slab.c 116.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
110
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
111
#include	<linux/rtmutex.h>
112
#include	<linux/reciprocal_div.h>
L
Linus Torvalds 已提交
113 114 115 116 117 118

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
119
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 152 153
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
154
 */
155
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
175
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
176
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177
			 SLAB_CACHE_DMA | \
178
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
179
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
181
#else
182
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
183
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
184
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

207
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
208 209
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
210 211
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
212 213 214 215 216 217 218 219 220

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268
	spinlock_t lock;
A
Andrew Morton 已提交
269 270 271 272 273 274
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
275 276
};

A
Andrew Morton 已提交
277 278 279
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
280 281 282 283
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
284
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
285 286 287
};

/*
288
 * The slab lists for all objects.
L
Linus Torvalds 已提交
289 290
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
291 292 293 294 295
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
296
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
297 298 299
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
300 301
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
302 303
};

304 305 306 307 308 309 310 311 312
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

313 314 315 316
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
317
static int enable_cpucache(struct kmem_cache *cachep);
318
static void cache_reap(struct work_struct *unused);
319

320
/*
A
Andrew Morton 已提交
321 322
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
323
 */
324
static __always_inline int index_of(const size_t size)
325
{
326 327
	extern void __bad_size(void);

328 329 330 331 332 333 334 335 336 337
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
338
		__bad_size();
339
	} else
340
		__bad_size();
341 342 343
	return 0;
}

344 345
static int slab_early_init = 1;

346 347
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
348

P
Pekka Enberg 已提交
349
static void kmem_list3_init(struct kmem_list3 *parent)
350 351 352 353 354 355
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
356
	parent->colour_next = 0;
357 358 359 360 361
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
362 363 364 365
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
366 367
	} while (0)

A
Andrew Morton 已提交
368 369
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
370 371 372 373
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
374 375

/*
376
 * struct kmem_cache
L
Linus Torvalds 已提交
377 378 379
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
380

381
struct kmem_cache {
L
Linus Torvalds 已提交
382
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
383
	struct array_cache *array[NR_CPUS];
384
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
385 386 387
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
388

389
	unsigned int buffer_size;
390
	u32 reciprocal_buffer_size;
391 392
/* 3) touched by every alloc & free from the backend */

A
Andrew Morton 已提交
393 394
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
395

396
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
397
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
398
	unsigned int gfporder;
L
Linus Torvalds 已提交
399 400

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
401
	gfp_t gfpflags;
L
Linus Torvalds 已提交
402

A
Andrew Morton 已提交
403
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
404
	unsigned int colour_off;	/* colour offset */
405
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
406
	unsigned int slab_size;
A
Andrew Morton 已提交
407
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
408 409

	/* constructor func */
410
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
411

412
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
413 414
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
415

416
/* 6) statistics */
L
Linus Torvalds 已提交
417
#if STATS
P
Pekka Enberg 已提交
418 419 420 421 422 423 424 425 426
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
427
	unsigned long node_overflow;
P
Pekka Enberg 已提交
428 429 430 431
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
432 433
#endif
#if DEBUG
434 435 436 437 438 439 440 441
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
442
#endif
E
Eric Dumazet 已提交
443 444 445 446 447 448 449 450 451 452 453
	/*
	 * We put nodelists[] at the end of kmem_cache, because we want to size
	 * this array to nr_node_ids slots instead of MAX_NUMNODES
	 * (see kmem_cache_init())
	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
	 * is statically defined, so we reserve the max number of nodes.
	 */
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	/*
	 * Do not add fields after nodelists[]
	 */
L
Linus Torvalds 已提交
454 455 456 457 458 459
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
460 461 462
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
463
 *
A
Adrian Bunk 已提交
464
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
465 466 467 468 469 470 471 472 473 474
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
475
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
476 477 478 479 480
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
481 482
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
483
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
484
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
485 486 487 488 489
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
490 491 492 493 494 495 496 497 498
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
499
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
500 501 502
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
503
#define	STATS_INC_NODEFREES(x)	do { } while (0)
504
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
505
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
506 507 508 509 510 511 512 513
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
514 515
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
516
 * 0		: objp
517
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
518 519
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
520
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
521
 * 		redzone word.
522 523
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
524 525
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
526
 */
527
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
528
{
529
	return cachep->obj_offset;
L
Linus Torvalds 已提交
530 531
}

532
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
533
{
534
	return cachep->obj_size;
L
Linus Torvalds 已提交
535 536
}

537
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
538 539
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
540 541
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
542 543
}

544
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
545 546 547
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
548 549 550 551 552
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
					      BYTES_PER_WORD);
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
553 554
}

555
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
556 557
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
558
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
559 560 561 562
}

#else

563 564
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
565 566
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
567 568 569 570 571 572 573 574 575 576 577
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
578 579 580 581
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
582
 */
583 584 585 586 587 588 589
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
590
	page = compound_head(page);
591
	BUG_ON(!PageSlab(page));
592 593 594 595 596 597 598 599 600 601
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
602
	BUG_ON(!PageSlab(page));
603 604
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
605

606 607
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
608
	struct page *page = virt_to_head_page(obj);
609 610 611 612 613
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
614
	struct page *page = virt_to_head_page(obj);
615 616 617
	return page_get_slab(page);
}

618 619 620 621 622 623
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

624 625 626 627 628 629 630 631
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
632
{
633 634
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
635 636
}

A
Andrew Morton 已提交
637 638 639
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
657
	{NULL,}
L
Linus Torvalds 已提交
658 659 660 661
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
662
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
663
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
664
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
665 666

/* internal cache of cache description objs */
667
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
668 669 670
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
671
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
672
	.name = "kmem_cache",
L
Linus Torvalds 已提交
673 674
};

675 676
#define BAD_ALIEN_MAGIC 0x01020304ul

677 678 679 680 681 682 683 684
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
685 686 687 688
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
689
 */
690 691 692 693
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
694 695 696

{
	int q;
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
724 725 726
	}
}
#else
727
static inline void init_lock_keys(void)
728 729 730 731
{
}
#endif

732 733 734 735
/*
 * 1. Guard access to the cache-chain.
 * 2. Protect sanity of cpu_online_map against cpu hotplug events
 */
I
Ingo Molnar 已提交
736
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
737 738 739 740 741 742 743 744
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
745 746
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
747 748 749
	FULL
} g_cpucache_up;

750 751 752 753 754 755 756 757
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

758
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
759

760
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
761 762 763 764
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
765 766
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
767 768 769 770 771
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
772 773 774
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
775
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
776
#endif
777
	WARN_ON_ONCE(size == 0);
L
Linus Torvalds 已提交
778 779 780 781
	while (size > csizep->cs_size)
		csizep++;

	/*
782
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
783 784 785
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
786
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
787 788
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
789
#endif
L
Linus Torvalds 已提交
790 791 792
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
793
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
794 795 796 797
{
	return __find_general_cachep(size, gfpflags);
}

