that has
 * more strict register state and more strict stack state then this execution
 * branch doesn't need to be explored further, since verifier already
 * concluded that more strict state leads to valid finish.
 *
 * Therefore two states are equivalent if register state is more conservative
 * and explored stack state is more conservative than the current one.
 * Example:
 *       explored                   current
 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
 *
 * In other words if current stack state (one being explored) has more
 * valid slots than old one that already passed validation, it means
 * the verifier can stop exploring and conclude that current state is valid too
 *
 * Similarly with registers. If explored state has register type as invalid
 * whereas register type in current state is meaningful, it means that
 * the current state will reach 'bpf_exit' instruction safely
 */
3549 3550
static bool states_equal(struct bpf_verifier_env *env,
			 struct bpf_verifier_state *old,
3551
			 struct bpf_verifier_state *cur)
3552
{
3553 3554
	struct idpair *idmap;
	bool ret = false;
3555 3556
	int i;

3557 3558 3559
	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
	/* If we failed to allocate the idmap, just say it's not safe */
	if (!idmap)
A
Alexei Starovoitov 已提交
3560
		return false;
3561 3562

	for (i = 0; i < MAX_BPF_REG; i++) {
3563
		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3564
			goto out_free;
3565 3566
	}

3567 3568
	if (!stacksafe(old, cur, idmap))
		goto out_free;
3569 3570 3571 3572
	ret = true;
out_free:
	kfree(idmap);
	return ret;
3573 3574
}

3575 3576 3577 3578 3579 3580
/* A write screens off any subsequent reads; but write marks come from the
 * straight-line code between a state and its parent.  When we arrive at a
 * jump target (in the first iteration of the propagate_liveness() loop),
 * we didn't arrive by the straight-line code, so read marks in state must
 * propagate to parent regardless of state's write marks.
 */
3581 3582 3583
static bool do_propagate_liveness(const struct bpf_verifier_state *state,
				  struct bpf_verifier_state *parent)
{
3584
	bool writes = parent == state->parent; /* Observe write marks */
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
	bool touched = false; /* any changes made? */
	int i;

	if (!parent)
		return touched;
	/* Propagate read liveness of registers... */
	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
	/* We don't need to worry about FP liveness because it's read-only */
	for (i = 0; i < BPF_REG_FP; i++) {
		if (parent->regs[i].live & REG_LIVE_READ)
			continue;
3596 3597 3598
		if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
			continue;
		if (state->regs[i].live & REG_LIVE_READ) {
3599 3600 3601 3602 3603
			parent->regs[i].live |= REG_LIVE_READ;
			touched = true;
		}
	}
	/* ... and stack slots */
3604 3605 3606
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
		    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
		if (parent->stack[i].slot_type[0] != STACK_SPILL)
3607
			continue;
3608
		if (state->stack[i].slot_type[0] != STACK_SPILL)
3609
			continue;
3610
		if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3611
			continue;
3612 3613
		if (writes &&
		    (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3614
			continue;
3615 3616
		if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
			parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
3617 3618 3619 3620 3621 3622
			touched = true;
		}
	}
	return touched;
}

3623 3624 3625 3626 3627 3628 3629 3630 3631
/* "parent" is "a state from which we reach the current state", but initially
 * it is not the state->parent (i.e. "the state whose straight-line code leads
 * to the current state"), instead it is the state that happened to arrive at
 * a (prunable) equivalent of the current state.  See comment above
 * do_propagate_liveness() for consequences of this.
 * This function is just a more efficient way of calling mark_reg_read() or
 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
 * though it requires that parent != state->parent in the call arguments.
 */
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
static void propagate_liveness(const struct bpf_verifier_state *state,
			       struct bpf_verifier_state *parent)
{
	while (do_propagate_liveness(state, parent)) {
		/* Something changed, so we need to feed those changes onward */
		state = parent;
		parent = state->parent;
	}
}

