i7core_edac.c 56.2 KB
Newer Older
1 2 3 4 5 6
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
 * This driver supports yhe memory controllers found on the Intel
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
34 35
#include <linux/edac.h>
#include <linux/mmzone.h>
36
#include <linux/edac_mce.h>
37
#include <linux/smp.h>
38
#include <asm/processor.h>
39 40 41

#include "edac_core.h"

42 43 44 45 46
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

47 48 49
static int use_pci_fixup;
module_param(use_pci_fixup, int, 0444);
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
50 51 52 53 54 55 56 57 58
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 * Alter this version for the module when modifications are made
 */
#define I7CORE_REVISION    " Ver: 1.0.0 " __DATE__
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

78 79 80 81
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90

82 83 84 85 86 87
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

88 89 90 91 92 93 94 95 96 97 98 99
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

100 101 102 103 104 105 106 107 108 109 110 111
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


112 113
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

114 115 116 117 118 119
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

120 121 122 123
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

124 125 126
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

127
#define MC_CHANNEL_ADDR_MATCH	0xf0
128 129 130 131 132 133 134 135 136 137
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
138

139
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
140

141 142 143 144 145 146 147
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
148 149 150 151
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
152
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
153
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
154 155
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
156

157 158
#define MC_RANK_PRESENT		0x7c

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

182 183 184 185 186
/*
 * i7core structs
 */

#define NUM_CHANS 3
187 188 189
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
190 191 192 193 194

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
195
	u32	ch_map;
196 197
};

198 199 200 201 202 203 204 205 206 207 208 209

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

210
struct i7core_channel {
211 212
	u32		ranks;
	u32		dimms;
213 214
};

215
struct pci_id_descr {
216 217 218
	int			dev;
	int			func;
	int 			dev_id;
219
	int			optional;
220 221
};

222
struct pci_id_table {
223 224
	const struct pci_id_descr	*descr;
	int				n_devs;
225 226
};

227 228 229 230
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
231
	int			n_devs;
232 233 234
	struct mem_ctl_info	*mci;
};

235
struct i7core_pvt {
236 237 238 239 240
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
241

242
	struct i7core_info	info;
243
	struct i7core_inject	inject;
244
	struct i7core_channel	channel[NUM_CHANS];
245

246
	int		channels; /* Number of active channels */
247

248 249
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
250 251

			/* ECC corrected errors counts per udimm */
252 253
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
254
			/* ECC corrected errors counts per rdimm */
255 256
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
257

258
	unsigned int	is_registered;
259

260 261
	/* mcelog glue */
	struct edac_mce		edac_mce;
262 263

	/* Fifo double buffers */
264
	struct mce		mce_entry[MCE_LOG_LEN];
265 266 267 268 269 270 271
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
272 273 274

	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
275 276
};

277 278 279 280 281
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

282
static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
283 284 285
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
286 287
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
307 308 309 310 311 312 313 314

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
315
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },
316

317
};
318

319
static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
320 321 322 323 324 325 326 327 328
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

329 330 331 332
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
333

334 335 336 337
	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
338 339 340
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
};

341
static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

};

372 373
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_table[] = {
374 375 376 377 378
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
};

379 380 381 382
/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
383
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
384
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
385 386 387
	{0,}			/* 0 terminated list. */
};

388 389 390 391 392
/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
393 394
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
395 396

	/* MC_STATUS bits */
397
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
398
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
399 400

	/* MC_MAX_DOD read functions */
401
static inline int numdimms(u32 dimms)
402
{
403
	return (dimms & 0x3) + 1;
404 405
}

406
static inline int numrank(u32 rank)
407 408 409
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

410
	return ranks[rank & 0x3];
411 412
}

413
static inline int numbank(u32 bank)
414 415 416
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

417
	return banks[bank & 0x3];
418 419
}

420
static inline int numrow(u32 row)
421 422 423 424 425 426
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