798
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
799
{
800 801
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
802

A
Andrew Morton 已提交
803 804 805
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
806 807 808 809 810 811 812
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
813

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
862 863 864 865
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
866 867
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
868 869
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
870
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
871 872 873
	dump_stack();
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
905
		node = first_node(node_online_map);
906

907
	per_cpu(reap_node, cpu) = node;
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
925 926 927 928 929 930 931 932 933
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
934
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
935 936 937 938 939 940

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
941
	if (keventd_up() && reap_work->work.func == NULL) {
942
		init_reap_node(cpu);
943
		INIT_DELAYED_WORK(reap_work, cache_reap);
944 945
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
946 947 948
	}
}

949
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
950
					    int batchcount)
L
Linus Torvalds 已提交
951
{
P
Pekka Enberg 已提交
952
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
953 954
	struct array_cache *nc = NULL;

955
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
956 957 958 959 960
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
961
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
962 963 964 965
	}
	return nc;
}

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1015
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1016 1017 1018 1019 1020 1021 1022
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1023
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1024
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1025

P
Pekka Enberg 已提交
1026
static struct array_cache **alloc_alien_cache(int node, int limit)
1027 1028
{
	struct array_cache **ac_ptr;
1029
	int memsize = sizeof(void *) * nr_node_ids;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
1043
				for (i--; i <= 0; i--)
1044 1045 1046 1047 1048 1049 1050 1051 1052
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1053
static void free_alien_cache(struct array_cache **ac_ptr)
1054 1055 1056 1057 1058 1059
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1060
	    kfree(ac_ptr[i]);
1061 1062 1063
	kfree(ac_ptr);
}

1064
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1065
				struct array_cache *ac, int node)
1066 1067 1068 1069 1070
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1071 1072 1073 1074 1075
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1076 1077
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1078

1079
		free_block(cachep, ac->entry, ac->avail, node);
1080 1081 1082 1083 1084
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1085 1086 1087 1088 1089 1090 1091 1092 1093
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1094 1095

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1096 1097 1098 1099 1100 1101
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1102 1103
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1104
{
P
Pekka Enberg 已提交
1105
	int i = 0;
1106 1107 1108 1109
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1110
		ac = alien[i];
1111 1112 1113 1114 1115 1116 1117
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1118

1119
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1120 1121 1122 1123 1124
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1125 1126 1127
	int node;

	node = numa_node_id();
1128 1129 1130 1131 1132

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1133
	if (likely(slabp->nodeid == node))
1134 1135
		return 0;

P
Pekka Enberg 已提交
1136
	l3 = cachep->nodelists[node];
1137 1138 1139
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1140
		spin_lock(&alien->lock);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1154 1155
#endif

1156
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1157
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1158 1159
{
	long cpu = (long)hcpu;
1160
	struct kmem_cache *cachep;
1161 1162 1163
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1164 1165

	switch (action) {
1166
	case CPU_LOCK_ACQUIRE:
I
Ingo Molnar 已提交
1167
		mutex_lock(&cache_chain_mutex);
1168 1169
		break;
	case CPU_UP_PREPARE:
1170
	case CPU_UP_PREPARE_FROZEN:
A
Andrew Morton 已提交
1171 1172
		/*
		 * We need to do this right in the beginning since
1173 1174 1175 1176 1177
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1178
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1179 1180
			/*
			 * Set up the size64 kmemlist for cpu before we can
1181 1182 1183 1184
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1185 1186
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1187 1188 1189
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1190
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1191

1192 1193 1194 1195 1196
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1197 1198
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1199

1200 1201
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1202 1203
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1204 1205 1206
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1207 1208 1209 1210
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1211
		list_for_each_entry(cachep, &cache_chain, next) {
1212
			struct array_cache *nc;
1213
			struct array_cache *shared = NULL;
1214
			struct array_cache **alien = NULL;
1215

1216
			nc = alloc_arraycache(node, cachep->limit,
1217
						cachep->batchcount);
L
Linus Torvalds 已提交
1218 1219
			if (!nc)
				goto bad;
1220 1221
			if (cachep->shared) {
				shared = alloc_arraycache(node,
1222 1223
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
1224 1225 1226
				if (!shared)
					goto bad;
			}
1227 1228 1229 1230 1231
			if (use_alien_caches) {
                                alien = alloc_alien_cache(node, cachep->limit);
                                if (!alien)
                                        goto bad;
                        }
L
Linus Torvalds 已提交
1232
			cachep->array[cpu] = nc;
1233 1234 1235
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1236 1237 1238 1239 1240 1241 1242 1243
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1244
			}
1245 1246 1247 1248 1249 1250 1251 1252 1253
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1254 1255 1256
		}
		break;
	case CPU_ONLINE:
1257
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1258 1259 1260
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1261
  	case CPU_DOWN_PREPARE:
1262
  	case CPU_DOWN_PREPARE_FROZEN:
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
		/* Now the cache_reaper is guaranteed to be not running. */
		per_cpu(reap_work, cpu).work.func = NULL;
  		break;
  	case CPU_DOWN_FAILED:
1274
  	case CPU_DOWN_FAILED_FROZEN:
1275 1276
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1277
	case CPU_DEAD:
1278
	case CPU_DEAD_FROZEN:
1279 1280 1281 1282 1283 1284 1285 1286
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1287
		/* fall thru */
1288
#endif
L
Linus Torvalds 已提交
1289
	case CPU_UP_CANCELED:
1290
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
1291 1292
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1293 1294
			struct array_cache *shared;
			struct array_cache **alien;
1295
			cpumask_t mask;
L
Linus Torvalds 已提交
1296

1297
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1298 1299 1300
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1301 1302 1303
			l3 = cachep->nodelists[node];

			if (!l3)
1304
				goto free_array_cache;
1305

1306
			spin_lock_irq(&l3->list_lock);
1307 1308 1309 1310

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1311
				free_block(cachep, nc->entry, nc->avail, node);
1312 1313

			if (!cpus_empty(mask)) {
1314
				spin_unlock_irq(&l3->list_lock);
1315
				goto free_array_cache;
P
Pekka Enberg 已提交
1316
			}
1317

1318 1319
			shared = l3->shared;
			if (shared) {
1320 1321
				free_block(cachep, shared->entry,
					   shared->avail, node);
1322 1323 1324
				l3->shared = NULL;
			}

1325 1326 1327 1328 1329 1330 1331 1332 1333
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1334
			}
1335
free_array_cache:
L
Linus Torvalds 已提交
1336 1337
			kfree(nc);
		}
1338 1339 1340 1341 1342 1343 1344 1345 1346
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1347
			drain_freelist(cachep, l3, l3->free_objects);
1348
		}
1349 1350
		break;
	case CPU_LOCK_RELEASE:
I
Ingo Molnar 已提交
1351
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1352 1353 1354
		break;
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1355
bad:
L
Linus Torvalds 已提交
1356 1357 1358
	return NOTIFY_BAD;
}

