i7core_edac.c 51.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Intel 7 core  Memory Controller kernel module (Nehalem)
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2009 by:
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
28
#include <linux/delay.h>
29 30
#include <linux/edac.h>
#include <linux/mmzone.h>
31
#include <linux/edac_mce.h>
32
#include <linux/smp.h>
33
#include <asm/processor.h>
34 35 36

#include "edac_core.h"

37 38 39 40 41 42 43 44 45
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * Alter this version for the module when modifications are made
 */
#define I7CORE_REVISION    " Ver: 1.0.0 " __DATE__
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

65 66 67 68
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90

69 70 71 72 73 74
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

75 76 77 78 79 80 81 82 83 84 85 86
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

87 88 89 90 91 92 93 94 95 96 97 98
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


99 100
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

101 102 103 104 105 106
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

107 108 109 110
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

111 112 113
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

114
#define MC_CHANNEL_ADDR_MATCH	0xf0
115 116 117 118 119 120 121 122 123 124
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
125

126
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
127

128 129 130 131 132 133 134
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
135 136 137 138
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
139
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
140
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
141 142
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
143

144 145
#define MC_RANK_PRESENT		0x7c

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

169 170 171 172 173
/*
 * i7core structs
 */

#define NUM_CHANS 3
174 175 176
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
177 178 179 180 181

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
182
	u32	ch_map;
183 184
};

185 186 187 188 189 190 191 192 193 194 195 196

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

197
struct i7core_channel {
198 199
	u32		ranks;
	u32		dimms;
200 201
};

202
struct pci_id_descr {
203 204 205
	int			dev;
	int			func;
	int 			dev_id;
206
	int			optional;
207 208
};

209 210 211 212
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
213
	int			n_devs;
214 215 216
	struct mem_ctl_info	*mci;
};

217
struct i7core_pvt {
218 219 220 221 222
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
223

224
	struct i7core_info	info;
225
	struct i7core_inject	inject;
226
	struct i7core_channel	channel[NUM_CHANS];
227

228
	int		channels; /* Number of active channels */
229

230 231
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
232 233

			/* ECC corrected errors counts per udimm */
234 235
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
236
			/* ECC corrected errors counts per rdimm */
237 238
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
239

240
	unsigned int	is_registered;
241

242 243
	/* mcelog glue */
	struct edac_mce		edac_mce;
244 245

	/* Fifo double buffers */
246
	struct mce		mce_entry[MCE_LOG_LEN];
247 248 249 250 251 252 253
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
254 255
};

256 257 258
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
259

260 261 262 263 264
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

265
struct pci_id_descr pci_dev_descr_i7core[] = {
266 267 268
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
269 270
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
290 291 292 293 294 295 296 297

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
298
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },
299

300
};
301

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
struct pci_id_descr pci_dev_descr_lynnfield[] = {
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },

	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
};

320 321 322 323
/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
324
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
325
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)},
326 327 328
	{0,}			/* 0 terminated list. */
};

329 330 331 332 333 334 335
static struct edac_pci_ctl_info *i7core_pci;

/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
336 337
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
338 339

	/* MC_STATUS bits */
340
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
341
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
342 343

	/* MC_MAX_DOD read functions */
344
static inline int numdimms(u32 dimms)
345
{
346
	return (dimms & 0x3) + 1;
347 348
}

349
static inline int numrank(u32 rank)
350 351 352
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

353
	return ranks[rank & 0x3];
354 355
}

356
static inline int numbank(u32 bank)
357 358 359
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

360
	return banks[bank & 0x3];
361 362
}

363
static inline int numrow(u32 row)
364 365 366 367 368 369
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

370
	return rows[row & 0x7];
371 372
}

373
static inline int numcol(u32 col)
374 375 376 377
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
378
	return cols[col & 0x3];
379 380
}

381
static struct i7core_dev *get_i7core_dev(u8 socket)
382 383 384 385 386 387 388 389 390 391 392
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

393 394 395
/****************************************************************************
			Memory check routines
 ****************************************************************************/
396 397
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
398
{
399
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
400 401
	int i;

402 403 404
	if (!i7core_dev)
		return NULL;

405
	for (i = 0; i < i7core_dev->n_devs; i++) {
406
		if (!i7core_dev->pdev[i])
407 408
			continue;