427
	return rows[row & 0x7];
428 429
}

430
static inline int numcol(u32 col)
431 432 433 434
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
435
	return cols[col & 0x3];
436 437
}

438
static struct i7core_dev *get_i7core_dev(u8 socket)
439 440 441 442 443 444 445 446 447 448 449
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static struct i7core_dev *alloc_i7core_dev(u8 socket,
					   const struct pci_id_table *table)
{
	struct i7core_dev *i7core_dev;

	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
	if (!i7core_dev)
		return NULL;

	i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!i7core_dev->pdev) {
		kfree(i7core_dev);
		return NULL;
	}

	i7core_dev->socket = socket;
	i7core_dev->n_devs = table->n_devs;
	list_add_tail(&i7core_dev->list, &i7core_edac_list);

	return i7core_dev;
}

473 474 475 476 477 478 479
static void free_i7core_dev(struct i7core_dev *i7core_dev)
{
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}

480 481 482
/****************************************************************************
			Memory check routines
 ****************************************************************************/
483 484
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
485
{
486
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
487 488
	int i;

489 490 491
	if (!i7core_dev)
		return NULL;

492
	for (i = 0; i < i7core_dev->n_devs; i++) {
493
		if (!i7core_dev->pdev[i])
494 495
			continue;

496 497 498
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
499 500 501
		}
	}

502 503 504
	return NULL;
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
522
static int i7core_get_active_channels(const u8 socket, unsigned *channels,
523
				      unsigned *csrows)
524 525 526 527 528 529 530 531
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

532
	pdev = get_pdev_slot_func(socket, 3, 0);
533
	if (!pdev) {
534 535
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
536
		return -ENODEV;
537
	}
538 539 540 541 542 543

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
544
		u32 dimm_dod[3];
545 546 547 548 549
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
550
		if (status & (1 << i))
551 552
			continue;

553
		pdev = get_pdev_slot_func(socket, i + 4, 1);
554
		if (!pdev) {
555 556 557
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
558 559 560 561 562 563 564 565 566 567
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

568
		(*channels)++;
569 570 571 572 573 574

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
575 576
	}

577
	debugf0("Number of active channels on socket %d: %d\n",
578
		socket, *channels);
579

580 581 582
	return 0;
}

583
static int get_dimm_config(const struct mem_ctl_info *mci, int *csrow)
584 585
{
	struct i7core_pvt *pvt = mci->pvt_info;
586
	struct csrow_info *csr;
587
	struct pci_dev *pdev;
588
	int i, j;
589
	unsigned long last_page = 0;
590
	enum edac_type mode;
591
	enum mem_type mtype;
592

593
	/* Get data from the MC register, function 0 */
594
	pdev = pvt->pci_mcr[0];
595
	if (!pdev)
596 597
		return -ENODEV;

598
	/* Device 3 function 0 reads */
599 600 601 602
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
603

604
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
605
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
606
		pvt->info.max_dod, pvt->info.ch_map);
607

608
	if (ECC_ENABLED(pvt)) {
609
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
610 611 612 613 614
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
615
		debugf0("ECC disabled\n");
616 617
		mode = EDAC_NONE;
	}
618 619

	/* FIXME: need to handle the error codes */
620 621
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
622 623
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
624
		numbank(pvt->info.max_dod >> 4),
625 626
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
627

628
	for (i = 0; i < NUM_CHANS; i++) {
629
		u32 data, dimm_dod[3], value[8];
630

631 632 633
		if (!pvt->pci_ch[i][0])
			continue;

634 635 636 637 638 639 640 641 642
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

643
		/* Devices 4-6 function 0 */
644
		pci_read_config_dword(pvt->pci_ch[i][0],
645 646
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

647
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
648
						4 : 2;
649

650 651
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
652
		else
653 654
			mtype = MEM_DDR3;
#if 0
655 656 657 658 659 660
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
661 662 663
#endif

