i7core_edac.c 61.6 KB
Newer Older
1 2
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
D
David Sterba 已提交
3
 * This driver supports the memory controllers found on the Intel
4 5 6
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12
 *	 Mauro Carvalho Chehab
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
N
Nils Carlson 已提交
34
#include <linux/dmi.h>
35 36
#include <linux/edac.h>
#include <linux/mmzone.h>
37
#include <linux/smp.h>
38
#include <asm/mce.h>
39
#include <asm/processor.h>
40
#include <asm/div64.h>
41

42
#include "edac_module.h"
43

44 45 46 47 48
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

49 50 51
static int use_pci_fixup;
module_param(use_pci_fixup, int, 0444);
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
52 53 54 55 56 57 58 59 60
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


61 62 63
/*
 * Alter this version for the module when modifications are made
 */
M
Michal Marek 已提交
64
#define I7CORE_REVISION    " Ver: 1.0.0"
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

80 81 82
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90
83 84
  #define MC_CFG_UNLOCK		0x02
  #define MC_CFG_LOCK		0x00
85

86 87 88 89 90 91
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

92
/*
D
David Mackey 已提交
93
 * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet:
94 95 96 97 98 99 100 101 102 103
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

D
David Mackey 已提交
104
/* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */
105 106 107 108 109 110 111
#define MC_SSRCONTROL		0x48
  #define SSR_MODE_DISABLE	0x00
  #define SSR_MODE_ENABLE	0x01
  #define SSR_MODE_MASK		0x03

#define MC_SCRUB_CONTROL	0x4c
  #define STARTSCRUB		(1 << 24)
N
Nils Carlson 已提交
112
  #define SCRUBINTERVAL_MASK    0xffffff
113

114 115 116 117 118 119 120 121 122 123 124
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


125 126
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

127 128 129 130 131 132
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

133 134 135 136
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

137 138 139
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

140
#define MC_CHANNEL_ADDR_MATCH	0xf0
141 142 143 144 145 146 147 148 149 150
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
151

152
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
153

154 155 156 157 158 159 160
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
161 162 163 164
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
165
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
166
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
167 168
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
169

170 171
#define MC_RANK_PRESENT		0x7c

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

195 196 197 198 199
/*
 * i7core structs
 */

#define NUM_CHANS 3
200 201 202
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
203 204 205 206 207

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
208
	u32	ch_map;
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

223
struct i7core_channel {
224 225 226
	bool		is_3dimms_present;
	bool		is_single_4rank;
	bool		has_4rank;
227
	u32		dimms;
228 229
};

230
struct pci_id_descr {
231 232 233
	int			dev;
	int			func;
	int 			dev_id;
234
	int			optional;
235 236
};

237
struct pci_id_table {
238 239
	const struct pci_id_descr	*descr;
	int				n_devs;
240 241
};

242 243 244 245
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
246
	int			n_devs;
247 248 249
	struct mem_ctl_info	*mci;
};

250
struct i7core_pvt {
251
	struct device *addrmatch_dev, *chancounts_dev;
252

253 254 255 256 257
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
258

259
	struct i7core_info	info;
260
	struct i7core_inject	inject;
261
	struct i7core_channel	channel[NUM_CHANS];
262

263
	int		ce_count_available;
264 265

			/* ECC corrected errors counts per udimm */
266 267
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
268
			/* ECC corrected errors counts per rdimm */
269 270
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
271

272
	bool		is_registered, enable_scrub;
273

N
Nils Carlson 已提交
274 275 276
	/* DCLK Frequency used for computing scrub rate */
	int			dclk_freq;

277 278
	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
279 280
};

281 282 283 284 285
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

286
static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
287 288 289
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
290
			/* Exists only for RDIMM */
291
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
311 312 313 314 315 316 317 318 319 320

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },

321
};
322

323
static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
324 325 326 327 328 329 330 331 332
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

333 334 335 336
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
337 338 339 340 341 342

	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
343 344
};

345
static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
370 371 372 373

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

374 375
};

376 377
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_table[] = {
378 379 380
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
381
	{0,}			/* 0 terminated list. */
382 383
};

384 385 386
/*
 *	pci_device_id	table for which devices we are looking for
 */
387
static const struct pci_device_id i7core_pci_tbl[] = {
388
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
389
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
390 391 392
	{0,}			/* 0 terminated list. */
};

393
/****************************************************************************
D
David Mackey 已提交
394
			Ancillary status routines
395 396 397
 ****************************************************************************/

	/* MC_CONTROL bits */
398 399
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
400 401

	/* MC_STATUS bits */
402
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
403
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
404 405

	/* MC_MAX_DOD read functions */
406
static inline int numdimms(u32 dimms)
407
{
408
	return (dimms & 0x3) + 1;
409 410
}

411
static inline int numrank(u32 rank)
412
{
413
	static const int ranks[] = { 1, 2, 4, -EINVAL };
414

415
	return ranks[rank & 0x3];
416 417
}

418
static inline int numbank(u32 bank)
419
{
420
	static const int banks[] = { 4, 8, 16, -EINVAL };
421

422
	return banks[bank & 0x3];
423 424
}

425
static inline int numrow(u32 row)
426
{
427
	static const int rows[] = {
428 429 430 431
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

432
	return rows[row & 0x7];
433 434
}

435
static inline int numcol(u32 col)
436
{
437
	static const int cols[] = {
438 439
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
440
	return cols[col & 0x3];
441 442
}

443
static struct i7core_dev *get_i7core_dev(u8 socket)
444 445 446 447 448 449 450 451 452 453 454
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

455 456 457 458 459 460 461 462 463
static struct i7core_dev *alloc_i7core_dev(u8 socket,
					   const struct pci_id_table *table)
{
	struct i7core_dev *i7core_dev;

	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
	if (!i7core_dev)
		return NULL;

K
Kees Cook 已提交
464
	i7core_dev->pdev = kcalloc(table->n_devs, sizeof(*i7core_dev->pdev),
465 466 467 468 469 470 471 472 473 474 475 476 477
				   GFP_KERNEL);
	if (!i7core_dev->pdev) {
		kfree(i7core_dev);
		return NULL;
	}

	i7core_dev->socket = socket;
	i7core_dev->n_devs = table->n_devs;
	list_add_tail(&i7core_dev->list, &i7core_edac_list);

	return i7core_dev;
}

478 479 480 481 482 483 484
static void free_i7core_dev(struct i7core_dev *i7core_dev)
{
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}

