slab.c 116.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
110
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
111
#include	<linux/rtmutex.h>
112
#include	<linux/reciprocal_div.h>
L
Linus Torvalds 已提交
113 114 115 116 117 118

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
119
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 152 153
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
154
 */
155
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
175
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
176
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177
			 SLAB_CACHE_DMA | \
178
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
179
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
181
#else
182
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
183
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
184
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

207
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
208 209
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
210 211
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
212 213 214 215 216 217 218 219 220

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268
	spinlock_t lock;
A
Andrew Morton 已提交
269 270 271 272 273 274
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
275 276
};

A
Andrew Morton 已提交
277 278 279
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
280 281 282 283
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
284
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
285 286 287
};

/*
288
 * The slab lists for all objects.
L
Linus Torvalds 已提交
289 290
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
291 292 293 294 295
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
296
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
297 298 299
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
300 301
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
302 303
};

304 305 306 307 308 309 310 311 312
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

313 314 315 316
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
317
static int enable_cpucache(struct kmem_cache *cachep);
318
static void cache_reap(struct work_struct *unused);
319

320
/*
A
Andrew Morton 已提交
321 322
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
323
 */
324
static __always_inline int index_of(const size_t size)
325
{
326 327
	extern void __bad_size(void);

328 329 330 331 332 333 334 335 336 337
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
338
		__bad_size();
339
	} else
340
		__bad_size();
341 342 343
	return 0;
}

344 345
static int slab_early_init = 1;

346 347
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
348

P
Pekka Enberg 已提交
349
static void kmem_list3_init(struct kmem_list3 *parent)
350 351 352 353 354 355
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
356
	parent->colour_next = 0;
357 358 359 360 361
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
362 363 364 365
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
366 367
	} while (0)

A
Andrew Morton 已提交
368 369
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
370 371 372 373
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
374 375

/*
376
 * struct kmem_cache
L
Linus Torvalds 已提交
377 378 379
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
380

381
struct kmem_cache {
L
Linus Torvalds 已提交
382
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
383
	struct array_cache *array[NR_CPUS];
384
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
385 386 387
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
388

389
	unsigned int buffer_size;
390
	u32 reciprocal_buffer_size;
391 392
/* 3) touched by every alloc & free from the backend */

A
Andrew Morton 已提交
393 394
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
395

396
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
397
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
398
	unsigned int gfporder;
L
Linus Torvalds 已提交
399 400

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
401
	gfp_t gfpflags;
L
Linus Torvalds 已提交
402

A
Andrew Morton 已提交
403
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
404
	unsigned int colour_off;	/* colour offset */
405
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
406
	unsigned int slab_size;
A
Andrew Morton 已提交
407
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
408 409

	/* constructor func */
410
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
411

412
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
413 414
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
415

416
/* 6) statistics */
L
Linus Torvalds 已提交
417
#if STATS
P
Pekka Enberg 已提交
418 419 420 421 422 423 424 425 426
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
427
	unsigned long node_overflow;
P
Pekka Enberg 已提交
428 429 430 431
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
432 433
#endif
#if DEBUG
434 435 436 437 438 439 440 441
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
442
#endif
E
Eric Dumazet 已提交
443 444 445 446 447 448 449 450 451 452 453
	/*
	 * We put nodelists[] at the end of kmem_cache, because we want to size
	 * this array to nr_node_ids slots instead of MAX_NUMNODES
	 * (see kmem_cache_init())
	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
	 * is statically defined, so we reserve the max number of nodes.
	 */
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	/*
	 * Do not add fields after nodelists[]
	 */
L
Linus Torvalds 已提交
454 455 456 457 458 459
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
460 461 462
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
463
 *
A
Adrian Bunk 已提交
464
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
465 466 467 468 469 470 471 472 473 474
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
475
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
476 477 478 479 480
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
481 482
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
483
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
484
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
485 486 487 488 489
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
490 491 492 493 494 495 496 497 498
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
499
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
500 501 502
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
503
#define	STATS_INC_NODEFREES(x)	do { } while (0)
504
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
505
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
506 507 508 509 510 511 512 513
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
514 515
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
516
 * 0		: objp
517
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
518 519
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
520
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
521
 * 		redzone word.
522 523
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
524 525
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
526
 */
527
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
528
{
529
	return cachep->obj_offset;
L
Linus Torvalds 已提交
530 531
}

532
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
533
{
534
	return cachep->obj_size;
L
Linus Torvalds 已提交
535 536
}

537
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
538 539
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
540 541
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
542 543
}

544
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
545 546 547
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
548 549 550 551 552
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
					      BYTES_PER_WORD);
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
553 554
}

555
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
556 557
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
558
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
559 560 561 562
}

#else

563 564
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
565 566
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
567 568 569 570 571
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
572 573
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
593 594 595 596
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
597
 */
598 599 600 601 602 603 604
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
605
	page = compound_head(page);
606
	BUG_ON(!PageSlab(page));
607 608 609 610 611 612 613 614 615 616
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
617
	BUG_ON(!PageSlab(page));
618 619
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
620

621 622
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
623
	struct page *page = virt_to_head_page(obj);
624 625 626 627 628
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
629
	struct page *page = virt_to_head_page(obj);
630 631 632
	return page_get_slab(page);
}

633 634 635 636 637 638
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

639 640 641 642 643 644 645 646
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
647
{
648 649
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
650 651
}

A
Andrew Morton 已提交
652 653 654
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
672
	{NULL,}
L
Linus Torvalds 已提交
673 674 675 676
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
677
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
678
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
679
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
680 681

/* internal cache of cache description objs */
682
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
683 684 685
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
686
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
687
	.name = "kmem_cache",
L
Linus Torvalds 已提交
688 689
};

690 691
#define BAD_ALIEN_MAGIC 0x01020304ul

692 693 694 695 696 697 698 699
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
700 701 702 703
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
704
 */
705 706 707 708
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
709 710 711

{
	int q;
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
739 740 741
	}
}
#else
742
static inline void init_lock_keys(void)
743 744 745 746
{
}
#endif

747 748 749 750
/*
 * 1. Guard access to the cache-chain.
 * 2. Protect sanity of cpu_online_map against cpu hotplug events
 */
I
Ingo Molnar 已提交
751
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
752 753 754 755 756 757 758 759
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
760 761
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
762 763 764
	FULL
} g_cpucache_up;

765 766 767 768 769 770 771 772
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

773
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
774

775
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
776 777 778 779
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
780 781
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
782 783 784 785 786
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
787 788 789
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
790
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
791 792 793 794 795
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
796
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
797 798 799
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
800
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
801 802
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
803
#endif
L
Linus Torvalds 已提交
804 805 806
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
807
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
808 809 810 811
{
	return __find_general_cachep(size, gfpflags);
}