409 410 411
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
412 413 414
		}
	}

415 416 417
	return NULL;
}

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
435 436
static int i7core_get_active_channels(u8 socket, unsigned *channels,
				      unsigned *csrows)
437 438 439 440 441 442 443 444
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

445
	pdev = get_pdev_slot_func(socket, 3, 0);
446
	if (!pdev) {
447 448
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
449
		return -ENODEV;
450
	}
451 452 453 454 455 456

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
457
		u32 dimm_dod[3];
458 459 460 461 462
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
463
		if (status & (1 << i))
464 465
			continue;

466
		pdev = get_pdev_slot_func(socket, i + 4, 1);
467
		if (!pdev) {
468 469 470
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
471 472 473 474 475 476 477 478 479 480
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

481
		(*channels)++;
482 483 484 485 486 487

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
488 489
	}

490
	debugf0("Number of active channels on socket %d: %d\n",
491
		socket, *channels);
492

493 494 495
	return 0;
}

496
static int get_dimm_config(struct mem_ctl_info *mci, int *csrow)
497 498
{
	struct i7core_pvt *pvt = mci->pvt_info;
499
	struct csrow_info *csr;
500
	struct pci_dev *pdev;
501
	int i, j;
502
	unsigned long last_page = 0;
503
	enum edac_type mode;
504
	enum mem_type mtype;
505

506
	/* Get data from the MC register, function 0 */
507
	pdev = pvt->pci_mcr[0];
508
	if (!pdev)
509 510
		return -ENODEV;

511
	/* Device 3 function 0 reads */
512 513 514 515
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
516

517
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
518
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
519
		pvt->info.max_dod, pvt->info.ch_map);
520

521
	if (ECC_ENABLED(pvt)) {
522
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
523 524 525 526 527
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
528
		debugf0("ECC disabled\n");
529 530
		mode = EDAC_NONE;
	}
531 532

	/* FIXME: need to handle the error codes */
533 534
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
535 536
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
537
		numbank(pvt->info.max_dod >> 4),
538 539
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
540

541
	for (i = 0; i < NUM_CHANS; i++) {
542
		u32 data, dimm_dod[3], value[8];
543

544 545 546
		if (!pvt->pci_ch[i][0])
			continue;

547 548 549 550 551 552 553 554 555
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

556
		/* Devices 4-6 function 0 */
557
		pci_read_config_dword(pvt->pci_ch[i][0],
558 559
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

560
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
561
						4 : 2;
562

563 564
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
565
		else
566 567
			mtype = MEM_DDR3;
#if 0
568 569 570 571 572 573
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
574 575 576
#endif

		/* Devices 4-6 function 1 */
577
		pci_read_config_dword(pvt->pci_ch[i][1],
578
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
579
		pci_read_config_dword(pvt->pci_ch[i][1],
580
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
581
		pci_read_config_dword(pvt->pci_ch[i][1],
582
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
583

584
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
585
			"%d ranks, %cDIMMs\n",
586 587 588
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
589
			pvt->channel[i].ranks,
590
			(data & REGISTERED_DIMM) ? 'R' : 'U');
591 592 593

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
594
			u32 size, npages;
595 596 597 598 599 600 601 602 603

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

604 605 606
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

607
			pvt->channel[i].dimms++;
608

609 610 611
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
612 613 614
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

615 616 617 618 619
#if PAGE_SHIFT > 20
			npages = size >> (PAGE_SHIFT - 20);
#else
			npages = size << (20 - PAGE_SHIFT);
#endif
620

621
			csr = &mci->csrows[*csrow];
622 623 624 625 626
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

627
			csr->page_mask = 0;
628
			csr->grain = 8;
629
			csr->csrow_idx = *csrow;
630 631 632 633
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
634

635
			pvt->csrow_map[i][j] = *csrow;
636

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

654
			(*csrow)++;
655
		}
656

657 658 659 660 661 662 663 664
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
665
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
666
		for (j = 0; j < 8; j++)
667
			debugf1("\t\t%#x\t%#x\t%#x\n",
668 669 670
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
				(value[j] && ((1 << 24) - 1)));
671 672
	}

673 674 675
	return 0;
}

676 677 678 679 680 681 682 683 684 685 686
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
687
static int disable_inject(struct mem_ctl_info *mci)
688 689 690 691 692
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