485 486 487
/****************************************************************************
			Memory check routines
 ****************************************************************************/
488

489
static int get_dimm_config(struct mem_ctl_info *mci)
490 491
{
	struct i7core_pvt *pvt = mci->pvt_info;
492
	struct pci_dev *pdev;
493
	int i, j;
494
	enum edac_type mode;
495
	enum mem_type mtype;
496
	struct dimm_info *dimm;
497

498
	/* Get data from the MC register, function 0 */
499
	pdev = pvt->pci_mcr[0];
500
	if (!pdev)
501 502
		return -ENODEV;

503
	/* Device 3 function 0 reads */
504 505 506 507
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
508

509 510 511
	edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
		 pvt->i7core_dev->socket, pvt->info.mc_control,
		 pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map);
512

513
	if (ECC_ENABLED(pvt)) {
514
		edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
515 516 517 518 519
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
520
		edac_dbg(0, "ECC disabled\n");
521 522
		mode = EDAC_NONE;
	}
523 524

	/* FIXME: need to handle the error codes */
525 526 527 528 529 530
	edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n",
		 numdimms(pvt->info.max_dod),
		 numrank(pvt->info.max_dod >> 2),
		 numbank(pvt->info.max_dod >> 4),
		 numrow(pvt->info.max_dod >> 6),
		 numcol(pvt->info.max_dod >> 9));
531

532
	for (i = 0; i < NUM_CHANS; i++) {
533
		u32 data, dimm_dod[3], value[8];
534

535 536 537
		if (!pvt->pci_ch[i][0])
			continue;

538
		if (!CH_ACTIVE(pvt, i)) {
539
			edac_dbg(0, "Channel %i is not active\n", i);
540 541 542
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
543
			edac_dbg(0, "Channel %i is disabled\n", i);
544 545 546
			continue;
		}

547
		/* Devices 4-6 function 0 */
548
		pci_read_config_dword(pvt->pci_ch[i][0],
549 550
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

551 552 553 554 555 556 557 558 559

		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].is_3dimms_present = true;

		if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].is_single_4rank = true;

		if (data & QUAD_RANK_PRESENT)
			pvt->channel[i].has_4rank = true;
560

561 562
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
563
		else
564 565 566
			mtype = MEM_DDR3;

		/* Devices 4-6 function 1 */
567
		pci_read_config_dword(pvt->pci_ch[i][1],
568
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
569
		pci_read_config_dword(pvt->pci_ch[i][1],
570
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
571
		pci_read_config_dword(pvt->pci_ch[i][1],
572
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
573

574 575 576 577 578 579 580 581
		edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n",
			 i,
			 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			 data,
			 pvt->channel[i].is_3dimms_present ? "3DIMMS " : "",
			 pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "",
			 pvt->channel[i].has_4rank ? "HAS_4R " : "",
			 (data & REGISTERED_DIMM) ? 'R' : 'U');
582 583 584

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
585
			u32 size, npages;
586 587 588 589

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

590 591
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
				       i, j, 0);
592 593 594 595 596
			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

597 598 599
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

600
			edac_dbg(0, "\tdimm %d %d MiB offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n",
601 602 603
				 j, size,
				 RANKOFFSET(dimm_dod[j]),
				 banks, ranks, rows, cols);
604

605
			npages = MiB_TO_PAGES(size);
606

607
			dimm->nr_pages = npages;
608

609 610
			switch (banks) {
			case 4:
611
				dimm->dtype = DEV_X4;
612 613
				break;
			case 8:
614
				dimm->dtype = DEV_X8;
615 616
				break;
			case 16:
617
				dimm->dtype = DEV_X16;
618 619
				break;
			default:
620
				dimm->dtype = DEV_UNKNOWN;
621 622
			}

623 624 625 626 627 628
			snprintf(dimm->label, sizeof(dimm->label),
				 "CPU#%uChannel#%u_DIMM#%u",
				 pvt->i7core_dev->socket, i, j);
			dimm->grain = 8;
			dimm->edac_mode = mode;
			dimm->mtype = mtype;
629
		}
630

631 632 633 634 635 636 637 638
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
639
		edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
640
		for (j = 0; j < 8; j++)
641 642 643 644
			edac_dbg(1, "\t\t%#x\t%#x\t%#x\n",
				 (value[j] >> 27) & 0x1,
				 (value[j] >> 24) & 0x7,
				 (value[j] & ((1 << 24) - 1)));
645 646
	}

647 648 649
	return 0;
}

650 651 652 653
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

654 655
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)

656 657 658 659 660 661 662
/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
663
static int disable_inject(const struct mem_ctl_info *mci)
664 665 666 667 668
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

669
	if (!pvt->pci_ch[pvt->inject.channel][0])
670 671
		return -ENODEV;

672
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
673
				MC_CHANNEL_ERROR_INJECT, 0);
674 675

	return 0;
676 677 678 679 680 681 682 683 684
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
685 686
static ssize_t i7core_inject_section_store(struct device *dev,
					   struct device_attribute *mattr,
687 688
					   const char *data, size_t count)
{
689
	struct mem_ctl_info *mci = to_mci(dev);
690 691 692 693 694
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
695
		disable_inject(mci);
696

697
	rc = kstrtoul(data, 10, &value);
698
	if ((rc < 0) || (value > 3))
699
		return -EIO;
700 701 702 703 704

	pvt->inject.section = (u32) value;
	return count;
}

705 706 707
static ssize_t i7core_inject_section_show(struct device *dev,
					  struct device_attribute *mattr,
					  char *data)
708
{
709
	struct mem_ctl_info *mci = to_mci(dev);
710 711 712 713 714 715 716 717 718 719 720 721
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
722 723
static ssize_t i7core_inject_type_store(struct device *dev,
					struct device_attribute *mattr,
724 725
					const char *data, size_t count)
{
726 727
	struct mem_ctl_info *mci = to_mci(dev);
struct i7core_pvt *pvt = mci->pvt_info;
728 729 730 731
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
732
		disable_inject(mci);
733