1359 1360 1361
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1362

1363 1364 1365
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1366 1367
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1368 1369 1370 1371 1372 1373 1374 1375
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1376 1377 1378 1379 1380
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1381 1382 1383 1384 1385
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1386 1387 1388
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1389 1390 1391 1392 1393 1394
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1395
	int i;
1396
	int order;
P
Pekka Enberg 已提交
1397
	int node;
1398

1399 1400 1401
	if (num_possible_nodes() == 1)
		use_alien_caches = 0;

1402 1403 1404 1405 1406
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1417 1418 1419
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1420 1421 1422
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1423
	 * 2) Create the first kmalloc cache.
1424
	 *    The struct kmem_cache for the new cache is allocated normally.
1425 1426 1427
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1428 1429
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1430 1431 1432
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1433 1434
	 */

P
Pekka Enberg 已提交
1435 1436
	node = numa_node_id();

L
Linus Torvalds 已提交
1437 1438 1439 1440 1441
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
P
Pekka Enberg 已提交
1442
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1443

E
Eric Dumazet 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1453 1454
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1455 1456
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1457

1458 1459 1460 1461 1462 1463
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1464
	BUG_ON(!cache_cache.num);
1465
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1466 1467 1468
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1469 1470 1471 1472 1473

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1474 1475 1476 1477
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1478 1479 1480
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1481 1482 1483 1484
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1485

A
Andrew Morton 已提交
1486
	if (INDEX_AC != INDEX_L3) {
1487
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1488 1489 1490 1491 1492 1493
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1494

1495 1496
	slab_early_init = 0;

L
Linus Torvalds 已提交
1497
	while (sizes->cs_size != ULONG_MAX) {
1498 1499
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1500 1501 1502
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1503 1504
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1505
		if (!sizes->cs_cachep) {
1506
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1507 1508 1509 1510 1511
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
1512 1513 1514
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1515 1516 1517 1518 1519
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
1520
#endif
L
Linus Torvalds 已提交
1521 1522 1523 1524 1525
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1526
		struct array_cache *ptr;
1527

L
Linus Torvalds 已提交
1528
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1529

L
Linus Torvalds 已提交
1530
		local_irq_disable();
1531 1532
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1533
		       sizeof(struct arraycache_init));
1534 1535 1536 1537 1538
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1539 1540
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1541

L
Linus Torvalds 已提交
1542
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1543

L
Linus Torvalds 已提交
1544
		local_irq_disable();
1545
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1546
		       != &initarray_generic.cache);
1547
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1548
		       sizeof(struct arraycache_init));
1549 1550 1551 1552 1553
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1554
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1555
		    ptr;
L
Linus Torvalds 已提交
1556 1557
		local_irq_enable();
	}
1558 1559
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1560 1561
		int nid;

1562
		/* Replace the static kmem_list3 structures for the boot cpu */
P
Pekka Enberg 已提交
1563
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1564

P
Pekka Enberg 已提交
1565
		for_each_online_node(nid) {
1566
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1567
				  &initkmem_list3[SIZE_AC + nid], nid);
1568 1569 1570

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1571
					  &initkmem_list3[SIZE_L3 + nid], nid);
1572 1573 1574
			}
		}
	}
L
Linus Torvalds 已提交
1575

1576
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1577
	{
1578
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1579
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1580
		list_for_each_entry(cachep, &cache_chain, next)
1581 1582
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1583
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1584 1585
	}

1586 1587 1588 1589
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1590 1591 1592
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1593 1594 1595
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1596 1597 1598
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1599 1600 1601
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1602 1603 1604 1605 1606 1607 1608
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1609 1610
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1611
	 */
1612
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1613
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1625
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1626 1627
{
	struct page *page;
1628
	int nr_pages;
L
Linus Torvalds 已提交
1629 1630
	int i;

1631
#ifndef CONFIG_MMU
1632 1633 1634
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1635
	 */
1636
	flags |= __GFP_COMP;
1637
#endif
1638

1639
	flags |= cachep->gfpflags;
1640 1641

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1642 1643 1644
	if (!page)
		return NULL;

1645
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1646
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1647 1648 1649 1650 1651
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1652 1653 1654
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1655 1656 1657 1658 1659
}

/*
 * Interface to system's page release.
 */
1660
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1661
{
P
Pekka Enberg 已提交
1662
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1663 1664 1665
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1666 1667 1668 1669 1670 1671
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1672
	while (i--) {
N
Nick Piggin 已提交
1673 1674
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1684
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1685
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1695
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1696
			    unsigned long caller)
L
Linus Torvalds 已提交
1697
{
1698
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1699

1700
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1701

P
Pekka Enberg 已提交
1702
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1703 1704
		return;

P
Pekka Enberg 已提交
1705 1706 1707 1708
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1709 1710 1711 1712 1713 1714 1715
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1716
				*addr++ = svalue;
L
Linus Torvalds 已提交
1717 1718 1719 1720 1721 1722 1723
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1724
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1725 1726 1727
}
#endif

1728
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1729
{
1730 1731
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1732 1733

	memset(addr, val, size);
P
Pekka Enberg 已提交
1734
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1735 1736 1737 1738 1739
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1740 1741 1742
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1743
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1744 1745 1746 1747 1748
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1749
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1750
	}
L
Linus Torvalds 已提交
1751
	printk("\n");
D
Dave Jones 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1766 1767 1768 1769 1770
}
#endif

#if DEBUG

1771
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1772 1773 1774 1775 1776
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1777
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1778 1779
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1780 1781 1782 1783
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1784
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1785
		print_symbol("(%s)",
A
Andrew Morton 已提交
1786
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1787 1788
		printk("\n");
	}
1789 1790
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1791
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1792 1793
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1794 1795
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1796 1797 1798 1799
		dump_line(realobj, i, limit);
	}
}

1800
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1801 1802 1803 1804 1805
{
	char *realobj;
	int size, i;
	int lines = 0;

1806 1807
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1808

P
Pekka Enberg 已提交
1809
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1810
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1811
		if (i == size - 1)
L
Linus Torvalds 已提交
1812 1813 1814 1815 1816 1817
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1818
				printk(KERN_ERR
1819 1820
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1821 1822 1823
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1824
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1825
			limit = 16;
P
Pekka Enberg 已提交
1826 1827
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1840
		struct slab *slabp = virt_to_slab(objp);
1841
		unsigned int objnr;
L
Linus Torvalds 已提交
1842