693
	if (!pvt->pci_ch[pvt->inject.channel][0])
694 695
		return -ENODEV;

696
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
697
				MC_CHANNEL_ERROR_INJECT, 0);
698 699

	return 0;
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
717
		disable_inject(mci);
718 719 720

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
721
		return -EIO;
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
750
		disable_inject(mci);
751 752 753

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
754
		return -EIO;
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
785
		disable_inject(mci);
786 787 788

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
789
		return -EIO;
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

813 814 815 816 817
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
818
	struct i7core_pvt *pvt;					\
819 820 821
	long value;						\
	int rc;							\
								\
822 823 824
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
825 826 827
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
828
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
845 846 847 848
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
849 850 851 852
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
853 854
}

855 856 857 858 859 860 861 862 863
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
864

865 866 867 868 869 870
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
871

872 873 874 875 876
static int write_and_test(struct pci_dev *dev, int where, u32 val)
{
	u32 read;
	int count;

877 878 879 880
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

881 882
	for (count = 0; count < 10; count++) {
		if (count)
883
			msleep(100);
884 885 886 887 888 889 890
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

891 892 893 894
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
895 896 897 898

	return -EINVAL;
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

926
	if (!pvt->pci_ch[pvt->inject.channel][0])
927 928
		return 0;

929 930 931 932 933 934 935 936 937 938 939 940 941
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
942
		mask |= 1LL << 41;
943
	else {
944
		if (pvt->channel[pvt->inject.channel].dimms > 2)
945
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
946
		else
947
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
948 949 950 951
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
952
		mask |= 1LL << 40;
953
	else {
954
		if (pvt->channel[pvt->inject.channel].dimms > 2)
955
			mask |= (pvt->inject.rank & 0x1LL) << 34;
956
		else
957
			mask |= (pvt->inject.rank & 0x3LL) << 34;
958 959 960 961
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
962
		mask |= 1LL << 39;
963
	else
964
		mask |= (pvt->inject.bank & 0x15LL) << 30;
965 966 967

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
968
		mask |= 1LL << 38;
969
	else
970
		mask |= (pvt->inject.page & 0xffff) << 14;
971 972 973

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
974
		mask |= 1LL << 37;
975
	else
976
		mask |= (pvt->inject.col & 0x3fff);
977

978 979 980 981 982 983 984 985 986 987 988 989
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
990
	pci_write_config_dword(pvt->pci_noncore,
991
			       MC_CFG_CONTROL, 0x2);
992

993
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
994
			       MC_CHANNEL_ADDR_MATCH, mask);
995
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
996 997
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

998
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
999 1000
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1001
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1002
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1003

1004
	/*
1005 1006 1007
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1008
	 */
1009
	pci_write_config_dword(pvt->pci_noncore,
1010
			       MC_CFG_CONTROL, 8);
1011

1012 1013
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1014 1015
		mask, pvt->inject.eccmask, injectmask);

1016

1017 1018 1019 1020 1021 1022 1023
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1024 1025
	u32 injectmask;

1026 1027 1028
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1029
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1030
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1031 1032 1033 1034 1035 1036

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1037 1038 1039
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1053

1054 1055 1056 1057 1058 1059 1060
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1061
	}
1062

1063 1064 1065
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1066

1067 1068 1069
/*
 * Sysfs struct
 */
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086


static struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
	{ .attr = { .name = NULL } }
};

static struct mcidev_sysfs_group i7core_inject_addrmatch = {
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
};

static struct mcidev_sysfs_group i7core_udimm_counters = {
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1098
static struct mcidev_sysfs_attribute i7core_sysfs_attrs[] = {
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1121
		.grp = &i7core_inject_addrmatch,
1122 1123 1124 1125 1126 1127 1128 1129
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1130
	{ .attr = { .name = NULL } },	/* Reserved for udimm counters */
1131
	{ .attr = { .name = NULL } }
1132 1133
};

1134 1135 1136 1137 1138 1139 1140 1141
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	i7core_put_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
1142
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1143
{
1144
	int i;
1145