3642
static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3643
{
3644 3645
	struct bpf_verifier_state_list *new_sl;
	struct bpf_verifier_state_list *sl;
3646
	struct bpf_verifier_state *cur = env->cur_state;
3647
	int i, err;
3648 3649 3650 3651 3652 3653 3654 3655 3656

	sl = env->explored_states[insn_idx];
	if (!sl)
		/* this 'insn_idx' instruction wasn't marked, so we will not
		 * be doing state search here
		 */
		return 0;

	while (sl != STATE_LIST_MARK) {
3657
		if (states_equal(env, &sl->state, cur)) {
3658
			/* reached equivalent register/stack state,
3659 3660
			 * prune the search.
			 * Registers read by the continuation are read by us.
3661 3662 3663 3664 3665 3666
			 * If we have any write marks in env->cur_state, they
			 * will prevent corresponding reads in the continuation
			 * from reaching our parent (an explored_state).  Our
			 * own state will get the read marks recorded, but
			 * they'll be immediately forgotten as we're pruning
			 * this state and will pop a new one.
3667
			 */
3668
			propagate_liveness(&sl->state, cur);
3669
			return 1;
3670
		}
3671 3672 3673 3674 3675 3676 3677 3678 3679
		sl = sl->next;
	}

	/* there were no equivalent states, remember current one.
	 * technically the current state is not proven to be safe yet,
	 * but it will either reach bpf_exit (which means it's safe) or
	 * it will be rejected. Since there are no loops, we won't be
	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
	 */
3680
	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
3681 3682 3683 3684
	if (!new_sl)
		return -ENOMEM;

	/* add new state to the head of linked list */
3685 3686 3687 3688 3689 3690
	err = copy_verifier_state(&new_sl->state, cur);
	if (err) {
		free_verifier_state(&new_sl->state, false);
		kfree(new_sl);
		return err;
	}
3691 3692
	new_sl->next = env->explored_states[insn_idx];
	env->explored_states[insn_idx] = new_sl;
3693
	/* connect new state to parentage chain */
3694
	cur->parent = &new_sl->state;
3695 3696 3697 3698 3699 3700
	/* clear write marks in current state: the writes we did are not writes
	 * our child did, so they don't screen off its reads from us.
	 * (There are no read marks in current state, because reads always mark
	 * their parent and current state never has children yet.  Only
	 * explored_states can get read marks.)
	 */
3701
	for (i = 0; i < BPF_REG_FP; i++)
3702 3703 3704 3705
		cur->regs[i].live = REG_LIVE_NONE;
	for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
		if (cur->stack[i].slot_type[0] == STACK_SPILL)
			cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
3706 3707 3708
	return 0;
}

3709 3710 3711 3712 3713 3714 3715 3716 3717
static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
				  int insn_idx, int prev_insn_idx)
{
	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
		return 0;

	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
}

3718
static int do_check(struct bpf_verifier_env *env)
3719
{
3720
	struct bpf_verifier_state *state;
3721
	struct bpf_insn *insns = env->prog->insnsi;
3722
	struct bpf_reg_state *regs;
3723 3724 3725 3726 3727
	int insn_cnt = env->prog->len;
	int insn_idx, prev_insn_idx = 0;
	int insn_processed = 0;
	bool do_print_state = false;

3728 3729 3730 3731 3732
	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
	if (!state)
		return -ENOMEM;
	env->cur_state = state;
	init_reg_state(env, state->regs);
3733
	state->parent = NULL;
3734 3735 3736 3737 3738 3739 3740
	insn_idx = 0;
	for (;;) {
		struct bpf_insn *insn;
		u8 class;
		int err;

		if (insn_idx >= insn_cnt) {
3741
			verbose(env, "invalid insn idx %d insn_cnt %d\n",
3742 3743 3744 3745 3746 3747 3748
				insn_idx, insn_cnt);
			return -EFAULT;
		}

		insn = &insns[insn_idx];
		class = BPF_CLASS(insn->code);

3749
		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3750 3751
			verbose(env,
				"BPF program is too large. Processed %d insn\n",
3752 3753 3754 3755
				insn_processed);
			return -E2BIG;
		}

3756 3757 3758 3759 3760
		err = is_state_visited(env, insn_idx);
		if (err < 0)
			return err;
		if (err == 1) {
			/* found equivalent state, can prune the search */
3761
			if (env->log.level) {
3762
				if (do_print_state)
3763
					verbose(env, "\nfrom %d to %d: safe\n",
3764 3765
						prev_insn_idx, insn_idx);
				else
3766
					verbose(env, "%d: safe\n", insn_idx);
3767 3768 3769 3770
			}
			goto process_bpf_exit;
		}

3771 3772 3773
		if (need_resched())
			cond_resched();

3774 3775 3776
		if (env->log.level > 1 || (env->log.level && do_print_state)) {
			if (env->log.level > 1)
				verbose(env, "%d:", insn_idx);
3777
			else
3778
				verbose(env, "\nfrom %d to %d:",
3779
					prev_insn_idx, insn_idx);
3780
			print_verifier_state(env, state);
3781 3782 3783
			do_print_state = false;
		}

