timekeeping.c 35.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24

25

26
static struct timekeeper timekeeper;
27

28 29 30 31 32 33 34 35 36
/*
 * This read-write spinlock protects us from races in SMP while
 * playing with xtime.
 */
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);

/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

37 38 39 40 41 42 43 44 45 46 47
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec = ts->tv_sec;
48
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
49 50 51 52 53
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec += ts->tv_sec;
54
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
55
	tk_normalize_xtime(tk);
56
}
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
{
	struct timespec tmp;

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
					-tk->wall_to_monotonic.tv_nsec);
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
	tk->wall_to_monotonic = wtm;
	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec_to_ktime(tmp);
}

static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
{
	/* Verify consistency before modifying */
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);

	tk->total_sleep_time	= t;
	tk->offs_boot		= timespec_to_ktime(t);
}

83 84 85 86 87 88 89 90 91 92
/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
93
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
94 95
{
	cycle_t interval;
96
	u64 tmp, ntpinterval;
97
	struct clocksource *old_clock;
98

99 100
	old_clock = tk->clock;
	tk->clock = clock;
101 102 103 104 105
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
106
	ntpinterval = tmp;
107 108
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
109 110 111 112
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
113
	tk->cycle_interval = interval;
114 115

	/* Go back from cycles -> shifted ns */
116 117 118
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
119
		((u64) interval * clock->mult) >> clock->shift;
120

121 122 123 124
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
125
			tk->xtime_nsec >>= -shift_change;
126
		else
127
			tk->xtime_nsec <<= shift_change;
128
	}
129
	tk->shift = clock->shift;
130

131 132
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
133 134 135 136 137 138

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
139
	tk->mult = clock->mult;
140
}
141

142
/* Timekeeper helper functions. */
143
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
144 145 146
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
147
	s64 nsec;
148 149

	/* read clocksource: */
150
	clock = tk->clock;
151 152 153 154 155
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

156 157
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
158 159 160

	/* If arch requires, add in gettimeoffset() */
	return nsec + arch_gettimeoffset();
161 162
}

163
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
164 165 166
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
167
	s64 nsec;
168 169

	/* read clocksource: */
170
	clock = tk->clock;
171 172 173 174 175
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

176 177 178 179 180
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

	/* If arch requires, add in gettimeoffset() */
	return nsec + arch_gettimeoffset();
181 182
}

183
/* must hold write on timekeeper.lock */
184
static void timekeeping_update(struct timekeeper *tk, bool clearntp)
185 186
{
	if (clearntp) {
187
		tk->ntp_error = 0;
188 189
		ntp_clear();
	}
190
	update_vsyscall(tk);
191 192
}

193
/**
194
 * timekeeping_forward_now - update clock to the current time
195
 *
196 197 198
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
199
 */
200
static void timekeeping_forward_now(struct timekeeper *tk)
201 202
{
	cycle_t cycle_now, cycle_delta;
203
	struct clocksource *clock;
204
	s64 nsec;
205

206
	clock = tk->clock;
207
	cycle_now = clock->read(clock);
208
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
209
	clock->cycle_last = cycle_now;
210

211
	tk->xtime_nsec += cycle_delta * tk->mult;
212 213

	/* If arch requires, add in gettimeoffset() */
214
	tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
215

216
	tk_normalize_xtime(tk);
217

218
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
219
	timespec_add_ns(&tk->raw_time, nsec);
220 221 222
}

/**
223
 * getnstimeofday - Returns the time of day in a timespec
224 225
 * @ts:		pointer to the timespec to be set
 *
226
 * Returns the time of day in a timespec.
227
 */
228
void getnstimeofday(struct timespec *ts)
229
{
230
	struct timekeeper *tk = &timekeeper;
231
	unsigned long seq;
232
	s64 nsecs = 0;
233

234 235
	WARN_ON(timekeeping_suspended);

236
	do {
237
		seq = read_seqbegin(&tk->lock);
238

239
		ts->tv_sec = tk->xtime_sec;
240
		nsecs = timekeeping_get_ns(tk);
241

242
	} while (read_seqretry(&tk->lock, seq));
243

244
	ts->tv_nsec = 0;
245 246 247 248
	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getnstimeofday);

249 250
ktime_t ktime_get(void)
{
251
	struct timekeeper *tk = &timekeeper;
252 253 254 255 256 257
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
258 259 260
		seq = read_seqbegin(&tk->lock);
		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
261