		/* Devices 4-6 function 1 */
664
		pci_read_config_dword(pvt->pci_ch[i][1],
665
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
666
		pci_read_config_dword(pvt->pci_ch[i][1],
667
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
668
		pci_read_config_dword(pvt->pci_ch[i][1],
669
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
670

671
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
672
			"%d ranks, %cDIMMs\n",
673 674 675
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
676
			pvt->channel[i].ranks,
677
			(data & REGISTERED_DIMM) ? 'R' : 'U');
678 679 680

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
681
			u32 size, npages;
682 683 684 685 686 687 688 689 690

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

691 692 693
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

694
			pvt->channel[i].dimms++;
695

696 697 698
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
699 700 701
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

702
			npages = MiB_TO_PAGES(size);
703

704
			csr = &mci->csrows[*csrow];
705 706 707 708 709
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

710
			csr->page_mask = 0;
711
			csr->grain = 8;
712
			csr->csrow_idx = *csrow;
713 714 715 716
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
717

718
			pvt->csrow_map[i][j] = *csrow;
719

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

737
			(*csrow)++;
738
		}
739

740 741 742 743 744 745 746 747
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
748
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
749
		for (j = 0; j < 8; j++)
750
			debugf1("\t\t%#x\t%#x\t%#x\n",
751 752 753
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
				(value[j] && ((1 << 24) - 1)));
754 755
	}

756 757 758
	return 0;
}

759 760 761 762 763 764 765 766 767 768 769
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
770
static int disable_inject(const struct mem_ctl_info *mci)
771 772 773 774 775
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

776
	if (!pvt->pci_ch[pvt->inject.channel][0])
777 778
		return -ENODEV;

779
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
780
				MC_CHANNEL_ERROR_INJECT, 0);
781 782

	return 0;
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
800
		disable_inject(mci);
801 802 803

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
804
		return -EIO;
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
833
		disable_inject(mci);
834 835 836

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
837
		return -EIO;
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
868
		disable_inject(mci);
869 870 871

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
872
		return -EIO;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

896 897 898 899 900
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
901
	struct i7core_pvt *pvt;					\
902 903 904
	long value;						\
	int rc;							\
								\
905 906 907
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
908 909 910
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
911
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
928 929 930 931
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
932 933 934 935
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
936 937
}

938 939 940 941 942 943 944 945 946
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
947

948 949 950 951 952 953
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
954

955
static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
956 957 958 959
{
	u32 read;
	int count;

960 961 962 963
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

964 965
	for (count = 0; count < 10; count++) {
		if (count)
966
			msleep(100);
967 968 969 970 971 972 973
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

974 975 976 977
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
978 979 980 981

	return -EINVAL;
}

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

1009
	if (!pvt->pci_ch[pvt->inject.channel][0])
1010 1011
		return 0;

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
1025
		mask |= 1LL << 41;
1026
	else {
1027
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1028
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
1029
		else
1030
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
1031 1032 1033 1034
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
1035
		mask |= 1LL << 40;
1036
	else {
1037
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1038
			mask |= (pvt->inject.rank & 0x1LL) << 34;
1039
		else
1040
			mask |= (pvt->inject.rank & 0x3LL) << 34;
1041 1042 1043 1044
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
1045
		mask |= 1LL << 39;
1046
	else
1047
		mask |= (pvt->inject.bank & 0x15LL) << 30;
1048 1049 1050

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
1051
		mask |= 1LL << 38;
1052
	else
1053
		mask |= (pvt->inject.page & 0xffff) << 14;
1054 1055 1056

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
1057
		mask |= 1LL << 37;
1058
	else
1059
		mask |= (pvt->inject.col & 0x3fff);
1060

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
1073
	pci_write_config_dword(pvt->pci_noncore,
1074
			       MC_CFG_CONTROL, 0x2);
1075