3784 3785
		if (env->log.level) {
			verbose(env, "%d: ", insn_idx);
3786 3787
			print_bpf_insn(verbose, env, insn,
				       env->allow_ptr_leaks);
3788 3789
		}

3790 3791 3792 3793
		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
		if (err)
			return err;

3794
		regs = cur_regs(env);
3795
		if (class == BPF_ALU || class == BPF_ALU64) {
3796
			err = check_alu_op(env, insn);
3797 3798 3799 3800
			if (err)
				return err;

		} else if (class == BPF_LDX) {
3801
			enum bpf_reg_type *prev_src_type, src_reg_type;
3802 3803 3804

			/* check for reserved fields is already done */

3805
			/* check src operand */
3806
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3807 3808 3809
			if (err)
				return err;

3810
			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3811 3812 3813
			if (err)
				return err;

3814 3815
			src_reg_type = regs[insn->src_reg].type;

3816 3817 3818
			/* check that memory (src_reg + off) is readable,
			 * the state of dst_reg will be updated by this func
			 */
3819
			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3820 3821 3822 3823 3824
					       BPF_SIZE(insn->code), BPF_READ,
					       insn->dst_reg);
			if (err)
				return err;

3825 3826 3827
			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_src_type == NOT_INIT) {
3828 3829
				/* saw a valid insn
				 * dst_reg = *(u32 *)(src_reg + off)
3830
				 * save type to validate intersecting paths
3831
				 */
3832
				*prev_src_type = src_reg_type;
3833

3834
			} else if (src_reg_type != *prev_src_type &&
3835
				   (src_reg_type == PTR_TO_CTX ||
3836
				    *prev_src_type == PTR_TO_CTX)) {
3837 3838 3839 3840 3841 3842 3843
				/* ABuser program is trying to use the same insn
				 * dst_reg = *(u32*) (src_reg + off)
				 * with different pointer types:
				 * src_reg == ctx in one branch and
				 * src_reg == stack|map in some other branch.
				 * Reject it.
				 */
3844
				verbose(env, "same insn cannot be used with different pointers\n");
3845 3846 3847
				return -EINVAL;
			}

3848
		} else if (class == BPF_STX) {
3849
			enum bpf_reg_type *prev_dst_type, dst_reg_type;
3850

3851
			if (BPF_MODE(insn->code) == BPF_XADD) {
3852
				err = check_xadd(env, insn_idx, insn);
3853 3854 3855 3856 3857 3858 3859
				if (err)
					return err;
				insn_idx++;
				continue;
			}

			/* check src1 operand */
3860
			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3861 3862 3863
			if (err)
				return err;
			/* check src2 operand */
3864
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3865 3866 3867
			if (err)
				return err;

3868 3869
			dst_reg_type = regs[insn->dst_reg].type;

3870
			/* check that memory (dst_reg + off) is writeable */
3871
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3872 3873 3874 3875 3876
					       BPF_SIZE(insn->code), BPF_WRITE,
					       insn->src_reg);
			if (err)
				return err;

3877 3878 3879 3880 3881
			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;

			if (*prev_dst_type == NOT_INIT) {
				*prev_dst_type = dst_reg_type;
			} else if (dst_reg_type != *prev_dst_type &&
3882
				   (dst_reg_type == PTR_TO_CTX ||
3883
				    *prev_dst_type == PTR_TO_CTX)) {
3884
				verbose(env, "same insn cannot be used with different pointers\n");
3885 3886 3887
				return -EINVAL;
			}

3888 3889 3890
		} else if (class == BPF_ST) {
			if (BPF_MODE(insn->code) != BPF_MEM ||
			    insn->src_reg != BPF_REG_0) {
3891
				verbose(env, "BPF_ST uses reserved fields\n");
3892 3893 3894
				return -EINVAL;
			}
			/* check src operand */
3895
			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3896 3897 3898 3899
			if (err)
				return err;

			/* check that memory (dst_reg + off) is writeable */
3900
			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
					       BPF_SIZE(insn->code), BPF_WRITE,
					       -1);
			if (err)
				return err;

		} else if (class == BPF_JMP) {
			u8 opcode = BPF_OP(insn->code);

			if (opcode == BPF_CALL) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->off != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3914
					verbose(env, "BPF_CALL uses reserved fields\n");
3915 3916 3917
					return -EINVAL;
				}