812
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
813
{
814 815
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
816

A
Andrew Morton 已提交
817 818 819
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
820 821 822 823 824 825 826
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
827

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
876 877 878 879
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
880 881
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
882 883
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
884
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
885 886 887
	dump_stack();
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
919
		node = first_node(node_online_map);
920

921
	per_cpu(reap_node, cpu) = node;
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
939 940 941 942 943 944 945 946 947
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
948
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
949 950 951 952 953 954

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
955
	if (keventd_up() && reap_work->work.func == NULL) {
956
		init_reap_node(cpu);
957
		INIT_DELAYED_WORK(reap_work, cache_reap);
958 959
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
960 961 962
	}
}

963
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
964
					    int batchcount)
L
Linus Torvalds 已提交
965
{
P
Pekka Enberg 已提交
966
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
967 968
	struct array_cache *nc = NULL;

969
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
970 971 972 973 974
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
975
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
976 977 978 979
	}
	return nc;
}

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1029
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1030 1031 1032 1033 1034 1035 1036
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1037
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1038
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1039

P
Pekka Enberg 已提交
1040
static struct array_cache **alloc_alien_cache(int node, int limit)
1041 1042
{
	struct array_cache **ac_ptr;
1043
	int memsize = sizeof(void *) * nr_node_ids;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
1057
				for (i--; i <= 0; i--)
1058 1059 1060 1061 1062 1063 1064 1065 1066
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1067
static void free_alien_cache(struct array_cache **ac_ptr)
1068 1069 1070 1071 1072 1073
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1074
	    kfree(ac_ptr[i]);
1075 1076 1077
	kfree(ac_ptr);
}

1078
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1079
				struct array_cache *ac, int node)
1080 1081 1082 1083 1084
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1085 1086 1087 1088 1089
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1090 1091
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1092

1093
		free_block(cachep, ac->entry, ac->avail, node);
1094 1095 1096 1097 1098
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1099 1100 1101 1102 1103 1104 1105 1106 1107
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1108 1109

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1110 1111 1112 1113 1114 1115
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1116 1117
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1118
{
P
Pekka Enberg 已提交
1119
	int i = 0;
1120 1121 1122 1123
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1124
		ac = alien[i];
1125 1126 1127 1128 1129 1130 1131
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1132

1133
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1134 1135 1136 1137 1138
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1139 1140 1141
	int node;

	node = numa_node_id();
1142 1143 1144 1145 1146

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1147
	if (likely(slabp->nodeid == node))
1148 1149
		return 0;

P
Pekka Enberg 已提交
1150
	l3 = cachep->nodelists[node];
1151 1152 1153
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1154
		spin_lock(&alien->lock);
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1168 1169
#endif

1170
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1171
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1172 1173
{
	long cpu = (long)hcpu;
1174
	struct kmem_cache *cachep;
1175 1176 1177
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1178 1179

	switch (action) {
1180
	case CPU_LOCK_ACQUIRE:
I
Ingo Molnar 已提交
1181
		mutex_lock(&cache_chain_mutex);
1182 1183
		break;
	case CPU_UP_PREPARE:
1184
	case CPU_UP_PREPARE_FROZEN:
A
Andrew Morton 已提交
1185 1186
		/*
		 * We need to do this right in the beginning since
1187 1188 1189 1190 1191
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1192
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1193 1194
			/*
			 * Set up the size64 kmemlist for cpu before we can
1195 1196 1197 1198
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1199 1200
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1201 1202 1203
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1204
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1205

1206 1207 1208 1209 1210
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1211 1212
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1213

1214 1215
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1216 1217
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1218 1219 1220
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1221 1222 1223 1224
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1225
		list_for_each_entry(cachep, &cache_chain, next) {
1226
			struct array_cache *nc;
1227
			struct array_cache *shared = NULL;
1228
			struct array_cache **alien = NULL;
1229

1230
			nc = alloc_arraycache(node, cachep->limit,
1231
						cachep->batchcount);
L
Linus Torvalds 已提交
1232 1233
			if (!nc)
				goto bad;
1234 1235
			if (cachep->shared) {
				shared = alloc_arraycache(node,
1236 1237
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
1238 1239 1240
				if (!shared)
					goto bad;
			}
1241 1242 1243 1244 1245
			if (use_alien_caches) {
                                alien = alloc_alien_cache(node, cachep->limit);
                                if (!alien)
                                        goto bad;
                        }
L
Linus Torvalds 已提交
1246
			cachep->array[cpu] = nc;
1247 1248 1249
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1250 1251 1252 1253 1254 1255 1256 1257
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1258
			}
1259 1260 1261 1262 1263 1264 1265 1266 1267
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1268 1269 1270
		}
		break;
	case CPU_ONLINE:
1271
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1272 1273 1274
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1275
  	case CPU_DOWN_PREPARE:
1276
  	case CPU_DOWN_PREPARE_FROZEN:
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
		/* Now the cache_reaper is guaranteed to be not running. */
		per_cpu(reap_work, cpu).work.func = NULL;
  		break;
  	case CPU_DOWN_FAILED:
1288
  	case CPU_DOWN_FAILED_FROZEN:
1289 1290
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1291
	case CPU_DEAD:
1292
	case CPU_DEAD_FROZEN:
1293 1294 1295 1296 1297 1298 1299 1300
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1301
		/* fall thru */
1302
#endif
L
Linus Torvalds 已提交
1303
	case CPU_UP_CANCELED:
1304
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
1305 1306
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1307 1308
			struct array_cache *shared;
			struct array_cache **alien;
1309
			cpumask_t mask;
L
Linus Torvalds 已提交
1310

1311
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1312 1313 1314
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1315 1316 1317
			l3 = cachep->nodelists[node];

			if (!l3)
1318
				goto free_array_cache;
1319

1320
			spin_lock_irq(&l3->list_lock);
1321 1322 1323 1324

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1325
				free_block(cachep, nc->entry, nc->avail, node);
1326 1327

			if (!cpus_empty(mask)) {
1328
				spin_unlock_irq(&l3->list_lock);
1329
				goto free_array_cache;
P
Pekka Enberg 已提交
1330
			}
1331

1332 1333
			shared = l3->shared;
			if (shared) {
1334 1335
				free_block(cachep, shared->entry,
					   shared->avail, node);
1336 1337 1338
				l3->shared = NULL;
			}

1339 1340 1341 1342 1343 1344 1345 1346 1347
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1348
			}
1349
free_array_cache:
L
Linus Torvalds 已提交
1350 1351
			kfree(nc);
		}
1352 1353 1354 1355 1356 1357 1358 1359 1360
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1361
			drain_freelist(cachep, l3, l3->free_objects);
1362
		}
1363 1364
		break;
	case CPU_LOCK_RELEASE:
I
Ingo Molnar 已提交
1365
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1366 1367 1368
		break;
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1369
bad:
L
Linus Torvalds 已提交
1370 1371 1372
	return NOTIFY_BAD;
}