262
	} while (read_seqretry(&tk->lock, seq));
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
281
	struct timekeeper *tk = &timekeeper;
282
	struct timespec tomono;
283
	s64 nsec;
284 285 286 287 288
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
289 290
		seq = read_seqbegin(&tk->lock);
		ts->tv_sec = tk->xtime_sec;
291
		nsec = timekeeping_get_ns(tk);
292
		tomono = tk->wall_to_monotonic;
293

294
	} while (read_seqretry(&tk->lock, seq));
295

296 297 298
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec);
299 300 301
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

302 303 304 305 306 307 308 309 310 311 312 313 314
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
315
	struct timekeeper *tk = &timekeeper;
316 317 318 319 320 321
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
322
		seq = read_seqbegin(&tk->lock);
323

324 325
		*ts_raw = tk->raw_time;
		ts_real->tv_sec = tk->xtime_sec;
326
		ts_real->tv_nsec = 0;
327

328 329
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
330

331
	} while (read_seqretry(&tk->lock, seq));
332 333 334 335 336 337 338 339

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

340 341 342 343
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
344
 * NOTE: Users should be converted to using getnstimeofday()
345 346 347 348 349
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

350
	getnstimeofday(&now);
351 352 353 354
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
355

356 357 358 359 360 361
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
362
int do_settimeofday(const struct timespec *tv)
363
{
364
	struct timekeeper *tk = &timekeeper;
365
	struct timespec ts_delta, xt;
366
	unsigned long flags;
367

368
	if (!timespec_valid_strict(tv))
369 370
		return -EINVAL;

371
	write_seqlock_irqsave(&tk->lock, flags);
372

373
	timekeeping_forward_now(tk);
374

375
	xt = tk_xtime(tk);
376 377 378
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

379
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
380

381
	tk_set_xtime(tk, tv);
382

383
	timekeeping_update(tk, true);
384

385
	write_sequnlock_irqrestore(&tk->lock, flags);
386 387 388 389 390 391 392 393

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

394 395 396 397 398 399 400 401
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
402
	struct timekeeper *tk = &timekeeper;
403
	unsigned long flags;
404 405
	struct timespec tmp;
	int ret = 0;
406 407 408 409

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

410
	write_seqlock_irqsave(&tk->lock, flags);
411

412
	timekeeping_forward_now(tk);
413

414 415
	/* Make sure the proposed value is valid */
	tmp = timespec_add(tk_xtime(tk),  *ts);
416
	if (!timespec_valid_strict(&tmp)) {
417 418 419
		ret = -EINVAL;
		goto error;
	}
420

421 422
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
423

424
error: /* even if we error out, we forwarded the time, so call update */
425
	timekeeping_update(tk, true);
426

427
	write_sequnlock_irqrestore(&tk->lock, flags);
428 429 430 431

	/* signal hrtimers about time change */
	clock_was_set();

432
	return ret;
433 434 435
}
EXPORT_SYMBOL(timekeeping_inject_offset);

436 437 438 439 440
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
441
static int change_clocksource(void *data)
442
{
443
	struct timekeeper *tk = &timekeeper;
444
	struct clocksource *new, *old;
445
	unsigned long flags;
446

447
	new = (struct clocksource *) data;
448

449
	write_seqlock_irqsave(&tk->lock, flags);
450

451
	timekeeping_forward_now(tk);
452
	if (!new->enable || new->enable(new) == 0) {
453 454
		old = tk->clock;
		tk_setup_internals(tk, new);
455 456 457
		if (old->disable)
			old->disable(old);
	}
458
	timekeeping_update(tk, true);
459

460
	write_sequnlock_irqrestore(&tk->lock, flags);
461

462 463
	return 0;
}
464

465 466 467 468 469 470 471 472 473
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
474 475 476
	struct timekeeper *tk = &timekeeper;

	if (tk->clock == clock)
477
		return;
478
	stop_machine(change_clocksource, clock, NULL);
479 480
	tick_clock_notify();
}
481

482 483 484 485 486 487 488 489 490 491 492 493 494 495
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
496

497 498 499 500 501 502 503 504
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
505
	struct timekeeper *tk = &timekeeper;
506 507 508 509
	unsigned long seq;
	s64 nsecs;

	do {
510 511 512
		seq = read_seqbegin(&tk->lock);
		nsecs = timekeeping_get_ns_raw(tk);
		*ts = tk->raw_time;
513

514
	} while (read_seqretry(&tk->lock, seq));
515 516 517 518 519

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);