3918
				err = check_call(env, insn->imm, insn_idx);
3919 3920 3921 3922 3923 3924 3925 3926
				if (err)
					return err;

			} else if (opcode == BPF_JA) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3927
					verbose(env, "BPF_JA uses reserved fields\n");
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
					return -EINVAL;
				}

				insn_idx += insn->off + 1;
				continue;

			} else if (opcode == BPF_EXIT) {
				if (BPF_SRC(insn->code) != BPF_K ||
				    insn->imm != 0 ||
				    insn->src_reg != BPF_REG_0 ||
				    insn->dst_reg != BPF_REG_0) {
3939
					verbose(env, "BPF_EXIT uses reserved fields\n");
3940 3941 3942 3943 3944 3945 3946 3947 3948
					return -EINVAL;
				}

				/* eBPF calling convetion is such that R0 is used
				 * to return the value from eBPF program.
				 * Make sure that it's readable at this time
				 * of bpf_exit, which means that program wrote
				 * something into it earlier
				 */
3949
				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3950 3951 3952
				if (err)
					return err;

3953
				if (is_pointer_value(env, BPF_REG_0)) {
3954
					verbose(env, "R0 leaks addr as return value\n");
3955 3956 3957
					return -EACCES;
				}

3958 3959 3960
				err = check_return_code(env);
				if (err)
					return err;
3961
process_bpf_exit:
3962 3963 3964 3965
				err = pop_stack(env, &prev_insn_idx, &insn_idx);
				if (err < 0) {
					if (err != -ENOENT)
						return err;
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
					break;
				} else {
					do_print_state = true;
					continue;
				}
			} else {
				err = check_cond_jmp_op(env, insn, &insn_idx);
				if (err)
					return err;
			}
		} else if (class == BPF_LD) {
			u8 mode = BPF_MODE(insn->code);

			if (mode == BPF_ABS || mode == BPF_IND) {
3980 3981 3982 3983
				err = check_ld_abs(env, insn);
				if (err)
					return err;

3984 3985 3986 3987 3988 3989 3990
			} else if (mode == BPF_IMM) {
				err = check_ld_imm(env, insn);
				if (err)
					return err;

				insn_idx++;
			} else {
3991
				verbose(env, "invalid BPF_LD mode\n");
3992 3993 3994
				return -EINVAL;
			}
		} else {
3995
			verbose(env, "unknown insn class %d\n", class);
3996 3997 3998 3999 4000 4001
			return -EINVAL;
		}

		insn_idx++;
	}

4002 4003
	verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
		env->prog->aux->stack_depth);
4004 4005 4006
	return 0;
}

4007 4008 4009
static int check_map_prealloc(struct bpf_map *map)
{
	return (map->map_type != BPF_MAP_TYPE_HASH &&
M
Martin KaFai Lau 已提交
4010 4011
		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4012 4013 4014
		!(map->map_flags & BPF_F_NO_PREALLOC);
}

4015 4016
static int check_map_prog_compatibility(struct bpf_verifier_env *env,
					struct bpf_map *map,
4017 4018 4019
					struct bpf_prog *prog)

{
4020 4021 4022 4023 4024 4025 4026
	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
	 * preallocated hash maps, since doing memory allocation
	 * in overflow_handler can crash depending on where nmi got
	 * triggered.
	 */
	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
		if (!check_map_prealloc(map)) {
4027
			verbose(env, "perf_event programs can only use preallocated hash map\n");
4028 4029 4030 4031
			return -EINVAL;
		}
		if (map->inner_map_meta &&
		    !check_map_prealloc(map->inner_map_meta)) {
4032
			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4033 4034
			return -EINVAL;
		}
4035 4036 4037 4038
	}
	return 0;
}

4039 4040 4041
/* look for pseudo eBPF instructions that access map FDs and
 * replace them with actual map pointers
 */
4042
static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4043 4044 4045
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
4046
	int i, j, err;
4047

4048
	err = bpf_prog_calc_tag(env->prog);
4049 4050 4051
	if (err)
		return err;

4052
	for (i = 0; i < insn_cnt; i++, insn++) {
4053
		if (BPF_CLASS(insn->code) == BPF_LDX &&
4054
		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4055
			verbose(env, "BPF_LDX uses reserved fields\n");
4056 4057 4058
			return -EINVAL;
		}

4059 4060 4061
		if (BPF_CLASS(insn->code) == BPF_STX &&
		    ((BPF_MODE(insn->code) != BPF_MEM &&
		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4062
			verbose(env, "BPF_STX uses reserved fields\n");
4063 4064 4065
			return -EINVAL;
		}