1373 1374 1375
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1376

1377 1378 1379
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1380 1381
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1382 1383 1384 1385 1386 1387 1388 1389
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1390 1391 1392 1393 1394
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1395 1396 1397 1398 1399
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1400 1401 1402
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1403 1404 1405 1406 1407 1408
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1409
	int i;
1410
	int order;
P
Pekka Enberg 已提交
1411
	int node;
1412

1413 1414 1415
	if (num_possible_nodes() == 1)
		use_alien_caches = 0;

1416 1417 1418 1419 1420
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1431 1432 1433
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1434 1435 1436
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1437
	 * 2) Create the first kmalloc cache.
1438
	 *    The struct kmem_cache for the new cache is allocated normally.
1439 1440 1441
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1442 1443
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1444 1445 1446
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1447 1448
	 */

P
Pekka Enberg 已提交
1449 1450
	node = numa_node_id();

L
Linus Torvalds 已提交
1451 1452 1453 1454 1455
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
P
Pekka Enberg 已提交
1456
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1457

E
Eric Dumazet 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1467 1468
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1469 1470
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1471

1472 1473 1474 1475 1476 1477
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1478
	BUG_ON(!cache_cache.num);
1479
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1480 1481 1482
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1483 1484 1485 1486 1487

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1488 1489 1490 1491
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1492 1493 1494
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1495 1496 1497 1498
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1499

A
Andrew Morton 已提交
1500
	if (INDEX_AC != INDEX_L3) {
1501
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1502 1503 1504 1505 1506 1507
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1508

1509 1510
	slab_early_init = 0;

L
Linus Torvalds 已提交
1511
	while (sizes->cs_size != ULONG_MAX) {
1512 1513
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1514 1515 1516
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1517 1518
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1519
		if (!sizes->cs_cachep) {
1520
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1521 1522 1523 1524 1525
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
1526 1527 1528
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1529 1530 1531 1532 1533
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
1534
#endif
L
Linus Torvalds 已提交
1535 1536 1537 1538 1539
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1540
		struct array_cache *ptr;
1541

L
Linus Torvalds 已提交
1542
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1543

L
Linus Torvalds 已提交
1544
		local_irq_disable();
1545 1546
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1547
		       sizeof(struct arraycache_init));
1548 1549 1550 1551 1552
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1553 1554
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1555

L
Linus Torvalds 已提交
1556
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1557

L
Linus Torvalds 已提交
1558
		local_irq_disable();
1559
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1560
		       != &initarray_generic.cache);
1561
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1562
		       sizeof(struct arraycache_init));
1563 1564 1565 1566 1567
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1568
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1569
		    ptr;
L
Linus Torvalds 已提交
1570 1571
		local_irq_enable();
	}
1572 1573
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1574 1575
		int nid;

1576
		/* Replace the static kmem_list3 structures for the boot cpu */
P
Pekka Enberg 已提交
1577
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1578

P
Pekka Enberg 已提交
1579
		for_each_online_node(nid) {
1580
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1581
				  &initkmem_list3[SIZE_AC + nid], nid);
1582 1583 1584

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1585
					  &initkmem_list3[SIZE_L3 + nid], nid);
1586 1587 1588
			}
		}
	}
L
Linus Torvalds 已提交
1589

1590
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1591
	{
1592
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1593
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1594
		list_for_each_entry(cachep, &cache_chain, next)
1595 1596
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1597
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1598 1599
	}

1600 1601 1602 1603
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1604 1605 1606
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1607 1608 1609
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1610 1611 1612
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1613 1614 1615
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1616 1617 1618 1619 1620 1621 1622
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1623 1624
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1625
	 */
1626
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1627
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1639
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1640 1641
{
	struct page *page;
1642
	int nr_pages;
L
Linus Torvalds 已提交
1643 1644
	int i;

1645
#ifndef CONFIG_MMU
1646 1647 1648
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1649
	 */
1650
	flags |= __GFP_COMP;
1651
#endif
1652

1653
	flags |= cachep->gfpflags;
1654 1655

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1656 1657 1658
	if (!page)
		return NULL;

1659
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1660
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1661 1662 1663 1664 1665
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1666 1667 1668
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1669 1670 1671 1672 1673
}

/*
 * Interface to system's page release.
 */
1674
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1675
{
P
Pekka Enberg 已提交
1676
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1677 1678 1679
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1680 1681 1682 1683 1684 1685
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1686
	while (i--) {
N
Nick Piggin 已提交
1687 1688
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1698
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1699
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1700 1701 1702 1703 1704 1705 1706 1707 1708

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1709
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1710
			    unsigned long caller)
L
Linus Torvalds 已提交
1711
{
1712
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1713

1714
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1715

P
Pekka Enberg 已提交
1716
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1717 1718
		return;

P
Pekka Enberg 已提交
1719 1720 1721 1722
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1723 1724 1725 1726 1727 1728 1729
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1730
				*addr++ = svalue;
L
Linus Torvalds 已提交
1731 1732 1733 1734 1735 1736 1737
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1738
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1739 1740 1741
}
#endif

1742
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1743
{
1744 1745
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1746 1747

	memset(addr, val, size);
P
Pekka Enberg 已提交
1748
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1749 1750 1751 1752 1753
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1754 1755 1756
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1757
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1758 1759 1760 1761 1762
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1763
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1764
	}
L
Linus Torvalds 已提交
1765
	printk("\n");
D
Dave Jones 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1780 1781 1782 1783 1784
}
#endif

#if DEBUG

1785
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1786 1787 1788 1789 1790
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1791
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1792 1793
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1794 1795 1796 1797
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1798
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1799
		print_symbol("(%s)",
A
Andrew Morton 已提交
1800
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1801 1802
		printk("\n");
	}
1803 1804
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1805
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1806 1807
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1808 1809
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1810 1811 1812 1813
		dump_line(realobj, i, limit);
	}
}

1814
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819
{
	char *realobj;
	int size, i;
	int lines = 0;

1820 1821
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1822

P
Pekka Enberg 已提交
1823
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1824
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1825
		if (i == size - 1)
L
Linus Torvalds 已提交
1826 1827 1828 1829 1830 1831
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1832
				printk(KERN_ERR
1833 1834
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1835 1836 1837
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1838
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1839
			limit = 16;
P
Pekka Enberg 已提交
1840 1841
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1854
		struct slab *slabp = virt_to_slab(objp);
1855
		unsigned int objnr;
L
Linus Torvalds 已提交
1856