734
	rc = kstrtoul(data, 10, &value);
735
	if ((rc < 0) || (value > 7))
736
		return -EIO;
737 738 739 740 741

	pvt->inject.type = (u32) value;
	return count;
}

742 743 744
static ssize_t i7core_inject_type_show(struct device *dev,
				       struct device_attribute *mattr,
				       char *data)
745
{
746
	struct mem_ctl_info *mci = to_mci(dev);
747
	struct i7core_pvt *pvt = mci->pvt_info;
748

749 750 751 752 753 754 755 756 757 758 759 760 761
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
762 763 764
static ssize_t i7core_inject_eccmask_store(struct device *dev,
					   struct device_attribute *mattr,
					   const char *data, size_t count)
765
{
766
	struct mem_ctl_info *mci = to_mci(dev);
767 768 769 770 771
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
772
		disable_inject(mci);
773

774
	rc = kstrtoul(data, 10, &value);
775
	if (rc < 0)
776
		return -EIO;
777 778 779 780 781

	pvt->inject.eccmask = (u32) value;
	return count;
}

782 783 784
static ssize_t i7core_inject_eccmask_show(struct device *dev,
					  struct device_attribute *mattr,
					  char *data)
785
{
786
	struct mem_ctl_info *mci = to_mci(dev);
787
	struct i7core_pvt *pvt = mci->pvt_info;
788

789 790 791 792 793 794 795 796 797 798 799 800 801 802
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

803 804
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
805 806 807
	struct device *dev,					\
	struct device_attribute *mattr,				\
	const char *data, size_t count)				\
808
{								\
809
	struct mem_ctl_info *mci = dev_get_drvdata(dev);	\
810
	struct i7core_pvt *pvt;					\
811 812 813
	long value;						\
	int rc;							\
								\
814
	edac_dbg(1, "\n");					\
815 816
	pvt = mci->pvt_info;					\
								\
817 818 819
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
820
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
821 822
		value = -1;					\
	else {							\
823
		rc = kstrtoul(data, 10, &value);		\
824 825 826 827 828 829 830 831 832 833
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
834 835 836
	struct device *dev,					\
	struct device_attribute *mattr,				\
	char *data)						\
837
{								\
838
	struct mem_ctl_info *mci = dev_get_drvdata(dev);	\
839 840 841
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
842
	edac_dbg(1, "pvt=%p\n", pvt);				\
843 844 845 846
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
847 848
}

849
#define ATTR_ADDR_MATCH(param)					\
850 851 852
	static DEVICE_ATTR(param, S_IRUGO | S_IWUSR,		\
		    i7core_inject_show_##param,			\
		    i7core_inject_store_##param)
853

854 855 856 857 858 859
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
860

861 862 863 864 865 866 867
ATTR_ADDR_MATCH(channel);
ATTR_ADDR_MATCH(dimm);
ATTR_ADDR_MATCH(rank);
ATTR_ADDR_MATCH(bank);
ATTR_ADDR_MATCH(page);
ATTR_ADDR_MATCH(col);

868
static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
869 870 871 872
{
	u32 read;
	int count;

873 874 875
	edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		 where, val);
876

877 878
	for (count = 0; count < 10; count++) {
		if (count)
879
			msleep(100);
880 881 882 883 884 885 886
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

887 888 889 890
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
891 892 893 894

	return -EINVAL;
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
913 914 915
static ssize_t i7core_inject_enable_store(struct device *dev,
					  struct device_attribute *mattr,
					  const char *data, size_t count)
916
{
917
	struct mem_ctl_info *mci = to_mci(dev);
918 919 920 921 922 923
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

924
	if (!pvt->pci_ch[pvt->inject.channel][0])
925 926
		return 0;

927
	rc = kstrtoul(data, 10, &enable);
928 929 930 931 932 933 934 935 936 937 938 939
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
940
		mask |= 1LL << 41;
941
	else {
942
		if (pvt->channel[pvt->inject.channel].dimms > 2)
943
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
944
		else
945
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
946 947 948 949
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
950
		mask |= 1LL << 40;
951
	else {
952
		if (pvt->channel[pvt->inject.channel].dimms > 2)
953
			mask |= (pvt->inject.rank & 0x1LL) << 34;
954
		else
955
			mask |= (pvt->inject.rank & 0x3LL) << 34;
956 957 958 959
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
960
		mask |= 1LL << 39;
961
	else
962
		mask |= (pvt->inject.bank & 0x15LL) << 30;
963 964 965

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
966
		mask |= 1LL << 38;
967
	else
968
		mask |= (pvt->inject.page & 0xffff) << 14;
969 970 971

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
972
		mask |= 1LL << 37;
973
	else
974
		mask |= (pvt->inject.col & 0x3fff);
975

976 977 978 979 980 981 982 983 984 985 986 987
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
988
	pci_write_config_dword(pvt->pci_noncore,
989
			       MC_CFG_CONTROL, 0x2);
990

991
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
992
			       MC_CHANNEL_ADDR_MATCH, mask);
993
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
994 995
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

996
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
997 998
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

999
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1000
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1001

1002
	/*
1003 1004 1005
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1006
	 */
1007
	pci_write_config_dword(pvt->pci_noncore,
1008
			       MC_CFG_CONTROL, 8);
1009

1010 1011
	edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n",
		 mask, pvt->inject.eccmask, injectmask);
1012

1013

1014 1015 1016
	return count;
}

1017 1018 1019
static ssize_t i7core_inject_enable_show(struct device *dev,
					 struct device_attribute *mattr,
					 char *data)
1020
{
1021
	struct mem_ctl_info *mci = to_mci(dev);
1022
	struct i7core_pvt *pvt = mci->pvt_info;
1023 1024
	u32 injectmask;

1025 1026 1027
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1028
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1029
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1030

1031
	edac_dbg(0, "Inject error read: 0x%018x\n", injectmask);
1032 1033 1034 1035

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1036 1037 1038
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1039 1040
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
1041 1042 1043
	struct device *dev,					\
	struct device_attribute *mattr,				\
	char *data)						\
1044
{								\
1045
	struct mem_ctl_info *mci = dev_get_drvdata(dev);	\
1046 1047
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
1048
	edac_dbg(1, "\n");					\
1049 1050 1051 1052 1053
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1054

1055
#define ATTR_COUNTER(param)					\
1056 1057 1058
	static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR,	\
		    i7core_show_counter_##param,		\
		    NULL)
1059