520
/**
521
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
522
 */
523
int timekeeping_valid_for_hres(void)
524
{
525
	struct timekeeper *tk = &timekeeper;
526 527 528 529
	unsigned long seq;
	int ret;

	do {
530
		seq = read_seqbegin(&tk->lock);
531

532
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
533

534
	} while (read_seqretry(&tk->lock, seq));
535 536 537 538

	return ret;
}

539 540 541 542 543
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
544
	struct timekeeper *tk = &timekeeper;
J
John Stultz 已提交
545 546
	unsigned long seq;
	u64 ret;
547

J
John Stultz 已提交
548
	do {
549
		seq = read_seqbegin(&tk->lock);
J
John Stultz 已提交
550

551
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
552

553
	} while (read_seqretry(&tk->lock, seq));
J
John Stultz 已提交
554 555

	return ret;
556 557
}

558
/**
559
 * read_persistent_clock -  Return time from the persistent clock.
560 561
 *
 * Weak dummy function for arches that do not yet support it.
562 563
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
564 565 566
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
567
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
568
{
569 570
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
571 572
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

588 589 590 591 592
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
593
	struct timekeeper *tk = &timekeeper;
594
	struct clocksource *clock;
595
	unsigned long flags;
596
	struct timespec now, boot, tmp;
597 598

	read_persistent_clock(&now);
599
	if (!timespec_valid_strict(&now)) {
600 601 602 603 604 605
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
	}

606
	read_boot_clock(&boot);
607
	if (!timespec_valid_strict(&boot)) {
608 609 610 611 612
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
613

614
	seqlock_init(&tk->lock);
615

R
Roman Zippel 已提交
616
	ntp_init();
617

618
	write_seqlock_irqsave(&tk->lock, flags);
619
	clock = clocksource_default_clock();
620 621
	if (clock->enable)
		clock->enable(clock);
622
	tk_setup_internals(tk, clock);
623

624 625 626
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
627
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
628
		boot = tk_xtime(tk);
629

630
	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
631
	tk_set_wall_to_mono(tk, tmp);
632 633 634

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
635
	tk_set_sleep_time(tk, tmp);
636

637
	write_sequnlock_irqrestore(&tk->lock, flags);
638 639 640
}

/* time in seconds when suspend began */
641
static struct timespec timekeeping_suspend_time;
642

643 644 645 646 647 648 649
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
650 651
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
							struct timespec *delta)
652
{
653
	if (!timespec_valid_strict(delta)) {
654
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
655 656 657
					"sleep delta value!\n");
		return;
	}
658
	tk_xtime_add(tk, delta);
659 660
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
661 662 663 664 665 666 667 668 669 670 671 672 673 674
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
675
	struct timekeeper *tk = &timekeeper;
676
	unsigned long flags;
677 678 679 680 681 682 683
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

684
	write_seqlock_irqsave(&tk->lock, flags);
J
John Stultz 已提交
685

686
	timekeeping_forward_now(tk);
687

688
	__timekeeping_inject_sleeptime(tk, delta);
689

690
	timekeeping_update(tk, true);
691

692
	write_sequnlock_irqrestore(&tk->lock, flags);
693 694 695 696 697

	/* signal hrtimers about time change */
	clock_was_set();
}

698 699 700 701 702 703 704
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
705
static void timekeeping_resume(void)
706
{
707
	struct timekeeper *tk = &timekeeper;
708
	unsigned long flags;
709 710 711
	struct timespec ts;

	read_persistent_clock(&ts);
712

713 714
	clocksource_resume();

715
	write_seqlock_irqsave(&tk->lock, flags);
716

717 718
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
719
		__timekeeping_inject_sleeptime(tk, &ts);
720 721
	}
	/* re-base the last cycle value */
722 723
	tk->clock->cycle_last = tk->clock->read(tk->clock);
	tk->ntp_error = 0;
724
	timekeeping_suspended = 0;
725 726
	timekeeping_update(tk, false);
	write_sequnlock_irqrestore(&tk->lock, flags);
727 728 729 730 731 732

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
733
	hrtimers_resume();
734 735
}

736
static int timekeeping_suspend(void)
737
{
738
	struct timekeeper *tk = &timekeeper;
739
	unsigned long flags;
740 741
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
742

743
	read_persistent_clock(&timekeeping_suspend_time);
744

745 746
	write_seqlock_irqsave(&tk->lock, flags);
	timekeeping_forward_now(tk);
747
	timekeeping_suspended = 1;
748 749 750 751 752 753 754

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
755
	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
756 757 758 759 760 761 762 763 764 765 766 767
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
768
	write_sequnlock_irqrestore(&tk->lock, flags);
769 770

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
771
	clocksource_suspend();
772 773 774 775 776

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
777
static struct syscore_ops timekeeping_syscore_ops = {
778 779 780 781
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