1857
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1858
		if (objnr) {
1859
			objp = index_to_obj(cachep, slabp, objnr - 1);
1860
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1861
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1862
			       realobj, size);
L
Linus Torvalds 已提交
1863 1864
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1865
		if (objnr + 1 < cachep->num) {
1866
			objp = index_to_obj(cachep, slabp, objnr + 1);
1867
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1868
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1869
			       realobj, size);
L
Linus Torvalds 已提交
1870 1871 1872 1873 1874 1875
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1876 1877
#if DEBUG
/**
1878 1879 1880 1881 1882 1883
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1884
 */
1885
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1886 1887 1888
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1889
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1890 1891 1892

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1893 1894
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1895
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1896
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1906
					   "was overwritten");
L
Linus Torvalds 已提交
1907 1908
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1909
					   "was overwritten");
L
Linus Torvalds 已提交
1910 1911
		}
	}
1912
}
L
Linus Torvalds 已提交
1913
#else
1914
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1915 1916
{
}
L
Linus Torvalds 已提交
1917 1918
#endif

1919 1920 1921 1922 1923
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1924
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1925 1926
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1927
 */
1928
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1929 1930 1931 1932
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1933 1934 1935
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1936
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1937 1938 1939 1940 1941
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1942 1943
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1944 1945 1946
	}
}

A
Andrew Morton 已提交
1947 1948 1949 1950
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1951
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1952 1953 1954 1955
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1956
		cachep->nodelists[node] = &initkmem_list3[index + node];
1957
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1958 1959
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1960 1961 1962
	}
}

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1984
/**
1985 1986 1987 1988 1989 1990 1991
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1992 1993 1994 1995 1996
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1997
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1998
			size_t size, size_t align, unsigned long flags)
1999
{
2000
	unsigned long offslab_limit;
2001
	size_t left_over = 0;
2002
	int gfporder;
2003

A
Andrew Morton 已提交
2004
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
2005 2006 2007
		unsigned int num;
		size_t remainder;

2008
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2009 2010
		if (!num)
			continue;
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2024

2025
		/* Found something acceptable - save it away */
2026
		cachep->num = num;
2027
		cachep->gfporder = gfporder;
2028 2029
		left_over = remainder;

2030 2031 2032 2033 2034 2035 2036 2037
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2038 2039 2040 2041
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2042
		if (gfporder >= slab_break_gfp_order)
2043 2044
			break;

2045 2046 2047
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2048
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2049 2050 2051 2052 2053
			break;
	}
	return left_over;
}

2054
static int setup_cpu_cache(struct kmem_cache *cachep)
2055
{
2056 2057 2058
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2105
	return 0;
2106 2107
}

L
Linus Torvalds 已提交
2108 2109 2110 2111 2112 2113 2114
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
2115
 * @dtor: A destructor for the objects (not implemented anymore).
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121 2122
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2123 2124
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2137
struct kmem_cache *
L
Linus Torvalds 已提交
2138
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2139 2140
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2141
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2142 2143
{
	size_t left_over, slab_size, ralign;
2144
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2145 2146 2147 2148

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2149
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2150
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || dtor) {
A
Andrew Morton 已提交
2151 2152
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2153 2154
		BUG();
	}
L
Linus Torvalds 已提交
2155

2156
	/*
2157 2158
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2159
	 */
I
Ingo Molnar 已提交
2160
	mutex_lock(&cache_chain_mutex);
2161

2162
	list_for_each_entry(pc, &cache_chain, next) {
2163 2164 2165 2166 2167 2168 2169 2170
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2171
		res = probe_kernel_address(pc->name, tmp);
2172
		if (res) {
2173 2174
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2175
			       pc->buffer_size);
2176 2177 2178
			continue;
		}

P
Pekka Enberg 已提交
2179
		if (!strcmp(pc->name, name)) {
2180 2181
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2182 2183 2184 2185 2186
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2196
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2197
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2198 2199 2200 2201 2202 2203 2204
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2205 2206
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2207
	 */
2208
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2209

A
Andrew Morton 已提交
2210 2211
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2212 2213 2214
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2215 2216 2217
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2218 2219
	}

A
Andrew Morton 已提交
2220 2221
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2222 2223
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2224 2225 2226 2227
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2228 2229
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2230
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2231 2232 2233 2234
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2235 2236 2237 2238 2239 2240 2241

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2242
		ralign = __alignof__(unsigned long long);
2243

2244
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2245 2246 2247
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2248
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2249 2250 2251
	if (ralign < align) {
		ralign = align;
	}
2252
	/* disable debug if necessary */
2253
	if (ralign > __alignof__(unsigned long long))
2254
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2255
	/*
2256
	 * 4) Store it.
L
Linus Torvalds 已提交
2257 2258 2259 2260
	 */
	align = ralign;

	/* Get cache's description obj. */
2261
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2262
	if (!cachep)
2263
		goto oops;
L
Linus Torvalds 已提交
2264 2265

#if DEBUG
2266
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2267

2268 2269 2270 2271
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2272 2273
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2274 2275
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2276 2277
	}
	if (flags & SLAB_STORE_USER) {
2278 2279
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2280 2281 2282 2283
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2284
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2285 2286
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2287 2288 2289 2290 2291
		size = PAGE_SIZE;
	}
#endif
#endif

2292 2293 2294 2295 2296 2297
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2298 2299 2300 2301 2302 2303 2304 2305
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2306
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2307 2308

	if (!cachep->num) {
2309 2310
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2311 2312
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2313
		goto oops;
L
Linus Torvalds 已提交
2314
	}
P
Pekka Enberg 已提交
2315 2316
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2329 2330
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2331 2332 2333 2334 2335 2336
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2337
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2338 2339 2340
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2341
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2342
		cachep->gfpflags |= GFP_DMA;
2343
	cachep->buffer_size = size;
2344
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2345

2346
	if (flags & CFLGS_OFF_SLAB) {
2347
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2348 2349 2350 2351 2352 2353 2354 2355 2356
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2357 2358 2359
	cachep->ctor = ctor;
	cachep->name = name;

2360 2361 2362 2363 2364
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2365 2366 2367

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2368
oops:
L
Linus Torvalds 已提交
2369 2370
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2371
		      name);
I
Ingo Molnar 已提交
2372
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2388
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2389 2390 2391
{
#ifdef CONFIG_SMP
	check_irq_off();
2392
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2393 2394
#endif
}
2395

2396
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2397 2398 2399 2400 2401 2402 2403
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2404 2405 2406 2407
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2408
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2409 2410
#endif

2411 2412 2413 2414
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2415 2416
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2417
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2418
	struct array_cache *ac;
2419
	int node = numa_node_id();
L
Linus Torvalds 已提交
2420 2421

	check_irq_off();
2422
	ac = cpu_cache_get(cachep);
2423 2424 2425
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2426 2427 2428
	ac->avail = 0;
}