1060 1061 1062
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1063

1064 1065 1066 1067
ATTR_COUNTER(0);
ATTR_COUNTER(1);
ATTR_COUNTER(2);

1068
/*
1069
 * inject_addrmatch device sysfs struct
1070
 */
1071

1072 1073 1074 1075 1076 1077 1078 1079
static struct attribute *i7core_addrmatch_attrs[] = {
	&dev_attr_channel.attr,
	&dev_attr_dimm.attr,
	&dev_attr_rank.attr,
	&dev_attr_bank.attr,
	&dev_attr_page.attr,
	&dev_attr_col.attr,
	NULL
1080 1081
};

1082
static const struct attribute_group addrmatch_grp = {
1083
	.attrs	= i7core_addrmatch_attrs,
1084 1085
};

1086 1087 1088
static const struct attribute_group *addrmatch_groups[] = {
	&addrmatch_grp,
	NULL
1089 1090
};

1091 1092
static void addrmatch_release(struct device *device)
{
1093
	edac_dbg(1, "Releasing device %s\n", dev_name(device));
1094
	kfree(device);
1095 1096
}

B
Bhumika Goyal 已提交
1097
static const struct device_type addrmatch_type = {
1098 1099
	.groups		= addrmatch_groups,
	.release	= addrmatch_release,
1100 1101
};

1102 1103 1104 1105 1106 1107 1108 1109 1110
/*
 * all_channel_counts sysfs struct
 */

static struct attribute *i7core_udimm_counters_attrs[] = {
	&dev_attr_udimm0.attr,
	&dev_attr_udimm1.attr,
	&dev_attr_udimm2.attr,
	NULL
1111 1112
};

1113
static const struct attribute_group all_channel_counts_grp = {
1114
	.attrs	= i7core_udimm_counters_attrs,
1115 1116
};

1117 1118 1119
static const struct attribute_group *all_channel_counts_groups[] = {
	&all_channel_counts_grp,
	NULL
1120 1121
};

1122 1123
static void all_channel_counts_release(struct device *device)
{
1124
	edac_dbg(1, "Releasing device %s\n", dev_name(device));
1125
	kfree(device);
1126 1127
}

B
Bhumika Goyal 已提交
1128
static const struct device_type all_channel_counts_type = {
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	.groups		= all_channel_counts_groups,
	.release	= all_channel_counts_release,
};

/*
 * inject sysfs attributes
 */

static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR,
		   i7core_inject_section_show, i7core_inject_section_store);

static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR,
		   i7core_inject_type_show, i7core_inject_type_store);


static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR,
		   i7core_inject_eccmask_show, i7core_inject_eccmask_store);

static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR,
		   i7core_inject_enable_show, i7core_inject_enable_store);

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
static struct attribute *i7core_dev_attrs[] = {
	&dev_attr_inject_section.attr,
	&dev_attr_inject_type.attr,
	&dev_attr_inject_eccmask.attr,
	&dev_attr_inject_enable.attr,
	NULL
};

ATTRIBUTE_GROUPS(i7core_dev);

1160 1161 1162 1163 1164
static int i7core_create_sysfs_devices(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int rc;

1165 1166
	pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL);
	if (!pvt->addrmatch_dev)
1167
		return -ENOMEM;
1168 1169 1170 1171 1172 1173 1174

	pvt->addrmatch_dev->type = &addrmatch_type;
	pvt->addrmatch_dev->bus = mci->dev.bus;
	device_initialize(pvt->addrmatch_dev);
	pvt->addrmatch_dev->parent = &mci->dev;
	dev_set_name(pvt->addrmatch_dev, "inject_addrmatch");
	dev_set_drvdata(pvt->addrmatch_dev, mci);
1175

1176
	edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev));
1177

1178
	rc = device_add(pvt->addrmatch_dev);
1179
	if (rc < 0)
1180
		goto err_put_addrmatch;
1181 1182

	if (!pvt->is_registered) {
1183 1184 1185
		pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev),
					      GFP_KERNEL);
		if (!pvt->chancounts_dev) {
1186 1187
			rc = -ENOMEM;
			goto err_del_addrmatch;
1188 1189 1190 1191 1192 1193 1194 1195
		}

		pvt->chancounts_dev->type = &all_channel_counts_type;
		pvt->chancounts_dev->bus = mci->dev.bus;
		device_initialize(pvt->chancounts_dev);
		pvt->chancounts_dev->parent = &mci->dev;
		dev_set_name(pvt->chancounts_dev, "all_channel_counts");
		dev_set_drvdata(pvt->chancounts_dev, mci);
1196

1197
		edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev));
1198

1199
		rc = device_add(pvt->chancounts_dev);
1200
		if (rc < 0)
1201
			goto err_put_chancounts;
1202 1203
	}
	return 0;
1204 1205 1206 1207 1208 1209 1210 1211 1212

err_put_chancounts:
	put_device(pvt->chancounts_dev);
err_del_addrmatch:
	device_del(pvt->addrmatch_dev);
err_put_addrmatch:
	put_device(pvt->addrmatch_dev);

	return rc;
1213 1214 1215 1216 1217 1218
}

static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;

1219
	edac_dbg(1, "\n");
1220 1221

	if (!pvt->is_registered) {
1222
		device_del(pvt->chancounts_dev);
1223
		put_device(pvt->chancounts_dev);
1224
	}
1225
	device_del(pvt->addrmatch_dev);
1226
	put_device(pvt->addrmatch_dev);
1227 1228
}

1229 1230 1231 1232 1233
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
1234
 *	i7core_put_all_devices	'put' all the devices that we have
1235 1236
 *				reserved via 'get'
 */
1237
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1238
{
1239
	int i;
1240

1241
	edac_dbg(0, "\n");
1242
	for (i = 0; i < i7core_dev->n_devs; i++) {
1243 1244 1245
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
1246 1247 1248
		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
			 pdev->bus->number,
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1249 1250
		pci_dev_put(pdev);
	}
1251
}
1252

1253 1254
static void i7core_put_all_devices(void)
{
1255
	struct i7core_dev *i7core_dev, *tmp;
1256

1257
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1258
		i7core_put_devices(i7core_dev);
1259
		free_i7core_dev(i7core_dev);
1260
	}
1261 1262
}