1076
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1077
			       MC_CHANNEL_ADDR_MATCH, mask);
1078
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1079 1080
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1081
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1082 1083
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1084
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1085
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1086

1087
	/*
1088 1089 1090
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1091
	 */
1092
	pci_write_config_dword(pvt->pci_noncore,
1093
			       MC_CFG_CONTROL, 8);
1094

1095 1096
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1097 1098
		mask, pvt->inject.eccmask, injectmask);

1099

1100 1101 1102 1103 1104 1105 1106
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1107 1108
	u32 injectmask;

1109 1110 1111
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1112
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1113
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1114 1115 1116 1117 1118 1119

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1120 1121 1122
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1136

1137 1138 1139 1140 1141 1142 1143
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1144
	}
1145

1146 1147 1148
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1149

1150 1151 1152
/*
 * Sysfs struct
 */
1153

1154
static const struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1155 1156 1157 1158 1159 1160
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
1161
	{ } /* End of list */
1162 1163
};

1164
static const struct mcidev_sysfs_group i7core_inject_addrmatch = {
1165 1166 1167 1168
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1169
static const struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1170 1171 1172
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
1173
	{ .attr = { .name = NULL } }
1174 1175
};

1176
static const struct mcidev_sysfs_group i7core_udimm_counters = {
1177 1178 1179 1180
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1181
static const struct mcidev_sysfs_attribute i7core_sysfs_rdimm_attrs[] = {
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1204
		.grp = &i7core_inject_addrmatch,
1205 1206 1207 1208 1209 1210 1211 1212
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	{ }	/* End of list */
};

static const struct mcidev_sysfs_attribute i7core_sysfs_udimm_attrs[] = {
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
		.grp = &i7core_inject_addrmatch,
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	}, {
		.grp = &i7core_udimm_counters,
	},
	{ }	/* End of list */
1251 1252
};

1253 1254 1255 1256 1257
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
1258
 *	i7core_put_all_devices	'put' all the devices that we have
1259 1260
 *				reserved via 'get'
 */
1261
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1262
{
1263
	int i;
1264

1265
	debugf0(__FILE__ ": %s()\n", __func__);
1266
	for (i = 0; i < i7core_dev->n_devs; i++) {
1267 1268 1269 1270 1271 1272 1273 1274
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1275
}
1276

1277 1278
static void i7core_put_all_devices(void)
{
1279
	struct i7core_dev *i7core_dev, *tmp;
1280

1281
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1282
		i7core_put_devices(i7core_dev);
1283
		free_i7core_dev(i7core_dev);
1284
	}
1285 1286
}

1287
static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1288 1289 1290
{
	struct pci_dev *pdev = NULL;
	int i;
1291

1292 1293 1294 1295 1296
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1297 1298 1299 1300 1301 1302
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1303
		pci_dev_put(pdev);
1304
		table++;
1305 1306 1307
	}
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
		debugf0("Found bus %d\n", bus);
		if (bus > last_bus)
			last_bus = bus;
	}

	debugf0("Last bus %d\n", last_bus);

	return last_bus;
}

1325
/*
1326
 *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1327 1328 1329 1330
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1331 1332 1333 1334
static int i7core_get_onedevice(struct pci_dev **prev,
				const struct pci_id_table *table,
				const unsigned devno,
				const unsigned last_bus)
1335
{
1336
	struct i7core_dev *i7core_dev;
1337
	const struct pci_id_descr *dev_descr = &table->descr[devno];
1338

1339
	struct pci_dev *pdev = NULL;
1340 1341
	u8 bus = 0;
	u8 socket = 0;
1342

1343
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1344
			      dev_descr->dev_id, *prev);
1345 1346 1347 1348 1349 1350

	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
1351
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
1352
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1353
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1354

1355
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
1356 1357 1358 1359
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);

1360 1361 1362 1363
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1364 1365
		}

1366
		if (dev_descr->optional)
1367
			return 0;
1368

1369 1370 1371
		if (devno == 0)
			return -ENODEV;