1146
	debugf0(__FILE__ ": %s()\n", __func__);
1147
	for (i = 0; i < i7core_dev->n_devs; i++) {
1148 1149 1150 1151 1152 1153 1154 1155
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1156
	kfree(i7core_dev->pdev);
1157
	list_del(&i7core_dev->list);
1158 1159
	kfree(i7core_dev);
}
1160

1161 1162
static void i7core_put_all_devices(void)
{
1163
	struct i7core_dev *i7core_dev, *tmp;
1164

1165
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list)
1166
		i7core_put_devices(i7core_dev);
1167 1168
}

1169
static void i7core_xeon_pci_fixup(int dev_id)
1170 1171 1172 1173 1174 1175 1176 1177
{
	struct pci_dev *pdev = NULL;
	int i;
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1178
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
1179
	if (unlikely(!pdev)) {
1180
		for (i = 0; i < MAX_SOCKET_BUSES; i++)
1181 1182 1183 1184
			pcibios_scan_specific_bus(255-i);
	}
}

1185 1186 1187 1188 1189 1190
/*
 *	i7core_get_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1191 1192
int i7core_get_onedevice(struct pci_dev **prev, int devno,
			 struct pci_id_descr *dev_descr, unsigned n_devs)
1193
{
1194 1195
	struct i7core_dev *i7core_dev;

1196
	struct pci_dev *pdev = NULL;
1197 1198
	u8 bus = 0;
	u8 socket = 0;
1199

1200
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1201
			      dev_descr->dev_id, *prev);
1202 1203 1204 1205 1206 1207

	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
1208
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
1209
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1210
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1211

1212 1213 1214 1215
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1216 1217
		}

1218
		if (dev_descr->optional)
1219
			return 0;
1220

1221 1222
		i7core_printk(KERN_ERR,
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1223 1224
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1225

1226 1227 1228 1229
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1230

1231 1232 1233 1234 1235
	if (bus == 0x3f)
		socket = 0;
	else
		socket = 255 - bus;

1236 1237 1238 1239 1240
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
		i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
		if (!i7core_dev)
			return -ENOMEM;
1241
		i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * n_devs,
1242 1243 1244 1245
					   GFP_KERNEL);
		if (!i7core_dev->pdev)
			return -ENOMEM;
		i7core_dev->socket = socket;
1246
		i7core_dev->n_devs = n_devs;
1247
		list_add_tail(&i7core_dev->list, &i7core_edac_list);
1248
	}
1249

1250
	if (i7core_dev->pdev[devno]) {
1251 1252 1253
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1254 1255
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1256 1257 1258
		pci_dev_put(pdev);
		return -ENODEV;
	}
1259

1260
	i7core_dev->pdev[devno] = pdev;
1261 1262

	/* Sanity check */
1263 1264
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1265 1266 1267
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1268
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1269
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1270
			bus, dev_descr->dev, dev_descr->func);
1271 1272
		return -ENODEV;
	}
1273

1274 1275 1276 1277 1278
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1279 1280
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1281 1282
		return -ENODEV;
	}
1283

1284
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1285 1286 1287
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1288

1289
	*prev = pdev;
1290

1291 1292
	return 0;
}
1293

1294
static int i7core_get_devices(struct pci_id_descr dev_descr[], unsigned n_devs)
1295
{
1296
	int i, rc;
1297
	struct pci_dev *pdev = NULL;
1298

1299
	for (i = 0; i < n_devs; i++) {
1300 1301
		pdev = NULL;
		do {
1302 1303 1304
			rc = i7core_get_onedevice(&pdev, i, &dev_descr[i],
						  n_devs);
			if (rc < 0) {
1305
				i7core_put_all_devices();
1306 1307 1308 1309
				return -ENODEV;
			}
		} while (pdev);
	}
1310

1311 1312 1313
	return 0;
}

1314 1315
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1316 1317 1318
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1319
	int i, func, slot;
1320

1321 1322 1323
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;
1324

1325
	pvt->is_registered = 0;
1326
	for (i = 0; i < i7core_dev->n_devs; i++) {
1327 1328
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1329 1330
			continue;

1331 1332 1333 1334 1335 1336 1337 1338
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1339
				goto error;
1340 1341 1342 1343 1344
			pvt->pci_ch[slot - 4][func] = pdev;
		} else if (!slot && !func)
			pvt->pci_noncore = pdev;
		else
			goto error;
1345