2429
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2430
{
2431 2432 2433
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2434
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2435
	check_irq_on();
P
Pekka Enberg 已提交
2436
	for_each_online_node(node) {
2437
		l3 = cachep->nodelists[node];
2438 2439 2440 2441 2442 2443 2444
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2445
			drain_array(cachep, l3, l3->shared, 1, node);
2446
	}
L
Linus Torvalds 已提交
2447 2448
}

2449 2450 2451 2452 2453 2454 2455 2456
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2457
{
2458 2459
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2460 2461
	struct slab *slabp;

2462 2463
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2464

2465
		spin_lock_irq(&l3->list_lock);
2466
		p = l3->slabs_free.prev;
2467 2468 2469 2470
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2471

2472
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2473
#if DEBUG
2474
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2475 2476
#endif
		list_del(&slabp->list);
2477 2478 2479 2480 2481
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2482
		spin_unlock_irq(&l3->list_lock);
2483 2484
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2485
	}
2486 2487
out:
	return nr_freed;
L
Linus Torvalds 已提交
2488 2489
}

2490
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2491
static int __cache_shrink(struct kmem_cache *cachep)
2492 2493 2494 2495 2496 2497 2498 2499 2500
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2501 2502 2503 2504 2505 2506 2507
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2508 2509 2510 2511
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2512 2513 2514 2515 2516 2517 2518
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2519
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2520
{
2521
	int ret;
2522
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2523

2524 2525 2526 2527
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
	return ret;
L
Linus Torvalds 已提交
2528 2529 2530 2531 2532 2533 2534
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2535
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2547
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2548
{
2549
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2550 2551

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2552
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2553 2554 2555 2556 2557 2558
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2559
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2560
		mutex_unlock(&cache_chain_mutex);
2561
		return;
L
Linus Torvalds 已提交
2562 2563 2564
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2565
		synchronize_rcu();
L
Linus Torvalds 已提交
2566

2567
	__kmem_cache_destroy(cachep);
2568
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2569 2570 2571
}
EXPORT_SYMBOL(kmem_cache_destroy);

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2583
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2584 2585
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2586 2587
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2588

L
Linus Torvalds 已提交
2589 2590
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2591
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2592
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2593 2594 2595
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2596
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2597 2598 2599 2600
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2601
	slabp->s_mem = objp + colour_off;
2602
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2603 2604 2605 2606 2607
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2608
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2609 2610
}

2611
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2612
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2613 2614 2615 2616
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2617
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2630 2631 2632
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2633 2634
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2635
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2636
				     ctor_flags);
L
Linus Torvalds 已提交
2637 2638 2639 2640

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2641
					   " end of an object");
L
Linus Torvalds 已提交
2642 2643
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2644
					   " start of an object");
L
Linus Torvalds 已提交
2645
		}
A
Andrew Morton 已提交
2646 2647
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2648
			kernel_map_pages(virt_to_page(objp),
2649
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2650 2651 2652 2653
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2654
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2655
	}
P
Pekka Enberg 已提交
2656
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2657 2658 2659
	slabp->free = 0;
}

2660
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2661
{
2662 2663 2664 2665 2666 2667
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2668 2669
}

A
Andrew Morton 已提交
2670 2671
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2672
{
2673
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2687 2688
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2689
{
2690
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2691 2692 2693 2694 2695

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2696
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2697
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2698
				"'%s', objp %p\n", cachep->name, objp);
2699 2700 2701 2702 2703 2704 2705 2706
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2707 2708 2709 2710 2711 2712 2713
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2714
{
2715
	int nr_pages;
L
Linus Torvalds 已提交
2716 2717
	struct page *page;

2718
	page = virt_to_page(addr);
2719

2720
	nr_pages = 1;
2721
	if (likely(!PageCompound(page)))
2722 2723
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2724
	do {
2725 2726
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2727
		page++;
2728
	} while (--nr_pages);
L
Linus Torvalds 已提交
2729 2730 2731 2732 2733 2734
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2735 2736
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2737
{
P
Pekka Enberg 已提交
2738 2739 2740 2741
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2742
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2743

A
Andrew Morton 已提交
2744 2745 2746
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2747
	 */
2748
	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
L
Linus Torvalds 已提交
2749 2750

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2751
	local_flags = (flags & GFP_LEVEL_MASK);
2752
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2753
	check_irq_off();
2754 2755
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2756 2757

	/* Get colour for the slab, and cal the next value. */
2758 2759 2760 2761 2762
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2763

2764
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2777 2778 2779
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2780
	 */
2781 2782
	if (!objp)
		objp = kmem_getpages(cachep, flags, nodeid);
A
Andrew Morton 已提交
2783
	if (!objp)
L
Linus Torvalds 已提交
2784 2785 2786
		goto failed;

	/* Get slab management. */
2787 2788
	slabp = alloc_slabmgmt(cachep, objp, offset,
			local_flags & ~GFP_THISNODE, nodeid);
A
Andrew Morton 已提交
2789
	if (!slabp)
L
Linus Torvalds 已提交
2790 2791
		goto opps1;

2792
	slabp->nodeid = nodeid;
2793
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2794 2795 2796 2797 2798 2799

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2800
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2801 2802

	/* Make slab active. */
2803
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2804
	STATS_INC_GROWN(cachep);
2805 2806
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2807
	return 1;
A
Andrew Morton 已提交
2808
opps1:
L
Linus Torvalds 已提交
2809
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2810
failed:
L
Linus Torvalds 已提交
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2827 2828
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2829 2830 2831
	}
}

2832 2833
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2834
	unsigned long long redzone1, redzone2;
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2850
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2851 2852 2853
			obj, redzone1, redzone2);
}

2854
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2855
				   void *caller)
L
Linus Torvalds 已提交
2856 2857 2858 2859 2860
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2861
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2862
	kfree_debugcheck(objp);
2863
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2864

2865
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2866 2867

	if (cachep->flags & SLAB_RED_ZONE) {
2868
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2869 2870 2871 2872 2873 2874
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2875
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2876 2877

	BUG_ON(objnr >= cachep->num);
2878
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2879

2880 2881 2882
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2883 2884
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2885
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2886
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2887
			kernel_map_pages(virt_to_page(objp),
2888
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2899
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2900 2901 2902
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2903

L
Linus Torvalds 已提交
2904 2905 2906 2907 2908 2909 2910
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2911 2912 2913 2914
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2915
		for (i = 0;
2916
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2917
		     i++) {
A
Andrew Morton 已提交
2918
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2919
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2920
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2932
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2933 2934 2935 2936
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2937 2938 2939
	int node;

	node = numa_node_id();
L
Linus Torvalds 已提交
2940 2941

	check_irq_off();
2942
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2943
retry:
L
Linus Torvalds 已提交
2944 2945
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2946 2947 2948 2949
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2950 2951 2952
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2953
	l3 = cachep->nodelists[node];
2954 2955 2956