1372
		i7core_printk(KERN_INFO,
1373
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1374 1375
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1376

1377 1378 1379 1380
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1381

1382
	socket = last_bus - bus;
1383

1384 1385
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
1386
		i7core_dev = alloc_i7core_dev(socket, table);
1387 1388
		if (!i7core_dev) {
			pci_dev_put(pdev);
1389
			return -ENOMEM;
1390
		}
1391
	}
1392

1393
	if (i7core_dev->pdev[devno]) {
1394 1395 1396
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1397 1398
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1399 1400 1401
		pci_dev_put(pdev);
		return -ENODEV;
	}
1402

1403
	i7core_dev->pdev[devno] = pdev;
1404 1405

	/* Sanity check */
1406 1407
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1408 1409 1410
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1411
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1412
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1413
			bus, dev_descr->dev, dev_descr->func);
1414 1415
		return -ENODEV;
	}
1416

1417 1418 1419 1420 1421
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1422 1423
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1424 1425
		return -ENODEV;
	}
1426

1427
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1428 1429 1430
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1431

1432
	*prev = pdev;
1433

1434 1435
	return 0;
}
1436

1437
static int i7core_get_all_devices(void)
1438
{
1439
	int i, j, rc, last_bus;
1440
	struct pci_dev *pdev = NULL;
1441
	const struct pci_id_table *table;
1442

1443 1444
	last_bus = i7core_pci_lastbus();

1445 1446
	for (j = 0; j < ARRAY_SIZE(pci_dev_table); j++) {
		table = &pci_dev_table[j];
1447 1448 1449
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1450
				rc = i7core_get_onedevice(&pdev, table, i,
1451
							  last_bus);
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
1462
	}
1463

1464 1465 1466
	return 0;
}

1467 1468
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1469 1470 1471
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1472
	int i, func, slot;
1473

1474
	pvt->is_registered = 0;
1475
	for (i = 0; i < i7core_dev->n_devs; i++) {
1476 1477
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1478 1479
			continue;

1480 1481 1482 1483 1484 1485 1486 1487
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1488
				goto error;
1489 1490 1491 1492 1493
			pvt->pci_ch[slot - 4][func] = pdev;
		} else if (!slot && !func)
			pvt->pci_noncore = pdev;
		else
			goto error;
1494

1495 1496 1497
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1498

1499 1500 1501
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
			pvt->is_registered = 1;
1502
	}
1503

1504
	return 0;
1505 1506 1507 1508 1509 1510

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1511 1512
}

1513 1514 1515
/****************************************************************************
			Error check routines
 ****************************************************************************/
1516
static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1517 1518 1519
				      const int chan,
				      const int dimm,
				      const int add)
1520 1521 1522
{
	char *msg;
	struct i7core_pvt *pvt = mci->pvt_info;
1523
	int row = pvt->csrow_map[chan][dimm], i;
1524 1525 1526

	for (i = 0; i < add; i++) {
		msg = kasprintf(GFP_KERNEL, "Corrected error "
1527 1528
				"(Socket=%d channel=%d dimm=%d)",
				pvt->i7core_dev->socket, chan, dimm);
1529 1530 1531 1532 1533 1534 1535

		edac_mc_handle_fbd_ce(mci, row, 0, msg);
		kfree (msg);
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1536 1537 1538 1539
					 const int chan,
					 const int new0,
					 const int new1,
					 const int new2)
1540 1541 1542 1543
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1544
	if (pvt->ce_count_available) {
1545 1546
		/* Updates CE counters */

1547 1548 1549
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1550 1551 1552

		if (add2 < 0)
			add2 += 0x7fff;
1553
		pvt->rdimm_ce_count[chan][2] += add2;
1554 1555 1556

		if (add1 < 0)
			add1 += 0x7fff;
1557
		pvt->rdimm_ce_count[chan][1] += add1;
1558 1559 1560

		if (add0 < 0)
			add0 += 0x7fff;
1561
		pvt->rdimm_ce_count[chan][0] += add0;
1562
	} else
1563
		pvt->ce_count_available = 1;
1564 1565