1346 1347 1348
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1349

1350 1351 1352
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
			pvt->is_registered = 1;
1353
	}
1354

1355 1356 1357 1358 1359 1360 1361 1362 1363
	/*
	 * Add extra nodes to count errors on udimm
	 * For registered memory, this is not needed, since the counters
	 * are already displayed at the standard locations
	 */
	if (!pvt->is_registered)
		i7core_sysfs_attrs[ARRAY_SIZE(i7core_sysfs_attrs)-2].grp =
			&i7core_udimm_counters;

1364
	return 0;
1365 1366 1367 1368 1369 1370

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1371 1372
}

1373 1374 1375
/****************************************************************************
			Error check routines
 ****************************************************************************/
1376
static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1377 1378 1379 1380
					 int chan, int dimm, int add)
{
	char *msg;
	struct i7core_pvt *pvt = mci->pvt_info;
1381
	int row = pvt->csrow_map[chan][dimm], i;
1382 1383 1384

	for (i = 0; i < add; i++) {
		msg = kasprintf(GFP_KERNEL, "Corrected error "
1385 1386
				"(Socket=%d channel=%d dimm=%d)",
				pvt->i7core_dev->socket, chan, dimm);
1387 1388 1389 1390 1391 1392 1393

		edac_mc_handle_fbd_ce(mci, row, 0, msg);
		kfree (msg);
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1394
			int chan, int new0, int new1, int new2)
1395 1396 1397 1398
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1399
	if (pvt->ce_count_available) {
1400 1401
		/* Updates CE counters */

1402 1403 1404
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1405 1406 1407

		if (add2 < 0)
			add2 += 0x7fff;
1408
		pvt->rdimm_ce_count[chan][2] += add2;
1409 1410 1411

		if (add1 < 0)
			add1 += 0x7fff;
1412
		pvt->rdimm_ce_count[chan][1] += add1;
1413 1414 1415

		if (add0 < 0)
			add0 += 0x7fff;
1416
		pvt->rdimm_ce_count[chan][0] += add0;
1417
	} else
1418
		pvt->ce_count_available = 1;
1419 1420

	/* Store the new values */
1421 1422 1423
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1424 1425 1426

	/*updated the edac core */
	if (add0 != 0)
1427
		i7core_rdimm_update_csrow(mci, chan, 0, add0);
1428
	if (add1 != 0)
1429
		i7core_rdimm_update_csrow(mci, chan, 1, add1);
1430
	if (add2 != 0)
1431
		i7core_rdimm_update_csrow(mci, chan, 2, add2);
1432 1433 1434

}

1435
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1436 1437 1438 1439 1440 1441
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1442
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1443
								&rcv[0][0]);
1444
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1445
								&rcv[0][1]);
1446
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1447
								&rcv[1][0]);
1448
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1449
								&rcv[1][1]);
1450
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1451
								&rcv[2][0]);
1452
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1453 1454 1455 1456 1457
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1458
		if (pvt->channel[i].dimms > 2) {
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1470
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1471 1472
	}
}
1473 1474 1475 1476 1477 1478 1479

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1480
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1481 1482 1483 1484 1485
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1486
	if (!pvt->pci_mcr[4]) {
1487
		debugf0("%s MCR registers not found\n", __func__);
1488 1489 1490
		return;
	}

1491
	/* Corrected test errors */
1492 1493
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1494 1495 1496 1497 1498 1499 1500

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1501
	if (pvt->ce_count_available) {
1502 1503 1504
		/* Updates CE counters */
		int add0, add1, add2;

1505 1506 1507
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1508 1509 1510

		if (add2 < 0)
			add2 += 0x7fff;
1511
		pvt->udimm_ce_count[2] += add2;
1512 1513 1514

		if (add1 < 0)
			add1 += 0x7fff;
1515
		pvt->udimm_ce_count[1] += add1;
1516 1517 1518

		if (add0 < 0)
			add0 += 0x7fff;
1519
		pvt->udimm_ce_count[0] += add0;
1520 1521 1522 1523 1524

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1525
	} else
1526
		pvt->ce_count_available = 1;
1527 1528

	/* Store the new values */
1529 1530 1531
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1532 1533
}