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2957

2958 2959 2960 2961
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
2977 2978 2979 2980 2981 2982 2983 2984

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);

L
Linus Torvalds 已提交
2985 2986 2987 2988 2989
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2990
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
2991
							    node);
L
Linus Torvalds 已提交
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3003
must_grow:
L
Linus Torvalds 已提交
3004
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3005
alloc_done:
3006
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3007 3008 3009

	if (unlikely(!ac->avail)) {
		int x;
3010
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3011

A
Andrew Morton 已提交
3012
		/* cache_grow can reenable interrupts, then ac could change. */
3013
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3014
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3015 3016
			return NULL;

A
Andrew Morton 已提交
3017
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3018 3019 3020
			goto retry;
	}
	ac->touched = 1;
3021
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3022 3023
}

A
Andrew Morton 已提交
3024 3025
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3026 3027 3028 3029 3030 3031 3032 3033
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3034 3035
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3036
{
P
Pekka Enberg 已提交
3037
	if (!objp)
L
Linus Torvalds 已提交
3038
		return objp;
P
Pekka Enberg 已提交
3039
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3040
#ifdef CONFIG_DEBUG_PAGEALLOC
3041
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3042
			kernel_map_pages(virt_to_page(objp),
3043
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3055 3056 3057 3058
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3059
			printk(KERN_ERR
3060
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3061 3062
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3063 3064 3065 3066
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3067 3068 3069 3070 3071
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3072
		slabp = page_get_slab(virt_to_head_page(objp));
3073 3074 3075 3076
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3077
	objp += obj_offset(cachep);
3078 3079
	if (cachep->ctor && cachep->flags & SLAB_POISON)
		cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
3080 3081 3082 3083 3084 3085
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3086 3087 3088 3089 3090 3091
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
#ifdef CONFIG_FAILSLAB

static struct failslab_attr {

	struct fault_attr attr;

	u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
	struct dentry *ignore_gfp_wait_file;
#endif

} failslab = {
	.attr = FAULT_ATTR_INITIALIZER,
3105
	.ignore_gfp_wait = 1,
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
};

static int __init setup_failslab(char *str)
{
	return setup_fault_attr(&failslab.attr, str);
}
__setup("failslab=", setup_failslab);

static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	if (cachep == &cache_cache)
		return 0;
	if (flags & __GFP_NOFAIL)
		return 0;
	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
		return 0;

	return should_fail(&failslab.attr, obj_size(cachep));
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init failslab_debugfs(void)
{
	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;
	int err;

3134
	err = init_fault_attr_dentries(&failslab.attr, "failslab");
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	if (err)
		return err;
	dir = failslab.attr.dentries.dir;

	failslab.ignore_gfp_wait_file =
		debugfs_create_bool("ignore-gfp-wait", mode, dir,
				      &failslab.ignore_gfp_wait);

	if (!failslab.ignore_gfp_wait_file) {
		err = -ENOMEM;
		debugfs_remove(failslab.ignore_gfp_wait_file);
		cleanup_fault_attr_dentries(&failslab.attr);
	}

	return err;
}

late_initcall(failslab_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAILSLAB */

static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	return 0;
}

#endif /* CONFIG_FAILSLAB */

3165
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3166
{
P
Pekka Enberg 已提交
3167
	void *objp;
L
Linus Torvalds 已提交
3168 3169
	struct array_cache *ac;

3170
	check_irq_off();
3171

3172
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3173 3174 3175
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3176
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3177 3178 3179 3180
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3181 3182 3183
	return objp;
}

3184
#ifdef CONFIG_NUMA
3185
/*
3186
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3187 3188 3189 3190 3191 3192 3193 3194
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3195
	if (in_interrupt() || (flags & __GFP_THISNODE))
3196 3197 3198 3199 3200 3201 3202
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3203
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3204 3205 3206
	return NULL;
}

3207 3208
/*
 * Fallback function if there was no memory available and no objects on a
3209 3210 3211 3212 3213
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3214
 */
3215
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3216
{
3217 3218
	struct zonelist *zonelist;
	gfp_t local_flags;
3219 3220
	struct zone **z;
	void *obj = NULL;
3221
	int nid;
3222 3223 3224 3225 3226 3227 3228

	if (flags & __GFP_THISNODE)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
			->node_zonelists[gfp_zone(flags)];
	local_flags = (flags & GFP_LEVEL_MASK);
3229

3230 3231 3232 3233 3234
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3235
	for (z = zonelist->zones; *z && !obj; z++) {
3236
		nid = zone_to_nid(*z);
3237

3238
		if (cpuset_zone_allowed_hardwall(*z, flags) &&
3239 3240 3241 3242 3243 3244
			cache->nodelists[nid] &&
			cache->nodelists[nid]->free_objects)
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
	}

3245
	if (!obj) {
3246 3247 3248 3249 3250 3251
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3252 3253 3254
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3255
		obj = kmem_getpages(cache, flags, -1);
3256 3257
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3274
				/* cache_grow already freed obj */
3275 3276 3277
				obj = NULL;
			}
		}
3278
	}
3279 3280 3281
	return obj;
}

3282 3283
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3284
 */
3285
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3286
				int nodeid)
3287 3288
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3289 3290 3291 3292 3293 3294 3295 3296
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3297
retry:
3298
	check_irq_off();
P
Pekka Enberg 已提交
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3318
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3319 3320 3321 3322 3323
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3324
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3325
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3326
	else
P
Pekka Enberg 已提交
3327
		list_add(&slabp->list, &l3->slabs_partial);
3328

P
Pekka Enberg 已提交
3329 3330
	spin_unlock(&l3->list_lock);
	goto done;
3331

A
Andrew Morton 已提交
3332
must_grow:
P
Pekka Enberg 已提交
3333
	spin_unlock(&l3->list_lock);
3334
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3335 3336
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3337

3338
	return fallback_alloc(cachep, flags);
3339

A
Andrew Morton 已提交
3340
done:
P
Pekka Enberg 已提交
3341
	return obj;
3342
}
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3363 3364 3365
	if (should_failslab(cachep, flags))
		return NULL;

3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3436 3437 3438
	if (should_failslab(cachep, flags))
		return NULL;

3439 3440 3441 3442 3443 3444 3445 3446 3447
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

	return objp;
}
3448 3449 3450 3451

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3452
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3453
		       int node)
L
Linus Torvalds 已提交
3454 3455
{
	int i;
3456
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3457 3458 3459 3460 3461