1843
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1844
		if (objnr) {
1845
			objp = index_to_obj(cachep, slabp, objnr - 1);
1846
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1847
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1848
			       realobj, size);
L
Linus Torvalds 已提交
1849 1850
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1851
		if (objnr + 1 < cachep->num) {
1852
			objp = index_to_obj(cachep, slabp, objnr + 1);
1853
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1854
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1855
			       realobj, size);
L
Linus Torvalds 已提交
1856 1857 1858 1859 1860 1861
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1862 1863
#if DEBUG
/**
1864 1865 1866 1867 1868 1869
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1870
 */
1871
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1872 1873 1874
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1875
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1876 1877 1878

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1879 1880
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1881
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1882
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1892
					   "was overwritten");
L
Linus Torvalds 已提交
1893 1894
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1895
					   "was overwritten");
L
Linus Torvalds 已提交
1896 1897
		}
	}
1898
}
L
Linus Torvalds 已提交
1899
#else
1900
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1901 1902
{
}
L
Linus Torvalds 已提交
1903 1904
#endif

1905 1906 1907 1908 1909
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1910
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1911 1912
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1913
 */
1914
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1915 1916 1917 1918
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1919 1920 1921
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1922
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1923 1924 1925 1926 1927
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1928 1929
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1930 1931 1932
	}
}

A
Andrew Morton 已提交
1933 1934 1935 1936
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1937
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1938 1939 1940 1941
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1942
		cachep->nodelists[node] = &initkmem_list3[index + node];
1943
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1944 1945
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1946 1947 1948
	}
}

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1970
/**
1971 1972 1973 1974 1975 1976 1977
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1978 1979 1980 1981 1982
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1983
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1984
			size_t size, size_t align, unsigned long flags)
1985
{
1986
	unsigned long offslab_limit;
1987
	size_t left_over = 0;
1988
	int gfporder;
1989

1990
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1991 1992 1993
		unsigned int num;
		size_t remainder;

1994
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1995 1996
		if (!num)
			continue;
1997

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2010

2011
		/* Found something acceptable - save it away */
2012
		cachep->num = num;
2013
		cachep->gfporder = gfporder;
2014 2015
		left_over = remainder;

2016 2017 2018 2019 2020 2021 2022 2023
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2024 2025 2026 2027
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2028
		if (gfporder >= slab_break_gfp_order)
2029 2030
			break;

2031 2032 2033
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2034
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2035 2036 2037 2038 2039
			break;
	}
	return left_over;
}

2040
static int setup_cpu_cache(struct kmem_cache *cachep)
2041
{
2042 2043 2044
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2091
	return 0;
2092 2093
}

L
Linus Torvalds 已提交
2094 2095 2096 2097 2098 2099 2100
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
2101
 * @dtor: A destructor for the objects (not implemented anymore).
L
Linus Torvalds 已提交
2102 2103 2104 2105 2106 2107 2108
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2109 2110
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2123
struct kmem_cache *
L
Linus Torvalds 已提交
2124
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2125 2126
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2127
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2128 2129
{
	size_t left_over, slab_size, ralign;
2130
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2131 2132 2133 2134

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2135
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2136
	    size > KMALLOC_MAX_SIZE || dtor) {
A
Andrew Morton 已提交
2137 2138
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2139 2140
		BUG();
	}
L
Linus Torvalds 已提交
2141

2142
	/*
2143 2144
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2145
	 */
I
Ingo Molnar 已提交
2146
	mutex_lock(&cache_chain_mutex);
2147

2148
	list_for_each_entry(pc, &cache_chain, next) {
2149 2150 2151 2152 2153 2154 2155 2156
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2157
		res = probe_kernel_address(pc->name, tmp);
2158
		if (res) {
2159 2160
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2161
			       pc->buffer_size);
2162 2163 2164
			continue;
		}

P
Pekka Enberg 已提交
2165
		if (!strcmp(pc->name, name)) {
2166 2167
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2168 2169 2170 2171 2172
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2182
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2183
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2184 2185 2186 2187 2188 2189 2190
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2191 2192
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2193
	 */
2194
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2195

A
Andrew Morton 已提交
2196 2197
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2198 2199 2200
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2201 2202 2203
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2204 2205
	}

A
Andrew Morton 已提交
2206 2207
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2208 2209
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2210 2211 2212 2213
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2214 2215
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2216
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2217 2218 2219 2220
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2221 2222 2223 2224 2225 2226 2227

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2228
		ralign = __alignof__(unsigned long long);
2229

2230
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2231 2232 2233
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2234
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2235 2236 2237
	if (ralign < align) {
		ralign = align;
	}
2238
	/* disable debug if necessary */
2239
	if (ralign > __alignof__(unsigned long long))
2240
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2241
	/*
2242
	 * 4) Store it.
L
Linus Torvalds 已提交
2243 2244 2245 2246
	 */
	align = ralign;

	/* Get cache's description obj. */
2247
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2248
	if (!cachep)
2249
		goto oops;
L
Linus Torvalds 已提交
2250 2251

#if DEBUG
2252
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2253

2254 2255 2256 2257
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2258 2259
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2260 2261
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2262 2263
	}
	if (flags & SLAB_STORE_USER) {
2264 2265
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2266 2267 2268 2269
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2270
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2271 2272
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2273 2274 2275 2276 2277
		size = PAGE_SIZE;
	}
#endif
#endif

2278 2279 2280 2281 2282 2283
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2284 2285 2286 2287 2288 2289 2290 2291
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2292
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2293 2294

	if (!cachep->num) {
2295 2296
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2297 2298
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2299
		goto oops;
L
Linus Torvalds 已提交
2300
	}
P
Pekka Enberg 已提交
2301 2302
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2315 2316
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321 2322
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2323
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2324 2325 2326
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2327
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2328
		cachep->gfpflags |= GFP_DMA;
2329
	cachep->buffer_size = size;
2330
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2331

2332
	if (flags & CFLGS_OFF_SLAB) {
2333
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2334 2335 2336 2337 2338 2339 2340 2341 2342
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2343 2344 2345
	cachep->ctor = ctor;
	cachep->name = name;

2346 2347 2348 2349 2350
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2351 2352 2353

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2354
oops:
L
Linus Torvalds 已提交
2355 2356
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2357
		      name);
I
Ingo Molnar 已提交
2358
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2374
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2375 2376 2377
{
#ifdef CONFIG_SMP
	check_irq_off();
2378
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2379 2380
#endif
}
2381

2382
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2383 2384 2385 2386 2387 2388 2389
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2390 2391 2392 2393
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2394
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2395 2396
#endif

2397 2398 2399 2400
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2401 2402
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2403
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2404
	struct array_cache *ac;
2405
	int node = numa_node_id();
L
Linus Torvalds 已提交
2406 2407

	check_irq_off();
2408
	ac = cpu_cache_get(cachep);
2409 2410 2411
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2412 2413 2414
	ac->avail = 0;
}