782
static int __init timekeeping_init_ops(void)
783
{
784 785
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
786 787
}

788
device_initcall(timekeeping_init_ops);
789 790 791 792 793

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
794 795
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
796 797 798 799 800 801 802 803 804 805 806 807
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
808
	 * here.  This is tuned so that an error of about 1 msec is adjusted
809 810
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
811
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
812 813 814 815 816 817 818 819
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
820 821
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
846
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
847
{
848
	s64 error, interval = tk->cycle_interval;
849 850
	int adj;

851
	/*
852
	 * The point of this is to check if the error is greater than half
853 854 855 856 857
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
858 859
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
860
	 * larger than half an interval.
861
	 *
862
	 * Note: It does not "save" on aggravation when reading the code.
863
	 */
864
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
865
	if (error > interval) {
866 867
		/*
		 * We now divide error by 4(via shift), which checks if
868
		 * the error is greater than twice the interval.
869 870 871
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
872
		error >>= 2;
873 874 875 876 877
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
878
		 * The proper fix is to avoid rounding up by using
879
		 * the high precision tk->xtime_nsec instead of
880 881 882
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
883 884 885
		if (likely(error <= interval))
			adj = 1;
		else
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
902

903 904
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
905 906
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
907 908
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
909
	}
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
959 960 961 962
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
963

964
out_adjust:
965 966 967 968 969 970 971 972 973 974 975 976 977 978
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
979 980 981 982
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
983 984
	}

985 986
}

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1007 1008 1009 1010
		if (unlikely(leap)) {
			struct timespec ts;

			tk->xtime_sec += leap;
1011

1012 1013 1014 1015 1016 1017 1018
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
				timespec_sub(tk->wall_to_monotonic, ts));

			clock_was_set_delayed();
		}
1019 1020 1021
	}
}

1022 1023 1024 1025 1026 1027 1028 1029 1030
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1031 1032
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
						u32 shift)
1033
{
1034
	u64 raw_nsecs;
1035

1036 1037
	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < tk->cycle_interval<<shift)
1038 1039 1040
		return offset;

	/* Accumulate one shifted interval */
1041 1042
	offset -= tk->cycle_interval << shift;
	tk->clock->cycle_last += tk->cycle_interval << shift;
1043

1044 1045
	tk->xtime_nsec += tk->xtime_interval << shift;
	accumulate_nsecs_to_secs(tk);
1046

1047
	/* Accumulate raw time */
1048 1049
	raw_nsecs = tk->raw_interval << shift;
	raw_nsecs += tk->raw_time.tv_nsec;
1050 1051 1052
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1053
		tk->raw_time.tv_sec += raw_secs;
1054
	}
1055
	tk->raw_time.tv_nsec = raw_nsecs;
1056 1057

	/* Accumulate error between NTP and clock interval */
1058 1059 1060
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1061 1062 1063 1064

	return offset;
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
	tk->xtime_nsec -= remainder;
	tk->xtime_nsec += 1ULL << tk->shift;
	tk->ntp_error += remainder << tk->ntp_error_shift;

}
#else
#define old_vsyscall_fixup(tk)
#endif



1092 1093 1094 1095
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1096
static void update_wall_time(void)
1097
{
1098
	struct clocksource *clock;
1099
	struct timekeeper *tk = &timekeeper;
1100
	cycle_t offset;
1101
	int shift = 0, maxshift;
J
John Stultz 已提交
1102 1103
	unsigned long flags;

1104
	write_seqlock_irqsave(&tk->lock, flags);
1105 1106 1107

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1108
		goto out;
1109

1110
	clock = tk->clock;
J
John Stultz 已提交
1111 1112

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1113
	offset = tk->cycle_interval;
J
John Stultz 已提交
1114 1115
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1116 1117
#endif

1118 1119 1120 1121
	/* Check if there's really nothing to do */
	if (offset < tk->cycle_interval)
		goto out;

1122 1123 1124 1125
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1126
	 * that is smaller than the offset.  We then accumulate that
1127 1128
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1129
	 */
1130
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1131
	shift = max(0, shift);
1132
	/* Bound shift to one less than what overflows tick_length */
1133
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1134
	shift = min(shift, maxshift);
1135 1136 1137
	while (offset >= tk->cycle_interval) {
		offset = logarithmic_accumulation(tk, offset, shift);
		if (offset < tk->cycle_interval<<shift)
1138
			shift--;
1139 1140 1141
	}

	/* correct the clock when NTP error is too big */
1142
	timekeeping_adjust(tk, offset);
1143