1534 1535 1536
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1537 1538 1539
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1540
 *     struct mce field	MCA Register
1541 1542 1543
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1544 1545 1546
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1547 1548 1549
static void i7core_mce_output_error(struct mem_ctl_info *mci,
				    struct mce *m)
{
1550
	struct i7core_pvt *pvt = mci->pvt_info;
1551
	char *type, *optype, *err, *msg;
1552
	unsigned long error = m->status & 0x1ff0000l;
1553
	u32 optypenum = (m->status >> 4) & 0x07;
1554 1555 1556 1557 1558
	u32 core_err_cnt = (m->status >> 38) && 0x7fff;
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);
1559
	int csrow;
1560

1561 1562 1563 1564 1565
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1566
	switch (optypenum) {
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1585 1586
	}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1617 1618
	}

1619
	/* FIXME: should convert addr into bank and rank information */
1620
	msg = kasprintf(GFP_ATOMIC,
1621
		"%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1622
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1623
		type, (long long) m->addr, m->cpu, dimm, channel,
1624 1625
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1626 1627

	debugf0("%s", msg);
1628

1629
	csrow = pvt->csrow_map[channel][dimm];
1630

1631
	/* Call the helper to output message */
1632 1633 1634
	if (m->mcgstatus & 1)
		edac_mc_handle_fbd_ue(mci, csrow, 0,
				0 /* FIXME: should be channel here */, msg);
1635
	else if (!pvt->is_registered)
1636 1637
		edac_mc_handle_fbd_ce(mci, csrow,
				0 /* FIXME: should be channel here */, msg);
1638 1639

	kfree(msg);
1640 1641
}

1642 1643 1644 1645 1646 1647
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1648 1649 1650
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1651
	struct mce *m;
1652

1653 1654 1655 1656 1657 1658
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
	 * loosing an error.
	 */
	smp_rmb();
1659 1660
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1661 1662
	if (!count)
		return;
1663

1664
	m = pvt->mce_outentry;
1665 1666
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1667

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1685

1686 1687 1688
	/*
	 * MCE second step: parse errors and display
	 */
1689
	for (i = 0; i < count; i++)
1690
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1691

1692 1693 1694
	/*
	 * Now, let's increment CE error counts
	 */
1695 1696 1697 1698
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1699 1700
}

1701 1702 1703 1704 1705
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1706 1707
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1708 1709 1710
 */
static int i7core_mce_check_error(void *priv, struct mce *mce)
{
1711 1712
	struct mem_ctl_info *mci = priv;
	struct i7core_pvt *pvt = mci->pvt_info;
1713

1714 1715 1716 1717 1718 1719 1720
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
		return 0;

1721 1722 1723 1724
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
		return 0;

R
Randy Dunlap 已提交
1725
#ifdef CONFIG_SMP
1726
	/* Only handle if it is the right mc controller */
1727
	if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket)
1728
		return 0;
R
Randy Dunlap 已提交
1729
#endif
1730

1731
	smp_rmb();
1732
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1733 1734 1735
		smp_wmb();
		pvt->mce_overrun++;
		return 0;
1736
	}
1737 1738 1739

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1740
	smp_wmb();
1741
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1742

1743 1744 1745 1746
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

1747
	/* Advice mcelog that the error were handled */
1748
	return 1;
1749 1750
}

1751 1752
static int i7core_register_mci(struct i7core_dev *i7core_dev,
			       int num_channels, int num_csrows)
1753 1754 1755
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
1756
	int csrow = 0;
1757
	int rc;
1758 1759

	/* allocate a new MC control structure */
1760 1761
	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels,
			    i7core_dev->socket);
1762 1763
	if (unlikely(!mci))
		return -ENOMEM;
1764 1765 1766

	debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);

1767 1768 1769
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;

1770
	pvt = mci->pvt_info;
1771
	memset(pvt, 0, sizeof(*pvt));
1772

1773 1774 1775 1776 1777 1778
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
1779 1780 1781 1782
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
1783 1784 1785
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
1786
	mci->ctl_page_to_phys = NULL;
1787
	mci->mc_driver_sysfs_attributes = i7core_sysfs_attrs;
1788 1789
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
1790

1791
	/* Store pci devices at mci for faster access */
1792
	rc = mci_bind_devs(mci, i7core_dev);
1793
	if (unlikely(rc < 0))
1794
		goto fail;
1795 1796