2415
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2416
{
2417 2418 2419
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2420
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2421
	check_irq_on();
P
Pekka Enberg 已提交
2422
	for_each_online_node(node) {
2423
		l3 = cachep->nodelists[node];
2424 2425 2426 2427 2428 2429 2430
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2431
			drain_array(cachep, l3, l3->shared, 1, node);
2432
	}
L
Linus Torvalds 已提交
2433 2434
}

2435 2436 2437 2438 2439 2440 2441 2442
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2443
{
2444 2445
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2446 2447
	struct slab *slabp;

2448 2449
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2450

2451
		spin_lock_irq(&l3->list_lock);
2452
		p = l3->slabs_free.prev;
2453 2454 2455 2456
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2457

2458
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2459
#if DEBUG
2460
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2461 2462
#endif
		list_del(&slabp->list);
2463 2464 2465 2466 2467
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2468
		spin_unlock_irq(&l3->list_lock);
2469 2470
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2471
	}
2472 2473
out:
	return nr_freed;
L
Linus Torvalds 已提交
2474 2475
}

2476
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2477
static int __cache_shrink(struct kmem_cache *cachep)
2478 2479 2480 2481 2482 2483 2484 2485 2486
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2487 2488 2489 2490 2491 2492 2493
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2494 2495 2496 2497
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2498 2499 2500 2501 2502 2503 2504
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2505
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2506
{
2507
	int ret;
2508
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2509

2510 2511 2512 2513
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
	return ret;
L
Linus Torvalds 已提交
2514 2515 2516 2517 2518 2519 2520
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2521
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2533
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2534
{
2535
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2536 2537

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2538
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2539 2540 2541 2542 2543 2544
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2545
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2546
		mutex_unlock(&cache_chain_mutex);
2547
		return;
L
Linus Torvalds 已提交
2548 2549 2550
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2551
		synchronize_rcu();
L
Linus Torvalds 已提交
2552

2553
	__kmem_cache_destroy(cachep);
2554
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2555 2556 2557
}
EXPORT_SYMBOL(kmem_cache_destroy);

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2569
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2570 2571
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2572 2573
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2574

L
Linus Torvalds 已提交
2575 2576
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2577
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2578
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2579 2580 2581
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2582
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2583 2584 2585 2586
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2587
	slabp->s_mem = objp + colour_off;
2588
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2589 2590 2591 2592 2593
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2594
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2595 2596
}

2597
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2598
			    struct slab *slabp)
L
Linus Torvalds 已提交
2599 2600 2601 2602
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2603
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2616 2617 2618
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2619 2620
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2621
			cachep->ctor(objp + obj_offset(cachep), cachep,
C
Christoph Lameter 已提交
2622
				     0);
L
Linus Torvalds 已提交
2623 2624 2625 2626

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2627
					   " end of an object");
L
Linus Torvalds 已提交
2628 2629
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2630
					   " start of an object");
L
Linus Torvalds 已提交
2631
		}
A
Andrew Morton 已提交
2632 2633
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2634
			kernel_map_pages(virt_to_page(objp),
2635
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2636 2637
#else
		if (cachep->ctor)
C
Christoph Lameter 已提交
2638
			cachep->ctor(objp, cachep, 0);
L
Linus Torvalds 已提交
2639
#endif
P
Pekka Enberg 已提交
2640
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2641
	}
P
Pekka Enberg 已提交
2642
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2643 2644 2645
	slabp->free = 0;
}

2646
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2647
{
2648 2649 2650 2651 2652 2653
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2654 2655
}

A
Andrew Morton 已提交
2656 2657
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2658
{
2659
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2673 2674
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2675
{
2676
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2677 2678 2679 2680 2681

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2682
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2683
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2684
				"'%s', objp %p\n", cachep->name, objp);
2685 2686 2687 2688 2689 2690 2691 2692
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2693 2694 2695 2696 2697 2698 2699
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2700
{
2701
	int nr_pages;
L
Linus Torvalds 已提交
2702 2703
	struct page *page;

2704
	page = virt_to_page(addr);
2705

2706
	nr_pages = 1;
2707
	if (likely(!PageCompound(page)))
2708 2709
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2710
	do {
2711 2712
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2713
		page++;
2714
	} while (--nr_pages);
L
Linus Torvalds 已提交
2715 2716 2717 2718 2719 2720
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2721 2722
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2723
{
P
Pekka Enberg 已提交
2724 2725 2726
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2727
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2728

A
Andrew Morton 已提交
2729 2730 2731
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2732
	 */
2733
	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
L
Linus Torvalds 已提交
2734

2735
	local_flags = (flags & GFP_LEVEL_MASK);
2736
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2737
	check_irq_off();
2738 2739
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2740 2741

	/* Get colour for the slab, and cal the next value. */
2742 2743 2744 2745 2746
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2747

2748
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2761 2762 2763
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2764
	 */
2765 2766
	if (!objp)
		objp = kmem_getpages(cachep, flags, nodeid);
A
Andrew Morton 已提交
2767
	if (!objp)
L
Linus Torvalds 已提交
2768 2769 2770
		goto failed;

	/* Get slab management. */
2771 2772
	slabp = alloc_slabmgmt(cachep, objp, offset,
			local_flags & ~GFP_THISNODE, nodeid);
A
Andrew Morton 已提交
2773
	if (!slabp)
L
Linus Torvalds 已提交
2774 2775
		goto opps1;

2776
	slabp->nodeid = nodeid;
2777
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2778

C
Christoph Lameter 已提交
2779
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2780 2781 2782 2783

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2784
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2785 2786

	/* Make slab active. */
2787
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2788
	STATS_INC_GROWN(cachep);
2789 2790
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2791
	return 1;
A
Andrew Morton 已提交
2792
opps1:
L
Linus Torvalds 已提交
2793
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2794
failed:
L
Linus Torvalds 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2811 2812
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2813 2814 2815
	}
}

2816 2817
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2818
	unsigned long long redzone1, redzone2;
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2834
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2835 2836 2837
			obj, redzone1, redzone2);
}

2838
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2839
				   void *caller)
L
Linus Torvalds 已提交
2840 2841 2842 2843 2844
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2845
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2846
	kfree_debugcheck(objp);
2847
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2848

2849
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2850 2851

	if (cachep->flags & SLAB_RED_ZONE) {
2852
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2853 2854 2855 2856 2857 2858
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2859
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2860 2861

	BUG_ON(objnr >= cachep->num);
2862
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2863

2864 2865 2866
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2867 2868
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2869
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2870
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2871
			kernel_map_pages(virt_to_page(objp),
2872
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2883
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2884 2885 2886
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2887

L
Linus Torvalds 已提交
2888 2889 2890 2891 2892 2893 2894
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2895 2896 2897 2898
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2899
		for (i = 0;
2900
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2901
		     i++) {
A
Andrew Morton 已提交
2902
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2903
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2904
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2916
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2917 2918 2919 2920
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2921 2922 2923
	int node;

	node = numa_node_id();
L
Linus Torvalds 已提交
2924 2925

	check_irq_off();
2926
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2927
retry:
L
Linus Torvalds 已提交
2928 2929
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2930 2931 2932 2933
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2934 2935 2936
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2937
	l3 = cachep->nodelists[node];
2938 2939 2940