	/* Store the new values */
1566 1567 1568
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1569 1570 1571

	/*updated the edac core */
	if (add0 != 0)
1572
		i7core_rdimm_update_csrow(mci, chan, 0, add0);
1573
	if (add1 != 0)
1574
		i7core_rdimm_update_csrow(mci, chan, 1, add1);
1575
	if (add2 != 0)
1576
		i7core_rdimm_update_csrow(mci, chan, 2, add2);
1577 1578 1579

}

1580
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1581 1582 1583 1584 1585 1586
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1587
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1588
								&rcv[0][0]);
1589
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1590
								&rcv[0][1]);
1591
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1592
								&rcv[1][0]);
1593
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1594
								&rcv[1][1]);
1595
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1596
								&rcv[2][0]);
1597
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1598 1599 1600 1601 1602
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1603
		if (pvt->channel[i].dimms > 2) {
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1615
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1616 1617
	}
}
1618 1619 1620 1621 1622 1623 1624

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1625
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1626 1627 1628 1629 1630
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1631
	if (!pvt->pci_mcr[4]) {
1632
		debugf0("%s MCR registers not found\n", __func__);
1633 1634 1635
		return;
	}

1636
	/* Corrected test errors */
1637 1638
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1639 1640 1641 1642 1643 1644 1645

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1646
	if (pvt->ce_count_available) {
1647 1648 1649
		/* Updates CE counters */
		int add0, add1, add2;

1650 1651 1652
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1653 1654 1655

		if (add2 < 0)
			add2 += 0x7fff;
1656
		pvt->udimm_ce_count[2] += add2;
1657 1658 1659

		if (add1 < 0)
			add1 += 0x7fff;
1660
		pvt->udimm_ce_count[1] += add1;
1661 1662 1663

		if (add0 < 0)
			add0 += 0x7fff;
1664
		pvt->udimm_ce_count[0] += add0;
1665 1666 1667 1668 1669

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1670
	} else
1671
		pvt->ce_count_available = 1;
1672 1673

	/* Store the new values */
1674 1675 1676
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1677 1678
}

1679 1680 1681
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1682 1683 1684
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1685
 *     struct mce field	MCA Register
1686 1687 1688
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1689 1690 1691
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1692
static void i7core_mce_output_error(struct mem_ctl_info *mci,
1693
				    const struct mce *m)
1694
{
1695
	struct i7core_pvt *pvt = mci->pvt_info;
1696
	char *type, *optype, *err, *msg;
1697
	unsigned long error = m->status & 0x1ff0000l;
1698
	u32 optypenum = (m->status >> 4) & 0x07;
1699 1700 1701 1702 1703
	u32 core_err_cnt = (m->status >> 38) && 0x7fff;
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);
1704
	int csrow;
1705

1706 1707 1708 1709 1710
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1711
	switch (optypenum) {
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1730 1731
	}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1762 1763
	}

1764
	/* FIXME: should convert addr into bank and rank information */
1765
	msg = kasprintf(GFP_ATOMIC,
1766
		"%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1767
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1768
		type, (long long) m->addr, m->cpu, dimm, channel,
1769 1770
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1771 1772

	debugf0("%s", msg);
1773

1774
	csrow = pvt->csrow_map[channel][dimm];
1775

1776
	/* Call the helper to output message */
1777 1778 1779
	if (m->mcgstatus & 1)
		edac_mc_handle_fbd_ue(mci, csrow, 0,
				0 /* FIXME: should be channel here */, msg);
1780
	else if (!pvt->is_registered)
1781 1782
		edac_mc_handle_fbd_ce(mci, csrow,
				0 /* FIXME: should be channel here */, msg);
1783 1784

	kfree(msg);
1785 1786
}

1787 1788 1789 1790 1791 1792
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1793 1794 1795
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1796
	struct mce *m;
1797