4066 4067 4068 4069 4070 4071 4072
		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
			struct bpf_map *map;
			struct fd f;

			if (i == insn_cnt - 1 || insn[1].code != 0 ||
			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
			    insn[1].off != 0) {
4073
				verbose(env, "invalid bpf_ld_imm64 insn\n");
4074 4075 4076 4077 4078 4079 4080 4081
				return -EINVAL;
			}

			if (insn->src_reg == 0)
				/* valid generic load 64-bit imm */
				goto next_insn;

			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4082 4083
				verbose(env,
					"unrecognized bpf_ld_imm64 insn\n");
4084 4085 4086 4087
				return -EINVAL;
			}

			f = fdget(insn->imm);
4088
			map = __bpf_map_get(f);
4089
			if (IS_ERR(map)) {
4090
				verbose(env, "fd %d is not pointing to valid bpf_map\n",
4091 4092 4093 4094
					insn->imm);
				return PTR_ERR(map);
			}

4095
			err = check_map_prog_compatibility(env, map, env->prog);
4096 4097 4098 4099 4100
			if (err) {
				fdput(f);
				return err;
			}

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
			/* store map pointer inside BPF_LD_IMM64 instruction */
			insn[0].imm = (u32) (unsigned long) map;
			insn[1].imm = ((u64) (unsigned long) map) >> 32;

			/* check whether we recorded this map already */
			for (j = 0; j < env->used_map_cnt; j++)
				if (env->used_maps[j] == map) {
					fdput(f);
					goto next_insn;
				}

			if (env->used_map_cnt >= MAX_USED_MAPS) {
				fdput(f);
				return -E2BIG;
			}

			/* hold the map. If the program is rejected by verifier,
			 * the map will be released by release_maps() or it
			 * will be used by the valid program until it's unloaded
			 * and all maps are released in free_bpf_prog_info()
			 */
A
Alexei Starovoitov 已提交
4122 4123 4124 4125 4126 4127 4128
			map = bpf_map_inc(map, false);
			if (IS_ERR(map)) {
				fdput(f);
				return PTR_ERR(map);
			}
			env->used_maps[env->used_map_cnt++] = map;

4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
			fdput(f);
next_insn:
			insn++;
			i++;
		}
	}

	/* now all pseudo BPF_LD_IMM64 instructions load valid
	 * 'struct bpf_map *' into a register instead of user map_fd.
	 * These pointers will be used later by verifier to validate map access.
	 */
	return 0;
}

/* drop refcnt of maps used by the rejected program */
4144
static void release_maps(struct bpf_verifier_env *env)
4145 4146 4147 4148 4149 4150 4151 4152
{
	int i;

	for (i = 0; i < env->used_map_cnt; i++)
		bpf_map_put(env->used_maps[i]);
}

/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4153
static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
{
	struct bpf_insn *insn = env->prog->insnsi;
	int insn_cnt = env->prog->len;
	int i;

	for (i = 0; i < insn_cnt; i++, insn++)
		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
			insn->src_reg = 0;
}

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
/* single env->prog->insni[off] instruction was replaced with the range
 * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
 * [0, off) and [off, end) to new locations, so the patched range stays zero
 */
static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
				u32 off, u32 cnt)
{
	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;

	if (cnt == 1)
		return 0;
	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
	if (!new_data)
		return -ENOMEM;
	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
	memcpy(new_data + off + cnt - 1, old_data + off,
	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
	env->insn_aux_data = new_data;
	vfree(old_data);
	return 0;
}

static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
					    const struct bpf_insn *patch, u32 len)
{
	struct bpf_prog *new_prog;

	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
	if (!new_prog)
		return NULL;
	if (adjust_insn_aux_data(env, new_prog->len, off, len))
		return NULL;
	return new_prog;
}

4199 4200 4201
/* convert load instructions that access fields of 'struct __sk_buff'
 * into sequence of instructions that access fields of 'struct sk_buff'
 */
4202
static int convert_ctx_accesses(struct bpf_verifier_env *env)
4203
{
4204
	const struct bpf_verifier_ops *ops = env->ops;
4205
	int i, cnt, size, ctx_field_size, delta = 0;
4206
	const int insn_cnt = env->prog->len;
4207
	struct bpf_insn insn_buf[16], *insn;
4208
	struct bpf_prog *new_prog;
4209
	enum bpf_access_type type;
4210 4211
	bool is_narrower_load;
	u32 target_size;
4212