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2941

2942 2943 2944 2945
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
2961 2962 2963 2964 2965 2966 2967 2968

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);

L
Linus Torvalds 已提交
2969 2970 2971 2972 2973
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2974
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
2975
							    node);
L
Linus Torvalds 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2987
must_grow:
L
Linus Torvalds 已提交
2988
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2989
alloc_done:
2990
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2991 2992 2993

	if (unlikely(!ac->avail)) {
		int x;
2994
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2995

A
Andrew Morton 已提交
2996
		/* cache_grow can reenable interrupts, then ac could change. */
2997
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2998
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
2999 3000
			return NULL;

A
Andrew Morton 已提交
3001
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3002 3003 3004
			goto retry;
	}
	ac->touched = 1;
3005
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3006 3007
}

A
Andrew Morton 已提交
3008 3009
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3010 3011 3012 3013 3014 3015 3016 3017
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3018 3019
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3020
{
P
Pekka Enberg 已提交
3021
	if (!objp)
L
Linus Torvalds 已提交
3022
		return objp;
P
Pekka Enberg 已提交
3023
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3024
#ifdef CONFIG_DEBUG_PAGEALLOC
3025
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3026
			kernel_map_pages(virt_to_page(objp),
3027
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3039 3040 3041 3042
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3043
			printk(KERN_ERR
3044
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3045 3046
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3047 3048 3049 3050
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3051 3052 3053 3054 3055
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3056
		slabp = page_get_slab(virt_to_head_page(objp));
3057 3058 3059 3060
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3061
	objp += obj_offset(cachep);
3062
	if (cachep->ctor && cachep->flags & SLAB_POISON)
C
Christoph Lameter 已提交
3063
		cachep->ctor(objp, cachep, 0);
3064 3065 3066 3067 3068 3069
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3070 3071 3072 3073 3074 3075
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
#ifdef CONFIG_FAILSLAB

static struct failslab_attr {

	struct fault_attr attr;

	u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
	struct dentry *ignore_gfp_wait_file;
#endif

} failslab = {
	.attr = FAULT_ATTR_INITIALIZER,
3089
	.ignore_gfp_wait = 1,
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
};

static int __init setup_failslab(char *str)
{
	return setup_fault_attr(&failslab.attr, str);
}
__setup("failslab=", setup_failslab);

static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	if (cachep == &cache_cache)
		return 0;
	if (flags & __GFP_NOFAIL)
		return 0;
	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
		return 0;

	return should_fail(&failslab.attr, obj_size(cachep));
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init failslab_debugfs(void)
{
	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;
	int err;

3118
	err = init_fault_attr_dentries(&failslab.attr, "failslab");
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
	if (err)
		return err;
	dir = failslab.attr.dentries.dir;

	failslab.ignore_gfp_wait_file =
		debugfs_create_bool("ignore-gfp-wait", mode, dir,
				      &failslab.ignore_gfp_wait);

	if (!failslab.ignore_gfp_wait_file) {
		err = -ENOMEM;
		debugfs_remove(failslab.ignore_gfp_wait_file);
		cleanup_fault_attr_dentries(&failslab.attr);
	}

	return err;
}

late_initcall(failslab_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAILSLAB */

static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	return 0;
}

#endif /* CONFIG_FAILSLAB */

3149
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3150
{
P
Pekka Enberg 已提交
3151
	void *objp;
L
Linus Torvalds 已提交
3152 3153
	struct array_cache *ac;

3154
	check_irq_off();
3155

3156
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3157 3158 3159
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3160
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3161 3162 3163 3164
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3165 3166 3167
	return objp;
}

3168
#ifdef CONFIG_NUMA
3169
/*
3170
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3171 3172 3173 3174 3175 3176 3177 3178
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3179
	if (in_interrupt() || (flags & __GFP_THISNODE))
3180 3181 3182 3183 3184 3185 3186
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3187
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3188 3189 3190
	return NULL;
}

3191 3192
/*
 * Fallback function if there was no memory available and no objects on a
3193 3194 3195 3196 3197
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3198
 */
3199
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3200
{
3201 3202
	struct zonelist *zonelist;
	gfp_t local_flags;
3203 3204
	struct zone **z;
	void *obj = NULL;
3205
	int nid;
3206 3207 3208 3209 3210 3211 3212

	if (flags & __GFP_THISNODE)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
			->node_zonelists[gfp_zone(flags)];
	local_flags = (flags & GFP_LEVEL_MASK);
3213

3214 3215 3216 3217 3218
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3219
	for (z = zonelist->zones; *z && !obj; z++) {
3220
		nid = zone_to_nid(*z);
3221

3222
		if (cpuset_zone_allowed_hardwall(*z, flags) &&
3223 3224 3225 3226 3227 3228
			cache->nodelists[nid] &&
			cache->nodelists[nid]->free_objects)
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
	}

3229
	if (!obj) {
3230 3231 3232 3233 3234 3235
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3236 3237 3238
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3239
		obj = kmem_getpages(cache, flags, -1);
3240 3241
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3258
				/* cache_grow already freed obj */
3259 3260 3261
				obj = NULL;
			}
		}
3262
	}
3263 3264 3265
	return obj;
}

3266 3267
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3268
 */
3269
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3270
				int nodeid)
3271 3272
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3273 3274 3275 3276 3277 3278 3279 3280
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3281
retry:
3282
	check_irq_off();
P
Pekka Enberg 已提交
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3302
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3303 3304 3305 3306 3307
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3308
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3309
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3310
	else
P
Pekka Enberg 已提交
3311
		list_add(&slabp->list, &l3->slabs_partial);
3312

P
Pekka Enberg 已提交
3313 3314
	spin_unlock(&l3->list_lock);
	goto done;
3315

A
Andrew Morton 已提交
3316
must_grow:
P
Pekka Enberg 已提交
3317
	spin_unlock(&l3->list_lock);
3318
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3319 3320
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3321

3322
	return fallback_alloc(cachep, flags);
3323

A
Andrew Morton 已提交
3324
done:
P
Pekka Enberg 已提交
3325
	return obj;
3326
}
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3347 3348 3349
	if (should_failslab(cachep, flags))
		return NULL;

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3420 3421 3422
	if (should_failslab(cachep, flags))
		return NULL;

3423 3424 3425 3426 3427 3428 3429 3430 3431
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

	return objp;
}
3432 3433 3434 3435

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3436
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3437
		       int node)
L
Linus Torvalds 已提交
3438 3439
{
	int i;
3440
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3441 3442 3443 3444 3445