	/* Get dimm basic config */
1797
	get_dimm_config(mci, &csrow);
1798

1799
	/* add this new MC control structure to EDAC's list of MCs */
1800
	if (unlikely(edac_mc_add_mc(mci))) {
1801 1802 1803 1804 1805
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
1806 1807

		rc = -EINVAL;
1808
		goto fail;
1809 1810 1811
	}

	/* allocating generic PCI control info */
1812 1813
	i7core_pci = edac_pci_create_generic_ctl(&i7core_dev->pdev[0]->dev,
						 EDAC_MOD_STR);
1814
	if (unlikely(!i7core_pci)) {
1815 1816 1817 1818 1819 1820 1821 1822
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

1823
	/* Default error mask is any memory */
1824
	pvt->inject.channel = 0;
1825 1826 1827 1828 1829 1830
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

1831
	/* Registers on edac_mce in order to receive memory errors */
1832
	pvt->edac_mce.priv = mci;
1833 1834 1835
	pvt->edac_mce.check_error = i7core_mce_check_error;

	rc = edac_mce_register(&pvt->edac_mce);
1836
	if (unlikely(rc < 0)) {
1837 1838
		debugf0("MC: " __FILE__
			": %s(): failed edac_mce_register()\n", __func__);
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	}

fail:
	edac_mc_free(mci);
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
	int dev_idx = id->driver_data;
	int rc;
	struct i7core_dev *i7core_dev;

	/*
1861
	 * All memory controllers are allocated at the first pass.
1862 1863 1864 1865 1866 1867
	 */
	if (unlikely(dev_idx >= 1))
		return -EINVAL;

	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);
1868

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	if (pdev->device == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) {
		printk(KERN_INFO "i7core_edac: detected a "
				 "Lynnfield processor\n");
		rc = i7core_get_devices(pci_dev_descr_lynnfield,
					ARRAY_SIZE(pci_dev_descr_lynnfield));
	} else {
		printk(KERN_INFO "i7core_edac: detected a "
				 "Nehalem/Nehalem-EP processor\n");
		rc = i7core_get_devices(pci_dev_descr_i7core,
					ARRAY_SIZE(pci_dev_descr_i7core));
	}

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		int channels;
		int csrows;

		/* Check the number of active and not disabled channels */
		rc = i7core_get_active_channels(i7core_dev->socket,
						&channels, &csrows);
		if (unlikely(rc < 0))
			goto fail1;

1894 1895 1896
		rc = i7core_register_mci(i7core_dev, channels, csrows);
		if (unlikely(rc < 0))
			goto fail1;
1897 1898
	}

1899
	i7core_printk(KERN_INFO, "Driver loaded.\n");
1900

1901
	mutex_unlock(&i7core_edac_lock);
1902 1903
	return 0;

1904
fail1:
1905
	i7core_put_all_devices();
1906 1907
fail0:
	mutex_unlock(&i7core_edac_lock);
1908
	return rc;
1909 1910 1911 1912 1913 1914 1915 1916 1917
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
1918
	struct i7core_dev *i7core_dev, *tmp;
1919 1920 1921 1922 1923 1924

	debugf0(__FILE__ ": %s()\n", __func__);

	if (i7core_pci)
		edac_pci_release_generic_ctl(i7core_pci);

1925 1926 1927 1928 1929 1930 1931
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
1932

1933
	mutex_lock(&i7core_edac_lock);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
		mci = edac_mc_del_mc(&i7core_dev->pdev[0]->dev);
		if (mci) {
			struct i7core_pvt *pvt = mci->pvt_info;

			i7core_dev = pvt->i7core_dev;
			edac_mce_unregister(&pvt->edac_mce);
			kfree(mci->ctl_name);
			edac_mc_free(mci);
			i7core_put_devices(i7core_dev);
		} else {
			i7core_printk(KERN_ERR,
				      "Couldn't find mci for socket %d\n",
				      i7core_dev->socket);
		}
	}
1950
	mutex_unlock(&i7core_edac_lock);
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

1979
	i7core_xeon_pci_fixup(pci_dev_descr_i7core[0].dev_id);
1980

1981 1982
	pci_rc = pci_register_driver(&i7core_driver);

1983 1984 1985 1986 1987 1988 1989
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");