1263
static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1264 1265 1266
{
	struct pci_dev *pdev = NULL;
	int i;
1267

1268
	/*
D
David Sterba 已提交
1269
	 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1270 1271 1272
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1273 1274 1275 1276 1277 1278
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1279
		pci_dev_put(pdev);
1280
		table++;
1281 1282 1283
	}
}

1284 1285 1286 1287 1288 1289 1290
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
1291
		edac_dbg(0, "Found bus %d\n", bus);
1292 1293 1294 1295
		if (bus > last_bus)
			last_bus = bus;
	}

1296
	edac_dbg(0, "Last bus %d\n", last_bus);
1297 1298 1299 1300

	return last_bus;
}

1301
/*
1302
 *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1303 1304 1305 1306
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1307 1308 1309 1310
static int i7core_get_onedevice(struct pci_dev **prev,
				const struct pci_id_table *table,
				const unsigned devno,
				const unsigned last_bus)
1311
{
1312
	struct i7core_dev *i7core_dev;
1313
	const struct pci_id_descr *dev_descr = &table->descr[devno];
1314

1315
	struct pci_dev *pdev = NULL;
1316 1317
	u8 bus = 0;
	u8 socket = 0;
1318

1319
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1320
			      dev_descr->dev_id, *prev);
1321

1322
	/*
D
David Mackey 已提交
1323
	 * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs
1324 1325 1326
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
1327 1328
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) {
		pci_dev_get(*prev);	/* pci_get_device will put it */
1329 1330
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1331
	}
1332

1333 1334 1335
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE &&
	    !pdev) {
		pci_dev_get(*prev);	/* pci_get_device will put it */
1336 1337 1338
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);
1339
	}
1340

1341 1342 1343 1344
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1345 1346
		}

1347
		if (dev_descr->optional)
1348
			return 0;
1349

1350 1351 1352
		if (devno == 0)
			return -ENODEV;

1353
		i7core_printk(KERN_INFO,
1354
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1355 1356
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1357

1358 1359 1360 1361
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1362

1363
	socket = last_bus - bus;
1364

1365 1366
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
1367
		i7core_dev = alloc_i7core_dev(socket, table);
1368 1369
		if (!i7core_dev) {
			pci_dev_put(pdev);
1370
			return -ENOMEM;
1371
		}
1372
	}
1373

1374
	if (i7core_dev->pdev[devno]) {
1375 1376 1377
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1378 1379
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1380 1381 1382
		pci_dev_put(pdev);
		return -ENODEV;
	}
1383

1384
	i7core_dev->pdev[devno] = pdev;
1385 1386

	/* Sanity check */
1387 1388
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1389 1390 1391
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1392
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1393
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1394
			bus, dev_descr->dev, dev_descr->func);
1395 1396
		return -ENODEV;
	}
1397

1398 1399 1400 1401 1402
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1403 1404
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1405 1406
		return -ENODEV;
	}
1407

1408 1409 1410 1411
	edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
		 socket, bus, dev_descr->dev,
		 dev_descr->func,
		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1412

1413 1414 1415 1416 1417 1418 1419
	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

1420
	*prev = pdev;
1421

1422 1423
	return 0;
}
1424

1425
static int i7core_get_all_devices(void)
1426
{
1427
	int i, rc, last_bus;
1428
	struct pci_dev *pdev = NULL;
1429
	const struct pci_id_table *table = pci_dev_table;
1430

1431 1432
	last_bus = i7core_pci_lastbus();

1433
	while (table && table->descr) {
1434 1435 1436
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1437
				rc = i7core_get_onedevice(&pdev, table, i,
1438
							  last_bus);
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
1449
		table++;
1450
	}
1451

1452 1453 1454
	return 0;
}

1455 1456
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1457 1458 1459
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1460
	int i, func, slot;
1461
	char *family;
1462

1463 1464
	pvt->is_registered = false;
	pvt->enable_scrub  = false;
1465
	for (i = 0; i < i7core_dev->n_devs; i++) {
1466 1467
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1468 1469
			continue;

1470 1471 1472 1473 1474 1475 1476 1477
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1478
				goto error;
1479
			pvt->pci_ch[slot - 4][func] = pdev;
1480
		} else if (!slot && !func) {
1481
			pvt->pci_noncore = pdev;
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508

			/* Detect the processor family */
			switch (pdev->device) {
			case PCI_DEVICE_ID_INTEL_I7_NONCORE:
				family = "Xeon 35xx/ i7core";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
				family = "i7-800/i5-700";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
				family = "Xeon 34xx";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
				family = "Xeon 55xx";
				pvt->enable_scrub = true;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
				family = "Xeon 56xx / i7-900";
				pvt->enable_scrub = true;
				break;
			default:
				family = "unknown";
				pvt->enable_scrub = false;
			}
1509
			edac_dbg(0, "Detected a processor type %s\n", family);
1510
		} else
1511
			goto error;
1512

1513 1514 1515
		edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n",
			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			 pdev, i7core_dev->socket);
1516

1517 1518
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
1519
			pvt->is_registered = true;
1520
	}
1521

1522
	return 0;
1523 1524 1525 1526 1527 1528

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1529 1530
}

1531 1532 1533
/****************************************************************************
			Error check routines
 ****************************************************************************/
1534 1535

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1536 1537 1538 1539
					 const int chan,
					 const int new0,
					 const int new1,
					 const int new2)
1540 1541 1542 1543
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1544
	if (pvt->ce_count_available) {
1545 1546
		/* Updates CE counters */

1547 1548 1549
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1550 1551 1552

		if (add2 < 0)
			add2 += 0x7fff;
1553
		pvt->rdimm_ce_count[chan][2] += add2;
1554 1555 1556

		if (add1 < 0)
			add1 += 0x7fff;
1557
		pvt->rdimm_ce_count[chan][1] += add1;
1558 1559 1560

		if (add0 < 0)
			add0 += 0x7fff;
1561
		pvt->rdimm_ce_count[chan][0] += add0;
1562
	} else
1563
		pvt->ce_count_available = 1;
1564 1565

	/* Store the new values */
1566 1567 1568
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1569 1570 1571