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3446
		slabp = virt_to_slab(objp);
3447
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3448
		list_del(&slabp->list);
3449
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3450
		check_slabp(cachep, slabp);
3451
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3452
		STATS_DEC_ACTIVE(cachep);
3453
		l3->free_objects++;
L
Linus Torvalds 已提交
3454 3455 3456 3457
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3458 3459
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3460 3461 3462 3463 3464 3465
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3466 3467
				slab_destroy(cachep, slabp);
			} else {
3468
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3469 3470 3471 3472 3473 3474
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3475
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3476 3477 3478 3479
		}
	}
}

3480
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3481 3482
{
	int batchcount;
3483
	struct kmem_list3 *l3;
3484
	int node = numa_node_id();
L
Linus Torvalds 已提交
3485 3486 3487 3488 3489 3490

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3491
	l3 = cachep->nodelists[node];
3492
	spin_lock(&l3->list_lock);
3493 3494
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3495
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3496 3497 3498
		if (max) {
			if (batchcount > max)
				batchcount = max;
3499
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3500
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3501 3502 3503 3504 3505
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3506
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3507
free_done:
L
Linus Torvalds 已提交
3508 3509 3510 3511 3512
#if STATS
	{
		int i = 0;
		struct list_head *p;

3513 3514
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3526
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3527
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3528
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3529 3530 3531
}

/*
A
Andrew Morton 已提交
3532 3533
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3534
 */
3535
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3536
{
3537
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3538 3539 3540 3541

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3542
	if (use_alien_caches && cache_free_alien(cachep, objp))
3543 3544
		return;

L
Linus Torvalds 已提交
3545 3546
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3547
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3548 3549 3550 3551
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3552
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3564
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3565
{
3566
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3567 3568 3569
}
EXPORT_SYMBOL(kmem_cache_alloc);

3570
/**
3571
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3601
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3602
{
P
Pekka Enberg 已提交
3603
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3604
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3605
	unsigned long align_mask = BYTES_PER_WORD - 1;
3606
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3622
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3623 3624
		goto out;
	return 1;
A
Andrew Morton 已提交
3625
out:
L
Linus Torvalds 已提交
3626 3627 3628 3629
	return 0;
}

#ifdef CONFIG_NUMA
3630 3631 3632 3633 3634
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
			__builtin_return_address(0));
}
L
Linus Torvalds 已提交
3635 3636
EXPORT_SYMBOL(kmem_cache_alloc_node);

3637 3638
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3639
{
3640
	struct kmem_cache *cachep;
3641 3642 3643 3644 3645 3646

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3647 3648 3649 3650 3651 3652 3653

#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3654
EXPORT_SYMBOL(__kmalloc_node);
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
		int node, void *caller)
{
	return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3670 3671

/**
3672
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3673
 * @size: how many bytes of memory are required.
3674
 * @flags: the type of memory to allocate (see kmalloc).
3675
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3676
 */
3677 3678
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3679
{
3680
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3681

3682 3683 3684 3685 3686 3687
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3688 3689
	if (unlikely(cachep == NULL))
		return NULL;
3690 3691 3692 3693
	return __cache_alloc(cachep, flags, caller);
}


3694
#ifdef CONFIG_DEBUG_SLAB
3695 3696
void *__kmalloc(size_t size, gfp_t flags)
{
3697
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3698 3699 3700
}
EXPORT_SYMBOL(__kmalloc);

3701 3702 3703 3704 3705
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3706 3707 3708 3709 3710 3711 3712

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3713 3714
#endif

P
Pekka Enberg 已提交
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	struct kmem_cache *cache, *new_cache;
	void *ret;

	if (unlikely(!p))
		return kmalloc_track_caller(new_size, flags);

	if (unlikely(!new_size)) {
		kfree(p);
		return NULL;
	}

	cache = virt_to_cache(p);
	new_cache = __find_general_cachep(new_size, flags);

	/*
 	 * If new size fits in the current cache, bail out.
 	 */
	if (likely(cache == new_cache))
		return (void *)p;

	/*
 	 * We are on the slow-path here so do not use __cache_alloc
 	 * because it bloats kernel text.
 	 */
	ret = kmalloc_track_caller(new_size, flags);
	if (ret) {
		memcpy(ret, p, min(new_size, ksize(p)));
		kfree(p);
	}
	return ret;
}
EXPORT_SYMBOL(krealloc);

L
Linus Torvalds 已提交
3761 3762 3763 3764 3765 3766 3767 3768
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3769
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3770 3771 3772
{
	unsigned long flags;

3773 3774
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3775
	local_irq_save(flags);
3776
	debug_check_no_locks_freed(objp, obj_size(cachep));
3777
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3778 3779 3780 3781 3782 3783 3784 3785
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3786 3787
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3788 3789 3790 3791 3792
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3793
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3794 3795 3796 3797 3798 3799
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3800
	c = virt_to_cache(objp);
3801
	debug_check_no_locks_freed(objp, obj_size(c));
3802
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3803 3804 3805 3806
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3807
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3808
{
3809
	return obj_size(cachep);
L
Linus Torvalds 已提交
3810 3811 3812
}
EXPORT_SYMBOL(kmem_cache_size);

3813
const char *kmem_cache_name(struct kmem_cache *cachep)
3814 3815 3816 3817 3818
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3819
/*
3820
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3821
 */
3822
static int alloc_kmemlist(struct kmem_cache *cachep)
3823 3824 3825
{
	int node;
	struct kmem_list3 *l3;
3826
	struct array_cache *new_shared;
3827
	struct array_cache **new_alien = NULL;
3828 3829

	for_each_online_node(node) {
3830

3831 3832 3833 3834 3835
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3836

3837 3838 3839
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3840
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3841
					0xbaadf00d);
3842 3843 3844 3845
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3846
		}
3847

A
Andrew Morton 已提交
3848 3849
		l3 = cachep->nodelists[node];
		if (l3) {
3850 3851
			struct array_cache *shared = l3->shared;

3852 3853
			spin_lock_irq(&l3->list_lock);

3854
			if (shared)
3855 3856
				free_block(cachep, shared->entry,
						shared->avail, node);
3857

3858 3859
			l3->shared = new_shared;
			if (!l3->alien) {
3860 3861 3862
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3863
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3864
					cachep->batchcount + cachep->num;
3865
			spin_unlock_irq(&l3->list_lock);
3866
			kfree(shared);
3867 3868 3869
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3870
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3871 3872 3873
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3874
			goto fail;
3875
		}
3876 3877 3878

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3879
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3880
		l3->shared = new_shared;
3881
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3882
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3883
					cachep->batchcount + cachep->num;
3884 3885
		cachep->nodelists[node] = l3;
	}
3886
	return 0;
3887

A
Andrew Morton 已提交
3888
fail:
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3904
	return -ENOMEM;
3905 3906
}