4213 4214 4215 4216
	if (ops->gen_prologue) {
		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
					env->prog);
		if (cnt >= ARRAY_SIZE(insn_buf)) {
4217
			verbose(env, "bpf verifier is misconfigured\n");
4218 4219
			return -EINVAL;
		} else if (cnt) {
4220
			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4221 4222
			if (!new_prog)
				return -ENOMEM;
4223

4224
			env->prog = new_prog;
4225
			delta += cnt - 1;
4226 4227 4228 4229
		}
	}

	if (!ops->convert_ctx_access)
4230 4231
		return 0;

4232
	insn = env->prog->insnsi + delta;
4233

4234
	for (i = 0; i < insn_cnt; i++, insn++) {
4235 4236 4237
		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4238
		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4239
			type = BPF_READ;
4240 4241 4242
		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4243
			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4244 4245
			type = BPF_WRITE;
		else
4246 4247
			continue;

4248
		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4249 4250
			continue;

4251
		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4252
		size = BPF_LDST_BYTES(insn);
4253 4254 4255 4256 4257 4258

		/* If the read access is a narrower load of the field,
		 * convert to a 4/8-byte load, to minimum program type specific
		 * convert_ctx_access changes. If conversion is successful,
		 * we will apply proper mask to the result.
		 */
4259
		is_narrower_load = size < ctx_field_size;
4260
		if (is_narrower_load) {
4261 4262 4263 4264
			u32 off = insn->off;
			u8 size_code;

			if (type == BPF_WRITE) {
4265
				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4266 4267
				return -EINVAL;
			}
4268

4269
			size_code = BPF_H;
4270 4271 4272 4273
			if (ctx_field_size == 4)
				size_code = BPF_W;
			else if (ctx_field_size == 8)
				size_code = BPF_DW;
4274

4275 4276 4277
			insn->off = off & ~(ctx_field_size - 1);
			insn->code = BPF_LDX | BPF_MEM | size_code;
		}
4278 4279 4280 4281 4282 4283

		target_size = 0;
		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
					      &target_size);
		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
		    (ctx_field_size && !target_size)) {
4284
			verbose(env, "bpf verifier is misconfigured\n");
4285 4286
			return -EINVAL;
		}
4287 4288

		if (is_narrower_load && size < target_size) {
4289 4290
			if (ctx_field_size <= 4)
				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4291
								(1 << size * 8) - 1);
4292 4293
			else
				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4294
								(1 << size * 8) - 1);
4295
		}
4296

4297
		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4298 4299 4300
		if (!new_prog)
			return -ENOMEM;

4301
		delta += cnt - 1;
4302 4303 4304

		/* keep walking new program and skip insns we just inserted */
		env->prog = new_prog;
4305
		insn      = new_prog->insnsi + i + delta;
4306 4307 4308 4309 4310
	}

	return 0;
}

4311
/* fixup insn->imm field of bpf_call instructions
4312
 * and inline eligible helpers as explicit sequence of BPF instructions
4313 4314 4315
 *
 * this function is called after eBPF program passed verification
 */
4316
static int fixup_bpf_calls(struct bpf_verifier_env *env)
4317
{
4318 4319
	struct bpf_prog *prog = env->prog;
	struct bpf_insn *insn = prog->insnsi;
4320
	const struct bpf_func_proto *fn;
4321
	const int insn_cnt = prog->len;
4322 4323 4324 4325
	struct bpf_insn insn_buf[16];
	struct bpf_prog *new_prog;
	struct bpf_map *map_ptr;
	int i, cnt, delta = 0;
4326

4327 4328 4329
	for (i = 0; i < insn_cnt; i++, insn++) {
		if (insn->code != (BPF_JMP | BPF_CALL))
			continue;
4330

4331 4332 4333 4334 4335
		if (insn->imm == BPF_FUNC_get_route_realm)
			prog->dst_needed = 1;
		if (insn->imm == BPF_FUNC_get_prandom_u32)
			bpf_user_rnd_init_once();
		if (insn->imm == BPF_FUNC_tail_call) {
4336 4337 4338 4339 4340 4341
			/* If we tail call into other programs, we
			 * cannot make any assumptions since they can
			 * be replaced dynamically during runtime in
			 * the program array.
			 */
			prog->cb_access = 1;
4342
			env->prog->aux->stack_depth = MAX_BPF_STACK;
4343