J
John Stultz 已提交
1144
	/*
1145 1146 1147 1148
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1149

J
John Stultz 已提交
1150 1151
	/*
	 * Finally, make sure that after the rounding
1152
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1153
	 */
1154
	accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1155

1156
	timekeeping_update(tk, false);
J
John Stultz 已提交
1157 1158

out:
1159
	write_sequnlock_irqrestore(&tk->lock, flags);
J
John Stultz 已提交
1160

1161
}
T
Tomas Janousek 已提交
1162 1163 1164 1165 1166

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1167
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1168 1169 1170 1171 1172 1173 1174 1175
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1176
	struct timekeeper *tk = &timekeeper;
1177
	struct timespec boottime = {
1178 1179 1180 1181
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1182
	};
1183 1184

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1185
}
1186
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1199
	struct timekeeper *tk = &timekeeper;
1200
	struct timespec tomono, sleep;
1201
	s64 nsec;
1202 1203 1204 1205 1206
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1207 1208
		seq = read_seqbegin(&tk->lock);
		ts->tv_sec = tk->xtime_sec;
1209
		nsec = timekeeping_get_ns(tk);
1210 1211
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1212

1213
	} while (read_seqretry(&tk->lock, seq));
1214

1215 1216 1217
	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1238 1239 1240 1241 1242 1243
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1244 1245 1246
	struct timekeeper *tk = &timekeeper;

	*ts = timespec_add(*ts, tk->total_sleep_time);
T
Tomas Janousek 已提交
1247
}
1248
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1249

1250 1251
unsigned long get_seconds(void)
{
1252 1253 1254
	struct timekeeper *tk = &timekeeper;

	return tk->xtime_sec;
1255 1256 1257
}
EXPORT_SYMBOL(get_seconds);

1258 1259
struct timespec __current_kernel_time(void)
{
1260 1261 1262
	struct timekeeper *tk = &timekeeper;

	return tk_xtime(tk);
1263
}
1264

1265 1266
struct timespec current_kernel_time(void)
{
1267
	struct timekeeper *tk = &timekeeper;
1268 1269 1270 1271
	struct timespec now;
	unsigned long seq;

	do {
1272
		seq = read_seqbegin(&tk->lock);
L
Linus Torvalds 已提交
1273

1274 1275
		now = tk_xtime(tk);
	} while (read_seqretry(&tk->lock, seq));
1276 1277 1278 1279

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1280 1281 1282

struct timespec get_monotonic_coarse(void)
{
1283
	struct timekeeper *tk = &timekeeper;
1284 1285 1286 1287
	struct timespec now, mono;
	unsigned long seq;

	do {
1288
		seq = read_seqbegin(&tk->lock);
L
Linus Torvalds 已提交
1289

1290 1291 1292
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
	} while (read_seqretry(&tk->lock, seq));
1293 1294 1295 1296 1297

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1310 1311

/**
1312 1313
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1314 1315
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1316
 * @sleep:	pointer to timespec to be set with time in suspend
1317
 */
1318 1319
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1320
{
1321
	struct timekeeper *tk = &timekeeper;
1322 1323 1324
	unsigned long seq;

	do {
1325 1326 1327 1328 1329
		seq = read_seqbegin(&tk->lock);
		*xtim = tk_xtime(tk);
		*wtom = tk->wall_to_monotonic;
		*sleep = tk->total_sleep_time;
	} while (read_seqretry(&tk->lock, seq));
1330
}
T
Torben Hohn 已提交
1331

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 *
 * Returns current monotonic time and updates the offsets
 * Called from hrtimer_interupt() or retrigger_next_event()
 */
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
{
1343
	struct timekeeper *tk = &timekeeper;
1344 1345 1346 1347 1348
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
1349
		seq = read_seqbegin(&tk->lock);
1350

1351 1352
		secs = tk->xtime_sec;
		nsecs = timekeeping_get_ns(tk);
1353

1354 1355 1356
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
	} while (read_seqretry(&tk->lock, seq));
1357 1358 1359 1360 1361 1362 1363

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1364 1365 1366 1367 1368
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1369
	struct timekeeper *tk = &timekeeper;
1370 1371 1372 1373
	unsigned long seq;
	struct timespec wtom;

	do {
1374 1375 1376
		seq = read_seqbegin(&tk->lock);
		wtom = tk->wall_to_monotonic;
	} while (read_seqretry(&tk->lock, seq));
J
John Stultz 已提交
1377

1378 1379
	return timespec_to_ktime(wtom);
}
1380 1381
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

T
Torben Hohn 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}