L
Linus Torvalds 已提交
3907
struct ccupdate_struct {
3908
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3909 3910 3911 3912 3913
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3914
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3915 3916 3917
	struct array_cache *old;

	check_irq_off();
3918
	old = cpu_cache_get(new->cachep);
3919

L
Linus Torvalds 已提交
3920 3921 3922 3923
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3924
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3925 3926
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3927
{
3928
	struct ccupdate_struct *new;
3929
	int i;
L
Linus Torvalds 已提交
3930

3931 3932 3933 3934
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3935
	for_each_online_cpu(i) {
3936
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3937
						batchcount);
3938
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3939
			for (i--; i >= 0; i--)
3940 3941
				kfree(new->new[i]);
			kfree(new);
3942
			return -ENOMEM;
L
Linus Torvalds 已提交
3943 3944
		}
	}
3945
	new->cachep = cachep;
L
Linus Torvalds 已提交
3946

3947
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3948

L
Linus Torvalds 已提交
3949 3950 3951
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3952
	cachep->shared = shared;
L
Linus Torvalds 已提交
3953

3954
	for_each_online_cpu(i) {
3955
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3956 3957
		if (!ccold)
			continue;
3958
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3959
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3960
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3961 3962
		kfree(ccold);
	}
3963
	kfree(new);
3964
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3965 3966
}

3967
/* Called with cache_chain_mutex held always */
3968
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3969 3970 3971 3972
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3973 3974
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3975 3976
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3977
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3978 3979 3980 3981
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3982
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3983
		limit = 1;
3984
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3985
		limit = 8;
3986
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3987
		limit = 24;
3988
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3989 3990 3991 3992
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3993 3994
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3995 3996 3997 3998 3999 4000 4001 4002
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4003
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4004 4005 4006
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4007 4008 4009
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4010 4011 4012 4013
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
4014
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
4015 4016
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4017
		       cachep->name, -err);
4018
	return err;
L
Linus Torvalds 已提交
4019 4020
}

4021 4022
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4023 4024
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4025 4026 4027
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4028 4029 4030
{
	int tofree;

4031 4032
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4033 4034
	if (ac->touched && !force) {
		ac->touched = 0;
4035
	} else {
4036
		spin_lock_irq(&l3->list_lock);
4037 4038 4039 4040 4041 4042 4043 4044 4045
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4046
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4047 4048 4049 4050 4051
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4052
 * @w: work descriptor
L
Linus Torvalds 已提交
4053 4054 4055 4056 4057 4058
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4059 4060
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4061
 */
4062
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4063
{
4064
	struct kmem_cache *searchp;
4065
	struct kmem_list3 *l3;
4066
	int node = numa_node_id();
4067 4068
	struct delayed_work *work =
		container_of(w, struct delayed_work, work);
L
Linus Torvalds 已提交
4069

4070
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4071
		/* Give up. Setup the next iteration. */
4072
		goto out;
L
Linus Torvalds 已提交
4073

4074
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4075 4076
		check_irq_on();

4077 4078 4079 4080 4081
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4082
		l3 = searchp->nodelists[node];
4083

4084
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4085

4086
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4087

4088 4089 4090 4091
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4092
		if (time_after(l3->next_reap, jiffies))
4093
			goto next;
L
Linus Torvalds 已提交
4094

4095
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4096

4097
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4098

4099
		if (l3->free_touched)
4100
			l3->free_touched = 0;
4101 4102
		else {
			int freed;
L
Linus Torvalds 已提交
4103

4104 4105 4106 4107
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4108
next:
L
Linus Torvalds 已提交
4109 4110 4111
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4112
	mutex_unlock(&cache_chain_mutex);
4113
	next_reap_node();
4114
out:
A
Andrew Morton 已提交
4115
	/* Set up the next iteration */
4116
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4117 4118 4119 4120
}

#ifdef CONFIG_PROC_FS

4121
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4122
{
4123 4124 4125 4126
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4127
#if STATS
4128
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4129
#else
4130
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4131
#endif
4132 4133 4134 4135
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4136
#if STATS
4137
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4138
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4139
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4140
#endif
4141 4142 4143 4144 4145 4146 4147 4148
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
4149
	mutex_lock(&cache_chain_mutex);
4150 4151
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
4152 4153 4154 4155 4156 4157
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
4158
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
4159 4160 4161 4162
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4163
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
4164
	++*pos;
A
Andrew Morton 已提交
4165 4166
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
4167 4168 4169 4170
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4171
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4172 4173 4174 4175
}

static int s_show(struct seq_file *m, void *p)
{
4176
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
4177 4178 4179 4180 4181
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4182
	const char *name;
L
Linus Torvalds 已提交
4183
	char *error = NULL;
4184 4185
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4186 4187 4188

	active_objs = 0;
	num_slabs = 0;
4189 4190 4191 4192 4193
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4194 4195
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4196

4197
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4198 4199 4200 4201 4202
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4203
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4204 4205 4206 4207 4208 4209 4210
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4211
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4212 4213 4214 4215 4216
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4217 4218
		if (l3->shared)
			shared_avail += l3->shared->avail;
4219

4220
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4221
	}
P
Pekka Enberg 已提交
4222 4223
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4224
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4225 4226
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4227
	name = cachep->name;
L
Linus Torvalds 已提交
4228 4229 4230 4231
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4232
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4233
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4234
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4235
		   cachep->limit, cachep->batchcount, cachep->shared);
4236
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4237
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4238
#if STATS
P
Pekka Enberg 已提交
4239
	{			/* list3 stats */
L
Linus Torvalds 已提交
4240 4241 4242 4243 4244 4245 4246
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4247
		unsigned long node_frees = cachep->node_frees;
4248
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4249

4250
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4251
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4252
				reaped, errors, max_freeable, node_allocs,
4253
				node_frees, overflows);
L
Linus Torvalds 已提交
4254 4255 4256 4257 4258 4259 4260 4261 4262
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4263
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4284
const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4285 4286 4287 4288
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4299 4300
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4301
{
P
Pekka Enberg 已提交
4302
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4303
	int limit, batchcount, shared, res;
4304
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4305

L
Linus Torvalds 已提交
4306 4307 4308 4309
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4310
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4321
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4322
	res = -EINVAL;
4323
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4324
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4325 4326
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4327
				res = 0;
L
Linus Torvalds 已提交
4328
			} else {
4329
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4330
						       batchcount, shared);
L
Linus Torvalds 已提交
4331 4332 4333 4334
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4335
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4336 4337 4338 4339
	if (res >= 0)
		res = count;
	return res;
}
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4406
	char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
4407

4408
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4409
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4410
		if (modname[0])
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4445
		list_for_each_entry(slabp, &l3->slabs_full, list)
4446
			handle_slab(n, cachep, slabp);
4447
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4474

4475 4476 4477
	return 0;
}

4478
const struct seq_operations slabstats_op = {
4479 4480 4481 4482 4483 4484
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4485 4486
#endif

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4499
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4500
{
4501 4502
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4503

4504
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4505
}