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3462
		slabp = virt_to_slab(objp);
3463
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3464
		list_del(&slabp->list);
3465
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3466
		check_slabp(cachep, slabp);
3467
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3468
		STATS_DEC_ACTIVE(cachep);
3469
		l3->free_objects++;
L
Linus Torvalds 已提交
3470 3471 3472 3473
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3474 3475
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3476 3477 3478 3479 3480 3481
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3482 3483
				slab_destroy(cachep, slabp);
			} else {
3484
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3485 3486 3487 3488 3489 3490
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3491
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3492 3493 3494 3495
		}
	}
}

3496
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3497 3498
{
	int batchcount;
3499
	struct kmem_list3 *l3;
3500
	int node = numa_node_id();
L
Linus Torvalds 已提交
3501 3502 3503 3504 3505 3506

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3507
	l3 = cachep->nodelists[node];
3508
	spin_lock(&l3->list_lock);
3509 3510
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3511
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3512 3513 3514
		if (max) {
			if (batchcount > max)
				batchcount = max;
3515
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3516
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3517 3518 3519 3520 3521
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3522
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3523
free_done:
L
Linus Torvalds 已提交
3524 3525 3526 3527 3528
#if STATS
	{
		int i = 0;
		struct list_head *p;

3529 3530
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3542
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3543
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3544
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3545 3546 3547
}

/*
A
Andrew Morton 已提交
3548 3549
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3550
 */
3551
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3552
{
3553
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3554 3555 3556 3557

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3558
	if (use_alien_caches && cache_free_alien(cachep, objp))
3559 3560
		return;

L
Linus Torvalds 已提交
3561 3562
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3563
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3564 3565 3566 3567
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3568
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3580
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3581
{
3582
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3583 3584 3585
}
EXPORT_SYMBOL(kmem_cache_alloc);

3586
/**
3587
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3617
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3618
{
P
Pekka Enberg 已提交
3619
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3620
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3621
	unsigned long align_mask = BYTES_PER_WORD - 1;
3622
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3638
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3639 3640
		goto out;
	return 1;
A
Andrew Morton 已提交
3641
out:
L
Linus Torvalds 已提交
3642 3643 3644 3645
	return 0;
}

#ifdef CONFIG_NUMA
3646 3647 3648 3649 3650
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
			__builtin_return_address(0));
}
L
Linus Torvalds 已提交
3651 3652
EXPORT_SYMBOL(kmem_cache_alloc_node);

3653 3654
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3655
{
3656
	struct kmem_cache *cachep;
3657 3658 3659 3660 3661 3662

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3663 3664 3665 3666 3667 3668 3669

#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3670
EXPORT_SYMBOL(__kmalloc_node);
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
		int node, void *caller)
{
	return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3686 3687

/**
3688
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3689
 * @size: how many bytes of memory are required.
3690
 * @flags: the type of memory to allocate (see kmalloc).
3691
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3692
 */
3693 3694
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3695
{
3696
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3697

3698 3699 3700 3701 3702 3703
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3704 3705
	if (unlikely(cachep == NULL))
		return NULL;
3706 3707 3708 3709
	return __cache_alloc(cachep, flags, caller);
}


3710
#ifdef CONFIG_DEBUG_SLAB
3711 3712
void *__kmalloc(size_t size, gfp_t flags)
{
3713
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3714 3715 3716
}
EXPORT_SYMBOL(__kmalloc);

3717 3718 3719 3720 3721
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3722 3723 3724 3725 3726 3727 3728

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3729 3730
#endif

P
Pekka Enberg 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	struct kmem_cache *cache, *new_cache;
	void *ret;

	if (unlikely(!p))
		return kmalloc_track_caller(new_size, flags);

	if (unlikely(!new_size)) {
		kfree(p);
		return NULL;
	}

	cache = virt_to_cache(p);
	new_cache = __find_general_cachep(new_size, flags);

	/*
 	 * If new size fits in the current cache, bail out.
 	 */
	if (likely(cache == new_cache))
		return (void *)p;

	/*
 	 * We are on the slow-path here so do not use __cache_alloc
 	 * because it bloats kernel text.
 	 */
	ret = kmalloc_track_caller(new_size, flags);
	if (ret) {
		memcpy(ret, p, min(new_size, ksize(p)));
		kfree(p);
	}
	return ret;
}
EXPORT_SYMBOL(krealloc);

L
Linus Torvalds 已提交
3777 3778 3779 3780 3781 3782 3783 3784
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3785
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3786 3787 3788
{
	unsigned long flags;

3789 3790
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3791
	local_irq_save(flags);
3792
	debug_check_no_locks_freed(objp, obj_size(cachep));
3793
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3794 3795 3796 3797 3798 3799 3800 3801
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3802 3803
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3804 3805 3806 3807 3808
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3809
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3810 3811 3812 3813 3814 3815
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3816
	c = virt_to_cache(objp);
3817
	debug_check_no_locks_freed(objp, obj_size(c));
3818
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3819 3820 3821 3822
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3823
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3824
{
3825
	return obj_size(cachep);
L
Linus Torvalds 已提交
3826 3827 3828
}
EXPORT_SYMBOL(kmem_cache_size);

3829
const char *kmem_cache_name(struct kmem_cache *cachep)
3830 3831 3832 3833 3834
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3835
/*
3836
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3837
 */
3838
static int alloc_kmemlist(struct kmem_cache *cachep)
3839 3840 3841
{
	int node;
	struct kmem_list3 *l3;
3842
	struct array_cache *new_shared;
3843
	struct array_cache **new_alien = NULL;
3844 3845

	for_each_online_node(node) {
3846

3847 3848 3849 3850 3851
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3852

3853 3854 3855
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3856
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3857
					0xbaadf00d);
3858 3859 3860 3861
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3862
		}
3863

A
Andrew Morton 已提交
3864 3865
		l3 = cachep->nodelists[node];
		if (l3) {
3866 3867
			struct array_cache *shared = l3->shared;

3868 3869
			spin_lock_irq(&l3->list_lock);

3870
			if (shared)
3871 3872
				free_block(cachep, shared->entry,
						shared->avail, node);
3873

3874 3875
			l3->shared = new_shared;
			if (!l3->alien) {
3876 3877 3878
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3879
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3880
					cachep->batchcount + cachep->num;
3881
			spin_unlock_irq(&l3->list_lock);
3882
			kfree(shared);
3883 3884 3885
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3886
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3887 3888 3889
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3890
			goto fail;
3891
		}
3892 3893 3894

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3895
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3896
		l3->shared = new_shared;
3897
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3898
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3899
					cachep->batchcount + cachep->num;
3900 3901
		cachep->nodelists[node] = l3;
	}
3902
	return 0;
3903

A
Andrew Morton 已提交
3904
fail:
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3920
	return -ENOMEM;
3921 3922
}