4344 4345 4346 4347
			/* mark bpf_tail_call as different opcode to avoid
			 * conditional branch in the interpeter for every normal
			 * call and to prevent accidental JITing by JIT compiler
			 * that doesn't support bpf_tail_call yet
4348
			 */
4349
			insn->imm = 0;
4350
			insn->code = BPF_JMP | BPF_TAIL_CALL;
4351 4352
			continue;
		}
4353

4354 4355 4356 4357 4358
		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
		 * handlers are currently limited to 64 bit only.
		 */
		if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
		    insn->imm == BPF_FUNC_map_lookup_elem) {
4359
			map_ptr = env->insn_aux_data[i + delta].map_ptr;
4360 4361
			if (map_ptr == BPF_MAP_PTR_POISON ||
			    !map_ptr->ops->map_gen_lookup)
4362 4363 4364 4365
				goto patch_call_imm;

			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4366
				verbose(env, "bpf verifier is misconfigured\n");
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
				return -EINVAL;
			}

			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
						       cnt);
			if (!new_prog)
				return -ENOMEM;

			delta += cnt - 1;

			/* keep walking new program and skip insns we just inserted */
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
			continue;
		}

4383
		if (insn->imm == BPF_FUNC_redirect_map) {
4384 4385 4386 4387 4388 4389
			/* Note, we cannot use prog directly as imm as subsequent
			 * rewrites would still change the prog pointer. The only
			 * stable address we can use is aux, which also works with
			 * prog clones during blinding.
			 */
			u64 addr = (unsigned long)prog->aux;
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
			struct bpf_insn r4_ld[] = {
				BPF_LD_IMM64(BPF_REG_4, addr),
				*insn,
			};
			cnt = ARRAY_SIZE(r4_ld);

			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
			if (!new_prog)
				return -ENOMEM;

			delta    += cnt - 1;
			env->prog = prog = new_prog;
			insn      = new_prog->insnsi + i + delta;
		}
4404
patch_call_imm:
4405
		fn = env->ops->get_func_proto(insn->imm);
4406 4407 4408 4409
		/* all functions that have prototype and verifier allowed
		 * programs to call them, must be real in-kernel functions
		 */
		if (!fn->func) {
4410 4411
			verbose(env,
				"kernel subsystem misconfigured func %s#%d\n",
4412 4413
				func_id_name(insn->imm), insn->imm);
			return -EFAULT;
4414
		}
4415
		insn->imm = fn->func - __bpf_call_base;
4416 4417
	}

4418 4419
	return 0;
}
4420

4421
static void free_states(struct bpf_verifier_env *env)
4422
{
4423
	struct bpf_verifier_state_list *sl, *sln;
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
	int i;

	if (!env->explored_states)
		return;

	for (i = 0; i < env->prog->len; i++) {
		sl = env->explored_states[i];

		if (sl)
			while (sl != STATE_LIST_MARK) {
				sln = sl->next;
4435
				free_verifier_state(&sl->state, false);
4436 4437 4438 4439 4440 4441 4442 4443
				kfree(sl);
				sl = sln;
			}
	}

	kfree(env->explored_states);
}

4444
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
A
Alexei Starovoitov 已提交
4445
{
4446
	struct bpf_verifier_env *env;
4447
	struct bpf_verifer_log *log;
A
Alexei Starovoitov 已提交
4448 4449
	int ret = -EINVAL;

4450
	/* 'struct bpf_verifier_env' can be global, but since it's not small,
4451 4452
	 * allocate/free it every time bpf_check() is called
	 */
4453
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4454 4455
	if (!env)
		return -ENOMEM;
4456
	log = &env->log;
4457

4458 4459 4460 4461 4462
	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     (*prog)->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
4463
	env->prog = *prog;
4464
	env->ops = bpf_verifier_ops[env->prog->type];
4465

4466 4467 4468 4469 4470 4471 4472
	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

	if (attr->log_level || attr->log_buf || attr->log_size) {
		/* user requested verbose verifier output
		 * and supplied buffer to store the verification trace
		 */
4473 4474 4475
		log->level = attr->log_level;
		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
		log->len_total = attr->log_size;
4476 4477

		ret = -EINVAL;
4478 4479 4480
		/* log attributes have to be sane */
		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
		    !log->level || !log->ubuf)
4481
			goto err_unlock;
4482
	}
4483 4484 4485

	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4486
		env->strict_alignment = true;
4487

4488 4489 4490 4491
	ret = replace_map_fd_with_map_ptr(env);
	if (ret < 0)
		goto skip_full_check;