1798 1799 1800 1801 1802 1803
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
	 * loosing an error.
	 */
	smp_rmb();
1804 1805
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1806
	if (!count)
1807
		goto check_ce_error;
1808

1809
	m = pvt->mce_outentry;
1810 1811
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1812

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1830

1831 1832 1833
	/*
	 * MCE second step: parse errors and display
	 */
1834
	for (i = 0; i < count; i++)
1835
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1836

1837 1838 1839
	/*
	 * Now, let's increment CE error counts
	 */
1840
check_ce_error:
1841 1842 1843 1844
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1845 1846
}

1847 1848 1849 1850 1851
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1852 1853
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1854 1855 1856
 */
static int i7core_mce_check_error(void *priv, struct mce *mce)
{
1857 1858
	struct mem_ctl_info *mci = priv;
	struct i7core_pvt *pvt = mci->pvt_info;
1859

1860 1861 1862 1863 1864 1865 1866
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
		return 0;

1867 1868 1869 1870
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
		return 0;

R
Randy Dunlap 已提交
1871
#ifdef CONFIG_SMP
1872
	/* Only handle if it is the right mc controller */
1873
	if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket)
1874
		return 0;
R
Randy Dunlap 已提交
1875
#endif
1876

1877
	smp_rmb();
1878
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1879 1880 1881
		smp_wmb();
		pvt->mce_overrun++;
		return 0;
1882
	}
1883 1884 1885

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1886
	smp_wmb();
1887
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1888

1889 1890 1891 1892
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

1893
	/* Advice mcelog that the error were handled */
1894
	return 1;
1895 1896
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
{
	pvt->i7core_pci = edac_pci_create_generic_ctl(
						&pvt->i7core_dev->pdev[0]->dev,
						EDAC_MOD_STR);
	if (unlikely(!pvt->i7core_pci))
		pr_warn("Unable to setup PCI error report via EDAC\n");
}

static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
{
	if (likely(pvt->i7core_pci))
		edac_pci_release_generic_ctl(pvt->i7core_pci);
	else
		i7core_printk(KERN_ERR,
				"Couldn't find mem_ctl_info for socket %d\n",
				pvt->i7core_dev->socket);
	pvt->i7core_pci = NULL;
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
{
	struct mem_ctl_info *mci = i7core_dev->mci;
	struct i7core_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
			__func__, &i7core_dev->pdev[0]->dev);

		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);

	/* Disable MCE NMI handler */
	edac_mce_unregister(&pvt->edac_mce);

	/* Disable EDAC polling */
	i7core_pci_ctl_release(pvt);

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(mci->dev);

	debugf1("%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	i7core_dev->mci = NULL;
}

1950
static int i7core_register_mci(struct i7core_dev *i7core_dev,
1951
			       const int num_channels, const int num_csrows)
1952 1953 1954
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
1955
	int csrow = 0;
1956
	int rc;
1957 1958

	/* allocate a new MC control structure */
1959 1960
	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels,
			    i7core_dev->socket);
1961 1962
	if (unlikely(!mci))
		return -ENOMEM;
1963

1964 1965
	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);
1966 1967

	pvt = mci->pvt_info;
1968
	memset(pvt, 0, sizeof(*pvt));
1969

1970 1971 1972 1973 1974 1975
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
1976 1977 1978 1979
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
1980 1981 1982
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
1983
	mci->ctl_page_to_phys = NULL;
1984

1985
	/* Store pci devices at mci for faster access */
1986
	rc = mci_bind_devs(mci, i7core_dev);
1987
	if (unlikely(rc < 0))
1988
		goto fail0;
1989