L
Linus Torvalds 已提交
3923
struct ccupdate_struct {
3924
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3925 3926 3927 3928 3929
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3930
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3931 3932 3933
	struct array_cache *old;

	check_irq_off();
3934
	old = cpu_cache_get(new->cachep);
3935

L
Linus Torvalds 已提交
3936 3937 3938 3939
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3940
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3941 3942
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3943
{
3944
	struct ccupdate_struct *new;
3945
	int i;
L
Linus Torvalds 已提交
3946

3947 3948 3949 3950
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3951
	for_each_online_cpu(i) {
3952
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3953
						batchcount);
3954
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3955
			for (i--; i >= 0; i--)
3956 3957
				kfree(new->new[i]);
			kfree(new);
3958
			return -ENOMEM;
L
Linus Torvalds 已提交
3959 3960
		}
	}
3961
	new->cachep = cachep;
L
Linus Torvalds 已提交
3962

3963
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3964

L
Linus Torvalds 已提交
3965 3966 3967
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3968
	cachep->shared = shared;
L
Linus Torvalds 已提交
3969

3970
	for_each_online_cpu(i) {
3971
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3972 3973
		if (!ccold)
			continue;
3974
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3975
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3976
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3977 3978
		kfree(ccold);
	}
3979
	kfree(new);
3980
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3981 3982
}

3983
/* Called with cache_chain_mutex held always */
3984
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3985 3986 3987 3988
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3989 3990
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3991 3992
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3993
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3994 3995 3996 3997
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3998
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3999
		limit = 1;
4000
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
4001
		limit = 8;
4002
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
4003
		limit = 24;
4004
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
4005 4006 4007 4008
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4009 4010
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4011 4012 4013 4014 4015 4016 4017 4018
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4019
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4020 4021 4022
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4023 4024 4025
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4026 4027 4028 4029
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
4030
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
4031 4032
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4033
		       cachep->name, -err);
4034
	return err;
L
Linus Torvalds 已提交
4035 4036
}

4037 4038
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4039 4040
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4041 4042 4043
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4044 4045 4046
{
	int tofree;

4047 4048
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4049 4050
	if (ac->touched && !force) {
		ac->touched = 0;
4051
	} else {
4052
		spin_lock_irq(&l3->list_lock);
4053 4054 4055 4056 4057 4058 4059 4060 4061
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4062
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4063 4064 4065 4066 4067
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4068
 * @w: work descriptor
L
Linus Torvalds 已提交
4069 4070 4071 4072 4073 4074
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4075 4076
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4077
 */
4078
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4079
{
4080
	struct kmem_cache *searchp;
4081
	struct kmem_list3 *l3;
4082
	int node = numa_node_id();
4083 4084
	struct delayed_work *work =
		container_of(w, struct delayed_work, work);
L
Linus Torvalds 已提交
4085

4086
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4087
		/* Give up. Setup the next iteration. */
4088
		goto out;
L
Linus Torvalds 已提交
4089

4090
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4091 4092
		check_irq_on();

4093 4094 4095 4096 4097
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4098
		l3 = searchp->nodelists[node];
4099

4100
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4101

4102
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4103

4104 4105 4106 4107
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4108
		if (time_after(l3->next_reap, jiffies))
4109
			goto next;
L
Linus Torvalds 已提交
4110

4111
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4112

4113
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4114

4115
		if (l3->free_touched)
4116
			l3->free_touched = 0;
4117 4118
		else {
			int freed;
L
Linus Torvalds 已提交
4119

4120 4121 4122 4123
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4124
next:
L
Linus Torvalds 已提交
4125 4126 4127
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4128
	mutex_unlock(&cache_chain_mutex);
4129
	next_reap_node();
4130
out:
A
Andrew Morton 已提交
4131
	/* Set up the next iteration */
4132
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4133 4134 4135 4136
}

#ifdef CONFIG_PROC_FS

4137
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4138
{
4139 4140 4141 4142
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4143
#if STATS
4144
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4145
#else
4146
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4147
#endif
4148 4149 4150 4151
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4152
#if STATS
4153
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4154
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4155
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4156
#endif
4157 4158 4159 4160 4161 4162 4163 4164
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
4165
	mutex_lock(&cache_chain_mutex);
4166 4167
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
4168 4169 4170 4171 4172 4173
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
4174
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
4175 4176 4177 4178
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4179
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
4180
	++*pos;
A
Andrew Morton 已提交
4181 4182
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
4183 4184 4185 4186
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4187
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4188 4189 4190 4191
}

static int s_show(struct seq_file *m, void *p)
{
4192
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
4193 4194 4195 4196 4197
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4198
	const char *name;
L
Linus Torvalds 已提交
4199
	char *error = NULL;
4200 4201
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4202 4203 4204

	active_objs = 0;
	num_slabs = 0;
4205 4206 4207 4208 4209
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4210 4211
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4212

4213
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4214 4215 4216 4217 4218
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4219
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4220 4221 4222 4223 4224 4225 4226
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4227
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4228 4229 4230 4231 4232
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4233 4234
		if (l3->shared)
			shared_avail += l3->shared->avail;
4235

4236
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4237
	}
P
Pekka Enberg 已提交
4238 4239
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4240
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4241 4242
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4243
	name = cachep->name;
L
Linus Torvalds 已提交
4244 4245 4246 4247
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4248
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4249
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4250
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4251
		   cachep->limit, cachep->batchcount, cachep->shared);
4252
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4253
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4254
#if STATS
P
Pekka Enberg 已提交
4255
	{			/* list3 stats */
L
Linus Torvalds 已提交
4256 4257 4258 4259 4260 4261 4262
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4263
		unsigned long node_frees = cachep->node_frees;
4264
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4265

4266
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4267
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4268
				reaped, errors, max_freeable, node_allocs,
4269
				node_frees, overflows);
L
Linus Torvalds 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4279
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4300
const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4301 4302 4303 4304
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4315 4316
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4317
{
P
Pekka Enberg 已提交
4318
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4319
	int limit, batchcount, shared, res;
4320
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4321

L
Linus Torvalds 已提交
4322 4323 4324 4325
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4326
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4337
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4338
	res = -EINVAL;
4339
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4340
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4341 4342
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4343
				res = 0;
L
Linus Torvalds 已提交
4344
			} else {
4345
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4346
						       batchcount, shared);
L
Linus Torvalds 已提交
4347 4348 4349 4350
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4351
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4352 4353 4354 4355
	if (res >= 0)
		res = count;
	return res;
}
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4422
	char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
4423

4424
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4425
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4426
		if (modname[0])
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4461
		list_for_each_entry(slabp, &l3->slabs_full, list)
4462
			handle_slab(n, cachep, slabp);
4463
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4490

4491 4492 4493
	return 0;
}

4494
const struct seq_operations slabstats_op = {
4495 4496 4497 4498 4499 4500
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4501 4502
#endif

4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4515
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4516
{
4517 4518
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4519

4520
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4521
}