	/*updated the edac core */
	if (add0 != 0)
1572 1573 1574
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0,
				     0, 0, 0,
				     chan, 0, -1, "error", "");
1575
	if (add1 != 0)
1576 1577 1578
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1,
				     0, 0, 0,
				     chan, 1, -1, "error", "");
1579
	if (add2 != 0)
1580 1581 1582
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2,
				     0, 0, 0,
				     chan, 2, -1, "error", "");
1583 1584
}

1585
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1586 1587 1588 1589 1590 1591
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1592
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1593
								&rcv[0][0]);
1594
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1595
								&rcv[0][1]);
1596
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1597
								&rcv[1][0]);
1598
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1599
								&rcv[1][1]);
1600
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1601
								&rcv[2][0]);
1602
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1603 1604
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
1605 1606
		edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
1607
		/*if the channel has 3 dimms*/
1608
		if (pvt->channel[i].dimms > 2) {
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1620
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1621 1622
	}
}
1623 1624 1625 1626 1627 1628 1629

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1630
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1631 1632 1633 1634 1635
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1636
	if (!pvt->pci_mcr[4]) {
1637
		edac_dbg(0, "MCR registers not found\n");
1638 1639 1640
		return;
	}

1641
	/* Corrected test errors */
1642 1643
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1644 1645 1646 1647 1648 1649 1650

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1651
	if (pvt->ce_count_available) {
1652 1653 1654
		/* Updates CE counters */
		int add0, add1, add2;

1655 1656 1657
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1658 1659 1660

		if (add2 < 0)
			add2 += 0x7fff;
1661
		pvt->udimm_ce_count[2] += add2;
1662 1663 1664

		if (add1 < 0)
			add1 += 0x7fff;
1665
		pvt->udimm_ce_count[1] += add1;
1666 1667 1668

		if (add0 < 0)
			add0 += 0x7fff;
1669
		pvt->udimm_ce_count[0] += add0;
1670 1671 1672 1673 1674

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1675
	} else
1676
		pvt->ce_count_available = 1;
1677 1678

	/* Store the new values */
1679 1680 1681
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1682 1683
}

1684 1685 1686
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1687 1688 1689
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1690
 *     struct mce field	MCA Register
1691 1692 1693
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1694 1695 1696
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1697
static void i7core_mce_output_error(struct mem_ctl_info *mci,
1698
				    const struct mce *m)
1699
{
1700
	struct i7core_pvt *pvt = mci->pvt_info;
J
Jean Delvare 已提交
1701
	char *optype, *err;
1702
	enum hw_event_mc_err_type tp_event;
1703
	unsigned long error = m->status & 0x1ff0000l;
1704 1705
	bool uncorrected_error = m->mcgstatus & 1ll << 61;
	bool ripv = m->mcgstatus & 1;
1706
	u32 optypenum = (m->status >> 4) & 0x07;
1707
	u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1708 1709 1710 1711 1712
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);

1713
	if (uncorrected_error) {
1714
		core_err_cnt = 1;
J
Jean Delvare 已提交
1715
		if (ripv)
1716
			tp_event = HW_EVENT_ERR_FATAL;
J
Jean Delvare 已提交
1717
		else
1718 1719 1720 1721
			tp_event = HW_EVENT_ERR_UNCORRECTED;
	} else {
		tp_event = HW_EVENT_ERR_CORRECTED;
	}
1722

1723
	switch (optypenum) {
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1742 1743
	}

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
1755
		err = "redundancy loss";
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1774 1775
	}

1776 1777 1778 1779 1780 1781
	/*
	 * Call the helper to output message
	 * FIXME: what to do if core_err_cnt > 1? Currently, it generates
	 * only one event
	 */
	if (uncorrected_error || !pvt->is_registered)
1782
		edac_mc_handle_error(tp_event, mci, core_err_cnt,
1783 1784 1785 1786
				     m->addr >> PAGE_SHIFT,
				     m->addr & ~PAGE_MASK,
				     syndrome,
				     channel, dimm, -1,
1787
				     err, optype);
1788 1789
}

1790 1791 1792 1793
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
1794
static void i7core_check_error(struct mem_ctl_info *mci, struct mce *m)
1795
{
1796 1797
	struct i7core_pvt *pvt = mci->pvt_info;

1798
	i7core_mce_output_error(mci, m);
1799

1800 1801 1802
	/*
	 * Now, let's increment CE error counts
	 */
1803 1804 1805 1806
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1807 1808
}

1809
/*
1810 1811
 * Check that logging is enabled and that this is the right type
 * of error for us to handle.
1812
 */
1813 1814
static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
				  void *data)
1815
{
1816 1817 1818 1819 1820 1821
	struct mce *mce = (struct mce *)data;
	struct i7core_dev *i7_dev;
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;

	i7_dev = get_i7core_dev(mce->socketid);
1822
	if (!i7_dev || (mce->kflags & MCE_HANDLED_CEC))
1823
		return NOTIFY_DONE;
1824 1825 1826

	mci = i7_dev->mci;
	pvt = mci->pvt_info;
1827

1828 1829 1830 1831 1832
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
1833
		return NOTIFY_DONE;
1834

1835 1836
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
1837
		return NOTIFY_DONE;
1838

1839
	i7core_check_error(mci, mce);
1840

D
David Sterba 已提交
1841
	/* Advise mcelog that the errors were handled */
1842 1843
	mce->kflags |= MCE_HANDLED_EDAC;
	return NOTIFY_OK;
1844 1845
}

1846 1847
static struct notifier_block i7_mce_dec = {
	.notifier_call	= i7core_mce_check_error,
1848
	.priority	= MCE_PRIO_EDAC,
1849 1850
};

N
Nils Carlson 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
struct memdev_dmi_entry {
	u8 type;
	u8 length;
	u16 handle;
	u16 phys_mem_array_handle;
	u16 mem_err_info_handle;
	u16 total_width;
	u16 data_width;
	u16 size;
	u8 form;
	u8 device_set;
	u8 device_locator;
	u8 bank_locator;
	u8 memory_type;
	u16 type_detail;
	u16 speed;
	u8 manufacturer;
	u8 serial_number;
	u8 asset_tag;
	u8 part_number;
	u8 attributes;
	u32 extended_size;
	u16 conf_mem_clk_speed;
} __attribute__((__packed__));