4492
	env->explored_states = kcalloc(env->prog->len,
4493
				       sizeof(struct bpf_verifier_state_list *),
4494 4495 4496 4497 4498
				       GFP_USER);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

4499 4500 4501 4502
	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

4503 4504
	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

4505
	ret = do_check(env);
4506
	free_verifier_state(env->cur_state, true);
4507
	env->cur_state = NULL;
4508

4509
skip_full_check:
4510
	while (!pop_stack(env, NULL, NULL));
4511
	free_states(env);
4512

4513 4514 4515 4516
	if (ret == 0)
		/* program is valid, convert *(u32*)(ctx + off) accesses */
		ret = convert_ctx_accesses(env);

4517
	if (ret == 0)
4518
		ret = fixup_bpf_calls(env);
4519

4520
	if (log->level && bpf_verifier_log_full(log))
4521
		ret = -ENOSPC;
4522
	if (log->level && !log->ubuf) {
4523
		ret = -EFAULT;
4524
		goto err_release_maps;
4525 4526
	}

4527 4528
	if (ret == 0 && env->used_map_cnt) {
		/* if program passed verifier, update used_maps in bpf_prog_info */
4529 4530 4531
		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
							  sizeof(env->used_maps[0]),
							  GFP_KERNEL);
4532

4533
		if (!env->prog->aux->used_maps) {
4534
			ret = -ENOMEM;
4535
			goto err_release_maps;
4536 4537
		}

4538
		memcpy(env->prog->aux->used_maps, env->used_maps,
4539
		       sizeof(env->used_maps[0]) * env->used_map_cnt);
4540
		env->prog->aux->used_map_cnt = env->used_map_cnt;
4541 4542 4543 4544 4545 4546

		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
		 * bpf_ld_imm64 instructions
		 */
		convert_pseudo_ld_imm64(env);
	}
4547

4548
err_release_maps:
4549
	if (!env->prog->aux->used_maps)
4550 4551 4552 4553
		/* if we didn't copy map pointers into bpf_prog_info, release
		 * them now. Otherwise free_bpf_prog_info() will release them.
		 */
		release_maps(env);
4554
	*prog = env->prog;
4555
err_unlock:
4556
	mutex_unlock(&bpf_verifier_lock);
4557 4558 4559
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
A
Alexei Starovoitov 已提交
4560 4561
	return ret;
}
4562

4563 4564 4565 4566 4567
static const struct bpf_verifier_ops * const bpf_analyzer_ops[] = {
	[BPF_PROG_TYPE_XDP]		= &xdp_analyzer_ops,
	[BPF_PROG_TYPE_SCHED_CLS]	= &tc_cls_act_analyzer_ops,
};

4568 4569 4570 4571 4572 4573
int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
		 void *priv)
{
	struct bpf_verifier_env *env;
	int ret;

4574 4575 4576 4577
	if (prog->type >= ARRAY_SIZE(bpf_analyzer_ops) ||
	    !bpf_analyzer_ops[prog->type])
		return -EOPNOTSUPP;

4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
	if (!env)
		return -ENOMEM;

	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
				     prog->len);
	ret = -ENOMEM;
	if (!env->insn_aux_data)
		goto err_free_env;
	env->prog = prog;
4588
	env->ops = bpf_analyzer_ops[env->prog->type];
4589 4590 4591 4592 4593 4594
	env->analyzer_ops = ops;
	env->analyzer_priv = priv;

	/* grab the mutex to protect few globals used by verifier */
	mutex_lock(&bpf_verifier_lock);

4595
	env->strict_alignment = false;
4596 4597
	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
		env->strict_alignment = true;
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612

	env->explored_states = kcalloc(env->prog->len,
				       sizeof(struct bpf_verifier_state_list *),
				       GFP_KERNEL);
	ret = -ENOMEM;
	if (!env->explored_states)
		goto skip_full_check;

	ret = check_cfg(env);
	if (ret < 0)
		goto skip_full_check;

	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);

	ret = do_check(env);
4613
	free_verifier_state(env->cur_state, true);
4614
	env->cur_state = NULL;
4615 4616

skip_full_check:
4617
	while (!pop_stack(env, NULL, NULL));
4618 4619 4620 4621 4622 4623 4624 4625 4626
	free_states(env);

	mutex_unlock(&bpf_verifier_lock);
	vfree(env->insn_aux_data);
err_free_env:
	kfree(env);
	return ret;
}
EXPORT_SYMBOL_GPL(bpf_analyzer);