1990 1991 1992 1993 1994
	if (pvt->is_registered)
		mci->mc_driver_sysfs_attributes = i7core_sysfs_rdimm_attrs;
	else
		mci->mc_driver_sysfs_attributes = i7core_sysfs_udimm_attrs;

1995
	/* Get dimm basic config */
1996
	get_dimm_config(mci, &csrow);
1997 1998 1999 2000
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
2001

2002
	/* add this new MC control structure to EDAC's list of MCs */
2003
	if (unlikely(edac_mc_add_mc(mci))) {
2004 2005 2006 2007 2008
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
2009 2010

		rc = -EINVAL;
2011
		goto fail0;
2012 2013
	}

2014
	/* Default error mask is any memory */
2015
	pvt->inject.channel = 0;
2016 2017 2018 2019 2020 2021
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

2022 2023 2024
	/* allocating generic PCI control info */
	i7core_pci_ctl_create(pvt);

2025
	/* Registers on edac_mce in order to receive memory errors */
2026
	pvt->edac_mce.priv = mci;
2027 2028
	pvt->edac_mce.check_error = i7core_mce_check_error;
	rc = edac_mce_register(&pvt->edac_mce);
2029
	if (unlikely(rc < 0)) {
2030 2031
		debugf0("MC: " __FILE__
			": %s(): failed edac_mce_register()\n", __func__);
2032
		goto fail1;
2033 2034
	}

2035 2036 2037 2038
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;

2039 2040 2041 2042 2043 2044 2045 2046
	return 0;

fail1:
	i7core_pci_ctl_release(pvt);
	edac_mc_del_mc(mci->dev);
fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
2047
	i7core_dev->mci = NULL;
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
2058

2059 2060 2061 2062 2063 2064
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
	int rc;
	struct i7core_dev *i7core_dev;

2065 2066 2067
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

2068
	/*
2069
	 * All memory controllers are allocated at the first pass.
2070
	 */
2071 2072
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
2073
		return -EINVAL;
2074 2075
	}
	probed++;
2076

2077
	rc = i7core_get_all_devices();
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		int channels;
		int csrows;

		/* Check the number of active and not disabled channels */
		rc = i7core_get_active_channels(i7core_dev->socket,
						&channels, &csrows);
		if (unlikely(rc < 0))
			goto fail1;

2091 2092 2093
		rc = i7core_register_mci(i7core_dev, channels, csrows);
		if (unlikely(rc < 0))
			goto fail1;
2094 2095
	}

2096
	i7core_printk(KERN_INFO, "Driver loaded.\n");
2097

2098
	mutex_unlock(&i7core_edac_lock);
2099 2100
	return 0;

2101
fail1:
2102 2103 2104 2105
	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->mci)
			i7core_unregister_mci(i7core_dev);
	}
2106
	i7core_put_all_devices();
2107 2108
fail0:
	mutex_unlock(&i7core_edac_lock);
2109
	return rc;
2110 2111 2112 2113 2114 2115 2116 2117
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
2118
	struct i7core_dev *i7core_dev;
2119 2120 2121

	debugf0(__FILE__ ": %s()\n", __func__);

2122 2123 2124 2125 2126 2127 2128
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2129

2130
	mutex_lock(&i7core_edac_lock);
2131 2132 2133 2134 2135 2136

	if (unlikely(!probed)) {
		mutex_unlock(&i7core_edac_lock);
		return;
	}

2137
	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2138 2139
		if (i7core_dev->mci)
			i7core_unregister_mci(i7core_dev);
2140
	}
2141 2142 2143 2144

	/* Release PCI resources */
	i7core_put_all_devices();

2145 2146
	probed--;

2147
	mutex_unlock(&i7core_edac_lock);
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2176 2177
	if (use_pci_fixup)
		i7core_xeon_pci_fixup(pci_dev_table);
2178

2179 2180
	pci_rc = pci_register_driver(&i7core_driver);

2181 2182 2183 2184 2185 2186 2187
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");