/*
 * Decode the DRAM Clock Frequency, be paranoid, make sure that all
 * memory devices show the same speed, and if they don't then consider
 * all speeds to be invalid.
 */
static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
{
	int *dclk_freq = _dclk_freq;
	u16 dmi_mem_clk_speed;

	if (*dclk_freq == -1)
		return;

	if (dh->type == DMI_ENTRY_MEM_DEVICE) {
		struct memdev_dmi_entry *memdev_dmi_entry =
			(struct memdev_dmi_entry *)dh;
		unsigned long conf_mem_clk_speed_offset =
			(unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
			(unsigned long)&memdev_dmi_entry->type;
		unsigned long speed_offset =
			(unsigned long)&memdev_dmi_entry->speed -
			(unsigned long)&memdev_dmi_entry->type;

		/* Check that a DIMM is present */
		if (memdev_dmi_entry->size == 0)
			return;

		/*
		 * Pick the configured speed if it's available, otherwise
		 * pick the DIMM speed, or we don't have a speed.
		 */
		if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
			dmi_mem_clk_speed =
				memdev_dmi_entry->conf_mem_clk_speed;
		} else if (memdev_dmi_entry->length > speed_offset) {
			dmi_mem_clk_speed = memdev_dmi_entry->speed;
		} else {
			*dclk_freq = -1;
			return;
		}

		if (*dclk_freq == 0) {
			/* First pass, speed was 0 */
			if (dmi_mem_clk_speed > 0) {
				/* Set speed if a valid speed is read */
				*dclk_freq = dmi_mem_clk_speed;
			} else {
				/* Otherwise we don't have a valid speed */
				*dclk_freq = -1;
			}
		} else if (*dclk_freq > 0 &&
			   *dclk_freq != dmi_mem_clk_speed) {
			/*
			 * If we have a speed, check that all DIMMS are the same
			 * speed, otherwise set the speed as invalid.
			 */
			*dclk_freq = -1;
		}
	}
}

/*
 * The default DCLK frequency is used as a fallback if we
 * fail to find anything reliable in the DMI. The value
 * is taken straight from the datasheet.
 */
#define DEFAULT_DCLK_FREQ 800

static int get_dclk_freq(void)
{
	int dclk_freq = 0;

	dmi_walk(decode_dclk, (void *)&dclk_freq);

	if (dclk_freq < 1)
		return DEFAULT_DCLK_FREQ;

	return dclk_freq;
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
/*
 * set_sdram_scrub_rate		This routine sets byte/sec bandwidth scrub rate
 *				to hardware according to SCRUBINTERVAL formula
 *				found in datasheet.
 */
static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	u32 dw_scrub;
	u32 dw_ssr;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);

	if (new_bw == 0) {
		/* Prepare to disable petrol scrub */
		dw_scrub &= ~STARTSCRUB;
		/* Stop the patrol scrub engine */
N
Nils Carlson 已提交
1980 1981
		write_and_test(pdev, MC_SCRUB_CONTROL,
			       dw_scrub & ~SCRUBINTERVAL_MASK);
1982 1983 1984 1985 1986 1987

		/* Get current status of scrub rate and set bit to disable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_DISABLE;
	} else {
N
Nils Carlson 已提交
1988 1989 1990
		const int cache_line_size = 64;
		const u32 freq_dclk_mhz = pvt->dclk_freq;
		unsigned long long scrub_interval;
1991 1992
		/*
		 * Translate the desired scrub rate to a register value and
N
Nils Carlson 已提交
1993
		 * program the corresponding register value.
1994
		 */
N
Nils Carlson 已提交
1995
		scrub_interval = (unsigned long long)freq_dclk_mhz *
1996 1997
			cache_line_size * 1000000;
		do_div(scrub_interval, new_bw);
N
Nils Carlson 已提交
1998 1999 2000 2001 2002

		if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
			return -EINVAL;

		dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

		/* Start the patrol scrub engine */
		pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
				       STARTSCRUB | dw_scrub);

		/* Get current status of scrub rate and set bit to enable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_ENABLE;
	}
	/* Disable or enable scrubbing */
	pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);

	return new_bw;
}

/*
 * get_sdram_scrub_rate		This routine convert current scrub rate value
D
David Mackey 已提交
2021
 *				into byte/sec bandwidth according to
2022 2023 2024 2025 2026 2027 2028
 *				SCRUBINTERVAL formula found in datasheet.
 */
static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	const u32 cache_line_size = 64;
N
Nils Carlson 已提交
2029 2030
	const u32 freq_dclk_mhz = pvt->dclk_freq;
	unsigned long long scrub_rate;
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	u32 scrubval;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	/* Get current scrub control data */
	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);

	/* Mask highest 8-bits to 0 */
N
Nils Carlson 已提交
2042
	scrubval &=  SCRUBINTERVAL_MASK;
2043 2044 2045 2046
	if (!scrubval)
		return 0;

	/* Calculate scrub rate value into byte/sec bandwidth */
N
Nils Carlson 已提交
2047
	scrub_rate =  (unsigned long long)freq_dclk_mhz *
2048 2049
		1000000 * cache_line_size;
	do_div(scrub_rate, scrubval);
N
Nils Carlson 已提交
2050
	return (int)scrub_rate;
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
}

static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Unlock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_UNLOCK);

	mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
	mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
}

static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Lock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_LOCK);
}

2080 2081 2082 2083 2084 2085
static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
{
	pvt->i7core_pci = edac_pci_create_generic_ctl(
						&pvt->i7core_dev->pdev[0]->dev,
						EDAC_MOD_STR);
	if (unlikely(!pvt->i7core_pci))
2086 2087
		i7core_printk(KERN_WARNING,
			      "Unable to setup PCI error report via EDAC\n");
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
}

static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
{
	if (likely(pvt->i7core_pci))
		edac_pci_release_generic_ctl(pvt->i7core_pci);
	else
		i7core_printk(KERN_ERR,
				"Couldn't find mem_ctl_info for socket %d\n",
				pvt->i7core_dev->socket);
	pvt->i7core_pci = NULL;
}

2101 2102 2103 2104 2105 2106
static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
{
	struct mem_ctl_info *mci = i7core_dev->mci;
	struct i7core_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
2107
		edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev);
2108 2109 2110 2111 2112 2113 2114

		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

2115
	edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2116

2117
	/* Disable scrubrate setting */
2118 2119
	if (pvt->enable_scrub)
		disable_sdram_scrub_setting(mci);
2120

2121 2122 2123 2124
	/* Disable EDAC polling */
	i7core_pci_ctl_release(pvt);

	/* Remove MC sysfs nodes */
2125
	i7core_delete_sysfs_devices(mci);
2126
	edac_mc_del_mc(mci->pdev);
2127

2128
	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2129 2130 2131 2132 2133
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	i7core_dev->mci = NULL;
}

2134
static int i7core_register_mci(struct i7core_dev *i7core_dev)
2135 2136 2137
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
2138 2139
	int rc;
	struct edac_mc_layer layers[2];
2140 2141

	/* allocate a new MC control structure */
2142 2143 2144 2145 2146 2147 2148

	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = NUM_CHANS;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = MAX_DIMMS;
	layers[1].is_virt_csrow = true;
2149
	mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers,
2150
			    sizeof(*pvt));
2151 2152
	if (unlikely(!mci))
		return -ENOMEM;
2153

2154
	edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2155 2156

	pvt = mci->pvt_info;
2157
	memset(pvt, 0, sizeof(*pvt));
2158

2159 2160 2161 2162
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;

2163 2164 2165 2166 2167 2168
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
2169 2170 2171
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
2172 2173 2174 2175 2176 2177 2178

	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d", i7core_dev->socket);
	if (!mci->ctl_name) {
		rc = -ENOMEM;
		goto fail1;
	}

2179
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
2180
	mci->ctl_page_to_phys = NULL;
2181

2182
	/* Store pci devices at mci for faster access */
2183
	rc = mci_bind_devs(mci, i7core_dev);
2184
	if (unlikely(rc < 0))
2185
		goto fail0;
2186

2187

2188
	/* Get dimm basic config */
2189
	get_dimm_config(mci);
2190
	/* record ptr to the generic device */
2191
	mci->pdev = &i7core_dev->pdev[0]->dev;
2192

2193
	/* Enable scrubrate setting */
2194 2195
	if (pvt->enable_scrub)
		enable_sdram_scrub_setting(mci);
2196

2197
	/* add this new MC control structure to EDAC's list of MCs */
2198
	if (unlikely(edac_mc_add_mc_with_groups(mci, i7core_dev_groups))) {
2199
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2200 2201 2202
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
2203 2204

		rc = -EINVAL;
2205
		goto fail0;
2206
	}
2207
	if (i7core_create_sysfs_devices(mci)) {
2208
		edac_dbg(0, "MC: failed to create sysfs nodes\n");
2209 2210 2211 2212
		edac_mc_del_mc(mci->pdev);
		rc = -EINVAL;
		goto fail0;
	}
2213

2214
	/* Default error mask is any memory */
2215
	pvt->inject.channel = 0;
2216 2217 2218 2219 2220 2221
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

2222 2223 2224
	/* allocating generic PCI control info */
	i7core_pci_ctl_create(pvt);

N
Nils Carlson 已提交
2225 2226 2227
	/* DCLK for scrub rate setting */
	pvt->dclk_freq = get_dclk_freq();

2228 2229 2230 2231
	return 0;

fail0:
	kfree(mci->ctl_name);
2232 2233

fail1:
2234
	edac_mc_free(mci);
2235
	i7core_dev->mci = NULL;
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
2246

2247
static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2248
{
2249
	int rc, count = 0;
2250 2251
	struct i7core_dev *i7core_dev;

2252 2253 2254
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

2255
	/*
2256
	 * All memory controllers are allocated at the first pass.
2257
	 */
2258 2259
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
2260
		return -ENODEV;
2261 2262
	}
	probed++;
2263

2264
	rc = i7core_get_all_devices();
2265 2266 2267 2268
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2269
		count++;
2270
		rc = i7core_register_mci(i7core_dev);
2271 2272
		if (unlikely(rc < 0))
			goto fail1;
2273 2274
	}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	/*
	 * Nehalem-EX uses a different memory controller. However, as the
	 * memory controller is not visible on some Nehalem/Nehalem-EP, we
	 * need to indirectly probe via a X58 PCI device. The same devices
	 * are found on (some) Nehalem-EX. So, on those machines, the
	 * probe routine needs to return -ENODEV, as the actual Memory
	 * Controller registers won't be detected.
	 */
	if (!count) {
		rc = -ENODEV;
		goto fail1;
	}

	i7core_printk(KERN_INFO,
		      "Driver loaded, %d memory controller(s) found.\n",
		      count);
2291

2292
	mutex_unlock(&i7core_edac_lock);
2293 2294
	return 0;

2295
fail1:
2296 2297 2298
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);

2299
	i7core_put_all_devices();
2300 2301
fail0:
	mutex_unlock(&i7core_edac_lock);
2302
	return rc;
2303 2304 2305 2306 2307 2308
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
2309
static void i7core_remove(struct pci_dev *pdev)
2310
{
2311
	struct i7core_dev *i7core_dev;
2312

2313
	edac_dbg(0, "\n");
2314

2315 2316 2317 2318 2319 2320 2321
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2322

2323
	mutex_lock(&i7core_edac_lock);
2324 2325 2326 2327 2328 2329

	if (unlikely(!probed)) {
		mutex_unlock(&i7core_edac_lock);
		return;
	}

2330 2331
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);
2332 2333 2334 2335

	/* Release PCI resources */
	i7core_put_all_devices();

2336 2337
	probed--;

2338
	mutex_unlock(&i7core_edac_lock);
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
2350
	.remove   = i7core_remove,
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

2362
	edac_dbg(2, "\n");
2363 2364 2365 2366

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2367 2368
	if (use_pci_fixup)
		i7core_xeon_pci_fixup(pci_dev_table);
2369

2370 2371
	pci_rc = pci_register_driver(&i7core_driver);

2372 2373
	if (pci_rc >= 0) {
		mce_register_decode_chain(&i7_mce_dec);
2374
		return 0;
2375
	}
2376 2377 2378 2379 2380

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2381 2382 2383 2384 2385 2386 2387 2388
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
2389
	edac_dbg(2, "\n");
2390
	pci_unregister_driver(&i7core_driver);
2391
	mce_unregister_decode_chain(&i7_mce_dec);
2392 2393 2394 2395 2396 2397
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
2398
MODULE_AUTHOR("Mauro Carvalho Chehab");
2399 2400 2401 2402 2403 2404
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");